269 research outputs found

    Exploratory search through large video corpora

    Get PDF
    Activity retrieval is a growing field in electrical engineering that specializes in the search and retrieval of relevant activities and events in video corpora. With the affordability and popularity of cameras for government, personal and retail use, the quantity of available video data is rapidly outscaling our ability to reason over it. Towards the end of empowering users to navigate and interact with the contents of these video corpora, we propose a framework for exploratory search that emphasizes activity structure and search space reduction over complex feature representations. Exploratory search is a user driven process wherein a person provides a system with a query describing the activity, event, or object he is interested in finding. Typically, this description takes the implicit form of one or more exemplar videos, but it can also involve an explicit description. The system returns candidate matches, followed by query refinement and iteration. System performance is judged by the run-time of the system and the precision/recall curve of of the query matches returned. Scaling is one of the primary challenges in video search. From vast web-video archives like youtube (1 billion videos and counting) to the 30 million active surveillance cameras shooting an estimated 4 billion hours of footage every week in the United States, trying to find a set of matches can be like looking for a needle in a haystack. Our goal is to create an efficient archival representation of video corpora that can be calculated in real-time as video streams in, and then enables a user to quickly get a set of results that match. First, we design a system for rapidly identifying simple queries in large-scale video corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal relationships between those features as a means of disambiguating an activity of interest from background. We define a semantic feature vocabulary of concepts that are both readily extracted from video and easily understood by an operator. As data streams in, features are hashed to an inverted index and retrieved in constant time after the system is presented with a user's query. We take a zero-shot approach to exploratory search: the user manually assembles vocabulary elements like color, speed, size and type into a graph. Given that information, we perform an initial downsampling of the archived data, and design a novel dynamic programming approach based on genome-sequencing to search for similar patterns. Experimental results indicate that this approach outperforms other methods for detecting activities in surveillance video datasets. Second, we address the problem of representing complex activities that take place over long spans of space and time. Subgraph and graph matching methods have seen limited use in exploratory search because both problems are provably NP-hard. In this work, we render these problems computationally tractable by identifying the maximally discriminative spanning tree (MDST), and using dynamic programming to optimally reduce the archive data based on a custom algorithm for tree-matching in attributed relational graphs. We demonstrate the efficacy of this approach on popular surveillance video datasets in several modalities. Finally, we design an approach for successive search space reduction in subgraph matching problems. Given a query graph and archival data, our algorithm iteratively selects spanning trees from the query graph that optimize the expected search space reduction at each step until the archive converges. We use this approach to efficiently reason over video surveillance datasets, simulated data, as well as large graphs of protein data

    Cross-Modal Learning for Sketch Visual Understanding.

    Get PDF
    PhD Theses.As touching devices have rapidly proliferated, sketch has gained much popularity as an alternative input to text descriptions and speeches. This is due to the fact that sketch has the advantage of being informative and convenient, which have stimulated sketchrelated research in areas such as sketch recognition, sketch segmentation, sketch-based image retrieval, and photo-to-sketch synthesis. Though these eld has been well touched, existing sketch works still su er from aligning the sketch and photo domains, resulting in unsatisfactory quality for both ne-grained retrieval and synthesis between sketch and photo modalities. To address these problems, in this thesis, we proposed a series novel works on free-hand sketch related tasks and throw out helpful insights to help future research. Sketch conveys ne-grained information, making ne-grained sketch-based image retrieval one of the most important topics for sketch research. The basic solution for this task is learning to exploit the informativeness of sketches and link it to other modalities. Apart from the informativeness of sketches, semantic information is also important to understanding sketch modality and link it with other related modalities. In this thesis, we indicate that semantic information can e ectively ll the domain gap between sketch and photo modalities as a bridge. Based on this observation, we proposed an attributeaware deep framework to exploit attribute information to aid ne-grained SBIR. Text descriptions are considered as another semantic alternative to attributes, and at the same time, with the advantage of more exible and natural, which are exploited in our proposed deep multi-task framework. The experimental study has shown that the semantic attribute information can improve the ne-grained SBIR performance in a large margin. Sketch also has its unique feature like containing temporal information. In sketch synthesis task, the understandings from both semantic meanings behind sketches and sketching i process are required. The semantic meaning of sketches has been well explored in the sketch recognition, and sketch retrieval challenges. However, the sketching process has somehow been ignored, even though the sketching process is also very important for us to understand the sketch modality, especially considering the unique temporal characteristics of sketches. in this thesis, we proposed the rst deep photo-to-sketch synthesis framework, which has provided good performance on sketch synthesis task, as shown in the experiment section. Generalisability is an important criterion to judge whether the existing methods are able to be applied to the real world scenario, especially considering the di culties and costly expense of collecting sketches and pairwise annotation. We thus proposed a generalised ne-grained SBIR framework. In detail, we follow the meta-learning strategy, and train a hyper-network to generate instance-level classi cation weights for the latter matching network. The e ectiveness of the proposed method has been validated by the extensive experimental results

    Modeling Visual Rhetoric and Semantics in Multimedia

    Get PDF
    Recent advances in machine learning have enabled computer vision algorithms to model complicated visual phenomena with accuracies unthinkable a mere decade ago. Their high-performance on a plethora of vision-related tasks has enabled computer vision researchers to begin to move beyond traditional visual recognition problems to tasks requiring higher-level image understanding. However, most computer vision research still focuses on describing what images, text, or other media literally portrays. In contrast, in this dissertation we focus on learning how and why such content is portrayed. Rather than viewing media for its content, we recast the problem as understanding visual communication and visual rhetoric. For example, the same content may be portrayed in different ways in order to present the story the author wishes to convey. We thus seek to model not only the content of the media, but its authorial intent and latent messaging. Understanding how and why visual content is portrayed a certain way requires understanding higher level abstract semantic concepts which are themselves latent within visual media. By latent, we mean the concept is not readily visually accessible within a single image (e.g. right vs left political bias), in contrast to explicit visual semantic concepts such as objects. Specifically, we study the problems of modeling photographic style (how professional photographers portray their subjects), understanding visual persuasion in image advertisements, modeling political bias in multimedia (image and text) news articles, and learning cross-modal semantic representations. While most past research in vision and natural language processing studies the case where visual content and paired text are highly aligned (as in the case of image captions), we target the case where each modality conveys complementary information to tell a larger story. We particularly focus on the problem of learning cross-modal representations from multimedia exhibiting weak alignment between the image and text modalities. A variety of techniques are presented which improve modeling of multimedia rhetoric in real-world data and enable more robust artificially intelligent systems

    Delving Deep into Fine-Grained Sketch-Based Image Retrieval.

    Get PDF
    PhD ThesisTo see is to sketch. Since prehistoric times, people use sketch-like petroglyphs as an effective communicative tool which predates the appearance of language tens of thousands of years ago. This is even more true nowadays that with the ubiquitous proliferation of touchscreen devices, sketching is possibly the only rendering mechanism readily available for all to express visual intentions. The intriguing free-hand property of human sketches, however, becomes a major obstacle when practically applied – humans are not faithful artists, the sketches drawn are iconic abstractions of mental images and can quickly fall off the visual manifold of natural objects. When matching discriminatively with their corresponding photos, this problem is known as finegrained sketch-based image retrieval (FG-SBIR) and has drawn increasing interest due to its potential commercial adoption. This thesis delves deep into FG-SBIR by intuitively analysing the intrinsic unique traits of human sketches and make such understanding importantly leveraged to enhance their links to match with photos under deep learning. More specifically, this thesis investigates and has developed four methods for FG-SBIR as follows: Chapter 3 describes a discriminative-generative hybrid method to better bridge the domain gap between photo and sketch. Existing FG-SBIR models learn a deep joint embedding space with discriminative losses only to pull matching pairs of photos and sketches close and push mismatched pairs away, thus indirectly align the two domains. To this end, we introduce a i generative task of cross-domain image synthesis. Concretely when an input photo is embedded in the joint space, the embedding vector is used as input to a generative model to synthesise the corresponding sketch. This task enforces the learned embedding space to preserve all the domain invariant information that is useful for cross-domain reconstruction, thus explicitly reducing the domain gap as opposed to existing models. Such an approach achieves the first near-human performance on the largest FG-SBIR dataset to date, Sketchy. Chapter 4 presents a new way of modelling human sketch and shows how such modelling can be integrated into existing FG-SBIR paradigm with promising performance. Instead of modelling the forward sketching pass, we attempt to invert it. We model this inversion by translating iconic free-hand sketches to contours that resemble more geometrically realistic projections of object boundaries and separately factorise out the salient added details. This factorised rerepresentation makes it possible for more effective sketch-photo matching. Specifically, we propose a novel unsupervised image style transfer model based on enforcing a cyclic embedding consistency constraint. A deep four-way Siamese model is then formulated to importantly utilise the synthesised contours by extracting distinct complementary detail features for FG-SBIR. Chapter 5 extends the practical applicability of FG-SBIR to work well beyond its training categories. Existing models, while successful, require instance-level pairing within each coarsegrained category as annotated training data, leaving their ability to deal with out-of-sample data unknown. We identify cross-category generalisation for FG-SBIR as a domain generalisation problem and propose the first solution. Our key contribution is a novel unsupervised learning approach to model a universal manifold of prototypical visual sketch traits. This manifold can then be used to paramaterise the learning of a sketch/photo representation. Model adaptation to novel categories then becomes automatic via embedding the novel sketch in the manifold and updating the representation and retrieval function accordingly. Chapter 6 challenges the ImageNet pre-training that has long been considered crucial by the FG-SBIR community due to the lack of large sketch-photo paired datasets for FG-SBIR training, and propose a self-supervised alternative for representation pre-training. Specifically, we consider the jigsaw puzzle game of recomposing images from shuffled parts. We identify two ii key facets of jigsaw task design that are required for effective performance. The first is formulating the puzzle in a mixed-modality fashion. Second we show that framing the optimisation as permutation matrix inference via Sinkhorn iterations is more effective than existing classifier instantiation of the Jigsaw idea. We show for the first time that ImageNet classification is unnecessary as a pre-training strategy for FG-SBIR and confirm the efficacy of our jigsaw approach

    Multimodal Representation Learning for Visual Reasoning and Text-to-Image Translation

    Get PDF
    abstract: Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task dependent. The downstream task can range from understanding one modality in the presence of information from other modalities, to that of translating input from one modality to another. In this thesis the utility of multimodal representation learning for understanding one modality vis-à-vis Image Understanding for Visual Reasoning given corresponding information in other modalities, as well as translating from one modality to the other, specifically, Text to Image Translation was investigated. Visual Reasoning has been an active area of research in computer vision. It encompasses advanced image processing and artificial intelligence techniques to locate, characterize and recognize objects, regions and their attributes in the image in order to comprehend the image itself. One way of building a visual reasoning system is to ask the system to answer questions about the image that requires attribute identification, counting, comparison, multi-step attention, and reasoning. An intelligent system is thought to have a proper grasp of the image if it can answer said questions correctly and provide a valid reasoning for the given answers. In this work how a system can be built by learning a multimodal representation between the stated image and the questions was investigated. Also, how background knowledge, specifically scene-graph information, if available, can be incorporated into existing image understanding models was demonstrated. Multimodal learning provides an intuitive way of learning a joint representation between different modalities. Such a joint representation can be used to translate from one modality to the other. It also gives way to learning a shared representation between these varied modalities and allows to provide meaning to what this shared representation should capture. In this work, using the surrogate task of text to image translation, neural network based architectures to learn a shared representation between these two modalities was investigated. Also, the ability that such a shared representation is capable of capturing parts of different modalities that are equivalent in some sense is proposed. Specifically, given an image and a semantic description of certain objects present in the image, a shared representation between the text and the image modality capable of capturing parts of the image being mentioned in the text was demonstrated. Such a capability was showcased on a publicly available dataset.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie

    Multi-view Data Analysis

    Get PDF
    Multi-view data analysis is a key technology for making effective decisions by leveraging information from multiple data sources. The process of data acquisition across various sensory modalities gives rise to the heterogeneous property of data. In my thesis, multi-view data representations are studied towards exploiting the enriched information encoded in different domains or feature types, and novel algorithms are formulated to enhance feature discriminability. Extracting informative data representation is a critical step in visual recognition and data mining tasks. Multi-view embeddings provide a new way of representation learning to bridge the semantic gap between the low-level observations and high-level human comprehensible knowledge benefitting from enriched information in multiple modalities.Recent advances on multi-view learning have introduced a new paradigm in jointly modeling cross-modal data. Subspace learning method, which extracts compact features by exploiting a common latent space and fuses multi-view information, has emerged proiminent among different categories of multi-view learning techniques. This thesis provides novel solutions in learning compact and discriminative multi-view data representations by exploiting the data structures in low dimensional subspace. We also demonstrate the performance of the learned representation scheme on a number of challenging tasks in recognition, retrieval and ranking problems.The major contribution of the thesis is a unified solution for subspace learning methods, which is extensible for multiple views, supervised learning, and non-linear transformations. Traditional statistical learning techniques including Canonical Correlation Analysis, Partial Least Square regression and Linear Discriminant Analysis are studied by constructing graphs of specific forms under the same framework. Methods using non-linear transforms based on kernels and (deep) neural networks are derived, which lead to superior performance compared to the linear ones. A novel multi-view discriminant embedding method is proposed by taking the view difference into consideration. Secondly, a multiview nonparametric discriminant analysis method is introduced by exploiting the class boundary structure and discrepancy information of the available views. This allows for multiple projecion directions, by relaxing the Gaussian distribution assumption of related methods. Thirdly, we propose a composite ranking method by keeping a close correlation with the individual rankings for optimal rank fusion. We propose a multi-objective solution to ranking problems by capturing inter-view and intra-view information using autoencoderlike networks. Finally, a novel end-to-end solution is introduced to enhance joint ranking with minimum view-specific ranking loss, so that we can achieve the maximum global view agreements within a single optimization process.In summary, this thesis aims to address the challenges in representing multi-view data across different tasks. The proposed solutions have shown superior performance in numerous tasks, including object recognition, cross-modal image retrieval, face recognition and object ranking

    Soft Biometric Analysis: MultiPerson and RealTime Pedestrian Attribute Recognition in Crowded Urban Environments

    Get PDF
    Traditionally, recognition systems were only based on human hard biometrics. However, the ubiquitous CCTV cameras have raised the desire to analyze human biometrics from far distances, without people attendance in the acquisition process. Highresolution face closeshots are rarely available at far distances such that facebased systems cannot provide reliable results in surveillance applications. Human soft biometrics such as body and clothing attributes are believed to be more effective in analyzing human data collected by security cameras. This thesis contributes to the human soft biometric analysis in uncontrolled environments and mainly focuses on two tasks: Pedestrian Attribute Recognition (PAR) and person reidentification (reid). We first review the literature of both tasks and highlight the history of advancements, recent developments, and the existing benchmarks. PAR and person reid difficulties are due to significant distances between intraclass samples, which originate from variations in several factors such as body pose, illumination, background, occlusion, and data resolution. Recent stateoftheart approaches present endtoend models that can extract discriminative and comprehensive feature representations from people. The correlation between different regions of the body and dealing with limited learning data is also the objective of many recent works. Moreover, class imbalance and correlation between human attributes are specific challenges associated with the PAR problem. We collect a large surveillance dataset to train a novel gender recognition model suitable for uncontrolled environments. We propose a deep residual network that extracts several posewise patches from samples and obtains a comprehensive feature representation. In the next step, we develop a model for multiple attribute recognition at once. Considering the correlation between human semantic attributes and class imbalance, we respectively use a multitask model and a weighted loss function. We also propose a multiplication layer on top of the backbone features extraction layers to exclude the background features from the final representation of samples and draw the attention of the model to the foreground area. We address the problem of person reid by implicitly defining the receptive fields of deep learning classification frameworks. The receptive fields of deep learning models determine the most significant regions of the input data for providing correct decisions. Therefore, we synthesize a set of learning data in which the destructive regions (e.g., background) in each pair of instances are interchanged. A segmentation module determines destructive and useful regions in each sample, and the label of synthesized instances are inherited from the sample that shared the useful regions in the synthesized image. The synthesized learning data are then used in the learning phase and help the model rapidly learn that the identity and background regions are not correlated. Meanwhile, the proposed solution could be seen as a data augmentation approach that fully preserves the label information and is compatible with other data augmentation techniques. When reid methods are learned in scenarios where the target person appears with identical garments in the gallery, the visual appearance of clothes is given the most importance in the final feature representation. Clothbased representations are not reliable in the longterm reid settings as people may change their clothes. Therefore, developing solutions that ignore clothing cues and focus on identityrelevant features are in demand. We transform the original data such that the identityrelevant information of people (e.g., face and body shape) are removed, while the identityunrelated cues (i.e., color and texture of clothes) remain unchanged. A learned model on the synthesized dataset predicts the identityunrelated cues (shortterm features). Therefore, we train a second model coupled with the first model and learns the embeddings of the original data such that the similarity between the embeddings of the original and synthesized data is minimized. This way, the second model predicts based on the identityrelated (longterm) representation of people. To evaluate the performance of the proposed models, we use PAR and person reid datasets, namely BIODI, PETA, RAP, Market1501, MSMTV2, PRCC, LTCC, and MIT and compared our experimental results with stateoftheart methods in the field. In conclusion, the data collected from surveillance cameras have low resolution, such that the extraction of hard biometric features is not possible, and facebased approaches produce poor results. In contrast, soft biometrics are robust to variations in data quality. So, we propose approaches both for PAR and person reid to learn discriminative features from each instance and evaluate our proposed solutions on several publicly available benchmarks.This thesis was prepared at the University of Beria Interior, IT Instituto de Telecomunicações, Soft Computing and Image Analysis Laboratory (SOCIA Lab), Covilhã Delegation, and was submitted to the University of Beira Interior for defense in a public examination session

    Learning to hash for large scale image retrieval

    Get PDF
    This thesis is concerned with improving the effectiveness of nearest neighbour search. Nearest neighbour search is the problem of finding the most similar data-points to a query in a database, and is a fundamental operation that has found wide applicability in many fields. In this thesis the focus is placed on hashing-based approximate nearest neighbour search methods that generate similar binary hashcodes for similar data-points. These hashcodes can be used as the indices into the buckets of hashtables for fast search. This work explores how the quality of search can be improved by learning task specific binary hashcodes. The generation of a binary hashcode comprises two main steps carried out sequentially: projection of the image feature vector onto the normal vectors of a set of hyperplanes partitioning the input feature space followed by a quantisation operation that uses a single threshold to binarise the resulting projections to obtain the hashcodes. The degree to which these operations preserve the relative distances between the datapoints in the input feature space has a direct influence on the effectiveness of using the resulting hashcodes for nearest neighbour search. In this thesis I argue that the retrieval effectiveness of existing hashing-based nearest neighbour search methods can be increased by learning the thresholds and hyperplanes based on the distribution of the input data. The first contribution is a model for learning multiple quantisation thresholds. I demonstrate that the best threshold positioning is projection specific and introduce a novel clustering algorithm for threshold optimisation. The second contribution extends this algorithm by learning the optimal allocation of quantisation thresholds per hyperplane. In doing so I argue that some hyperplanes are naturally more effective than others at capturing the distribution of the data and should therefore attract a greater allocation of quantisation thresholds. The third contribution focuses on the complementary problem of learning the hashing hyperplanes. I introduce a multi-step iterative model that, in the first step, regularises the hashcodes over a data-point adjacency graph, which encourages similar data-points to be assigned similar hashcodes. In the second step, binary classifiers are learnt to separate opposing bits with maximum margin. This algorithm is extended to learn hyperplanes that can generate similar hashcodes for similar data-points in two different feature spaces (e.g. text and images). Individually the performance of these algorithms is often superior to competitive baselines. I unify my contributions by demonstrating that learning hyperplanes and thresholds as part of the same model can yield an additive increase in retrieval effectiveness
    corecore