193 research outputs found

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise

    Open research issues on multi-models for complex technological systems

    Get PDF
    Abstract -We are going to report here about state of the art works on multi-models for complex technological systems both from the theoretical and practical point of view. A variety of algorithmic approaches (k-mean, dss, etc.) and applicative domains (wind farms, neurological diseases, etc.) are reported to illustrate the extension of the research area

    Type-2 fuzzy logic system applications for power systems

    Get PDF
    PhD ThesisIn the move towards ubiquitous information & communications technology, an opportunity for further optimisation of the power system as a whole has arisen. Nonetheless, the fast growth of intermittent generation concurrently with markets deregulation is driving a need for timely algorithms that can derive value from these new data sources. Type-2 fuzzy logic systems can offer approximate solutions to these computationally hard tasks by expressing non-linear relationships in a more flexible fashion. This thesis explores how type-2 fuzzy logic systems can provide solutions to two of these challenging power system problems; short-term load forecasting and voltage control in distribution networks. On one hand, time-series forecasting is a key input for economic secure power systems as there are many tasks that require a precise determination of the future short-term load (e.g. unit commitment or security assessment among others), but also when dealing with electricity as commodity. As a consequence, short-term load forecasting becomes essential for energy stakeholders and any inaccuracy can be directly translated into their financial performance. All these is reflected in current power systems literature trends where a significant number of papers cover the subject. Extending the existing literature, this work focuses in how these should be implemented from beginning to end to bring to light their predictive performance. Following this research direction, this thesis introduces a novel framework to automatically design type-2 fuzzy logic systems. On the other hand, the low-carbon economy is pushing the grid status even closer to its operational limits. Distribution networks are becoming active systems with power flows and voltages defined not only by load, but also by generation. As consequence, even if it is not yet absolutely clear how power systems will evolve in the long-term, all plausible future scenarios claim for real-time algorithms that can provide near optimal solutions to this challenging mixed-integer non-linear problem. Aligned with research and industry efforts, this thesis introduces a scalable implementation to tackle this task in divide-and-conquer fashio

    Transient stability assessment of hybrid distributed generation using computational intelligence approaches

    Get PDF
    Includes bibliographical references.Due to increasing integration of new technologies into the grid such as hybrid electric vehicles, distributed generations, power electronic interface circuits, advanced controllers etc., the present power system network is now more complex than in the past. Consequently, the recent rate of blackouts recorded in some parts of the world indicates that the power system is stressed. The real time/online monitoring and prediction of stability limit is needed to prevent future blackouts. In the last decade, Distributed Generators (DGs) among other technologies have received increasing attention. This is because DGs have the capability to meet peak demand, reduce losses, due to proximity to consumers and produce clean energy and thus reduce the production of CO₂. More benefits can be obtained when two or more DGs are combined together to form what is known as Hybrid Distributed Generation (HDG). The challenge with hybrid distributed generation (HDG) powered by intermittent renewable energy sources such as solar PV, wind turbine and small hydro power is that the system is more vulnerable to instabilities compared to single renewable energy source DG. This is because of the intermittent nature of the renewable energy sources and the complex interaction between the DGs and the distribution network. Due to the complexity and the stress level of the present power system network, real time/online monitoring and prediction of stability limits is becoming an essential and important part of present day control centres. Up to now, research on the impact of HDG on the transient stability is very limited. Generally, to perform transient stability assessment, an analytical approach is often used. The analytical approach requires a large volume of data, detailed mathematical equations and the understanding of the dynamics of the system. Due to the unavailability of accurate mathematical equations for most dynamic systems, and given the large volume of data required, the analytical method is inadequate and time consuming. Moreover, it requires long simulation time to assess the stability limits of the system. Therefore, the analytical approach is inadequate to handle real time operation of power system. In order to carry out real time transient stability assessment under an increasing nonlinear and time varying dynamics, fast scalable and dynamic algorithms are required. Transient Stability Assessment Of Hybrid Distributed Generation Using Computational Intelligence Approaches These algorithms must be able to perform advanced monitoring, decision making, forecasting, control and optimization. Computational Intelligence (CI) based algorithm such as neural networks coupled with Wide Area Monitoring System (WAMS) such as Phasor Measurement Unit (PMUs) have been shown to successfully model non-linear dynamics and predict stability limits in real time. To cope with the shortcoming of the analytical approach, a computational intelligence method based on Artificial Neural Networks (ANNs) was developed in this thesis to assess transient stability in real time. Appropriate data related to the hybrid generation (i.e., Solar PV, wind generator, small hydropower) were generated using the analytical approach for the training and testing of the ANN models. In addition, PMUs integrated in Real Time Digital Simulator (RTDS) were used to gather data for the real time training of the ANNs and the prediction of the Critical Clearing Time (CCT)

    Cascade solar thermal power system modeling and research of the key features.

    Get PDF
    El objetivo de esta tesis es investigar sistemas de generación eléctrica termosolar para proponer, desa-rrollar y optimizar un sistema de energía solar térmica en cascada para conseguir un mejor rendimiento de las tecnologías de generación eléctrica termosolar y explorar una nueva tecnología viable generación a gran escala. Los contenidos y conclusiones principales de la tesis son los siguientes.Se han propuesto múltiples y novedosas estructuras topológicas para diseños de cascada termosolar, combinando ciclo Stirling como ciclo de cabecera y ciclo rankine como ciclo de cola, incluso con chimenea solar. Como colectores se integran el colector cilindro parabólico, el disco parabólico y la torre central con campo de heliostatos. La topología seleccionada para el estudio consiste en un campo solar de alta tempera-tura de colectores de disco parabólico para calentar aire a alta temperatura que se utiliza como foco caliente de un motor sterling. El foco frío de dicho motor es, a su vez, y utilización en cascada de la energía termosolar un ciclo rankine que se alimenta de vapor generado con un campo solar de colectores cilindro parabólicos (media temperatura).Se establecen modelos mecanicistas para los componentes del sistema de generación solar, usando he-rramientas informáticas de cálculo matemático y desarrollo de sistemas. El proceso de modelado usa una aproximación orientada al objeto, para asegurar la independencia y relevancia de cada componente. El mo-delo del sistema tiene la ventaja de una organización pertinente, una estructura clara y fácil capacidad de mejora. Para el modelado del motor Stirling, se consideran varias irreversibilidades y pérdidas, lo que permite ve-rificar una predicción más precisa que la del modelo clásico. Se ha estudiado el efecto de diferentes disposi-ciones de motores Stirling sobre el rendimiento del sistema en cascada. De acuerdo a las características de funcionamiento del motor, se proponen 5 disposiciones básicas de una matriz de motores Stirling y se imple-mentan los correspondientes modelos de simulación. Se analizan las diferencias de funcionamiento entre los distintos conjuntos para diferentes temperaturas y capacidades térmicas de fluido de entrada y diferentes parámetros del motor Stirling. Se concluye que la conexión en serie es la mejor disposición en términos de robustez y rendimiento de la matriz de motores Stirling. Se propone un sistema de calentamiento multietapa que puede reducir efectivamente la pérdida de exer-gía del proceso de generación de vapor de agua. Durante el proceso completo de intercambio de calor en un generador de vapor de agua convencional, no hay cambio de fase en el fluido calefactor y sí en el fluido cale-factado. En los intercambiadores de calor, existen amplias diferencias de temperaturas entre ambos, lo que amplía la pérdida de exergía durante el proceso. En esta tesis, se propone un método de calentamiento por etapas, en el que los caudales másicos del fluido calefactor en diferentes intercambiadores se controlan para reducir la diferencia de temperatura y las pérdidas de exergía. Este método puede incrementar efectivamente el rendimiento térmico de campos solares.Se propone un método para evaluar el funcionamiento de sistemas de generación eléctrica termosolar en cascada. Se escogen para comparación los sistemas independientes que componen la cascada y se esta-blecen los modelos de evaluación de su funcionamiento. Los resultados de la simulación y su análisis revelan que el sistema en cascada tiene un rendimiento de conversión solar-eléctrico mayor para altas irradiaciones solares si se compara con los correspondientes sistemas independientes.Se ha construido una plataforma de ensayo de generación eléctrica termosolar y se han efectuado ensa-yos experimentales con los colectores. Los experimentos determinan la influencia de la irradiación solar nor-mal directa, caudal y temperatura de entrada del fluido de transferencia de calor. Los resultados experimen-tales validan lo establecido mediante los modelos de los colectores y de los discos<br /

    Integration of Energy Storage into a Future Energy System with a High Penetration of Distributed Photovoltaic Generation

    Get PDF
    Energy storage units (ESU) are increasingly used in electrical distribution systems because they can perform many functions compared with traditional equipment. These include peak shaving, voltage regulation, frequency regulation, provision of spinning reserve, and aiding integration of renewable generation by mitigating the effects of intermittency. As is the case with other equipment on electric distribution systems, it is necessary to follow appropriate methodologies in order to ensure that ESU are installed in a cost-effective manner and their benefits are realized. However, the necessary methodologies for integration of ESU have not kept pace with developments in both ESU and distribution systems. This work develops methodologies to integrate ESU into distribution systems by selecting the necessary storage technologies, energy capacities, power ratings, converter topologies, control strategies, and design lifetimes of ESU. In doing so, the impact of new technologies and issues such as volt-VAR optimization (VVO), intermittency of photovoltaic (PV) inverters, and the smart PV inverter proposed by EPRI are considered. The salient contributions of this dissertation follow. A unified methodology is developed for storage technology selection, storage capacity selection, and scheduling of an ESU used for energy arbitrage. The methodology is applied to make technology recommendations and to reveal that there exists a cost-optimal design lifetime for such an ESU. A methodology is developed for capacity selection of an ESU providing both energy arbitrage and ancillary services under a stochastic pricing structure. The ESU designed is evaluated using ridge regression for price forecasting; Ridge regression applied to overcome numerical stability and overfitting issues associated with the large number of highly correlated predictors. Heuristics are developed to speed convergence of simulated annealing for placement of distributed ESU. Scaling and clustering methods are also applied to reduce computation time for placement of ESU (or any other shunt-connected device) on a distribution system. A probabilistic model for cloud-induced photovoltaic (PV) intermittency of a single PV installation is developed and applied to the design of ESU

    Data-driven Protection of Transformers, Phase Angle Regulators, and Transmission Lines in Interconnected Power Systems

    Get PDF
    This dissertation highlights the growing interest in and adoption of machine learning approaches for fault detection in modern electric power grids. Once a fault has occurred, it must be identified quickly and a variety of preventative steps must be taken to remove or insulate it. As a result, detecting, locating, and classifying faults early and accurately can improve safety and dependability while reducing downtime and hardware damage. Machine learning-based solutions and tools to carry out effective data processing and analysis to aid power system operations and decision-making are becoming preeminent with better system condition awareness and data availability. Power transformers, Phase Shift Transformers or Phase Angle Regulators, and transmission lines are critical components in power systems, and ensuring their safety is a primary issue. Differential relays are commonly employed to protect transformers, whereas distance relays are utilized to protect transmission lines. Magnetizing inrush, overexcitation, and current transformer saturation make transformer protection a challenge. Furthermore, non-standard phase shift, series core saturation, low turn-to-turn, and turn-to-ground fault currents are non-traditional problems associated with Phase Angle Regulators. Faults during symmetrical power swings and unstable power swings may cause mal-operation of distance relays, and unintentional and uncontrolled islanding. The distance relays also mal-operate for transmission lines connected to type-3 wind farms. The conventional protection techniques would no longer be adequate to address the above-mentioned challenges due to their limitations in handling and analyzing the massive amount of data, limited generalizability of conventional models, incapability to model non-linear systems, etc. These limitations of conventional differential and distance protection methods bring forward the motivation of using machine learning techniques in addressing various protection challenges. The power transformers and Phase Angle Regulators are modeled to simulate and analyze the transients accurately. Appropriate time and frequency domain features are selected using different selection algorithms to train the machine learning algorithms. The boosting algorithms outperformed the other classifiers for detection of faults with balanced accuracies of above 99% and computational time of about one and a half cycles. The case studies on transmission lines show that the developed methods distinguish power swings and faults, and determine the correct fault zone. The proposed data-driven protection algorithms can work together with conventional differential and distance relays and offer supervisory control over their operation and thus improve the dependability and security of protection systems

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    State-of-the-art of design and operation of power systems with large amounts of wind power, summary of IEA Wind collaboration

    Get PDF
    An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The task “Design and Operation of Power Systems with Large Amounts of Wind Power” is analysing existing case studies from different power systems.There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. This paper summarises the results from 15 case studies
    corecore