
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Exploratory search through large
video corpora

https://hdl.handle.net/2144/17091
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

EXPLORATORY SEARCH THROUGH LARGE VIDEO CORPORA

by

GREGORY D. CASTAÑÓN

B.S., Washington University in St. Louis, 2005

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
GREGORY D. CASTAÑÓN
All rights reserved

Approved by

First Reader

Venkatesh Saligrama, Ph.D.
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Second Reader

Prakash Ishwar, Ph.D.
Associate Professor of Electrical and Computer Engineering
Associate Professor of Systems Engineering

Third Reader

Janusz Konrad, Ph.D.
Professor of Electrical and Computer Engineering

Fourth Reader

Stanley E. Sclaroff, Ph.D.
Associate Dean of Faculty, Mathematical and Computer Sciences
Professor of Computer Science

Fifth Reader

Brian Kulis, Ph.D.
Assistant Professor of Electrical and Computer Engineering

cui dono lepidum novum libellum
arida modo pumice expolitum
Corneli tibi namque tu solebas
meas esse aliquid putare nugas
iam tum cum ausus es unus Italorum
omne aevum tribus explicare cartis
doctis Iuppiter et laboriosis
quare habe tibi quidquid hoc libelli
qualecumque quod o patrona virgo
plus uno maneat perenne saeclo Catullus I

iv

Acknowledgments

I would like to thank my advisor, Venkatesh Saligrama, for his patience and guidance.

Additionally, I would like to thank all of my wonderful colleagues at BU, both professors

and students, who have provided insight, input and advice. This work would not be at

all possible without them, and I am grateful for the opportunity to work with such gifted

minds. I would like to thank my friends for their support through the process. Finally, I

would like to thank my family for encouraging me and chipping in to help when needed.

v

EXPLORATORY SEARCH THROUGH LARGE VIDEO CORPORA

GREGORY D. CASTAÑÓN

Boston University, College of Engineering, 2016

Major Professor: Venkatesh Saligrama
Professor of Electrical and Computer Engineering

ABSTRACT

Activity retrieval is a growing field in electrical engineering that specializes in the

search and retrieval of relevant activities and events in video corpora. With the afford-

ability and popularity of cameras for government, personal and retail use, the quantity of

available video data is rapidly outscaling our ability to reason over it. Towards the end

of empowering users to navigate and interact with the contents of these video corpora, we

propose a framework for exploratory search that emphasizes activity structure and search

space reduction over complex feature representations.

Exploratory search is a user driven process wherein a person provides a system with

a query describing the activity, event, or object he is interested in finding. Typically, this

description takes the implicit form of one or more exemplar videos, but it can also involve

an explicit description. The system returns candidate matches, followed by query refine-

ment and iteration. System performance is judged by the run-time of the system and the

precision/recall curve of of the query matches returned.

Scaling is one of the primary challenges in video search. From vast web-video archives

like youtube (1 billion videos and counting) to the 30 million active surveillance cameras

shooting an estimated 4 billion hours of footage every week in the United States, trying to

find a set of matches can be like looking for a needle in a haystack. Our goal is to create

vi

an efficient archival representation of video corpora that can be calculated in real-time as

video streams in, and then enables a user to quickly get a set of results that match.

First, we design a system for rapidly identifying simple queries in large-scale video

corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal

relationships between those features as a means of disambiguating an activity of interest

from background. We define a semantic feature vocabulary of concepts that are both readily

extracted from video and easily understood by an operator. As data streams in, features are

hashed to an inverted index and retrieved in constant time after the system is presented with

a user’s query.

We take a zero-shot approach to exploratory search: the user manually assembles vo-

cabulary elements like color, speed, size and type into a graph. Given that information, we

perform an initial downsampling of the archived data, and design a novel dynamic program-

ming approach based on genome-sequencing to search for similar patterns. Experimental

results indicate that this approach outperforms other methods for detecting activities in

surveillance video datasets.

Second, we address the problem of representing complex activities that take place over

long spans of space and time. Subgraph and graph matching methods have seen limited use

in exploratory search because both problems are provably NP -hard. In this work, we ren-

der these problems computationally tractable by identifying the maximally discriminative

spanning tree (MDST), and using dynamic programming to optimally reduce the archive

data based on a custom algorithm for tree-matching in attributed relational graphs. We

demonstrate the efficacy of this approach on popular surveillance video datasets in several

modalities.

Finally, we design an approach for successive search space reduction in subgraph match-

ing problems. Given a query graph and archival data, our algorithm iteratively selects span-

ning trees from the query graph that optimize the expected search space reduction at each

vii

step until the archive converges. We use this approach to efficiently reason over video

surveillance datasets, simulated data, as well as large graphs of protein data.

viii

Contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Representation and Models . 4

1.1.2 Classification and Detection . 5

1.1.3 Overview and Notation . 8

1.1.4 Our Contributions . 9

2 Related Work 11

2.1 Locality Sensitive Hashing . 11

2.2 Smith-Waterman Algorithm . 12

2.3 Sliding Window Approaches . 13

3 Dynamic Programming for Activity Search 16

3.1 Introduction . 17

3.2 Overview . 20

3.3 Feature extraction . 21

3.3.1 Structure . 23

3.3.2 Feature Extraction for CCTV footage 24

3.3.3 Feature Extraction for Airborne Footage 26

3.4 Indexing & Hashing . 30

3.5 Search engine . 33

3.5.1 Queries . 34

3.5.2 Full matches . 37

ix

3.6 Experimental Results . 43

3.6.1 Datasets . 43

3.6.2 Examined Tasks . 46

3.6.3 CCTV Results . 47

3.6.4 Airborne Results . 50

3.6.5 Discussion . 52

3.7 Conclusion . 54

4 Zero-Shot Search in Video Corpora 56

4.1 Introduction . 56

4.2 Model . 60

4.2.1 Vocabulary . 61

4.2.2 Query . 63

4.2.3 Efficient Indexing . 66

4.3 Search . 67

4.3.1 Coarse Graph Construction . 68

4.3.2 Tree Selection . 68

4.3.3 Maximally Discriminative Subgraph Matching (MDSM) 72

4.4 Experimentation . 75

4.4.1 Comparisons . 75

4.4.2 Datasets . 76

4.4.3 Results . 80

4.5 Conclusions . 81

5 Successive Search Space Reduction 83

5.1 Introduction . 83

5.1.1 Related Work . 84

5.2 Problem Setup . 86

x

5.3 Subgraph Matching by Refinement . 88

5.4 Experimentation . 94

5.4.1 Datasets . 95

5.4.2 Implementation . 96

5.4.3 Results . 98

5.5 Conclusion . 102

6 Conclusions and Future Work 104

6.1 Conclusions . 104

6.2 Future Work . 105

A Proofs and Additional Detail 107

A.1 Theorem: Low False Positives . 107

A.2 Proof of Lemma 4.3.1 . 108

A.3 Proof of Lemma 4.3.2 . 109

A.4 Proof of Lemma 4.3.3 . 109

A.5 Proof of Lemma 5.3.1 . 109

A.6 Proof of Lemma 5.3.2 . 110

B Additional Experiments 113

B.1 Jena Library . 113

B.2 Simulated Data . 113

B.3 VIRAT . 113

C Software and Datasets 114

C.1 Software . 114

C.2 Datasets . 114

References 116

Curriculum Vitae 126

xi

List of Tables

3.1 Tasks’ number, videos, search query, associate features, video duration

(min.), video size and index size. Videos of Task 12 and 13 have a frame

rate of 2 frames per second. Tasks 1, 8, 9, 10, 11, 12 and 13 use compound

search operators. The index size can be several orders of magnitude smaller

than raw video. Our use of primitive local features implies that index times

and index size are both proportional to the number of foreground objects

in the video. Consequently, index size tends to be a good surrogate for

indexing times. 47

3.2 Results for the elevens tasks using greedy optimization and HDP labels.

Crossed-out rows correspond to queries for which there was no correspond-

ing topic in the HDP search. Third row contains ground truth (GT). 50

4.1 The run times for baseline [Castañón and Caron, 2012], brute force and

DP algorithms on the VIRAT (top) and YUMA (bottom) datasets. When a

brute force algorithm is infeasible, we estimate run-time based on a sub-set

of solutions. 78

xii

List of Figures

1·1 Whether for identifying people in a crowd or figuring out what’s worth

looking at in surveillance footage, video search is a necessary part of many

large video systems. 2

3·1 Top: Examples of CCTV footage. Bottom: Example of Airborne footage.

Blue and green boxes show zoomed-on regions. Objects of interests (cars

in this figure) usually have much lower contrast in Airborne footage (see

red boxes) over CCTV footage. This makes processing Airborne footage

more challenging than CCTV. 19

3·2 Our video search framework. As data streams in features are extracted and

inserted into a lightweight index. The user defines query of interest and par-

tial matches are generated through inverted lookup index. Partial matches

are then combined into full matches by means of Dynamic Programing.

The final output is a video segment matching the user query. 22

3·3 (Left) A video of sizeW×H×F divided into Documents t. Each document

contains non-overlapping A frames, and each frame is divided into tiles of

size B×B. Temporal aggregation of tiles over A frames generate an atom.

(Right) Tree structure of atoms. Here every set of four adjacent atoms are

linked to the same parent. This forms a set of partially overlapping trees. . 23

xiii

3·4 First row, from left: Two consecutive frames showing cars (shown in yel-

low) moving near a junction, (c) Frame subtraction and (d) result after ap-

plying morphological opening. The final result (d) is void of noisy data

shown in red in (c). Second row, from left: Two frames showing a group of

people (shown in yellow) walking near a beach, (g) detection after applying

morphological opening and (h) detected candidates of size more than 150

pixels in green. 27

3·5 Examples of tracklets generated by the technique discussed in Sec. 3.3.3.

Here tracks start with a red cross and their tails have different color. The

example of the left shows tracklets generated for cars while the example on

the right shows tracklet generated for a group of people walking on the beach. 29

3·6 Motion features (in red) of four buckets of a hash table. Arrow sizes are

proportional to the number of hits at the corresponding sites. Here the four

buckets describe: (a) side walk (b) upper side of the street (c) lower side of

the street (d) crosswalk. 33

3·7 A GUI for creating queries with instructions outlined from 1-5 (see red

regions). Here the user draws queries of interest (in blue) and selects addi-

tional target properties (see step 3,4). 35

3·8 Searching for a U-turn. Despite three sequences of actions have same

RQ,τ (∆) values (see Seq. 1,2,3), yet only Seq.3 contains a valid U-turn. . . 39

3·9 Example of the V matrix. The query is actions A, C, A, T, and the seven

documents in the video corpus each contains a single action, T, A, A, C,

A, G, T. The values for WI ,WD,WC and WM are −1,−2, 1 and 3 in this

example. The optimal path, A,A,C,A,G,T, involves an insertion, a contin-

uation and a deletion. It is found by tracing backwards from the maximal

element, valued at 11. 43

xiv

3·10 Results for ten tasks. For each task we show the examined query (in red

arrows), ROI (shown in green) and the generated retrieval (bottom to query,

in red rectangle). Here red dots are trees whose profile fit the query. 44

3·11 Examples of the examined routes. Routes are shown in yellow/red arrows

and they start from point X and end at point Y. Some of the routes undergo

strong occlusion (see dashed yellow region, top row, first column, for route

in second column) and others undergo many turns (see first row, second

and last column). 45

3·12 ROC curves for the U-turn, subway and MIT traffic datasets. Our methods

significantly out-perform HDP [Xiang and Gong, 2008, Kuettel et al., 2010]. 48

3·13 ROC curves for cars and humans in airborne data. 53

4·1 In the archival step, we take in incoming data, extract attributes and rela-

tionships and store them in hash tables. In the query creation step, a user

utilizes our GUI to create a query graph that is used to extract the coarse

graph C from archive data. In the Maximally Discriminative Subgraph

Matching (MDSM) step, we calculate the maximally discriminative span-

ning tree (MDST) T ∗ from the query graph, retrieve matches to it, and

assemble them into ranked search results for the user. 59

4·2 (Left) Given a video, we extract (Right) Atoms are grouped into two-level

trees - every adjacent set of four atoms is aggregated into a parent, forming

a set of partially overlapping trees. 61

4·3 The graphical representation of an “object deposit” event. 64

4·4 The graphical representation of a “meeting” event. 65

4·5 The probabilities associated with 5 of the attributes in the VIRAT dataset.

Being an object, as opposed to a car or a person, is the most unlikely at-

tribute and thus the most discriminative. 69

xv

4·6 The YUMA video data set features high-resolution imagery taken at sig-

nificant elevation, leaving few pixels on targets as small as people or vehicles. 77

4·7 Precision/recall curves for the meeting activities in the VIRAT video dataset.

Note that we optain perfect precision/recall for both brute force and dy-

namic programming approaches. 78

4·8 Precision/recall curves for the object deposit, object removal, mount and

dismount activities in the VIRAT Ground Dataset. We show baseline [Castañón

and Caron, 2012] search results in green, MDSM results in red, and brute

force results in blue when they diverge from MDSM results. 79

4·9 Precision/recall curves for u-turn, suspicious stop, mount and dismount ac-

tivities in the YUMA dataset. We show baseline [Castañón and Caron,

2012] search results in green, unfiltered MDSM results in red, and brute

force results in blue. 80

5·1 Given a query graph, our goal is to find the set of matchings in the archive

graph above a particular score threshold. 88

5·2 Given a query, sliding window search space reduction creates a window,

shown in purple, and slides it through the space, creating a filtered archive

graph containing only nodes and edges within the window. 89

5·3 Node/Edge filters remove nodes and edges from the archive graph which

could not independently match any nodes or edges in the query graph. . . . 90

5·4 In (a), we select a minimum spanning tree of Q to be our query tree T . In

(b), we solve for all matches to T in the archive graph and remove nodes

not present in a matching. 91

xvi

5·5 The processing chain for our system, applied to video. As video streams in,

we extract features for object detection and tracking. We store the resulting

detections and associations in a database. When a query Q is created by a

user through our GUI, we downsample the data to create a filtered graph

A′. We iteratively reduce the filtered graph through matching using our

successive search space refinement algorithm, then solve a small subgraph

ranking problem to produce results. 96

5·6 The average number of nodes remaining after each iteration for the baseline

(green) and successive-search space reduction (red) approaches on archive

graphs of size 500, 1000 and 3000. In the first row, pconn = .25 and |Fv| =

20. In the second row pconn = .5 and |Fv| = 30. 100

5·7 Precision/Recall curves for the Object Deposit, Object Takeout, Mount and

Dismount activities in the VIRAT dataset. Recursive search space reduc-

tion is shown in red, with a baseline approach based on space-time feature

accumulation shown in green. In these experiments, ground truth was used

for detection and track information. 101

5·8 Precision/Recall curves for the Object Deposit, Object Takeout, Mount and

Dismount activities in the VIRAT dataset. Recursive search space reduc-

tion is shown in red, with a baseline approach based on space-time feature

accumulation shown in green. We track aggregate channel features [Dollar

et al., 2014] using [Andriyenko et al., 2012] in these experiments. 101

5·9 This figure highlights some of the issues involved in tracking and detection

in surveillance scenarios. In (a), the algorithm misses a pair of people

talking in the shadow of a building. In (b), two people talking are mis-

classified as a single person. In (c), a person comes too near a car, enters

its shadow, and is not detected. 102

xvii

List of Abbreviations

ARG Attributed Relational Graph
BP Belief Propagation
CCTV Closed Circuit Television
DP Dynamic Programming
GMM Gaussian Mixture Model
GT Ground Truth
GUI Graphical User Interface
HDP Hierarchical Dirichlet Process
HMM Hidden Markov Model
HOG Histogram of Oriented Gradients
KLT Kanade - Lucas - Tomasi
LSH Locality-Sensitive Hashing
MDSM Maximally Discriminative Subgraph Matching
MDST Maximally Discriminative Spanning Tree
MIT Massachusetts Institute of Technology
MST Minimum Spanning Tree
NP -Hard Non-deterministic Polynomial time hard
UAV Unmanned Aerial Vehicle
ROC Receiver Operating Characteristic
ROI Region of Interest
ST-AOG Spatio-Temporal And/Or Graph
STIP Spatio-Temporal Interest Points

xviii

1

Chapter 1

Introduction

1.1 Introduction

As cameras become cheaper and more ubiquitous, algorithms that reason over large video

corpora are becoming increasingly vital. Faced with an overwhelming amount of infor-

mation, users seek answers to both specific (‘What’s moving?’) and abstract (‘What’s

important?’) questions about video. With nearly 1 billion hours of video on a single web-

site like youtube, a web browser might be interested in automatically generating tags for

video [Siersdorfer et al., 2009, Wang et al., 2012] to allow easier browsing. In retail, a

security guard looking at a dozen monitors might want an algorithm to tell him what’s

moving [Barnich and Van Droogenbroeck, 2011, Chen et al., 2012], or what’s unusual [Li

et al., 2014]. A person browsing through family videos might be interested in finding all

instances of a certain person [Li et al., 2002], a particular activity like running or jump-

ing [Oneata et al., 2013, Sadanand and Corso, 2012]. A law enforcement officer presented

with a wealth of street surveillance might be interested in higher-level activities, such as

who is jaywalking, running a red light, or loading objects into a car [Zhu et al., 2013,Kwak

et al., 2013, Castañón et al., 2015].

Of these manifold types of visual reasoning, we are primarily interested in semantic

video search: looking for things in a video that have clear semantic meanings. Semantically-

meaningful queries differ from concepts like cornerpoint features, textures, and integral

images [Mita et al., 2005] because they are easily described by a person. Examples of se-

mantic concepts are objects and activities; everybody knows what a basketball or jogging

2

Figure 1·1: Whether for identifying people in a crowd or figuring out what’s
worth looking at in surveillance footage, video search is a necessary part of
many large video systems.

should look like, with few exceptions. There are two primary families of algorithms that

reason over semantic concepts: classification and search engines.

A classification engine is typically provided with a set of videos of different classes

and expected to label each of the videos with the correct class. In images and video, class

tends to correspond to the object or activity occuring in the image or video. In many

modern datasets [Schüldt et al., 2004, Yao et al., 2011, Blank et al., 2005, Rodriguez et al.,

2008, Soomro et al., 2012, Marszałek et al., 2009] this is not a multilabel problem because

each video in the corpus has only one correct label. Classification engines can learn their

classes from training sets of exemplar videos [Weinland et al., 2007, Laptev et al., 2008,

Oneata et al., 2013, Sadanand and Corso, 2012], human input, or a combination of both

[Felzenszwalb et al., 2010, Raptis et al., 2012, Raptis and Sigal, 2013, Wang and Mori,

2009, Wang and Mori, 2011]. A classification engine is typically provided with a set of

videos of different classes and expected to label each of the videos with the correct class.

In images and video, class tends to correspond to the object or activity occuring in the image

or video. In many modern datasets [Schüldt et al., 2004,Yao et al., 2011,Blank et al., 2005,

Rodriguez et al., 2008, Soomro et al., 2012, Marszałek et al., 2009] this is not a multilabel

problem because each video in the corpus has only one correct label. Classification engines

can learn their classes from training sets of exemplar videos [Weinland et al., 2007, Laptev

3

et al., 2008,Oneata et al., 2013,Sadanand and Corso, 2012], human input, or a combination

of both [Felzenszwalb et al., 2010, Raptis et al., 2012, Raptis and Sigal, 2013, Wang and

Mori, 2009, Wang and Mori, 2011].

Once a classifier is trained, it can be applied in parallel to each video in a corpus. While

training time can be prohibitive, in a real-world scenario, model training happens offline.

Thus, the primary challenge of classification problems is to learn a model of sufficient

fidelity to differentiate between the classes it trains on.

In contrast, search engines operate in two modalities. First comes the archival modality,

where the engine is presented with the video corpus and has to assemble it in a format to be

reasoned over quickly. Second is the search modality, where the search engine is provided

a query activity or object and has to identify all locations in the video corpus where that

query occurs.

Challenges of search include:

• Data lifetime: since video is constantly streamed, there is a perpetual renewal of

video data. This calls for a model that can be updated incrementally as video data

is made available, as well as one which scales well with the temporal extent of the

video.

• Unpredictable queries: the nature of queries depends on the field of view of the

camera, the scene itself and the type of events being observed. The system should

support queries of different nature, such as identifying abandoned objects and finding

instances of cars performing U-turns.

• Unpredictable event duration: events in video are ill-structured. Events start at any

moment, vary in length and overlap with other events. The system is nonetheless

expected to return complete events whatever their duration may be and regardless of

whether other events occur simultaneously.

4

• Clutter and occlusions: urban scenes are subject to high number of occlusions.

Tracking and tagging objects in video is still a challenge, especially when real-time

performance is required.

1.1.1 Representation and Models

Of course, efficient representation of large video corpora has been studied in other parts of

the computer vision community. Videos and images contain a tremendous amount of re-

dundant information, a fact exploited in both image [Taubman and Marcellin, 2012, Taub-

man, 2000] and video [Le Gall, 1991] compression. Since the earliest days of computer

vision, approaches [Lowe, 1999, Li et al., 2002, Efros and Berg, 2003] have tried to find

ways to capture the minimum essential information required from a video to accomplish

a particular task. Many relevant approaches are compared in [Mikolajczyk and Schmid,

2005] for the purposes of local interest region detection. Of these, the Scale-Invariant Fea-

ture Transform [Lowe, 1999], a descriptor of interest points in images, was the earliest

popular feature for representing objects in videos. Another popular feature is Haar-like

features [Mita et al., 2005, Zhang and Viola, 2008], based on wavelets, that were used

extensively in face detection [Viola and Jones, 2004].

Moving from images to videos introduces time as a third dimension. Videos tend to

contain more redundant information than images, as an immobile background (with un-

changing recording conditions) yields the same set of pixels at every point in time. Thus,

video feature description tends to focus on areas of motion, with the assumption that the

things of interest in video move. Some approaches [Scovanner et al., 2007] directly ex-

tend the SIFT framework, while others extract pyramids of integral images [Dollar et al.,

2014, Dollár et al., 2009] to classify local patches.

Acquiring these models for video corpora has been the subject of much research over

the last 30 years. Exemplar-based approaches [Tianmin Shu et al., 2015, Çeliktutan et al.,

2013] are provided sets of training examples for each potential object or activity to be de-

5

tected in the corpus. However, it has generaly been recognized that the number of training

examples cannot match the increasing complexity of classifiers and activities [Ryoo and

Aggarwal, 2010, Kwak et al., 2013].

In the face of increased query complexity, user-driven queries have become a popular

way to access more complex models. Early works [Chang et al., 1998, Zhong and Chang,

1999] focused on enabling users to draw simple motions, while later approaches [Hu et al.,

2013] allowed sketches for object detection in videos.

These approaches present a good-starting point for a system which aims to efficiently

represent large video corpora for fast search. Most of these features have reached the

point where they can be reasonably extracted in real-time from streaming video, and their

memory footprint is far less than that of the raw video itself.

1.1.2 Classification and Detection

In the search problem, we ask a system to find all the examples of a particular query.

For certain datasets [Yao et al., 2011, Soomro et al., 2012, Schüldt et al., 2004, Marszałek

et al., 2009, Blank et al., 2005, Rodriguez et al., 2008], where each element of the corpus

(video or image) contains exactly one object or activity, such as jumping rope or running,

search can be a specialization of object or activity classification. Ample work has been done

building video models and distance metrics between them, to answer the question ‘Do these

contain the same thing?’. The earliest of these models are histogram models [Laptev et al.,

2008, Oneata et al., 2013, Sadanand and Corso, 2012], which accumulate local features

into a histogrammed representation of the video in question and use statistical distance

measures like earth-mover’s distance [Rubner et al., 2000] to compare distributions. Other

approaches track spatio-temporal interest points through the video and compare trajectories

[Ikizler and Forsyth, 2008,Wang et al., 2013,Wang and Schmid, 2013,Zhang et al., 2014a].

Dense trajectory approaches measure local optical flow and directly compare motion via

correlation, but tend to be too computationally expensive to perform on large video corpora

6

in real time.

Given our stated desire to scale well with the archive video corpus size, we are par-

ticularly interested in graphical models of activity. These models were originally used to

search for objects in images [Felzenszwalb et al., 2010, Tianmin Shu et al., 2015]. Each

image was represented with an attributed, relational graph (ARG), with each node repre-

senting a local feature, and each edge encoding the spatial relationship between nodes. In

classification, images are compared via graph matching [Riesen and Bunke, 2009, Berretti

et al., 2007, Cho et al., 2010], which produces an assignment of nodes from one image’s

graph to the other’s. The distance metric for this association typically takes the form of a

sum of kernel functions between matched node and edge pairs.

Graphical representations of video have also been popularized for activity retrieval in

particular video corpora. Specifically, when each video in a corpus contains a single activ-

ity, graph-matching approaches [Çeliktutan et al., 2013, Ma et al., 2013] have proven to be

effective in comparing activities.

Unfortunately, while in many datasets each element of the corpus has one and only one

activity happening, this is not true in some real-world applications. In video surveillance,

the corpus can be a single extremely long video. This has lead to a number of efforts within

the search community to reduce this problem to classification, where it can be solved easier.

In news video or television, the video can be divided into ‘shots’, [Song and Fan, 2006,Sivic

and Zisserman, 2003,Sujatha and Mudenagudi, 2011], with each shot having a single topic.

However, for generic video corpora without a-priori knowledge, there has only proven to

be a single reliable way to perform pattern recognition for search: to run a sliding window

across each video.

Sliding window approaches are an extremely popular way to transform a search prob-

lem into a classification problem, and they see extensive use in both object [Viola and Jones,

2001, Philbin et al., 2007, Sivic and Zisserman, 2003, Johnson et al., 2015] and activity de-

7

tection [Gaur et al., 2011, Lin et al., 2014]. If a query has a maximum size in space-time,

a sliding window approach will attempt to segment a video into overlapping space-time

boxes of that size, and independently classify each of the boxes.

In certain circumstances, applying sliding windows over every video in a corpus to

detect activities can be effective. In movies or youtube videos with narrow field of view,

an activity can be expected to take up the whole view, so the sliding window only has to

slide over time. Likewise, those videos are more likely to contain only one thing going on

within any window because of the limited view.

In more generic video modalities, particularly surveillance video [Oh et al., 2011, Fer-

ryman, 2006], the assumptions that enable effective sliding window search fall apart. First,

surveillance video corpora are extremely large, rendering a sweeping approach unappeal-

ing. Second, the amount of background activity is generally far larger than the activity that

matches the query. Finally, the maximum size of a query often spans a significant amount

of space and time, so any given window that contains the query activity also likely contains

a significant amount of background activity.

Subgraph matching has been used in a diverse array of fields to identify sub-structures

of larger graphs. Sub-graph and graph matching are also commonly used in image search

applications [Christmas et al., 1995,De la Torre, 2012] as well as image duplicate detection

[Zhang and Chang, 2004]. In image search and image duplicate detection, the goal is

the same: to match the graph extracted from a query image to the graphs extracted from

each image in a corpus. Subgraph matching is used to allow these algorithms to be robust

to small amounts of clutter. These problems differ significantly from ours - because the

corpus is divisible into a series of relatively small graphs, one for each image, it can be

solved efficiently by a series of subgraph matching problems.

In our problem, we are looking at an extremely asymmetric subgraph matching problem

with a dense archive graph containing millions of nodes and a query graph containing up

8

to a dozen nodes. Algorithms for subgraph matching in this context are more often used in

bioinformatics [Bonnici et al., 2013,Sun et al., 2012,Zhang et al., 2010,Koutra et al., 2011],

a field where query graphs generally represent proteins or amino acids to be searched for

in a larger dataset. Because subgraph matching is provably NP -hard [Ullmann, 1976],

efficient algorithms [Sun et al., 2012, Zhang et al., 2010] focus on search space reduction

before actually solving the subgraph matching problem.

1.1.3 Overview and Notation

A video search system operates in two modalities: archival and search. During the archival

step, we process each video in a video corpus and extract features from a pre-defined feature

vocabulary Fv. These features are all local - they are associated with a certain area or

location in space/time in a specific video. We store these locations in an inverted index by

feature and feature value. So, if the system needs to find all places in a video corpus where

we found the color ‘red’, it would go to the color index and look in the ‘red’ bin, which

would contain all location/video pairs where that color was found.

In our later systems in Chapters 4 and 5, we also focus on the relationships between

these features. For each pair of locations that might potentially satisfy a relationship in our

relationship vocabulary Fe, we check to see if that relationship exists. If so, we hash the

pair of locations that satisfy the relationship to an inverted index based on the relationship

they satisfy. As an example, in the ‘same as’ bin, we would have all pairs of locations

where we believe the same object is at both locations.

At the end of our archival step, we have a bunch of indices, some for local features and

some for relationships between them. These indices implicitly represent an archive graph

A = G(V (A), E(A)). In this graph, each node v ∈ V (A) is the collection of features at a

specific spatiotemporal location in a given video of the corpus. An edge e ∈ E(A) exists

between two nodes if a relationship has been found between them.

The query step begins when a user wants to find a particular activity in the video cor-

9

pus. He assembles features into nodes (‘a large, red, moving object’) and then adds edges

containing relationships. The result is the query graph Q = G(V (Q), E(Q). In search, our

goal is to find the set of subgraphs of A which best match the query graph Q. Alternately,

our goal is to find a set of matchingsM where m ∈M : V (Q)→ V (A).

We rank these matchings according to a score function S(m,Q,A) which incorpo-

rates distances between nodes dv(va, vi), distances between edges de((va, vb), (vi, vj)), and

also penalties for failing to find a matching for an edge entirely. Finally, we return in de-

scending order the clipped video segments corresponding to the set of matchings for which

S(m,Q,A) is larger than threshold τ .

1.1.4 Our Contributions

In this dissertation, we describe a functional system that can process and archive large

video corpora in real-time. Later, when provided a query by a user, our system is able to

find and rank matches to the query in a matter of seconds and display these results. The

novel components of this system are:

1. Inverted indices for efficient archive downsampling. In Chapter 3 we introduce an

inverted hashing scheme for simple features. In 4, we use these and other indexing

techniques to dramatically downsample a video corpus to the set of features that

are potentially relevant to a given query. This allows us to efficiently reason over

large video corpora without prior knowledge and without that each corpus being

subdivided into small videos.

2. Sub-graph matching in video search. In Chapter 3, we introduce temporal relation-

ships on simple features to find a wide variety of user-driven queries using a novel

dynamic programming approach. In Chapter 4, we expand this approach to include

spatial relationships and search for arbitrary graphs in large videos. In particular,

we use a subgraph matching approach to render our method agnostic to background

10

noise. Other approaches use bipartite matching [Lin et al., 2014] or require a tree-

based query [Tianmin Shu et al., 2015], and are thus unable to represent activities

with a similar degree of structural complexity.

3. Tree-matching for space-downsampling in video search. We introduce a novel

method for successive search-space reduction based on selecting the Maximally Dis-

criminative Spanning Tree in Chapter 4. In Chapter 5, we extend this method to

iteratively reduce the search space based on the statistics of the dataset. This ap-

proach significantly outperforms contemporary algorithms for search space reduction

in subgraph matching like random trees.

11

Chapter 2

Related Work

In this work, we propose a fully operational video surveillance system that utilizes a number

of pre-existing approaches, as well as comparing to others. While we cite these works

directly, for purposes of clarity we explain the most important of them in this chapter.

2.1 Locality Sensitive Hashing

In order to be able to quickly return a set of matches to a given search, we hash features

to inverted indices. Features like object type, are hashed via regular hash tables because

there is no notion of distance between types. However, for continuous features like motion

direction, object size, and persistence or activity, we use Locality-Sensitive Hashing [Datar

et al., 2004] (LSH) such that a query to the inverted index returns (with high probability)

all locations that have a feature within radius r of the query. This has the advantage of

mitigating, to some extent, user and feature extraction errors that cause a mismatch between

what the user expects and what is stored in the archive.

For our implementation of Locality Sensitive Hashing, we have three parameters: col-

lision radius r, dimensionality of the feature data d and number of tables N . Our goal is

to choose a set of hash functions H1, ..., HN where Hi : Rd → Z. Following the approach

in [Datar et al., 2004], we use Algorithm 1.

This creates N hash functions for a given feature type, like color, with dimensionality

d. As video is processed, we get measurements of features, paired with spatiotemporal

locations ({x, y, t} for video). For example, we might see the color red in the first frame

12

Algorithm 1 LSH Function Creation
1: procedure CREATE LSH FUNCTIONS(r, d,N)
2: for all i ∈ {1, ..., N} do . For each table
3: Draw each element of a ∼ N(0, 1) . Each element of a is drawn from a

univariate normal distribution
4: Draw b ∼ unif(0, r) . The offset b is drawn uniformly from the range [0, r]
5: Hi(x)← ba·x+b

r
c

6: end for
7: end procedure

in the upper-left hand corner. For each of our N hash functions, we compute Hi(red), and

store the spatiotemporal location in that bin.

When somebody asks for all locations with a color, like purple, we computeHi(purple)

for each of our hash functions, and look at the contents of those N bins. If a given location

appears in more than τcolor percent of the bins, we consider that location to contain the

color purple.

We independently create sets of hash tables for each feature type in a dataset.

2.2 Smith-Waterman Algorithm

Some of our work in Chapter 3 extends the Smith-Waterman algorithm for dynamic pro-

gramming. This algorithm takes in two strings of characters and attempts to compute the

match that is minimally distorted. The model for distortion is that the string in a is present

in b, except that characters in a may be missing (“deletion”), and that in the middle of

an otherwise perfectly good match there may be extraneous characters in b (“insertion”).

We are given fixed penalties wk and wl for insertion and deletion, respectively. Second,

between each element ai ∈ a and bj ∈ j is a score s(i, j) indicating how well they match.

Given these quantities, our goal is to pick a starting point t where a0 maps to bt, and

an optimal series of insertions and deletions to maximize the sum of the matching scores

minus the penalties. To achieve this, Smith and Waterman set up a matrix H ∈ n ×m, as

13

follows:

H(i, 0) = 0 ∀i = 1...n (2.1)

H(0, j) = 0 ∀j = 1...m (2.2)

H(i, j) = max(0, H(i− 1, j − 1) + s(ai, bj), H(i− 1, j) + wk, H(i, j − 1) + wl)

(2.3)

Most importantly, when calculating this matrix, the Smith-Waterman algorithm keeps

a pointer to which of the four options (representing a new start, an element happening

correctly, a deletion or an insertion) were chosen at each element H(i, j).

To compute the optimal match, we use backtracking. The Smith-Waterman algorithm

selects the maximum element of H and then iteratively asks “Which element generated the

maximum value that we used?”. This backtracking process produces a series of matches,

insertions and deletions corresponding to the optimal match.

2.3 Sliding Window Approaches

A number of approaches [Lin et al., 2014,Tianmin Shu et al., 2015] utilize sliding windows

to reduce the space over which they have to search. In [Lin et al., 2014], the goal is to

match a textual description of an activity to the KITTI [Geiger et al., 2012] dataset. This

dataset contains recordings of a Volkswagon-mounted camera driving around Karlsruhe,

Germany. In [Lin et al., 2014], a small subset of this dataset is used: 21 30-second video

clips are used - 13 for training their set of concepts, and eight as a search corpus. The

selection of eight short videos as a search corpus can be viewed as a specialization of a 30-

second sliding window. A complete sliding window approach for queries with 30 second

maximum length would be to take every time interval [t0, t0 + 30] in the video corpus and

consider that an independent video as a result. Presumably for the sake of computational

14

complexity, [Lin et al., 2014] elect to only look at eight such videos.

For each video, they solve a bipartite matching problem. Given a textual query like “A

car is moving forwards”, they convert it to a set of features u ∈ U , and have a set of features

v ∈ V for each video segment. They compute a matching score huv between feature u and

feature v based on appearance and motion, and compute a global assignment score Sy and

assignment vector y ∈ {0, 1}U×V :

S(y) =
∑
uv

huvyuv (2.4)

max
y

S(y) (2.5)

subject to the constraints that y assign each element of U to one or less elements of V .

Videos are ranked for the user in descending order of their global assignment score.

Compared to our approach, this method does not take advantage of relationships be-

tween features - it is looking to find a single optimal match for every feature in the query.

However, common to a lot of sliding window approaches, by using a relatively small slid-

ing window in time (30 seconds), they do implicitly enforce that all the features must occur

within 30 seconds of one another, which is a sort of relationship. When features alone are

sufficient to differentiate the activity in question, and the activity has limited spatiotemporal

extent, this approach can be effective.

[Tianmin Shu et al., 2015] use a similar approach to dividing an aerial events dataset.

Using combinations of ground truth, tracks, and manual object annotations, they partition

tracks into non-overlapping sets. For each event, they have learned a spatio-temporal and/or

graph (ST-AOG) that is a series of trees (in space) linearly sequenced in time. For each

partitioned set of tracks, they slide a window of length T , and at each window solve a

dynamic programming problem that assigns detections in the tracks present in that window

to elements of the graph. Videos are classified as the event that has the best match within

15

their windows.

This method does take into account relationships between features. However, the ac-

ceptable structure for an input is limited to trees because of the necessity of solving via

dynamic programming. Further, it assumes that moving objects within the data can be

clearly partitioned into disjoint sets. In more realistic surveillance datasets, this is not the

case - objects are continually moving.

In this work we aim to produce a system that takes in arbitrary graphs (expressed by

our vocabulary) and makes few assumptions about the video corpora that we are searching

over. We do not assume that the dataset is partitionable, nor that our input graph has

any particular structure. Unlike the above approaches, we also do not learn models from

exemplar video. In our work, we compare to a feature-accumulation approach like [Lin

et al., 2014] to show the utility of incorporating relationships between features, and to a

sliding window approach later. In our experiments, we merge spatiotemporally overlapping

windows when appropriate to attain video intervals for users.

Chapter 3

Dynamic Programming for Activity Search

In this chapter, we present a content-based retrieval method for long surveillance videos

both for wide-area (Airborne) as well as near-field imagery (CCTV). Our goal is to re-

trieve video segments, with a focus on detecting objects moving on routes, that match user-

defined events of interest. The sheer size and remote locations where surveillance videos

are acquired, necessitates highly compressed representations that are also meaningful for

supporting user-defined queries. To address these challenges, we archive long-surveillance

video through lightweight processing based on low-level local spatio-temporal extraction

of motion and object features. These are then hashed into an inverted index using locality-

sensitive hashing (LSH). This local approach allows for query flexibility as well as leads to

significant gains in compression. Our second task is to extract partial matches to the user-

created query and assembles them into full matches using Dynamic Programming (DP). DP

exploits causality to assemble the indexed low level features into a video segment which

matches the query route. We examine CCTV and Airborne footage, whose low contrast

makes motion extraction more difficult. We generate robust motion estimates for Airborne

data using a tracklets generation algorithm while we use Horn and Schunck approach to

generate motion estimates for CCTV. Our approach handles long routes, low contrasts and

occlusion. We derive bounds on the rate of false positives and demonstrate the effective-

ness of the approach for counting objects, motion pattern recognition and abandoned object

applications.

16

17

3.1 Introduction

Video surveillance camera networks are increasingly common, generating thousands of

hours of archived video every day. This data is rarely processed in real-time and primarily

used for scene investigation purposes to gather evidence after events take place. In military

applications UAVs produce terabytes of wide area imagery in real-time at remote/hostile

locations. Both of these cases necessitate maintaining highly compressed searchable rep-

resentations that are local to the user but yet sufficiently informative and flexible to handle

a wide range of queries. While compression is in general lossy from the perspective of

video reconstruction it is actually desirable from the perspective of search since it not only

reduces the search space but it also leverages the fact that for a specific query most data is

irrelevant and pre-processing procedures such as video summarization is often unnecessary

and inefficient. Consequently, we need techniques that are memory and run-time efficient

to scale with large data sets, and be able to retrieve video segments matching user defined

queries with robustness to common problems, such as low frame-rate, low contrast and

occlusion.

Some of the main challenges of this problem are:

1.) Data lifetime: The model must scale with the growing size of video data.

The continuous stream of video data requires a model that can handle this growing

temporal size. This requires periodic processing of the new data as it streams in the system.

2.) Unpredictable events:

Some events are rare, yet they could be of great interest. For instance a person dropping

a bag and continuing walking, or a car violating a traffic light are examples of not so

common events. Yet their detection is valuable as it could help in forcing the law and

preventing terrorist attacks. The system should be able to support such events.

3.) Clutter and Low Contrast:

Clutter and low contrast often generate motion errors. This will have a direct impact on

18

processing temporal queries. Low contrast is common in airborne footage while clutter is

frequent in videos of urban areas.

4.) Unpredictable event duration:

Events vary in duration, co-occur with each other and could start and end anytime.

Accurate estimation of an event time window is important. Such task is made more difficult

in regions of high clutter and poor contrast.

This chapter extends our method for content-based retrieval [Castañón and Caron,

2012] to the domain of airborne surveillance. In [Castañón and Caron, 2012] we pre-

sented a query-driven approach where the user draws routes manually. The algorithm then

retrieves video segments containing objects that moved in the user supplied routes. Our

technique consists of two steps: The first extracts low level features and hashes them into

an inverted index using locality-sensitive hashing (LSH). The second stage extracts partial

matches and assembles them into full matches using Dynamic Programming (DP).

While [Castañón and Caron, 2012] dealt with CCTV data, in this chapter we handle

motion patterns in aerial view images shot from a UAV (airborne data). Handling such data

is more challenging than handling CCTV due to their lower frame rate and lower contrast

(see Fig. 3·1). As a result certain features such as optical flow information (extracted using

Horn and Schunck technique [Horn and Schunck, 1981]) are rendered highly noisy. Hence

for airborne data we first generate tracklets, using ideas from [Pitié et al., 2005, Baugh

and Kokaram, 2010], and then generate motion estimates from those tracklets. We use

these motion estimates in combination with our previous two-step process to retrieve routes

generated by different objects (such as cars and human) while handling long routes, low-

contrast, occlusion, and outperforming current techniques.

This algorithm extends our preliminary work in [Castañón and Caron, 2012] to videos

collected via airborne surveillance. Airborne video differs significantly from standard

surveillance video: the resolution and contrast of objects of interest is extremely low, and

19

(a)

(b)

Figure 3·1: Top: Examples of CCTV footage. Bottom: Example of Air-
borne footage. Blue and green boxes show zoomed-on regions. Objects
of interests (cars in this figure) usually have much lower contrast in Air-
borne footage (see red boxes) over CCTV footage. This makes processing
Airborne footage more challenging than CCTV.

20

the frame-rate is extremely low. This poses a number of problems to our standard approach

- due to low frame-rate, objects are effectively obscured for significant periods of an ac-

tion, as the camera is not taking a picture. Likewise, low resolution, low contrast and low

frame rate make estimation of optical flow unstable. To address these issues, we perform

significant filtering work on the raw video both to identify targets and suppress camera

artifacts. We also develop a rudimentary tracker which operates effectively in harsh condi-

tions. We use the results of this tracker to create a low-level feature set for exploitation by

the approach described in [Castañón and Caron, 2012]. Note that we are not interested in

obtaining long-term (i.e. perfect) tracks; instead we are interested in tracklets that are good

enough for our retrieval problem.

Our approach differs significantly from current approaches [Kuettel et al., 2010, Xi-

ang and Gong, 2008]. In this chapter we assume that there is no prior knowledge on the

queries and hence we first extract a full set of low-level features. In addition unlike scene

understanding techniques [Kuettel et al., 2010,Xiang and Gong, 2008], we do not incorpo-

rate a training step as this would scale unfavorably with the magnitude of the video corpus.

Instead, our technique exploits temporal orders on simple features, which in turn allows ex-

amining arbitrary queries and maintains a low false rate. We show significant improvement

over scene-understanding methods [Kuettel et al., 2010], both in terms of search accuracy

and computational complexity. We also show how tracklets are better suited for airborne

footage than optical flow. Results for CCTV data are also included.

3.2 Overview

Our procedure consists of two main stages. The first reduces the problem to the exam-

ined data while the second reasons over that data. Fig. 3·2 shows this procedure in more

detail. Low level features are continuously extracted as data streams in. Here features as

activity, object size, color, persistence and motion are used. For CCTV footage motion is

21

estimated using the Horn and Shunck approach [Horn and Schunck, 1981], while for Air-

borne footage motion is estimated using tracklets. LSH [Gionis et al., 1999] is then used to

hash the extracted low level features into a fuzzy, light-weight lookup table. LSH reduces

the spatial variability of examined features and reduces the queries search space into a set

of partial (local) matches .

The second step of our search algorithm optimizes over the partial matches in order

to generate full matches. Here video segments of partial matches are combined to fit the

examined query. Our search approach simplifies the problem from examining the entire

video corpus into reasoning over the partial matches that are relevant to our query. This

feature is advantageous especially in examining surveillance videos where hours of video

may not be of interest to an observer. Hence our approach reduces the search workload

considerably.

We examine two approaches for generating full matches. The first is a greedy approach

based on exhaustive examination of partial matches. The second approach exploits tem-

poral ordering of component actions. Here Dynamic Programming (DP) processes partial

matches and finds the optimal full match for a given query. We present two DP versions,

one that uses optical-flow (for CCTV) and another that uses tracklets (for Airborne). Our

technique outperforms current approaches and we show that increased action complexity

drives false positives to zero.

3.3 Feature extraction

In this section we explain how to extract relatively basic features. In our previous work

[Castañón and Caron, 2012], we observe that the retrieval process is not strongly feature

dependent, and use coarse features both for the purposes of robustness and speed of com-

putation to address problems of data lifetime. For purposes of completeness, we present

that extraction process in Section 3.3.2.

22

Features

User

Commands

Query

Creation

Feature

Extraction

Lightweight

Index

Inverted

Index

Lookup

Dynamic

Programming

LSH

Index

Set of Query Features Partial

Matches

Video Segments

Figure 3·2: Our video search framework. As data streams in features are
extracted and inserted into a lightweight index. The user defines query of
interest and partial matches are generated through inverted lookup index.
Partial matches are then combined into full matches by means of Dynamic
Programing. The final output is a video segment matching the user query.

Feature extraction for airborne video is significantly more difficult. As the video is low

frame-rate, low-contrast and colorless we focus on motion features. Due to the lack of

image quality, histograms of optical flow are inaccurate - as such, we perform short-term

tracking and derive motion information based on these tracklets. This process in described

in Section 3.3.3.

For our system to work, we need a spatio-temporal structure to summarize local mo-

tion features. Although we could use 3D atoms (3D spatio-temporal block of video) as in

[Wang et al., 2009], we found empirically that this structure is very sensitive to slight vari-

ations in the dynamics and shape of moving objects. For example, a car running through a

3D atom would leave a different signature than if it were slightly shifted and went through

half that atom and half a neighboring atom. Instead, we use a hierarchical structure which

aggregates information from neighboring atoms. This structure is described in the follow-

ing section.

23

3.3.1 Structure

In this chapter, we treat a video as a spatiotemporal volume of size H × W × F where

H ×W is the pixel image size and F denotes the total frames in the video. The video is

temporally partitioned into consecutive documents containing A frames. We illustrate in

Fig. 3·3 how to tile a given frame of video using B ×B squares of pixels. We form atoms

by amalgamating consecutive tiles over A frames. Depending on video size and frame rate,

for CCTV we chose B to be 8 or 16 pixels and A to be 15 or 30 frames. For Airborne

footage however we used B = 20 and A = 1. A much smaller value of A is used here

to capture the fine-detailed nature of tracklets. As video is streaming, we extract features

in real-time, assigning a set of features (see Sec. 3.3.2 and Sec. 3.3.3) to each atom n to

describe its content.

10

14

11

1 2 3

1

Figure 3·3: (Left) A video of size W × H × F divided into Documents
t. Each document contains non-overlapping A frames, and each frame is
divided into tiles of size B × B. Temporal aggregation of tiles over A
frames generate an atom. (Right) Tree structure of atoms. Here every set
of four adjacent atoms are linked to the same parent. This forms a set of
partially overlapping trees.

In order to render our algorithm robust to location and size variability over sets of de-

24

tected features, we create a spatial pyramid structure. For this implementation, we chose

a quaternary pyramid (tree) where each element has 4 children, all spatially adjacent. Be-

cause the pyramids overlap, a k-level pyramid contains M =
∑k

l=1 l
2 nodes, as seen in

Fig. 3·3. Given this formulation, a document with U × V atoms will be partitioned into

(U − k + 1) × (V − k + 1) partially overlapping pyramids for indexing. As an example,

we construct a depth-3 pyramid tree in Figure 3·3 to aggregate 3 × 3 atoms into M = 14

nodes.

We compute the feature vector for each node of the tree by an aggregation operator

over each of its child nodes. Given node n and its four children a, b, c, d, we formalize

aggregation in Eq. (3.3.1).

x
(n)
f = ψf

(
x

(a)
f ,x

(b)
f ,x

(c)
f ,x

(d)
f

)
,

where ψf denotes the aggregator over relevant features. The output of this aggregator

is x
(n)
f , a concatenation of all features. Sec. 3.3.2 and Sec. 3.3.3 explain the aggregation

process in further detail. For each atom we extract a number of features, so the aggregation

of a group of k× k atoms yields {treef} one for feature tree for each feature f . Each treef

contains a list of M feature instances, namely treef =
{
x

(n)
f

}
, because there are M nodes

in every k-level tree.

3.3.2 Feature Extraction for CCTV footage

Existing work [Meessen et al., 2006, Stringa and Regazzoni, 1998, Yang et al., 2009]

has shown features such as color, object shape, object motion, and tracks to be effective

at the atom level. Because of computational limitations and the constant data renewal

inherent to the surveillance problem, we chose to exploit local processing to enable real-

time feature extraction. We assume a stable camera (common in surveillance, though an

unstable camera could utilize existing stabilization options) and compute a single feature

25

value for each atom. Note that this feature value does not require any understanding of how

many objects are in the atom or what it is composed of - they are a a simple amalgamation of

values computed at the pixel level. In our current implementation, we exploit five features:

(1) Activity xa: this feature is associated with moving objects that we detect with a back-

ground subtraction method [Benezeth et al., 2010]. The background is computed using

a temporal median filter over 500 frames of the video and subsequently updated using a

running average. For every atom, we compute the proportion xa of pixels that are both not

part of the background and have sufficient motion magnitude. The aggregator is defined as

the mean activity of the four children.

(2) Size xs: In order to detect motion, we create a binary activity mask differentiating activ-

ity from background. We then perform connected component analysis to identify moving

objects, with the number of pixels in an object yielding the size. The aggregator for size is

the median of the non-zero children, with a default value of zero for all-zero children.

(3) Color xc: We calculate color by computing a histogram over an atom’s non-background

pixels in 8/4/4 quantized HSL color space. The aggregator is the bin-wise sum of the

children’s histograms. Because proportions are important, we do not normalize during this

stage.

(4) Persistence xp: The persistence measure identifies objects that are not part of the back-

ground, but stay in one place for some time. To compute it, we accumulate the binary

activity mask from background subtraction over time, and measure the percentage of pix-

els that have been active for longer than a threshold. Non-background objects which are

immobile thus obtain a long persistence measure. The aggregator for persistence is the

maximum value among the four children.

(5) Motion xm: In order to compute aggregate motion in an atom, we quantize pixel-level

optical flow, extracted using Horn and Schunck’s method, into 8 cardinal directions. We

utilize an extra “idle” bin to denote an absence of significant motion (low magnitude flow),

26

yielding a 9-bin histogram of motion. The aggregator for motion is the bin-wise sum of the

motion histograms for the four children. We note that, like color, we store un-normalized

histograms to maintain relative proportion.

We extract all of these features from a real-time streaming video. Upon creation, we

assign 5 descriptors to each atom, {xa, xs,xc, xp,xm}. We assemble an atom’s descriptors

into 5 feature trees {treea}, {trees}, {treec}, {treep}, {treem}, which form the foundation

of the our approach to indexing in Sec. 3.4. After indexing, we discard the feature content;

the actual value of the features is implicitly encoded in our lightweight index. Note that the

choice for the specific aggregation functions (mean, max, and median) came after empirical

validations.

3.3.3 Feature Extraction for Airborne Footage

First, we register airborne images onto a common reference frame. Then, in order to be

robust to issues of low contrast and frame rate, we extract tracklets and derive features

directly from them. Our tracklet extraction process uses a Viterbi-style algorithm with

ideas from Pitie et al. [Pitié et al., 2005] and Baugh et al. [Baugh and Kokaram, 2010].

At each frame we generate a set of candidates and update existing tracklets with these

candidates based on distance in feature and position space.

We are supplied with Airborne footage stabilized with respect to the global camera

motion. In order to identify moving objects (cars and people) we use frame differencing.

Consecutive frames are used for cars, and frames spaced by 10 for slower-moving humans.

We use a very small detection threshold to ensure all false negatives are eliminated. Cars

are detected if a frame difference of more than 15 gray-scale levels is observed. A smaller

threshold of 10 is used for humans detection as they have lower contrast. Some detection

errors often occur around borders of trees and objects (see Fig. 3·4, red region). Other

artifacts are caused due to local motions as the ones generated by the moving sea waves

(see Fig.3·4, blue region). Such artifacts are removed through filtering by size. Here we

27

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3·4: First row, from left: Two consecutive frames showing cars
(shown in yellow) moving near a junction, (c) Frame subtraction and (d)
result after applying morphological opening. The final result (d) is void of
noisy data shown in red in (c). Second row, from left: Two frames showing
a group of people (shown in yellow) walking near a beach, (g) detection
after applying morphological opening and (h) detected candidates of size
more than 150 pixels in green.

first detect connected bodies and remove any body that contains more than 150 pixels.

An example of candidate selection with artifacts removal is shown in Fig.3·4. Note that

filtering by size eliminates the vast majority of false alarms. This is evident by examining

the blue and red rectangles of Fig. 3·4 before and after filtering (third and fourth columns

respectively). Quantitative results show that this filtering reduces false alarms by 72.3% and

96.5% for cars and humans respectively. This is taken as the average over processing 1000

frames for each of Task 12 and 13 (see Table 3.1). It is worth noting that our algorithm

only detects moving vehicles and humans. Stopped vehicles are dealt with by our dynamic

programming algorithm which we introduce in Section 3.5.2.

Given a set of detection candidates, our goal is to associate them over time for the

purposes of computing tracklets. To do so, we set up and solve a Viterbi Trellis as described

28

in [Baugh and Kokaram, 2010]. Given a set of detection candidates in frame n and n + 1,

we estimate the temporal matching cost of each detection pair:

Cl,m = Λ1‖pl − pm‖+ Λ2|zl − zm|

+ Λ3f3(sl, sm) + Λ4f4(cl, cm) + Λ5f5(pl, pm). (3.1)

Here l andm denote the examined candidate of frame n and n+1 respectively. (p s z c)

are the position, shape, size and color of each examined candidate. Λ1...Λ5 are tunable

weights to emphasize the importance of each term. Position is defined as the geo-registered

location, shape is the binary mask of the occupied pixels and size is the number of pixels

in the examined mask. The purpose of the five elements of Eq. (3.1) is to ensure that the

target: (1) has not moved too far between n and n + 1, (2) is roughly the same size, (3)

the same shape, (4) the same color and (5) it is roughly where we expect it to be given its

previous motion and location.

sl and sm are binary detection masks for the targets under examination, where f3(sl, sm)

is the mean absolute error between both masks. Given the color measurements of the

examined candidates cl and cm, we fit a Gaussian mixture model (GMM) for cl being

G(cl) [Bouman et al., 1997]. We then estimate f4(cl, cm) as the error of generating cm

from G(cl) [Bouman et al., 1997]. To calculate f5(pl, pm) we first estimate the expected

location of l in the next frame (n + 1) given its current location in frame n. The expected

location is estimated using a 3 frame window and a straight line, constant acceleration

model. f5(pl, pm) is then taken as the absolute difference between the expected location of

l in n+ 1 and the actual location of m.

Given the matching costs for all possible l and m pairs, we approximate the two-

dimensional assignment problem by greedy assignment for computational efficiency. That

is we match the pairs with least matching cost first, remove them, match the next pair, re-

move them and keep doing so until all candidates in frame n are matched with candidates

29

Figure 3·5: Examples of tracklets generated by the technique discussed in
Sec. 3.3.3. Here tracks start with a red cross and their tails have different
color. The example of the left shows tracklets generated for cars while the
example on the right shows tracklet generated for a group of people walking
on the beach.

in frame n + 1. Unmatched candidates can begin tracks if we find matches for them in

subsequent frames, while tracks which are unmatched for enough frames are terminated.

Note that this is a one-to-one assignment process hence no candidate in either frame n or

n + 1 can have more than one match. This assignment, plus efficient computation of f4,

yield a simple tracking approach that can scale to large datasets.

Fig. 3·5 shows examples of tracklets generated by the technique discussed in this sec-

tion. Here we show tracklets of cars (see left of Fig. 3·5) and for a group of people walking

on the beach (see right of Fig. 3·5). In order to quantitatively evaluate tracklets, we selected

the 4 longest streets in our videos and examined every tracklet associated to them. This was

equivalent to examining 48 cars doing a full trip on their corresponding streets. We then

computed the average angular error associated to each tracklet knowing that cars all move

along those streets. This gave us an average error of 1.2 degree with a variance of 0.9.

Note that our tracklets generator assumes temporal consistency and hence it disregards

false detections that are temporally inconsistent. This further removes detection artifacts.

In closing, note that we do not need particularly good long-term tracks; we need tracks

good enough for our retrieval problem.

30

3.4 Indexing & Hashing

We aggregate features at document creation into (U − k + 1)× (V − k + 1) k-level trees.

As data streams in we construct 5 feature trees, namely {treea} , {trees} , {treec} , {treep} ,

and {treem}. For Airborne data there is one feature tree, namely {treed}. {treed} is a 1-

level tree that stores the current-to-next frame displacements for all points of the generated

tracks.

We use an inverted hash table to index a given feature tree treef efficiently for content

retrieval. Inverted index schemes map content to an address in memory and are popular

because they enable quick lookup in sizeable document storage. In the case of video we

aim to hash the document number t and the location in space (u, v) of a given atom based

on the contents of its feature tree treef . We accomplish this by mapping “treef” to a

location in the index to store (t, u, v). Our goal is to store similar trees in nearby locations

within the index. Thus we can retrieve similar feature trees by retrieving all stored elements

proximate to a given query tree. Note that for Airborne data, in addition to storing (t, u, v)

for each tree, we also store the track ID. This encourages results to be generated from as

few tracks as possible and hence makes solution more robust to clutter.

The construction of this index is such that update and lookup have performance which

does not scale with video complexity, but instead with the magnitude of the returned results

because similar content across the video is mapped to the same hash bin. For a given query

tree, the hash bin can be identified in constant (O(1)) time, and its contents extracted in

time scaling linearly with the amount of content in the bin. When the query represents an

action which does not commonly occur, or where action itself is sparse, this optimization

yields significant performance improvements in runtime. This strong time scaling enables

us to reason over video corpora with very large data lifetime at minimal cost to the search

engine.

Hashing: A hash-based inverted index uses a function to map content to an entry in the

31

index. This is done with a hashing function h such that h : treef → j, where j is a hash

table bucket number. We use a locality-sensitive hashing (LSH) function [Gionis et al.,

1999] in this chapter. LSH approximates nearest-neighbor search in databases. To do this,

LSH clusters similar vectors x and y by maximizing the likelihood that descriptors within

a certain radius of each other are mapped to the same hash key:

x ≈ y =⇒ P {h(x) = h(y)} � 0.

If input vectors have a small Euclidean distance (calculated on an element-by-element basis

between feature trees), their probability of hashing to the same bin is high. The feature

values in our trees are real, and selected fromM possible values, so we draw LSH functions

from the p-stable family:

ha,b,r(treef) =

⌊
a · treef +b

r

⌋
,

where a is a random M -dimensional vector, b is a random scalar and r is a parameter

dependent on the application. M and b must both be drawn from stable distributions (uni-

variate gaussian and uniform on the [0, r] interval, in our case). Intuitively, a is a random

direction for projection, b an offset and r a radius which controls the probability of collision

for feature vectors within that radius of each other. Note that the collision radius r is an

important parameter to set correctly - different hashed vectors have different lengths, so a

different radius must be set for each table to ensure that the distance at which two things

are considered similar is accurate.

We build and search indices If independently for each feature, with five for CCTV data

and two for Airborne data, using one database per index of each feature f . Each index If

is composed of a set of n hash tables {Tf,i} , ∀i = 1, . . . , n, with each table given its own

p-stable hash function Hf,i drawn from ha,b,r. So, specifically, a given atom is stored in

N × 5 locations - in each of the N tables for each of the five features that we compute. For

32

storage efficiency, we only store atoms where something is happening - high persistence,

high activity, or high motion.

Due to the low-dimensionality of our features, n can be relatively small - in our ex-

periments, we use three hash tables per feature. Depending on the scenario and features

selected, the parameter r can be set to allow more or less fuzzy matches. We fix r for each

feature in our implementation. The random parameters a and b ensure projections from the

different hash functions complement each other.

Given a feature tree treef at location u, v with key Hf,i(treef) = j, Tf,i[j] denotes

document numbers {t} which contain similar feature trees, located at (t, u, v). In order to

perform a lookup in index If , we take the union of document numbers returned by each

individual lookup in the set of tables {Tf,i}:

I(treef) = ∪ni=1Tf,i [Hf,i(treef)] .

Fig. 3·6 illustrates several feature trees partitioned into groups, where trees in the same

group have been given the same hashing key. For a given video, we plotted the content of

four of the most occupied buckets for the motion feature treem. As one can see, the trees

associated to similar motion patterns in various parts of the scene have been coherently

hashed into similar buckets.

Lightweight Storage: Unlike distance-metric dependent approaches, our hash-based

index does not require explicit storage of feature descriptors. We store only tree coordinates

{t, u, v}, which compress to 12-byte variables (we also store track ID for airborne footage).

Because our features are local and primitive, they depend only on non-background content,

making our indexing times and storage scale linearly with a video’s foreground content.

Given that surveillance video can involve a great deal of inactive space or inactive time

(consider the surveillance within a retail store while it is closed), this is an incredibly useful

feature. In a 5 hour video with an activity rate of 2.5%, we attain a compression ratio of

33

(a) (b)

(c) (d)

Figure 3·6: Motion features (in red) of four buckets of a hash table. Arrow
sizes are proportional to the number of hits at the corresponding sites. Here
the four buckets describe: (a) side walk (b) upper side of the street (c) lower
side of the street (d) crosswalk.

50,000 to 1 over already compressed video.

Building Lookup Table: In order to accommodate real time video streaming, we itera-

tively update the index. After feature extraction, we group features into trees as described

in Sec. 3.3 and, for each feature f , we update the index If by mapping treef → (t, u, v)

with an LSH function. Once this is done, the features of the current document are deleted

and a new document is processed. Note that in order to address the issue of large video life-

time, a garbage collecting process can easily screen the hashing tables and eliminate every

tuple whose time variable t is too old to prevent the tables from growing continuously.

3.5 Search engine

Previous sections explained how to extract low-level features from a video sequence, bun-

34

dle them into trees and index them for O(1) content-based retrieval. In this section we

discuss how to use feature index for high-level search. First, we allow users to directly

input queries in the form of a sequence of action components. Second, we retrieve a set of

partial matches to these action components in O(1) time from the indices built in section

3.4. Third, we look for full matches to the set of action components. We establish a base-

line for this search first by a greedy algorithm with an emphasis on colocation. We improve

upon this algorithm by extending the Smith-Waterman algorithm for gene-sequence match-

ing [Smith and Waterman, 1981] to accomodate events with duration. This improvement

allows us to search for activities that are significantly distorted from the original query,

including partial obscuration and time-warping.

3.5.1 Queries

In this chapter, we define a query as a set of ordered action components. A U-turn, for

example, contains three such action components i.e. horizontal, vertical and then opposite

horizontal (see Fig. 3·8). Simpler queries can be defined by one component i.e. car moving

in one direction.

For ease of use, we created a GUI (see Fig. 3·7) to enable a user to input sequences

of action components. The user is shown a background scene, and inputs components one

after the other. Individual components are identical to the features automatically extracted

from archive video and hashed in Section 3.3: motion, size, color, persistence and activity.

Queries can be directly compared to archived features because they are described in the

same vocabulary.

We allow the user to draw regions of interest (ROIs) that he expects these features to

appear in (see Fig.3·10, green regions). In the case of motion, the user moves the mouse to

indicate direction. In airborne video, if a user chooses to describe a more complex series of

motions (a ”route”), we automatically segment the path they draw into components. After

the user has drawn an action component, we treat the canvas as a single frame and divide it

35

!"#$%&'&()$*$+,&-&./&-$01-&2$3&(42/$!5#$%&'&()$)*,6&)$+,2+&,4&3$$

$!7#$%&'&()$

89&,:$

$;:+&$

!<#$$

=,*>$$

?9&,:$

$

$!@#$AB&(9)&$$

$$$$$$$$89&,:$

Figure 3·7: A GUI for creating queries with instructions outlined from
1-5 (see red regions). Here the user draws queries of interest (in blue) and
selects additional target properties (see step 3,4).

into atoms, as in Section 3.3, except that we do not aggregate over time as we only have one

frame. We aggregate statistics for each atom in this activity component, and then perform

pyramidal binning to generate a feature tree treef . The end result is that we follow an

identical process to that described in Section 3.3, except that instead of having to calculate

terms like motion direction and color, we provide them directly.

Note that this method of direct input is only feasible due to the simplicity and semantic

saliency of our features. We ask a user to describe his query in terms of motion direction,

size, persistence, activity and color; the same features that we automatically extract and

36

archive from video. While it would be difficult for a user to manually input corner-point

features or high-dimensional vector representations, it is relatively easy to specify things

such as “red”, “large blob”, and “right-moving”? for example. In our GUI, they would

do this by moving their mouse to the right using a motion tool, and then drawing a red

area they expected the object to be in. Users are also helped by the background image that

they draw on. This gives them both a sense of the type of video that they are exploring,

the brightness of the video, and also what sorts of motion may be reasonable to search for.

This helps create action components that correlate strongly with archive video.

While each of the elements of the query is rather simple, the formulation as a whole

empowers the user with a complex query vocabulary that grows combinatorially with the

number of raw features he is allowed to use in query composition. A single component

could describe a search for “small red stationary blob” or “large blob moving to the right”.

Though our claims to simplicity are theoretical, in our experience a brief explanation is all

that is required for people to begin promptly creating their own queries. The system has

been used briefly by surveillance professionals and members of the armed forces with few

issues.

Once we have a series of action components (each represented by a set of feature trees)

we query the inverted index. The result of that query is a set of locations (u, v, t) whose

feature tree matches the manually-input action components. These (u, v, t) location are

called partial matches and referred to as M(q). This process is robust to user error because

of the fuzzy hashing scheme, which allows for approximate matches. It is thus possible

that the query “Small, red, right-moving” might yield results that are small, reddish and

moving generally to the right. Fig.3·10 presents 10 queries with their ROI.

Coarse features and fuzzy hashing render the query creation process robust to small

errors in query definition. Larger issues, like failure to draw a certain query component

in its entirety or an obscured drawing are reasoned over by the dynamic programming

37

algorithm described in Section 3.5.2.

3.5.2 Full matches

Partial matches, however, are insufficient to identify activities in surveillance video, which

have higher temporal variance in their duration. As an example, a fast car taking a U-turn

will cover fewer documents than a slow moving car as well as generating different motion

features. Because documents are relatively limited in time (generally less than a second

of real time), a given action component may span many documents, and thus many partial

matches. A user expects entire matching sequences, which we refer to as full matches, i.e.

video segments [t, t + ∆] containing one or more documents (∆ > 0). The video segment

R = {t, t+ 1, t+ 2} corresponds to a full U-turn match when documents t, t + 1, t + 2

contain the beginning, the middle and the end of the U-turn. We define a full match starting

at time τ , given a query q and a set of partial matches M(q), as:

Rq,τ (∆) = {(u, v)|(t, u, v) ∈M(q), ∀t ∈ [τ, τ + ∆]} . (3.2)

Thus, the unique coordinates of partial matches to q in the video segment [τ, τ + ∆] are

contained in Rq,τ (∆).

We have developed a pair of algorithms to find full matches given a set of partial

matches. The first is a greedy optimization procedure based on the total number of par-

tial matches in a document that does not exploit the temporal ordering of a query. The

second approach (Sec. 3.5.2), uses dynamic programming to exploit temporal structure of

the query action components.

Full matches using a greedy algorithm

The primary challenge in activity detection is the difference between an idealized query

and the realization of that activity in video. Common issues include time-scaling, false

detections and spatiotemporal distortion. Given a set of partial matches, our goal is to find

38

the span of time which is most likely to contain the desired query. We pose the following

optimization to solve for this span: where q is the query, τ is a starting point and ∆ the

length of the retrieved video segment. The value function vq,τ (∆) maps the set of partial

matches in the interval [τ, τ + ∆] to some large number when the partial matches fit q well

and to a small value when they do not. To determine the optimal length of a video segment

starting at time τ , we maximize the above expression over ∆.

There is an infinite array of potential value functions; we choose a simple and practical

vq,τ (∆) given by:

vq,τ (∆) = exp(|Rq,τ (∆)| − λ∆), (3.3)

where Rq,τ (∆) is defined by Eq. (3.2) and |Rq,τ (∆)| is the number of unique partial

matches found in the interval [τ, τ + ∆]. In order to limit the span of the event, we ap-

ply a penalty function, controlled by λ, to increase Rq,τ (∆) in ∆ (by definition, Rq,τ (∆) ⊆

Rq,τ (∆ + 1)).

We opt to solve for ∆ via a greedy approach. Based on the above value function,

the algorithm ranks non-overlapping video segments in descending order for the user. We

demonstrate in Sec. 3.6 that Eq. (3.3) yields compact video segments while keeping low

false positives and negatives rates.

Intuitively, this value function is simple and effective because the more complex a query

is, the less likely it is to be generated by unassociated random actions. Specifically, given

a query Q containing N components drawn from dictionary D, the probability P (Q) of

randomly drawing Q as sequence of video components within ∆ frames is given by Eq.

(3.4), using Stirling’s approximation [Abramowitz et al., 1966].

P (Q) =

(
|D|
N

)
|D|∆−N

|D|∆
=

(
|D|
N

)
|D|−N ≈ e−N log

|D|
∆ (3.4)

The expression shows that if the dictionary is large relative to the time-interval ∆ then

39

Time

Time Time

Seq.1 Seq.2

Seq.3

Figure 3·8: Searching for a U-turn. Despite three sequences of actions
have same RQ,τ (∆) values (see Seq. 1,2,3), yet only Seq.3 contains a valid
U-turn.

the probability of randomly drawing the user defined query decreases exponentially with

the number of query components. Nevertheless, we can significantly improve this bound if

we also account for the order of the query components.

Full matches with dynamic programming (DP)

We can improve upon the performance of the greedy algorithm in Sec. 3.5.2 by exploiting

the order of the action components as well as their colocation. When a car takes a u-turn,

it has to approach an opportunity to turn, take that turn, and then proceed in the opposite

direction. For a man hopping a subway turnstile, he must approach the turnstile from

the wrong direction, navigate it, and depart in the wrong direction. Independently, these

components occur commonly. Together, there is only one order in which they reproduce

the query in full. This is illustrated in Fig. 3·8.

In the greedy optimization of Section 3.5.2, we ignore the time-ordering inherent to the

query set. The value function Rq,τ (∆) is a set, not a list - it fails to differentiate between

orderings of the same components such as (Forward, Left, Back) and(Back, Forward, Left).

40

Intuitively, this should hurt performance - false positives diminish once we exploit causal-

ity. We quantify the improvement upon the performance bounds given in Eq. (3.4) in Eq.

(3.5).

P (Q) =
e−N log

|D|
∆

N !
≈ e−N log(

|D|N
∆

) (3.5)

It is worth highlighting the difference between the two expressions Eq. 3.4 and Eq. 3.5.

In the latter expression we only need |D|N to be sufficiently large relative to ∆ as opposed

to |D| > ∆. Consequently, if we were to account for the order of query components, the

probability of randomly matching the user defined query approaches zero even when ∆

scales with the size of the dictionary.

Once a user has created a set of N action components using our GUI, and we have re-

trievedN sets of partial matches within the video, our next step is to use dynamic program-

ming to exploit causality and retrieve the best matches. To accomplish this, we adapt the

Smith-Waterman dynamic programming algorithm [Smith and Waterman, 1981], originally

developed for gene sequencing, to determine which set of partial matches best matches the

query. Our algorithm, described in Algorithm 2, reasons over the set of partial matches

mτ,α ∈ M(q) which contains matches in document α to action component τ to recover a

query that has been distorted. For the purposes of our videos, we focus on three types of

distortion, namely insertion, deletion and continuation.

(1) Insertion distortion occurs in documents where the query is happening but there are no

partial matches. The most common causes for this are a pause in the activity (such as the

stop in a u-turn that a stoplight or oncoming traffic might mandate) or obscuration.

(2) Deletion distortion occurs when part of the query is missing, and an entire action com-

ponent is not present in the video. Deletions happen most frequently because of obscura-

tion, but can also occur simply because one component of an action is not performed.

(3) Continuation distortion occurs when an action component takes more than one doc-

41

ument. This is where an action component “stretches” in time. This is by far the most

common type of distortion, and allows our value function to account for significant tempo-

ral variability.

Algorithm 2 Dynamic Programming (DP) algorithm
1: procedure SEARCH(m, W, T)
2: V ← 0; paths← ∅; τ ← 1; α← 1
3: while τ ≤ number of documents do
4: while α ≤ number of action components do

5: Vτ,α ← max


0

(Vτ−1,α−1 +WM) ∗mτ,α

(Vτ−1,α +WC) ∗mτ,α

(Vτ−1,α +WD) ∗ (1−mτ,α)
(Vτ,α−1 +WI) ∗ (1−mτ,α)

6: if Airborne Data then
7: Vτ,α ← Vτ,α + 1φτ−1,α−1(φτ,α) ∗mτ,α∗
8: WS

9: end if
10: Let (a, b) be the index which was used to
11: generate the maximum value
12: if V(τ,α) > 0 then
13: pathsτ,α ← pathsa,b ∪ (τ, α)
14: else
15: pathsτ,α ← pathsa,b
16: end if
17: α← α + 1
18: end while
19: τ ← τ + 1
20: end while
21: Matches← ∅
22: while max(V) > T do
23: Let (a, b) be the index of V containing the
24: maximum value
25: Matches←Matches ∪ pathsa,b
26: for τ, α ∈ pathsa,b do
27: Vτ,α = 0
28: end for
29: end while
30: Return Matches, the set of paths above threshold T
31: end procedure

42

In addition to the three above distortions, we introduce an extra term to handle the

Airborne data. This term adds more score to a match if its Track ID is the same as the ID

of the match in the previous document. In Algorithm 2, the track ID of an examined cell is

φτ,α where 1φτ−1,α−1(φτ,α) is an indicator function that returns 1 if φτ,α = φτ−1,α−1.

Our dynamic programming approach creates an N × |q| matrix V to search for a query

with |q| action components in a video with N documents. This matrix is filled out from

top left to bottom right, from the beginning of the set of partial matches and earliest action

component to the latest of each. A path through V is defined as a set of adjacent (by

an 8-neighborhood) matrix elements, where each path element represents a hypothetical

assignment of an action component taking place in a document. A path hypothesizing that

action component b occurred in document a should contain element Va,b.

As the matrix is filled out, each element examines its 3 neighbors (left, up-left, up) and

the distortion that would have to occur in a hypothesis where this neighbor preceded the

element. Then, the element selects the one with the best possible score and stores both the

score and a pointer to the chosen element in the matrix of values, V . To find the optimal

path given V , identify the maximal value in V and trace the path backwards to its origin -

that is the best match. To iteratively find ranked, non-overlapping values, set the elements

of V that were used in a given hypothesis to zero and repeat the search until the maximal

value in V is below the retrieval score threshold T . We show an example matrix V with

overlaid paths in figure 3·9.

For a given penalty on each type of distortionWI ,WD,WC (corresponding to insertion,

deletion, and continuation) and a given bonus for each match, WM , the DP algorithm (Al-

gorithm 2) is guaranteed to find the set of partial matches which maximizes the sum of the

penalties and bonuses over an interval of time. For our queries, we were relatively certain

that elements of the query would not be obscured, but we were uncertain about our detec-

tion rate on features and how long an event would take. Thus, we set WI = −1, WD = −2,

43

A C A T

T 0 0 0 3

A 3 1 3 2

A 4 2 3 1

C 3 7 5 3

A 3 6 9 7

G 2 5 8 6

T 1 4 7 11

Figure 3·9: Example of the V matrix. The query is actions A, C, A, T, and
the seven documents in the video corpus each contains a single action, T,
A, A, C, A, G, T. The values for WI ,WD,WC and WM are −1,−2, 1 and
3 in this example. The optimal path, A,A,C,A,G,T, involves an insertion,
a continuation and a deletion. It is found by tracing backwards from the
maximal element, valued at 11.

WC = 1, and WM = 3. These values favor longer sequences without deletions and are

relatively robust to missed detection. For Airborne footage we also have a bonus WS for a

match generated by the same tracklet. In our experiments WS is set to 5.

We note that because it reasons over specific partial matches, our dynamic programming

approach also finds the locations in the video segments where the event occurs, but this is

not exploited in these results.

3.6 Experimental Results

3.6.1 Datasets

In order to gauge performances of our approach (with and without dynamic programming),

we ran experiments on 11 CCTV videos and 2 airborne videos (see Table 3.1, Fig. 3·10 and

Fig. 3·11). We selected these videos to test our method on various application contexts, as

well as to provide comparison to other methods. The Winter driveway, U-Turn and Aban-

44

Figure 3·10: Results for ten tasks. For each task we show the examined
query (in red arrows), ROI (shown in green) and the generated retrieval
(bottom to query, in red rectangle). Here red dots are trees whose profile fit
the query.

doned object were taken from our own dataset, PETS and Parked-vehicle and MIT-traffic

come from known datasets [Ferryman, 2006,ILI,], MIT-traffic was provided to us by Wang

et al. [Wang and Wang, 2011]; Subway from Adam et al. [Adam et al., 2008]. Airborne

was given to us by the National Geospatial Agency (NGA). These datasets contain a di-

verse array of real-life scenarios. The subway dataset includes multiple partial occlusions,

as people walk behind turnstiles and ticket booths while the U-turn datasets features a task

performed at many different speeds. Some cars perform a continuous U-turn, while others

stop halfway due to red lights. In airborne surveillance, people are so small as to be mainly

identifiable through temporally consistent behavior, and cars are obscured by trees for up to

30% of activity duration. From low frame-rate and low contrast black and white airborne

video to high framerate, color CCTV data, these datasets demonstrate the flexibility of our

45

X

Y

X

Y X

Y

X

Y

Figure 3·11: Examples of the examined routes. Routes are shown in yel-
low/red arrows and they start from point X and end at point Y. Some of the
routes undergo strong occlusion (see dashed yellow region, top row, first
column, for route in second column) and others undergo many turns (see
first row, second and last column).

46

algorithm. We tested different queries to recover moving objects based on various features

(see Table 3.1 for more details). Query features include size, color, tracklets, activity, di-

rection, and persistence. We queried for objects, animals, people, and vehicles moving

along user-specified routes. We searched for infrequent and sometimes abnormal events

(unexpected U-turns, animal in the snow, abandoned objects and people passing turnstile

in reverse) as well as frequent events (car turning at a street corner, people counting, and ve-

hicle parking). Some videos show events at a distance MIT-traffic [Wang and Wang, 2011],

while others show people walking and interacting together close to the camera Subway.

3.6.2 Examined Tasks

We examined 11 CCTV footage (see Fig.3·10 for examples) and 2 Airborne sequences

(Fig.3·11). We defined queries and manually created a ground-truth list for each task con-

sisting of ranges of frames. We obtained comparisons by computing the intersection of

the ranges of frames returned by the search procedure to the range of frames in the ground

truth. We marked an event as detected if it appears in the output video and at least 1 partial

match hits objects appearing in the event. For airborne footage, we also require that the

start and end frames be within 15 frames of the ground truth.

HDP Comparison

For the purposes of comparison, we implemented a scene understanding technique based

on Hierarchical Dirichlet Processes (HDP) [Xiang and Gong, 2008, Kuettel et al., 2010].

At each iteration, the HDP-based learning algorithm assigns each document to one or more

high-level activities. This classification is used as input to the next training iteration. Xiang

et al. [Xiang and Gong, 2008] propose a search algorithm that uses learned topics as high-

level semantic queries. The search algorithm is based on the classification outputs from the

final HDP training iteration. We compare our method to this HDP-based search algorithm.

Queries are specified as the ideal classification distribution and the search algorithm

47

Task Video Search query Features Duration Video size Index size
1 Winter driveway black cat appearance color and size 253 6.55 GB 147 KB
2 Subway people passing turnstiles motion 79 2.75 GB 2.3 MB
3 Subway people hopping turnstiles motion 79 2.75 GB 2.3 MB
4 MIT Traffic cars turning left motion 92 10.3 GB 42 MB
5 MIT Traffic cars turning right motion 92 10.3 GB 42 MB
6 U-turn cars making U-turn motion 3.4 1.97 GB 13.7 MB
7 U-turn cars turning left, no U motion 3.4 1.97 GB 13.7 MB
8 Abandoned object abandoned objects size and persistence 13.8 682 MB 2.6 MB
9 Abandoned object abandoned objects size, persistence and color 13.8 682 MB 2.6 MB
10 PETS abandoned objects size and persistence 7.1 1.01 GB 5.63 KB
11 Parked-vehicle parked vehicles size and persistence 32
12 Intersection 1 cars moving tracklets 13.8 1.16 GB 153 KB
13 Beach 1 people walking tracklets 13.8 529 MB 65 KB

Table 3.1: Tasks’ number, videos, search query, associate features, video
duration (min.), video size and index size. Videos of Task 12 and 13 have a
frame rate of 2 frames per second. Tasks 1, 8, 9, 10, 11, 12 and 13 use com-
pound search operators. The index size can be several orders of magnitude
smaller than raw video. Our use of primitive local features implies that in-
dex times and index size are both proportional to the number of foreground
objects in the video. Consequently, index size tends to be a good surrogate
for indexing times.

compares each document distribution over the learned topics against this ideal distribu-

tion. Comparison is performed using the relative entropy (Kullback-Leibler divergence)

between the two distributions. The Kullback-Leibler divergence gives a measure of dis-

tance between the query q and the distribution pj for document j over the K topics:

D(q, pj) =
K∑
k=1

q(k) log
q(k)

pj(k)
. (3.6)

Query q is created by looking at the ideal documents and assigning to q a uniform distri-

bution over the topics present in them. The search evaluates D(q, pj) for each document j

and ranks the documents in order of increasing divergence.

3.6.3 CCTV Results

Results for our greedy method are depicted in Fig. 3·10. Quantitative results for our

method as well as HDP are summarized in Table 3.2. The “Ground truth”(GT) column of

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
si

ti
v

e
 r

a
te

LSH + DP
LSH
HDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
si

ti
v

e
 r

a
te

LSH + DP
LSH
HDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
si

ti
v

e
 r

a
te

LSH + DP
LSH
HDP

Figure 3·12: ROC curves for the U-turn, subway and MIT traffic datasets.
Our methods significantly out-perform HDP [Xiang and Gong, 2008, Kuet-
tel et al., 2010].

49

Table 3.2 indicates the exact number of events in the dataset. The “Greedy True” and “HDP

True” columns indicate the number of true positives (correct detections) for our Greedy

algorithm and for the HDP-based search [Wang et al., 2009]. Likewise, the “Greedy

False” and “HDP False” indicate the number of false alarms found for those eleven tasks.

Table 3.2 underlines the robustness of our method over a large range of search appli-

cations, outperforming the HDP baseline on every aspect. As can be seen from the table,

the absolute detection rate of our method is strong. One can also see that HDP-search deals

well with search of recurring activities (as in task-1 Subway) and poorly otherwise (as in

task-2 Subway). While some queries could not be executed because of a lack of topics that

could be used to model the query, the results nonetheless demonstrate some of the short-

comings of the algorithm. Not only does the HDP search can only recover frequent events,

its processing time scales linearly with the number of documents, an undesirable quality for

large videos. Furthermore, the training phase is prohibitively slow (approximately 2 days

for the “subway” sequence) and must be re-executed every time that more video frames are

included.

Dynamic Programming

Two tasks in table 3.1 have a temporal structure which can be exploited through dynamic

programming. In order to show how exploiting this structure can improve results, we se-

lected tasks 4 and 6 and launched dynamic programming using the full query (algorithm 1)

as well as greedy and HDP search algorithms. The ROC curves for these experiments are

in Figure 3·12.

Figure 3·12 illustrates the kind of improvement that can be attained by our approach.

As can be seen, dynamic programming has a much better true positive rate than HDP and

greedy optimization. There is thus a clear improvement from employing time-ordering with

DP. These improvements are unsurprising, as HDP optimizes a global criterion, attempting

to create a topic for each action. LSH performs a local search which is fast and produces

50

low false alarm rate. Due to the global nature of HDP, the topics it discovers are more

likely to be common events, so infrequent events such as abandoned objects and uturns

pose a problem. Note that the difference between our methods and HDP-searches narrows

on the MIT-traffic dataset (third plot), where the query (left turns at a street corner) is a

common occurrence.

Task Video GT Greedy HDP Greedy HDP Runtime
[Kuettel et al., 2010] [Kuettel et al., 2010]

True True False
(events) (events found) (events found) (events found) (events found) (seconds)

1 Winter driveway 3 2 – 1 – 7.5
2 Subway 117 116 114 1 121 0.3
3 Subway 13 11 1 2 33 3.0
4 MIT Traffic 66 61 6 5 58 0.4
5 MIT Traffic 148 135 54 13 118 0.5
6 U-turn 8 8 6 0 23 1.2
7 U-turn 6 5 4 1 14 0.6
8 Abandoned object 2 2 – 0 – 4.8
9 Abandoned object 2 2 – 0 – 13.3
10 PETS 4 4 – 0 – 20.2
11 Parked-vehicle 14 14 – 0 – 12.3

Table 3.2: Results for the elevens tasks using greedy optimization and HDP
labels. Crossed-out rows correspond to queries for which there was no cor-
responding topic in the HDP search. Third row contains ground truth (GT).

3.6.4 Airborne Results

We compared our dynamic programming approach with tracklets (Tracklets+DP) to other

methods including our dynamic programming method using the same motion features used

for CCTV footage (ME+DP) as well as motion, size and activity features (MEB+DP),

our dynamic programming method with a different tracking method (the KLT tracker)

(KLT+DP) [Shi and Tomasi, 1994], and the HDP method [Kuettel et al., 2010]. We also

compare against explicit track matching (Track matching) and a greedy method (Greedy).

The greedy method is based on the total number of partial matches, without exploiting the

temporal order of the query.

Fig. 3·13 shows the ROC for the task 12 and 13. Recall that the Retrieval Score Thresh-

51

old is the minimum path score (generated by Algorithm 1) required in order to declare

this path as a correct search result. The points on Fig. 3·13 represent different Retrieval

Score Threshold values for each technique. Those values are equally spaced between the

lowest and highest retrieval scores generated by the results. As shown by the generated

ROC, our technique (Tracklets+DP) outperforms all the other techniques quite noticeably.

HDP [Kuettel et al., 2010] fails to handle infrequent events. This problem becomes more

evident in Task 13 since the beach does not have much activity and hence most queries are

considered infrequent.

The accuracy of our tracklets can be quantified by examining Fig. 3·13. Here our al-

gorithm (see solid red) shows significant improvement over KLT (see solid black) even

though dynamic programming was used in both methods. For cars the improvement ac-

counts for 105% increase in true positives for a false positive rate of 0.2. For humans

improvement is even higher, with 350% increase in true positives for a false positive rate

of 0.2. The higher improvement for humans is expected as KLT is not robust to low con-

trast features. To quantify the improvements dynamic programming brings to the search

problem, we compare our technique against ‘Tracking Matching’ (see Fig. 3·13, dashed

black). Here our tracklets are used in both methods. However for ‘Tracking Matching’ we

declare a tracklet as a match if the mean absolute error between the query track is within

a threshold. Fig. 3·13 shows a significant improvement in true positives by 500% for both

humans and cars at a false positive rate of 0.2 (see red and dashed black). This shows

that dynamic programming is capable of significantly boosting search results despite any

remaining detection errors.

In terms of computational complexity, HDP is the most expensive. Our approach takes

an average of 2.9 seconds to process one frame of Task 12 and 4.32 seconds to process

one frame of Task 13. Processing time is computed as the average over 2000 frames. All

experiments are performed on an Intel(R) Core(TM) i7-3820 CPU @ 3.60 GHz 3.60GHz

52

with 16.GB RAM. All algorithms are written in an unoptimized MATLAB code except for

the KLT extraction technique which is written in C++ by Shi et al. [Shi and Tomasi, 1994].

Note that our storage procedure spares the burden of having to store all the information.

For instance, even though we are extracting as much as 4000 tracklets for task 12, the size

of the generated hash table is around 8000 times smaller than the size of the actual original

data (see Table 3.1).

3.6.5 Discussion

Our method offers a different way of approaching the problem of content-based video

search. Instead of relying on training data and carefully-selected features to identify mean-

ingful actions, we rely on simple low-level features and causality. Our method has the

benefit of having a run-time that scales sub-linearly with the length of the video which is a

key element when dealing with hours (if not days) of videos. Furthermore, the LSH func-

tion H(.) maps every feature tree extracted from a video document to a table entry index.

This not only allows us to store (t,u,v) coordinates instead of the entire feature tree (which

brings a huge advantage memory wise) but it also allows to map user-defined queries to

the same table indices. In other words, the LSH function H(.) allows us to bridge the gap

between spatio-temporal features such as persistence, optical flow, tracking, color and size

and user-defined queries such as ”give me all big blobs moving right and then turning left”.

LSH excels at the challenging task of converting user-defined queries into a representation

compatible with computer-extracted features.

The results also demonstrate that causality and dynamic programming are useful tools

to reduce false alarms, even when faced with low-quality video, time-warping, obscuration

and confuser objects. This is a result of the formulation’s favorable scaling with query

complexity. As a query adds more action components, it becomes less likely that it is

accidentally created by noise. This property drives false alarm rate down even for relatively

simple queries like U-turns and car routes.

53

Tracklets+DP

Tracklets+DP

Figure 3·13: ROC curves for cars and humans in airborne data.

54

Our approach is also capable of exploiting non-temporal structures. Spatial positioning

of queries, such as “The third action element occurs southwest of the second one” can

differentiate relevant actions from background noise.

Of course, our method has limits. One limitation is that it requires each query to be

made of a finite number of discrete states, each describable by a simple feature vocabu-

lary. Complex actions like sign language or actions which are too quick or too small to be

identified at the atom level will be difficult to search for.

3.7 Conclusion

In this chapter, we presented a content-based video retrieval method that archives the dy-

namic content of a surveillance video to allow for user-defined search queries.

As the video streams in, frames are grouped into documents (typically 30 frames per

document) which are divided into atoms. These atoms are merged together into trees, each

containing a collection of features. We used different features for different types of data.

For CCTV footage we used color, size, persistence, and direction of the moving objects.

For Airborne footage we used Viterbi-generated tracklets of examined objects. The spatio-

temporal coordinates of the trees are then stored into a hash table. Thanks to the locality

sensitive hashing function, trees with similar content have their coordinates stored in the

same entry of the hash table. Search becomes a simple lookup because user-defined queries

are also converted into a hash table index.

Our method has a number of advantages compared to other methods. First, since only

the tree coordinates are stored (that is (t, u, v)) and not the features themselves, the hash

table requires minimal storage. Second, local processing renders our method suitable for

constant video renewal. Third, our method summarizes every dynamic aspect of the video,

not just the predominant modes of activity. Our method can thus retrieve any combination

of rare, abnormal and recurrent activities. Fourth, because of the indexing strategy, our

55

search engine has a complexity of O(1) for finding partial matches.

Chapter 4

Zero-Shot Search in Video Corpora

In this chapter we develop an approach for video retrieval based on semantic graph queries.

Unlike conventional approaches, our method does not require knowledge of the activity

classes contained in the video. Instead, we propose a user-centric approach that models

queries through the creation of sparse semantic graphs based on attributes and discrim-

inative relationships. We then pose search as a ranked subgraph matching problem and

leverage the fact that the attributes and relationships in the query have different levels of

discriminability to filter out bad matches. Rather than solving the NP-hard exact subgraph

matching problem, we propose a novel maximally discriminative spanning tree (MDST) as

the relaxation of a given query graph, and then describe a matching algorithm that recovers

matches to this discriminable tree in linear time using maximally discriminative subgraph

matching (MDSM). We utilize MDST to minimize the number of possible matches to the

original query while guaranteeing that the best matches are within this set. We test this

algorithm on two large video datasets: the 35-GB Virat Ground dataset and a 1-TB aerial

data collection from Yuma. These datasets yield graphs with 200,000 nodes and 1 million

nodes, respectively, with an average degree of 5. Our approach finds complex queries in

seconds while maintaining comparable precision and recall to slower current approaches.

4.1 Introduction

One of the main challenges of surveillance video search is to navigate a large corpus to

quickly find matches to an a priori unknown query. Unlike typical approaches to search

56

57

[Dollár and Rabaud, 2005, Laptev, 2005, Niebles et al., 2008], we do not utilize exemplar

videos or attempt to learn activity categories a priori. In video search, the complex vo-

cabulary of activities renders activity model training both computationally infeasible and

practically impossible due to a lack of training examples.

Our approach can be interpreted as zero-shot activity retrieval, a cousin of zero-shot

learning [Palatucci and Pomerleau, 2009]. It does not rely on training data or exemplars,

nor does it exploit multimedia contextual information such as text or audio since these

are not frequently available for surveillance videos. We accomplish zero-shot retrieval by

leveraging the fact that activities in certain surveillance videos can be characterized by a

relatively small attribute vocabularyA and a limited relationship vocabularyR to organize

them. Furthermore, this limited vocabulary of attributes and relationships can be easily

understood by a user, autonomously extracted in real-time, and stored efficiently using

several well-known hashing schemes. Rather than relying on complex attributes, we make

use of the structural relationships of an activity to formulate a query Q as a semantic graph,

associating attributes with vertices and relationships with edges. Our search algorithm then

tries to match this graph to attributes and relationships in the video data using approximate

subgraph matching.

Subgraph matching is an NP-hard [Ullmann, 1976] problem that is computationally

infeasible on large datasets even when the subgraph is relatively small [Cordella et al.,

2004]. Our approach is based on data reduction and in this sense is complementary to

any large scale video search algorithm. First, we design coarse detectors for attributes and

relationships to create a coarse graph C from the archive data, which precludes attributes

and relationships that individually could not match vertices and edges in the query graph.

The run-time for these detectors scales with |C|, the size of the coarse graph, as opposed

to the size of the archive data. Second, we leverage the fact that not all attributes and

relationships are equally discriminative, and that their discriminability can be calculated in

58

real time. We use this discriminability to calculate the Maximally Discriminative Spanning

Tree (MDST) T ∗ for the query graph in O(|Eq| log(|V q|)) time, where V q and Eq are

the vertices and edges in the query graph, respectively. This is the spanning tree that is

expected to yield the smallest possible coarse graph C. We maximize the discriminability

of this tree by modeling the distributions of attributes within graphs and solving a spanning

tree optimization. Third, we propose a new tree-matching algorithm that finds a set of

solutions in C that match T ∗. This process is shown in Figure 4·1, and is accomplished

without the explicit construction of the coarse graph.

Intuitively, our approach is effective on large datasets with different fields of view and a

priori unknown activities because we create simple models from semantic features instead

of creating complex models based on high-dimensional features. Thus, while our models

are less tuned than more complex models, they are flexible, easy to generate and have a

high probability of detection. In addition, our approach takes advantage of the sparsity of

surveillance queries. In order to find an activity, we do not have to model each detail -

just a series of high-level features which differentiate it from other activities in the dataset.

While sliding-window methods [Lin et al., 2014] struggle to model large-scale complex

activities because of the amount of unrelated activity in a broad spatio-temporal window,

our subgraph matching approach remains unaffected.

Our contributions are:

Zero-Shot Retrieval: We propose a zero-shot, user-centric approach to model acquis-

tion through the creation of sparse semantic graphs based on attributes and discriminative

relationships. This process requires no training data or training step, allowing for the de-

scription of novel classes.

Graph Representation: We introduce a graphical approach to query representation.

While standard systems learn complete models for each activity, we provide a user with

a series of simple semantic concepts and arrange them in a graph. In this graph, nodes

59

A1

Attribute

Detectors

Relationship

Detectors

R1

Attributes

Data

Archive

Relationships

User

Interface Query Graph

Dynamic

Programming

Spanning Tree

Selection

Ranked Tree Matches

ARCHIVAL

CREATION

MDST

MDSM
Coarse Graph

Figure 4·1: In the archival step, we take in incoming data, extract attributes
and relationships and store them in hash tables. In the query creation step,
a user utilizes our GUI to create a query graph that is used to extract the
coarse graph C from archive data. In the Maximally Discriminative Sub-
graph Matching (MDSM) step, we calculate the maximally discriminative
spanning tree (MDST) T ∗ from the query graph, retrieve matches to it, and
assemble them into ranked search results for the user.

represent attributes of an object or scene and edges represent relationships. We use this

query in a sub-graph matching approach to identify activity, allowing our algorithm to

effectively ignore confuser events and clutter that happen near the activity of interest. This

graphical representation also makes the approach relatively agnostic to the duration of the

event, allowing it to detect events that take place over several minutes.

MDST: We introduce the calculation of the Maximally Discriminative Spanning Tree,

T ∗ based on the statistics of archive data stored in our indices. We not only exploit, as

others do [Lin et al., 2014, Sun et al., 2012], the sparsity of individual elements, but cal-

culate an optimal combination of elements to maximally reduce the archive data using a

novel Maximally Discriminative Subgraph Matching (MDSM) algorithm. We show that

60

this approach results in a dramatically smaller corpus over which to search, and prove that

the corpus must contain all high-ranking matches to the original graph.

We show that our approach, outlined in Figure 4·1, works in both airborne and building-

mounted surveillance modalities, outperforms previous work and produces results compa-

rable in quality to a brute-force search in a realistic time.

4.2 Model

Our model is composed of four parts:

Vocabulary: We define an attribute vocabulary A and a relationship vocabulary R. Our

attribute vocabulary consists of pyramidal-binned histograms of pixel-level features, object

detectors and low-level motion features extracted from tracked data. Our relationship vo-

cabulary consists of local, pairwise descriptors such as “near to” and “shortly after”.

Query: Our query graph, Q = G(V q, Eq, Aq, Rq, Lq) is a function of five elements. For

each vertex v ∈ V q in the graph, Aqv is the set of attributes from A associated with v, and

Lqv is the set of tolerances for each of those attributes. For each edge (v1, v2) ∈ Eq, Rq
(v1,v2)

is the set of relationships associated with (v1, v2), and Lq(v1,v2) is the set of tolerances for

each of those relationships. Value and tolerance pairs specify an expected value and the

variance in that value that is acceptable to the user.

Scoring: We define similarity functions Ka,l(a
′) and Kr,l(r

′) for the purposes of compar-

ing attributes a and a′ with tolerance l and relationships r and r′ with tolerance l.

Storage: We construct an archived representation which stores A and R given a maximal

tolerance lmax for each attribute or relationship. This archive allows us to quickly recover

the set of attributes or relationships which could match a query, independent of the specified

tolerance.

61

4.2.1 Vocabulary

The video modality for our datasets is street surveillance, which dictates a specific set of

components that a user might use to construct queries (see Sec. 4.2.2).

The attributes in our attribute vocabulary A come from three classes. The first is lo-

cal descriptors of pixel-level attributes, like those used in [Castañón and Caron, 2012].

These attributes, like color, size, coarse motion direction, persistence and activity can be

computed over tiles made of B by B pixel squares and histogrammed to provide rough

descriptors of foreground image properties. As video streams in, we aggregate these tiles

into space-time boxes called atoms, and aggregate these rectangles via pyramidal binning

as shown in Figure 4·2. In our experiments, atom size is generally eight pixels in each spa-

tial dimension, and roughly one second of frames in the temporal dimension. We calculate

simple attributes and quantize them to low-dimensional histograms. This approach is dou-

bly beneficial; histogramming and quantization naturally mitigate low-level measurement

noise while simultaneously producing low-dimensional features for efficient storage.

TILE(u,v)

FRAME (t)

ATOM

(t,u,v)

VIDEO

B

B

H

A

PIXEL(i,j)

D
O

C
U

M
E
N

T

W

L

1 2 3

6

10 11

9

13

11

Figure 4·2: (Left) Given a video, we extract (Right) Atoms are grouped
into two-level trees - every adjacent set of four atoms is aggregated into a
parent, forming a set of partially overlapping trees.

The second type of attribute that we utilize comes from object detectors, such as the

62

Viola-Jones detector [Viola and Jones, 2001], which work particularly well in video surveil-

lance due to stationary points of view. These detectors are used to find objects, people, and

vehicles. These features are simple “type” attributes attached to the location where they

were generated.

The third is tracked data [Yang et al., 2005], from which we can extract properties

like identity, object size, direction of motion, and appearance/disappearance. Tracked data

serves a dual purpose in our system. First, it enables us to extract motion features in ex-

tremely low-resolution/noisy video where accurate pixel-level optical flow is prohibitively

difficult to compute. It also allows us access to new features indicating that an object ap-

peared or disappeared at a given point in time. We use these descriptors to detect people

getting in and out of vehicles, as well as in other scenarios.

The focus of this chapter is not attribute detection - we utilize existing methods to detect

simple attributes. Our contribution lies in the utilization of these attributes in combination

with indices and graph-search algorithms.

In addition to extracting attributes, we compute a relationship vocabulary R over pairs

of extracted attributes A × A. We do not, however, store all possible relationships, as the

number of potential relationships scales as the square of the number of attributes. More-

over, storing all relationships would be counterproductive to search - a search algorithm is

interested in attributes and relationships which discriminate between the activity described

in the query and other activities present in the archive data. Instead, we employ a sim-

ple visual intuition: important relationships are both sparse and discriminative. They are

sparse in that they are relatively rare compared to the number of potential relationships,

and discriminative for that same reason. Because of this utility, we pre-compute sparse

relationships like “near” and “the same as”. We use a spatiotemporal index [Guttman and

A, 1984] to efficiently calculate spatiotemporal relationships, and pairwise calculations to

evaluate the presence of other relationships. For our datasets, our relationships describe

63

relative positions in space, time, and feature space, as well as proximity. We also have an

identity relationship, indicating if two attributes were thought to be produced by the same

object.

Some queries may include non-discriminative relationships. The relationship “far” is

a good example of a non-discriminative relationship, as most objects in a long video are

far from each other in space or time. Likewise, it’s inefficient to calculate every possible

type of spatiotemporal displacement. When we receive queries containing relationships

that we have not precalculated we first use other precalculated relationships to reduce the

data before looking for matches to relationships which we must calculate in real-time.

We discuss the vocabularies A andR used in our experiments in Section 4.4.

4.2.2 Query

Effective zero-shot retrieval must bridge the semantic gap between a desired activity and

a representation that can be associated to the data with a particular score. We ask first

that a user give us a set of attributes of things involved in the activity, and then specify

relationships between those things.

The user assembles his or her attributes and relationships using a query GUI. While the

structure of our approach is flexible and allows for other methods of input such as text, our

datasets have a limited object vocabulary and most of our relationships are spatiotempo-

ral. Thus, we provide the user with a canvas to arrange vertices with attributes and edges

with relationships into query graph Q = G(V q, Eq, Aq, Rq, Lq). For example, in Figure

4·3, a user specifies that a vertex has the “car” attribute, the “red” attribute, and an edge

with the “near” relationship with a vertex containing the “small” and “object” attributes.

These vertices and edges form an Attributed Relational Graph (ARG). The vertex proper-

ties correspond to attributes in A, while the edge properties correspond to relationships in

R.

The process of defining a graph is simple and intuitive in order for users to reliably

64

(a) (b)

(c)

Near

NearNear

Per. Car

Obj.

End

Per.

Obj.

Near

Same As

Before

Same As

Before

Figure 4·3: The graphical representation of an “object deposit” event.

produce meaningful queries. This begins by making sure that all of the attributes in our at-

tribute vocabularyA have semantic meaning. This differentiates our approach significantly

from others [Aytar et al., 2008, Jung and Park, 2009, Dalton et al., 2013, Wu et al., 2014],

which use Histogram of Gradients (HOG) or spatio-temporal interest point (STIP) features

to describe their actions. While it is easy for a user to create a graph out of cars, colors,

or people, it requires significant expertise to create a meaningful assembly out of HOG or

STIP features. Our relationships, like “near” and “same as”, also represent clear semantic

concepts.

While our attribute and relationship vocabularies,A andR, may change based on appli-

cation, we find that a relatively small vocabulary is sufficient to characterize a wide range

of interesting actions with a surprising degree of nuance. Consider the activity “A person

loads something into a car.” Three things are involved - a person, a car to load something

65

into, and an object to be loaded. In order for a person to be loading an object into a car,

they all have to be near each other - this creates the complete triangle graph in the right part

of Fig 4·3(c). When the object is loaded, we expect it to disappear, so we add the “end” at-

tribute to the object in that triangle graph. To add further discriminative power to the query,

we can add in the requirement that we see the person near to the object at some point in the

past - this increases the likelihood that the videos we find have a person bringing an object

to the car, as opposed to just loitering around a car with an object. The final query graph is

shown in Figure 4·3.

(a) (b)

(c)

Near

NearNear

Per. Per.

Per.

Same As

Before

Same As

Before

Near

NearNear

Per. Per.

Per. Same As

Before

Figure 4·4: The graphical representation of a “meeting” event.

Another salient feature of query graphs is that they sparsify activity, reducing it to

its essential components. Many algorithms would struggle to detect “Three people meet

together for five minutes,” because an activity that spans five minutes or more represents a

66

significant amount of data. However, the graphical representation of such a query can be

made relatively simple (Figure 4·4) - all that matters is that the same three people who were

all near each other in the beginning remain near each other five minutes later. Because we

are going to solving a sub-graph matching problem, this allows us to treat unrelated activity

that happens during our activity of interest exactly like we treat unrelated activity the rest

of the time, and ignore it. This enables us to search for long-term events without worrying

about unrelated activity over that time period.

The meeting example highlights both a strength and a weakness of the approach: the

graph shown in Figure 4·4 is not affected by what happened in the intervening five min-

utes between the first meet-up and the second meet-up. The group of three could have

separated and reconvened, or stayed together the whole time. However, our approach to

search focuses not on the perfect modeling of the event we are searching for, but instead

discriminating it from other events - and for that, this graph is sufficient.

In addition to specifying the attributes and relationships involved in the graph structure,

we allow a user to specify sets of parameters Lqv for the attributes Aqv in vertex v ∈ V q

to indicate confidence in an attribute or tolerance for error. These tolerances are used in

the functions that calculate the similarity between pairs of attributes a and a′ and pairs of

relationships r and r′, Ka,`(a
′) and Kr,`(r

′), respectively, defined below in Equation 4.6.

When an attribute a ∈ Aqv is something like color or size, we embed it in a real vector space

as µa. Then we measure the similarity based on RBF kernels such as normal distributions

N(µa, `
2) or employ indicators on the interval [µa − `, µa + `] with tolerance ` ∈ Lqv. For

attributes such as object type where a distance metric is not as obvious, these functions

merely indicate whether or not the attributes are identical.

4.2.3 Efficient Indexing

Discriminative attributes and relationships are powerful if you can efficiently use their spar-

sity to rule out things that don’t match a provided query Q, with vertices V q, each contain-

67

ing a set of attributesAq, as well as relationships. In order to be able to retrieve the locations

where we could potentially match each v ∈ V q, we independently hash the locations and

values of every attribute we find in the video archive to an inverted index. We use Locality

Sensitive Hashing (LSH) [Datar et al., 2004] for attributes like size and color which have

computable distances, and employ a standard hash table for discrete attributes like object

type. Fuzzy hashing renders our search robust to minor discrepancies in query model, de-

tection model, and storage by retrieving all archived attributes with a certain radius of the

query attribute. By computing a hash code for each of a vertex’s attributes, Aqv, and taking

the intersection of the bins corresponding to those codes, we can efficiently retrieve the set

of matching locations to vertex v.

We apply the same logic to the set of relationships. When a relationship exists between

a particular pair of locations, we hash it (and its value), to a fuzzy or normal hash table

depending on the relationship type. This allows us to retrieve the set of pairs of locations

which approximately satisfy a particular relationship in time proportional to the number of

satisfying pairs.

The power of this approach is that it allows us to efficiently downsample the full set

of archive data to the set of potentially relevant attributes and relationships, in time pro-

portional to the number of attributes and relationships returned, as opposed to the size of

original data.

4.3 Search

We find the optimal match to the query graph Q over the course of four steps. First, we

independently look up each attribute and relationship in Q in our data store to retrieve a

coarse graph C. Then we calculate discriminative weights for each of the relationships

in the query, then calculate the maximally discriminative spanning tree T ∗ for that query.

We create a matching graph H to encode the possible matches in the coarse graph C for

68

the spanning tree T ∗, and finish by using a Maximally Discriminative Subgraph Matching

(MDSM) approach to recover the ranked matches to T ∗.

4.3.1 Coarse Graph Construction

Given a query graph Q, we construct the coarse archive graph C = G(V c, Ec, Ac, Rc)

in two steps. First, for every vertex v ∈ V q, we use our data store to retrieve the set of

locations where all attributes in Aqv are present. We add a vertex vi to V c for each of those

locations and store the attribute values in Acvi . Second, for every discriminative (hashed)

edge (v1, v2) ∈ Eq, we retrieve the set of attribute pairs that satisfy every relationship in

Rq
(v1,v2) and whose attributes are in V c. For each of these pairs, we add an edge to Ec

and store the associated relationships in Rc. The computational complexity of this step is

proportional to the number of vertices and edges that end up matching the query graph,

O(|V c|+ |Ec|).

4.3.2 Tree Selection

Downsampling the data to the set of potentially relevant vertices and edges provides in-

credible cost savings, but the result is still frequently a coarse graph with hundreds of thou-

sands of vertices. Modern subgraph matching algorithms for attributed relational graphs

only scale to hundreds of vertices [Cour et al., 2007], absent approximation by massive

parallelization. As such, we are obliged to downsample the coarse graph further.

The optimal downsampled graph, C∗q would contain only vertices and edges that were

present in high-ranked matches to query graph Q so as to minimize the time spent per-

forming an expensive search. We approximate C∗q by selecting a spanning tree T of Q and

downsampling the coarse graph C to Ct, the set of vertices and edges involved in high-

ranking solutions to that tree. Because the tree effectively relaxes constraints (in the form

of edges) of the optimal solution to the query graph, Ct is guaranteed to contain all of the

solutions which match the query graph, with added false alarms. To generate such trees,

69

we first compute a set of weights indicating the discriminative power of each attribute and

relationship in Q, then calculate the spanning tree T which maximizes that discriminative

power.

Weight Computation

p
(a
)

Car PersonObject Start End
0

0.1

0.2

0.3

0.4

0.5

Figure 4·5: The probabilities associated
with 5 of the attributes in the VIRAT
dataset. Being an object, as opposed to
a car or a person, is the most unlikely at-
tribute and thus the most discriminative.

The choice of which spanning tree to select has

significant run-time implications. Its creation

involves the removal of edges from Q, and not

all edges are created equal. During the archival

process, we assign probabilities p(a) and p(r)

to each attribute and relationship that we store.

These functions denote the probability that a

randomly-chosen attribute or relationship in the

archive is a match to the attribute a or relation-

ship r. For example, in a dataset that surveils

a highway, the “car” attribute is not particularly

discriminative, because almost everything on a

highway is a car. The “bicycle” attribute in the same dataset would be extremely discrimi-

native, as it is rare for people to bicycle on the highway. We show the probabilities p(a) for

attributes used in the VIRAT [Oh et al., 2011] data set in Figure 4·5

Relationships, in particular, have greater power to be discriminative because the set of

potential relationships is |A|2. Take Figure 4·3; while the “Person near car” relationship is

normally very discriminative, 80% of the dataset is shot in parking lots, where people are

frequently near cars. Objects disappear near cars far less less frequently - thus, a tree rooted

at the “object disappears” vertex and connecting through the “near” edge to the “car” vertex

is more discriminative than one starting elsewhere.

We compute empirical values for p(a) and p(r) during the archival process by com-

70

puting the percentage of attributes (and relationships) that are returned by the hash tables

described in Section 4.2.3. If relationships have not been hashed, they are assumed to be

nondiscriminative and assigned values of p(r) = 1. If it is later determined that these

relationships are discriminative, we can revise our estimate of p(r).

Maximally Descriminative Spanning Tree

Absent additional information indicating the distribution of relationships and attributes in

the video corpus, we assume that all attributes and relationships are generated indepen-

dently. This model is clearly imperfect, as certain pairs of attributes are more likely to have

a particular relationship. A speed attribute of 60 miles per hour is far more likely to be

found in the same location as a car object, as opposed to a person object. Given a diverse

set of video corpora, it would be possible to learn these correlations and adjust our model

accordingly, but for the purposes of our work we assume independence.

Given a query tree T = G(V t, Et, At, Rt), we compute weights p(v) for all v ∈ V t and

p(e) for all e ∈ Et as the product of the matching probabilities of the attributes in node v

or relationships in edge e. That is,

p(v) =
∏
a∈Atv

p(a), p(e) =
∏
r∈Rte

p(r) (4.1)

Since nodes and edges in tree T are independent, the total matching probability of the

tree p(T) to the archive is:

p(T) =
∏
v∈V t

p(v)
∏
e∈Et

p(e) (4.2)

As noted, we are going to do a search using T instead of the original query graph Q as

a method of reducing the coarse graph C. We therefore would like to select a tree T which

71

results in as few matches as possible, so as to generate the maximal reduction in the coarse

graph. That is our novel maximially discriminative spanning tree.

Definition 4.3.1 (Maximially Discriminative Spanning Tree (MDST)). We call a tree is
an MDST, T ∗, to a query graph Q with node weights ∀v ∈ V q, p(v) and edge weights
∀e ∈ Eq, p(e), if the tree satisfies

T ∗ = argmin
T∈T

p(T), (4.3)

where T denotes the set of all possible trees induced from query graph Q.

Lemma 4.3.1. Assume that there is no such node in query graph Q that the matching
probabilities of the node and all its connected edges are 1. Then the MDST of a query
graph Q is equivalent to the minimum spanning tree of Q.

Lemma 4.3.1 provides us with a convenient way to calculate the MDST that should

produce the fewest possible matches. Notice that by matching with MDST, our method can

return all the solutions which satisfy all the nodes and some of the edges in query graph

Q. Given that T ∗ 6= Q, we will prove that the set of matches to MDST contains all of the

matches to the original query graph.

Lemma 4.3.2. Let M denote a match between a query graph Q = (V q, Eq) and a coarse
graph C. Let S(·, C,M) denote the matching score between any query (e.g. graphs, trees,
attributes, relationships) and C, and letQ′ = Q−T ∗ = (∅, Eq−Et) denote the residual of
graph Q. We further define S(Q,C,M) =

∑
v∈V q S(v, C,M) +

∑
e∈Eq S(e, C,M). Then

we have

|S(Q,C,M)− S(T ∗, C,M)| =

∣∣∣∣∣∑
e∈Q′

S(e, C,M)

∣∣∣∣∣
≤
∑
e∈Q′
|S(e, C,M)| ≤ |Q′| ·max

e∈Q′
max
M̃∈M

|S(e, C, M̃)|, (4.4)

where |Q′| denotes the number of edges in Q′, andM denotes the set of possible matches
between Q′ and C.

Lemma 4.3.2 shows that the score difference between using query graph Q and using

its MDST T ∗ is upper-bounded. Using this, we can set our parameters to make sure that all

72

good matches to the query graph Q are present in the set of matches to the MDST T ∗. We

prove this in Lemma 4.3.3.

Lemma 4.3.3. By setting proper thresholds, we guarantee that the matches returned by
MDST cover all the matches for the original query graph.

Proof. Lemma 4.3.2 shows that the score difference between using query graph Q and
using its MDST T ∗ is upper-bounded. Let SQ = minMQ∈MQ

S(Q,C,MQ), where MQ

denotes the set of possible matches between Q and C, then in the worst case, we can set
the matching score threshold δ for returning solutions as

δ = SQ −∆Q′ = SQ − |Q′| ·max
e∈Q′

max
M̃∈M

|S(e, C, M̃)|, (4.5)

which guarantees to return all the solutions for query graph Q.

Although the bound for the matching score difference is not tight, in practice we find

that setting these thresholds separately for nodes and edges is easy to tune and quite stable.

4.3.3 Maximally Discriminative Subgraph Matching (MDSM)

Scoring Attributes & Relationships

Because of visual ambiguity, compositional variance and spatiotemporal distortion, we do

not want to search for identical matches to the query graph. Not only is it unreasonable to

expect a perfect description of an activity from a user, it is improbable that all examples of

that activity within the dataset fit a particular description. To this end, we look for a score

function with some tolerance for error. This error manifests in two parts - a kernel function

on the vertex matches, Kv, and a kernel function on the edges, Ke. For vertex attributes our

similarity functions are the sum of similarities for each attribute belonging to that vertex.

Similarity functions for relationships are also the sum of the similarities associated with that

edge. For notational convenience we express vertex attributes, edge relationships and their

corresponding tolerances in terms of binary vectors Av ∈ {0, 1}|A|, Re ∈ {0, 1}|R|, Lv ∈

[0, 1]|A|, Le ∈ [0, 1]|R| for any arbitrary vertex v and edge e.

73

Let v1 be a vertex in query graph Q, whose value and tolerance for the j-th attribute

in A are given by a1(j) and `1(j), respectively. Let v2 be a vertex from the archive graph,

whose j-th attribute is given by a2(j). Let e1,e2 represent edges in the archive and query

graphs, with values r1(j) and r2(j) with tolerance `1(j).

Kv(v1, v2) =

|A|∑
j=1

Ka1(j),`1(j)(a2(j))

Ke(e1, e2) =

|R|∑
j=1

Kr1(j),`1(j)(r2(j)) (4.6)

Note that we are only provided with tolerance for a given vertex or edge in the query,

because the other vertex or edge generally represents archived data.

Given a coarse graph C and the MDST T ∗, we want to select a matchingM : V t → V c.

We select the matching that maximizes our objective function S(Q,C,M) comprised of

two parts - vertex and edge potentials

S(Q,C,M) =
∑
vq∈V q

Kv(vq,M(vq))+ (4.7)

λ
∑

(vq1 ,vq2)∈Eq
Ke(vq1 , vq2 ,M(vq1),M(vq2))

where λ is a weighting parameter determining the relative value of matching vertices and

edges.

Matching Graph Creation

We solve for the optimal match between the MDST T ∗ and archive graph C in two steps.

In the first step, we build a matching graph H = G(V h, Eh), where each vertex v ∈ V h ⊆

V t × V c is a tuple denoting a proposed assignment between a vertex in T ∗ and a vertex in

C, and each edge e ∈ Eh denotes a relationship between the two assignments. We createH

by first adding matches for the root, then adding in matches to its successors which satisfy

74

both vertex and edge relationships described in T ∗ - we define score thresholds τv and τe

to be the minimum score for vertices and edges. This process in described in Algorithm 3,

and the expected number of vertices scales as a product of p(T ∗) and the size of the archive

data.

Algorithm 3 Create Matching Graph

1: procedure CREATE MATCHING GRAPH(T ∗, C,Kv(v1, v2), Ke(v1, v2, v3, v4))
2: H = G(V h, Eh)← ∅
3: Iterate from root to leaves
4: for all vt ∈ V t do
5: Compute the matches to this vertex
6: Nvt ← (vt, vc) where Kv(vt, vc) > τv
7: if Parent(vt) 6= ∅ then
8: E ← ∅
9: for all (vtp , vcp) ∈ NParent(vt) do

10: E ← E ∪ (vt, vc) where Ke(vtp , vcp , vt, vc) > τe
11: end for
12: Nvt ← Nvt ∩ E
13: V h ← Eh ∪Nvt

14: Eh ← Eh ∪ E
15: else
16: V h ← V h ∪Nvt

17: end if
18: end for
19: end procedure

Retrieval with MDSM

Having traversed T ∗ from root to leaves to create a matching graph, we traverse it from

leaves to root to determine the optimal solution for each root match. For each leaf vertex

in T ∗, we merge vertices in H with their parents, keeping the one which has the best

score. We repeat this process until only matches to root vertices are left, and then sort these

root vertices by the score of the best tree which uses them. This process is described in

Algorithm 4, and has complexity of O(|Eh|).

This process yields a set of matches, MT ∗ , for each potential activity - generally on

75

Algorithm 4 Solve for Optimal Matches
1: procedure OPTIMIZE MATCHES(T ∗, H)
2: Score(v) , Kv(v[0], v[1])
3: Score(v1, v2) , Ke(v1[0], v1[1], v2[0], v2[1])
4: Iterate from leaves to root
5: for all vt ∈ T ∗ do
6: if Parent(vt) 6= ∅ then
7: for all v ∈ V h where v[0] == Parent(vt) do
8: Score(v)+ = maxc∈Children(v)(Score(c) + Score(v, c))1(c[0] == vt)
9: end for

10: end if
11: end for
12: end procedure

the order of the number of true matches in the data. We then iterate through each match

m ∈ MT ∗ and compute S(Q,C,m), filtering matches that have poor scores for the edges

which were not included in the MDST. This allows us to have the speed of the MDSM

approach and the effective quality of the full graph-matching result.

4.4 Experimentation

The novelty of this method is its ability to reason over events that are not necessarily ex-

tremely time-localized. Other approaches [Le et al., 2009, Castañón and Caron, 2012, Lin

et al., 2014] rely on events which span relatively short amounts of time (seconds), whereas

our subgraph matching formulation is agnostic to activity duration. For the purposes of

comparison, we compare performance on both relatively local events such as dismounts

and object loading as well as long-term events like group meetings.

4.4.1 Comparisons

The most comparable approach to our algorithm is the system described in [Castañón and

Caron, 2012]. The authors formulate the optimization purely as a dynamic program and

assume that the input graph Q is a line graph. Given a line graph representing a series of

76

temporal events, the system expects events to happen sequentially, but employs dynamic

time warping to allow for flexible duration.

Specifically, given a sequence of vertices V1, V2, ...Vi, they score activities using a

Markov model with three types of fixed transition probabilities. When an activity stays

in the same state, the transition probability Pi,i is a continuation or a missed detection, de-

pending on if there is evidence in the archive to support this transition. When the activity

moves to the next state, the transition probability Pi,i+1 is either a match or a deletion, de-

pending on if there is evidence in the archive to support this transition. Given that their

model is a line, they can recover the set of optimal matches in polynomial time.

While this works well for sequential events over relatively short periods of time that

always have something happening, it fails at detecting events that have a graph structure,

multiple salient objects at a given point in time, or minutes of duration. Specifically, the

linear decay in likelihood that occurs from not seeing the next vertex is a poor model when

the next piece of evidence could be minutes away. We compare to the baseline established

in this method, and note that we expect comparable performance on short-term chains of

events and improved performance in other areas.

We compare this baseline against two other approaches, both of which utilize the MDST

reduction. In the first (MDSM, in red), we use MDSM to rank matches to the MDST, T ∗.

We select the top few of these matches, and re-score them using the query graph instead of

the graph. In the second (brute force, in blue), we evaluate every subgraph in the matching

graph H and rank it using query graph Q. By comparing directly against the scores in a

brute-force fashion, we demonstrate how much error is due to imperfect modeling.

4.4.2 Datasets

We evaluate the performance of our algorithm on two data sets representing different

surveillance modalities. The first is a wide-area persistent surveillance sensor flying over

Yuma, Arizona. This dataset has an extremely low framerate (.66 FPS), combined with

77

large black-and-white frames (64 megapixels) over a large area, totalling to 1 TB of im-

agery, or a graph with 1 million nodes and 5 million edges. Because of the size of the area,

there are relatively few pixels on a target. Vehicles have roughly 100 pixels and people have

around 10. See an example of a u-turn activity in Figure 4·6.

Figure 4·6: The YUMA video data set features high-resolution imagery
taken at significant elevation, leaving few pixels on targets as small as peo-
ple or vehicles.

Because of the low resolution on target, pixel-level features are extremely noisy in the

YUMA dataset. For this dataset, we rely on a very simple tracking approach to generate

track IDs, bounding boxes, time-stamps and size. We extract from these tracks a series of

locations with the features of object size, motion orientation and magnitude and a start/end

attribute denoting the beginning and termination of the track that serve as our attribute

vocabulary A, similar to the raw attributes extracted in [Hu et al., 2007, Castañón and

Caron, 2012]. We employ object size as a way of disambiguating cars and people - carried

objects are not visible at this resolution. The discriminative relationship vocabulary R

78

Query MDST Baseline [Castañón and Caron, 2012] Brute Brute DP
Reduction (MDST) (MDST)

Long Meeting 85 6.5 3e25 4610 2.3
Short Meeting 86 6 3e25 10671 2.5

Deposit <1 12.5 4.5e16 5 <1
Removal <1 14.4 4.7e16 4.9 <1
Mount <1 6.3 3.7e8 <1 <1

Dismount <1 7.7 3.7e8 <1 <1
UTurn <1 2.0269 6.6e8 <1 <1

Dismount <1 <1 <1 <1 <1
Mount <1 <1 <1 <1 <1

Suspicious Stop <1 <1 32.2820 <1 <1

Table 4.1: The run times for baseline [Castañón and Caron, 2012], brute
force and DP algorithms on the VIRAT (top) and YUMA (bottom) datasets.
When a brute force algorithm is infeasible, we estimate run-time based on a
sub-set of solutions.

contains a “near” operator and an identity operator which provides a confidence that two

elements are from the same object. Spatiotemporal and feature displacement are the non-

discriminative relationships that are used in queries, but not hashed. For the VIRAT dataset,

which has significantly higher target resolution, we also include object type as a discrete

attribute, as object type can reliably be detected.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall

Figure 4·7: Precision/recall curves for the meeting activities in the VIRAT
video dataset. Note that we optain perfect precision/recall for both brute
force and dynamic programming approaches.

The queries for the YUMA dataset originate from analysts working in the surveillance

community, and are similar to the queries in [Hu et al., 2007], such as mounts, dismounts,

79

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall

Figure 4·8: Precision/recall curves for the object deposit, object removal,
mount and dismount activities in the VIRAT Ground Dataset. We show
baseline [Castañón and Caron, 2012] search results in green, MDSM re-
sults in red, and brute force results in blue when they diverge from MDSM
results.

suspicious stops and u-turns. We compare to a baseline approach based on feature accumu-

lation used in [Castañón and Caron, 2012], and to a brute-force enumeration of possibilities.

The precision/recall curves are shown in Figure 4·8.

The other surveillance modality we explored was street surveillance from building-

mounted cameras. For this, we used the VIRAT 2.0 Ground Dataset [Oh et al., 2011],

a popular surveillance dataset containing 35 GB of video and represented in a graph of

200,000 nodes and 1 million edges. These are relatively standard 2 megapixel surveillance

cameras shooting at 30 frames per second. Because of the smaller field of view, there are

far more pixels on target, enabling basic object recognition to be performed. As such, we

define A to include object type (person, vehicle, bag) as well as the attributes used in the

YUMA dataset. The relationship vocabularyR is identical. To further differentiate it from

the YUMA dataset, the VIRAT ground dataset contains 315 different videos covering 11

scenes rather than a single large video covering one scene.

80

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

RecallFigure 4·9: Precision/recall curves for u-turn, suspicious stop, mount and
dismount activities in the YUMA dataset. We show baseline [Castañón and
Caron, 2012] search results in green, unfiltered MDSM results in red, and
brute force results in blue.

4.4.3 Results

We also demonstrate the run-time of our approach in Table 4.1. This demonstrates the futil-

ity of solving a large-scale graph search problem without performing intelligent reduction

first. It should surprise nobody that an algorithm which must explore all |V q|-sized subsets

of the data will take forever to run on a large dataset. More relevant is how long it takes us

to compute the MDST and downsample the data to the relevant subset: Less than a second

with pre-hashed relationships (all examples except meetings), and 80 seconds when we do

not have pre-hashed relationships. When we do not have hashed relationships, our algo-

rithm must compute pair-wise relationships, which is expensive to do even when the data

is significantly reduced.

The “before” relationship that is used in the meeting events is not hashed because it

is not particularly local. Many elements of a dataset satisfy the relationship that one of

them comes significantly before the other. Therefore, this relationship is not particularly

discriminative by itself, so we would have no a-priori reason to calculate it and store it.

Here we run into a classic memory vs. run-time trade off, where hashing less-discriminative

relationships may turn out to later be valuable, but is prohibitively memory expensive. The

81

“before” attribute becomes discriminative when paired with the “same as” attribute so our

algorithm performs successful reduction, albeit slower due to a lack of hashing.

The performance of our approach, compared to baseline and brute force solutions is

shown in Figures 4·8 and 4·9. Our algorithm performs extremely favorably relative to

the baseline, and comparably to brute force in a number of scenarios. The performance

gap for simple, time-localized graphs on the YUMA data is relatively small, so the base-

line approach performs relatively well. In addition, the simple/time-localized graphs have

relatively few cases of complex spatial relationships that are difficult to model with time-

sequences like those in Figure 4·3.

As we introduce more complex sets of relationships that are difficult to model, such

as mounting and dismount in the VIRAT dataset, the performance of the baseline tails

off. Finally, once we introduce large temporal gaps on the order of minutes, the ability of

competing approaches to detect these events ceases, while the subgraph approach persists.

In longer-term events such as bringing an object to a car and depositing it, as well as long-

term group meetings, the baseline approach fails entirely while the performance of the

graph-matching approach is relatively constant.

These experiments convincingly showcase our approach’s ability to represent events

with multiple entities over multiple time scales while still maintaining strong performance

in precision and recall.

4.5 Conclusions

In this chapter, we presented a practical solution to video search in both run-time and per-

formance quality. Our method has many advantages. First, it is flexible; we are able to

model every activity present in our two video corpora, and many activities (such as long-

term meetings) that were not intentionally present. Second, it is fast; we downsample

the data using the MDST and solve most examples in a matter of seconds using maxi-

82

mally discriminative subgraph matching. Finally, use of a sparse graphical representation

of complex activities makes it surprisingly flexible and robust. The subgraph matching for-

mulation allows it to ignore foreground clutter and confusion to identify which elements of

the archival data match the query optimally. These attributes combine to make it a powerful

new tool in video search.

Chapter 5

Successive Search Space Reduction

This chapter focuses on a statistical approach to search space reduction in the subgraph

matching problem and demonstrates its efficiency for large-scale video activity retrieval

applications. Given query and archive graphs, we pose the search problem as a ranked

subgraph matching problem and leverage the statistical properties of the query and archive

graphs in a recursive search space reduction based on tree-matching. At each iteration, we

solve for the spanning tree that leverages the statistics of the archive and query graph to

optimize the volume of search space eliminated. We then perform a polynomial-time tree-

matching until the search space has been minimized. We demonstrate our scaling relative

to other search space reduction approaches on a synthetic dataset, and show superior per-

formance to window-based approaches on popular large-scale video surveillance datasets.

5.1 Introduction

With advances in multimedia collection comes an increased emphasis in algorithms that

reason over large data corpora. From copyright protection to video compression to activity

and object recognition, there is a pressing need for high-quality algorithms that can both

represent the data efficiently and draw conclusions in real-time.

Many recent high-quality representations are graph-based ([Felzenszwalb et al., 2010,

Tianmin Shu et al., 2015, Choe et al., 2013]), with nodes that capture local aspects of a

video or image, and edges that represent relationships between these aspects. These repre-

sentations have been proven to be robust to many types of low-level distortion commonly

83

84

found in video as well as the inherent variance within object and activity classes. While

these graph-based approaches provide a powerful way to represent objects and activities

in images and video, they rely on graph and subgraph matching, both NP-hard algorithms,

which can lead to challenging scaling for large datasets.

In order to render these algorithms practical, many approaches utilize search space re-

duction, a pre-processing step which can be done in polynomial time to reduce the problem

size and enable an NP-hard algorithm to run in reasonable time. The most popular of these

methods is a sliding window approach, which pre-defines a box of space-time and slides

it through the video, processing in each box independently. With the advent of massive

parallelization, this approach is particularly appealing, as each box can be evaluated inde-

pendently. The primary limitation of this approach is that it assumes foreknowledge of the

spatiotemporal extent of the search activity. For most long-term activities, the spatiotem-

poral extent can vary significantly, limiting most activity detection in large-scale video to

extremely localizable activity queries.

In contrast to the approach of spatiotemporal windowing, we propose a method of

search space reduction that is agnostic to the location and spatiotemporal extent of the

query. We treat the archived video corpus as a graph with nodes and relationships, and

make no assumptions about the embedding of those nodes in space or time. We identify

discriminative subtrees of the query graph and use them to eliminate large swathes of the

archival graph for the purpose of matching. We demonstrate the efficacy off this approach

both on complex simulated datasets and real applications in activity search and bioinfor-

matics.

5.1.1 Related Work

Subgraph and graph matching are problems that have been worked on extensively by sev-

eral communities, with applications in a wide range of problems. Within the computer vi-

sion community, graphs are frequently used to represent images and videos [Felzenszwalb

85

et al., 2010]. Given a large image corpora, approximate graph matching has been used to

find images that are similar to query images in both object recognition [Riesen and Bunke,

2009,Johnson et al., 2015,Zhou and De la Torre, 2013] and near-duplicate detection [Zhang

and Chang, 2004] for the purposes of copyright protection. Popular approaches to solving

this graph-matching problem include spectral techniques [Leordeanu and Hebert, 2005],

bipartite graph matching approximations [Riesen and Bunke, 2009], and factorized graph

matching [De la Torre, 2012].

Efficient subgraph matching in images has received less interest as large image datasets

are generally decomposed into millions of individual images that can be represented as

graphs, as opposed to one large image. However, early work on detection in aerial surveil-

lance datasets pioneered approaches for subgraph matching in large image graphs [Christ-

mas et al., 1995, Cordella et al., 2004].

Graphs have also proven to be robust representations of activities in video datasets

[Ryoo and Aggarwal, 2010]. In small video datasets [Blank and Gorelick, 2005, Schuldt

et al., 2004], where each video contains a single action, graph matching has been success-

fully used to identify examples of a particular activity [Çeliktutan et al., 2012]. In more

complex datasets [Soomro et al., 2012, Oh et al., 2011], multiple approaches have been

employed to make the graph search computationally feasible. Decomposition of activ-

ities into strings of graphs that can be detected in images [Gaur et al., 2011, Castañón

and Caron, 2012] has been proposed. Similarly, other approaches search for tree-like

query graphs [Ryoo and Aggarwal, 2010, Kwak et al., 2013] and approximate graphs with

trees [Castañón et al., 2015]. Others [Tianmin Shu et al., 2015] rely on a sliding window

approach to make the problem manageable. These approaches rely on the action or activity

being searched for having relatively small spatiotemporal extent.

As subgraph matching problems grow larger, focus shifts away from finding the so-

lution to the subgraph-matching problem and towards search space reduction. These al-

86

gorithms have two focuses: to rapidly identify locations where matches are unlikely to

occur [Sun et al., 2012, Bhattacharjee and Jamil, 2012] and to eliminate potentially re-

dundant searches [Solnon, 2010, Ullmann, 1976, Bonnici et al., 2013]. Most approaches

employ local structure, and some recent works have utilized the aggregate statistics of the

dataset to guide their search [Castañón et al., 2015].

In this chapter, we employ successive search-space refinement on both complex sim-

ulated graphs, a popular bioinformatics dataset [Huehne and Suehnel, 2009] and a large

surveillance video dataset [Oh et al., 2011]. Unlike sliding window approaches [Tianmin

Shu et al., 2015], we make no assumptions about the graph having small spatiotemporal

extent. We also do not assume a tree-like structure in the graph, remaining both agnostic to

graph structure and whether or not it is embedded in a real three-dimensional space.

5.2 Problem Setup

Subgraph matching is a common formulation for problems that seek to find one or more

examples of an object/activity/structure in a larger database. In subgraph matching, we are

presented with a query graph Q with node and edge sets V (Q) and E(Q), respectively,

and an archive graph A with node set V (A) and edge set E(A). Given distance functions

dv(v1, v2) measuring the distance between two nodes v1 and v2 and de ((v1, v2), (v3, v4))

measuring the distance between two edges (v1, v2) and (v3, v4), the best subgraph match

looks to find a mapping m : V (Q)→ V (A) where:

argmax
m∈M

S ((m, (V (Q), E(Q)), (V (A), E(A))) (5.1)

S(m) =
∑

vq∈V (Q)

dv(vq,m(vq)) +
∑

eq∈E(Q)

de(eq,m(eq)),

87

where M is the set of all possible matchings between the query and archive graph and

m(eq) is the mapping of edges induced by the mapping of nodes m(vq).

An extension of this is subgraph ranking, which will try to return all matchings m ∈

(M) for which S(m) is within a threshold δ of an exact match. For exact subgraph rank-

ing problems, δ is set to zero. Where subgraph ranking returns the set of all subgraphs

satisfying the criterion, subgraph matching returns the single best match.

By far the most common subgraph matching problem is exact subgraph matching with

discrete attributes. In these problems, each node v contains a feature vector fv with fea-

tures from the set Fv. These features can include spatiotemporal location, speed, size,

color, object or protein type. Each edge e ∈ E(Q) contains a feature vector fe from the

space of features Fe. In video, this may represent that two vertices are associated with the

same object, or are near each other. In other datasets, it may represent a specific interac-

tion between the two nodes. In exact subgraph matching with discrete attributes, distance

functions dv(va, vi) and de((va, vb), (vi, vj)) are generally given by:

dv(va, vi) = 1{fva=fvi}, de((va, vb), (vi, vj)) = 1{f(va,vb)
=f(vi,vj)}. (5.2)

This problem is generally formulated as an integer quadratic program (IQP). Let X ∈

{0, 1}|V (Q)|×|V (A)| be an assignment matrix from query graph Q to archive graph A, and

let x ∈ {0, 1}(|V (Q)||V (A)|) be its column-wise vectorized replica. Let weight matrix W

be a |V (Q)||V (A)| × |V (Q)||V (A)| matrix, where Wia;jb denotes the score for matching

query edge (vqi , v
q
j) to archive edge vaa, v

a
b , de((va, vb), (vi, vj)). The diagonal values of the

weight matrix, Wia;ia, represent the score for matching query node vqi to archive node vaa ,

dv(va, vi). Then, the IQP formulation is:

88

x∗ = argmax(xTWx) (5.3)

s.t. x ∈ {0, 1}(|Q||A|), ∀a
|V (Q)|∑
i=1

xia ≤ 1, ∀i
|V (A)|∑
a=1

xia ≤ 1 (5.4)

While this objective suggests that our task is to find an instance with maximum simi-

larity with the query, in practice, our goal is to identify matches that meet a user defined

threshold. Specifically, we let Uτ denote the collection of such instances, namely,

Uτ = {m ∈M : S(m, (V (Q), E(Q)), (V (A), E(A))) ≥ τ} (5.5)

Figure 5·1: Given a query graph,
our goal is to find the set of match-
ings in the archive graph above a
particular score threshold.

Identifying the set Uτ is in general intractable

involving combinatorially many choices of match-

ing m. In the context of video retrieval, the archive

graph can involves billions of nodes. In addition we

typically encounter query graphs that are relatively

small. Consequently, a highly effective approach is

to identify a mapping function F : V (A) → V ′

which maps the space of archive nodes V (A) to a

smaller, filtered space of nodes A′.

5.3 Subgraph Matching by Refinement

A. Sliding Window: This approach is based on dividing up the data archive graph based

on spatiotemporal bounding boxes. The set of bounding boxes represented as the set of

subgraphs B, where each element of B is a subgraph of the archive graph with nodes that

are spatiotemporally close. For each subgraph induced by a bounding box, the subgraph

matching problem can be solved independently. This approach, shown in Figure 5·2 works

89

best if we can infer the maximum size that a query graph could take, and select the set of

bounding boxes B to be that size.

Figure 5·2: Given a query, sliding window search space reduction creates a
window, shown in purple, and slides it through the space, creating a filtered
archive graph containing only nodes and edges within the window.

This approach leads to a local search space around the anchor node that scales with the

size of the query. We can then approximate Uτ by examining only matches with a similarity

greater than τ for each bounding box, i.e.,

Uτ =
⋃
b∈B

{m ∈M : S(m, (V (Q), E(Q)), (V (b), E(b))) ≥ τ}, (5.6)

where V (b) and E(b) are the node and edge sets, respectively, of the subgraph b.

In general, B is chosen as a set of overlapping windows with size roughly equal to the

maximum query size that contain archive elements. This step works well when the volume

of the query is relatively small with respect to the data-archive. This is generally not the

case in many video retrieval problems. Furthermore, note that the this process requires

scoring similarity for each bounding box, which can be cumbersome for very large graphs.

B. Node/Edge Filters: While the sliding window method is robust, it does not fully exploit

the feature information of the query and archive data. This information can be used to

eliminate many nodes and edges as potential candidates. It follows that if Eq. 5.5 has to be

satisfied, then each node or edge must satisfy a sufficient level of similarity. This motivates

the following filtered node and edge sets:

90

V ′(A) = {va ∈ V (A) : ∃vi ∈ V (Q) : dv(va, vi) ≤ τv} (5.7)

E ′(A) = {(va, vb) ∈ E(A) : ∃(vi, vj) ∈ E(Q) : de((va, vb), (vi, vj)) ≤ τe} (5.8)

This approach involves the choice of thresholds τv, τe to ensure we meet the user-

described global similarity. We denote the induced graphA′ with node and edge sets V ′(A)

and E ′(A) as the filtered graph of archive graph A.

Figure 5·3: Node/Edge filters re-
move nodes and edges from the
archive graph which could not inde-
pendently match any nodes or edges
in the query graph.

C. Query Sub-Tree Filters: Node/Edge filtering

can reduce the search space significantly if the asso-

ciated query features are somewhat “rare” or unique.

On the other hand many retrieval tasks are described

by features that occur commonly when viewed in

isolation. It is their co-occurrence that is uncom-

mon.

This suggests that we should attempt to design

queries that are subgraphs of our query graph. Our

goal is to seek large search space reduction (preci-

sion rate) with little degradation in recall. Note that for exact sub-graph matching, the

recall rate is not impacted by deleting edges in our query graph. This is because the col-

lection of instances that match the query with a deleted edge contains the true instances as

well. We propose to use spanning trees of the query graph as queries to reduce the search

space, as dynamic programming can be used to score similarity for tree queries.

The goal is to find tree queries that lead to maximal search space reduction. We pro-

pose an entropy minimization method to estimate query sub-trees. Let Pi(τv), Pij(τq) be

empirical frequencies in the data-archive that match features at node vi ∈ V (Q) and edge

91

(a) (b)

Figure 5·4: In (a), we select a minimum spanning tree of Q to be our query
tree T . In (b), we solve for all matches to T in the archive graph and remove
nodes not present in a matching.

(vi, vj) ∈ E(Q) with distance less than τv and τe, i.e.,

P̂i(τv) =
1

|V (A)|
∑

va∈V (A)

1{d(va,vi)≤τv}, (5.9)

P̂ij(τe) =
1

|E(A)|
∑

(va,vb)∈E(A)

1{d((va,vb),(vi,vj))≤τe}. (5.10)

Let TQ be the collection of trees over the query graph Q. Our goal is to select a tree T ∗Q to

optimize the following function:

T ∗Q = argmin
T∈TQ

∑
vi∈V (T)

log(P̂i(τv)) +
∑

(vi,vj)∈E(T)

log P̂ij(τe), (5.11)

where V (T) and E(T) are the node and edge sets associated with tree T .

The solution is a min-cost spanning tree as described below.

Lemma 5.3.1. The solution to Eq. 5.11 is a minimum cost spanning tree.

Note that if we were to remove binary constraints on the variables xq the optimal so-

lution has minimal entropy over all tree choices. We can expect maximal search space

reduction with this query without degradation in recall rate. Indeed, if the node features

and edge features of the query tree were generated independently at random in the data-

archive our minimum cost query would optimally reduce the search space. We state this

formally below:

92

Lemma 5.3.2. Suppose the node and edge attributes take values in a finite set. Let Q be
a fixed query. Let A be a data archive where the node and edge features are generated
independently at random. Suppose the similarity function is binary valued (corresponding
to exact matching of attributes). Define U0(TQ) as the set of matches obtained by running
the sub-tree query TQ. Then among all trees we have that,

Prob{U0(T ∗Q)} ≤ Prob{U0(TQ)}

where the probability is taken with respect to data-archive generation.

Our approach combines commonly-employed node/edge filters with our own novel suc-

cessive approach to query sub-tree filtering. Our intuition is that certain structures and

sub-structures in our graph are sparse. We know from existing work [Demeyer et al.,

2013,Castañón et al., 2015] that tree-matching can be performed in polynomial time, which

makes it feasible even on larger problems. So we use the statistics of the archive graph to

identify the structures and substructures within our query graph that are rarest. We use

these to create a tree, T ∗ that is the most unlikely to be randomly matched in the archive,

allowing us to maximally reduce the search space.

D. Successive Query Sub-Tree Filters: Due to the fact that matching trees is cheap

while matching graphs is expensive, we iteratively reduce the search space via tree-matching,

yielding notable improvements in run-time. In contrast to other approaches [Castañón et al.,

2015], we iteratively reduce the search space by updating statistics of the graph and find-

ing new search trees. To this end, we define the graph A′t with node and edge sets V ′t (A)

and E ′t(A) as the iterative filtered graph of archive graph A after t iterations. The initial

graph A′0 is the graph produced by applying node and edge filters, with nodes and edges

V ′0(A) = V ′(A) and E ′0(A) = E ′(A) as defined in Eqns. 5.7 and 5.8.

We define U t−1
(
T tQ
)

as the set of potential tree matchings, where each element of

U t−1
(
T tQ
)

is a matching of the archive graph A′t−1 to the tree query T tQ. Each successively

filtered graph A′t has nodes V ′t (A) =
{⋃

m∈Ut−1(T tQ)
⋃
vq∈V (Q) m(vq)

}
found by taking

the intersection between tree query matches and an edge set E ′t(A) composed of edges

93

remaining between nodes in V ′t (A). The subtree query T tQ is defined as

T tQ = argmin
T∈TQ

∑
vi∈V (T)

log(P̂ t
i (τv)) +

∑
(vi,vj)∈E(T)

(
log P̂ t

ij(τe)
)
, (5.12)

the successive frequencies P t
i and P t

ij are defined as

P̂ t
i (τv) =

1

|V ′t−1(A)|
∑

va∈V ′t−1(A)

1{d(va,vi)≤τv}, (5.13)

P̂ t
ij(τe) = min

 1

|E ′t−1(A)|
∑

(va,vb)∈E′t−1(A)

1{d((va,vb),(vi,vj))≤τe} + λU t
ij, 1

 , (5.14)

andU t
ij is defined as an indicator variable with a value of 1 if the edge ij has been previously

used in a tree query and a value of 0 otherwise and λ is a user chosen exploration penalty.

Note that the term λU t
ij arises as our approach is iterative, and therefore we bias subsequent

tree queries to explore the space of spanning trees. In general, this behavior naturally arises,

however to avoid pathological cases where edges are never included in the filter tree T ∗Q,

we add a penalty of λ to previously explored edges.

As shown in [Castañón et al., 2015], minimizing Equation (5.12) is equivalent to com-

puting the minimum spanning tree of a graph with edge weights Wi,j = log(P̂ t
ij(τe)). It is

therefore extremely computationally efficient to compute the tree which minimizes Equa-

tion (5.12). We choose the root node of T tQ such that the most discriminative edges are near

the root. This optimizes tree search and can be done efficiently by enumeration, as there

are only at most |V (Q)| options for the root node. We discuss efficient implementation of

the tree search below.

Tree Matching: We solve for the optimal match between a tree T tQ and filtered graphA′

in two steps. In the first step, we build a matching graph M with nodes V (M) and edges

E(M), where each vertex v ∈ V (M) ⊆ V (Q) × V ′t (A) is a tuple denoting a proposed

assignment between a vertex in T tQ and a vertex in V ′t (A), and each edge e ∈ E(M)

94

denotes a relationship between the two assignments. We create M by first adding matches

for the root node of T tQ, then adding in matches to its successors which match both vertex

and edge relationships described in T tQ. The complexity of this approach scales as a product

of |T tQ| and the size of the archive data.

Having traversed T tQ from root to leaves to create a matching graph, we traverse it from

leaves to root to determine the optimal solution for each root match. For each leaf vertex in

T tQ, we merge vertices in M with their parents, keeping the one which has the best score.

We repeat this process until only matches to root vertices are left, and then sort these root

vertices by the score of the best tree which uses them. The complexity of this component is

O(|E(M)|). This process yields the set of matches U t−1
(
T tQ
)
, each of which is a matching

from filtered graph A′t−1 to the query tree T tQ.

Given a set of matches U t−1
(
T tQ
)
, we can now reduce the size of filtered graph A′t by

removing any vertices or edges that are not present in any matches m ∈ MT q . We can

safely do this because we know that the T tQ is a sub-tree of Q, thus guaranteeing that an

element which fails one of the edge or node restrictions in the T tQ-matching process could

not meet that condition in the full subgraph matching problem.

The full approach is shown in Algorithm 5.

5.4 Experimentation

We evaluated our work on both synthetic datasets and real-world datasets [Oh et al., 2011,

Huehne and Suehnel, 2009]. We measured the effectiveness of the graphical formulation

by precision and recall on a real-world dataset, and we measure the effectiveness of our

recursive search-space reduction by run-time on the surveillance dataset and explicitly in

the synthetic dataset.

95

Algorithm 5 Successive Search Space Refinement
1: procedure REFINE SEARCH SPACE(Q,A, τv, τe, λ)
2: A′0 = A′ . Initialize using the node/edge filtered archive graph (Eqns. 5.7 and 5.8)
3: U ← ∅ . Initialize the set of used edges
4: t = 0
5: while A′t has not converged do . Successively refine search space
6: for all vi ∈ V (q) do
7: Compute P̂ t

i (τv) . Compute node frequencies according to Eqn. 5.13
8: end for
9: for all (vi), (vj) ∈ E(Q) do

10: Compute P̂ t
ij(τe) . Compute edge frequencies according to Eqn. 5.14

11: end for
12: Find T tQ . Compute the best query tree according to Eqn. 5.12
13: U ← U

⋃
E(T tQ) . Updated the set of previously used edges

14: Find U t−1
(
T tQ
)

. Calculate the set of potential tree matchings

15: V ′t (A) =
{⋃

m∈Ut−1(T tQ)
⋃
vq∈V (Q) m(vq)

}
. Keep nodes present in a matching

16: E ′t(A) =
{
E ′t−1(A)

⋂
V ′t (A)× V ′t (A)

}
. Keep edges between nodes in V ′t (A)

17: end while
18: end procedure

5.4.1 Datasets

We experimented on three datasets with the intention of demonstrating both the scalability

and practicality of our algorithm. As a pure subgraph matching problem, we looked at the

Lena Library of Biological Macromolecules [Huehne and Suehnel, 2009], which contains

a number of molecular structures. We chose to look at the densest graphs in these datasets:

protein backbones and contact maps for amino acids. We also elected to use our approach

on the popular VIRAT Ground 2.0 [Oh et al., 2011] dataset for video surveillance. The

dataset contains 40gb of video, comprising 11 scenes and 330 videos. Resolution ranges

from 100-10000 pixels on an object of pedestrian size. Our queries for this dataset were

entering a vehicle and driving off, getting picked up by a vehicle, loading an object into a

vehicle, taking an object out of a vehicle, and groups of people meeting for several minutes.

We tested both using ground truth and using tracks (explained in 5.4.2). Unfortunately, we

were unable to locate a generic object detector which could perform at all on the VIRAT

96

dataset, so for objects (1.6% of the dataset), we use ground truth.

Most current datasets [Geiger et al., 2012,Oh et al., 2011,Marszałek et al., 2009,Soomro

et al., 2012] focus on atomic actions that are extremely local, as sliding-window techniques

are designed to detect these. Note that the limited complexity of these queries does not bias

results towards our algorithm; increased complexity should increase the performance gap.

Our query graphs on the VIRAT dataset range from 3-6 nodes, and 2-9 edges.

While our approach is effective on these datasets, the benefits are accentuated on datasets

with more complex structure. We follow the example of the bioinformatics community [De

Santo et al., 2003] to simulate large graphs for sensitivity analysis. In our synthetic dataset,

we use an Erdös-Rényi model to generate a query graph. In this model, the probability pe

of an edge existing between two nodes is fixed. We generate node an edge attributes from

separate discrete distributions with various parameters, discussed below in 5.4.3.

5.4.2 Implementation

Associations

Spatial Relationships

Video

Feature

Extraction

Object

Detection

Tracking

Objects

Features
Data

Archive

MDST

Calculation

Tree

Matching

Coarse Graph

Update

Figure 5·5: The processing chain for our system, applied to video. As video
streams in, we extract features for object detection and tracking. We store
the resulting detections and associations in a database. When a query Q
is created by a user through our GUI, we downsample the data to create a
filtered graph A′. We iteratively reduce the filtered graph through matching
using our successive search space refinement algorithm, then solve a small
subgraph ranking problem to produce results.

97

As Figure 5·5 illustrates, our system consists of 4 steps:

1. Object Detection and Tracking. In order to be able to detect large-scale activities,

we need to be able to detect their components: objects, people and vehicles over

time. We stabilize streaming video using frame registration, and used Piotr Dollár’s

MATLAB Toolkit [Dollár,] to extract Aggregate Channel Features [Dollar et al.,

2014]. We used that toolkit’s person model (trained on a different dataset) to identify

pedestrians in the VIRAT dataset. Because the software did not have a pre-trained

car detector, we trained one on scenes from the VIRAT dataset that we did not use.

Due to obscuration, missed detection, shadows and other real-world issues, detec-

tions on non-vehicles are of low quality, frequently having missed/multiple detec-

tions. In order to mitigate detection error, we post-processed detections by applying

non-maximal suppression, and used [Andriyenko et al., 2012] to independently gen-

erate tracks for cars and objects. Each track was broken down into a set of space-time

bounding boxes that represented the trajectory, and we extracted features for each of

those bounding boxes: size, velocity, direction, object type and whether that bound-

ing box the first or the last box in the track.

2. Storage. Our video corpus is represented as a large archive graph in which each

detection is a node. Edges incorporate both spatiotemporal information (’near’) and

identity information (’the same as’). We create an independent, inverted index for

each feature in the dataset, and hash nodes and edges to each index based on their

feature values. Each continuous feature (size, velocity, direction) was hashed to a

fuzzy inverse index using locality-sensitive hashing [Datar et al., 2004], while each

discrete feature (object type, track start/end) was simply hashed directly. This archi-

tecture allowed us to identify bounding boxes which matched a query graph node

in time proportional to the number of matches instead of the size of the dataset - an

important attribute for a system that aimed to do massive search in real-time.

98

3. Query Creation. When a user wants to locate an activity, they are asked to create a

query using our query creation GUI. This allows users to take semantic concepts like

’car’, ’person’ and ’near’ and directly assemble them into a graph. This produces the

attributed query graph Q.

4. Search. Given query graph Q and archive graph A, the goal is to return a set of

ranked video snippets which best match Q. We first use the successive search space

refinement approach to eliminate elements ofA that could not be present inQ. When

that has converged, we use dynamic programming to rank the potential subgraphs,

convert those subgraphs to video segments, and display them to the user.

Experiments were run using an intel 2.7 GHz CPU and 4 GB of memory. Note that

components of our algorithm (graph filtering, tree-matching) can be parallelized, but for

clarity of analysis we elected to forego this option.

5.4.3 Results

Jena Library

The Jena library comes with sets of pre-generated queries, containing graphs of up to 128

nodes. The node attributes had a relatively limited vocabulary; nodes in protein backbones

had an average of five unique attributes, and nodes in amino acid contact maps aveaged 20.

To determine our algorithm’s efficiency at reducing the search space, we ran our successive

search space refinement technique and recorded the total reduction after query sub-tree

filtering.

Over the 857 pre-generated Jena Library graphs we solved, we saw an average reduction

factor of 6.4 in the number of nodes remaining, and 11.4 in the number of nodes remaining.

We did not see significant improvement over many iterations, in part because the structure

of these queries is very tree-like - no query had twice as many edges as nodes, even as the

queries became hundreds of nodes. As a result, the initial tree approximation provided the

99

lion’s share of the reduction.

Simulated Data

In generating a synthetic dataset, we follow the example of [Bonnici et al., 2013] and [De

Santo et al., 2003] by simulating large graphs. In our simulations, we randomly generate

large (500-3000 node), dense graphs using the Erdös-Rényi model, with connection proba-

bilities pconn = {.25, .5}. For each graph, we randomly and uniformly select a distribution

of features from the set of |Fv|-dimensional discrete distributions, then generate features

for each edge and node. We choose the induced subgraph of 10 randomly chosen nodes

from the archive graph to be our query graph Q. We then apply our approach to the re-

sulting subgraph isomorphism problem, and compare to a baseline tree matching approach

that does not exploit the distribution of attributes (akin to [Bonnici et al., 2013, Kriege and

Mutzel, 2012]).

Our goal is to understand under what circumstances a significant advantage can be

gained by exploiting data statistics. Intuitively, successive refinement of the search space

yields little advantage if the query graph resembles a tree. Likewise, little is to be gained

if components of the query graph are extremely uncommon and the subgraph match is

immediately apparent. Under either of these cases, all algorithms perform equivalently. As

an example, consider the graph A with |Fv| on the order of |A|. In this case, matching

a single pair of nodes with an edge between them guarantees that you have matched the

whole query graph, so all algorithms are equivalent. In the case where |Fv| is 1, the graph

A is effectively unlabeled, and there are no relevant statistics, so the approaches perform

equivalently well. We consider the most common case in large graph datasets, where a

small feature vocabulary Fv exists.

As expected, Figure 5·6 shows that our reduction performs at least as well as the base-

line approach for all scenarios. This is expected, as our approach exploits additional in-

formation. In Figure 5·6(a) and 5·6(d), we have an isomorphism problem that is relatively

100

(a)
1 2 3 4 5

0

5

10

15

Iterations

N
od

es
 L

ef
t

(b)
1 2 3 4 5

0

20

40

60

80

Iterations

N
od

es
 L

ef
t

(c)
1 2 3 4 5

0

500

1000

Iterations

N
od

es
 L

ef
t

(d)
1 2 3 4 5

0

5

10

Iterations

N
od

es
 L

ef
t

(e)
1 2 3 4 5

0

10

20

30

Iterations

N
od

es
 L

ef
t

(f)
1 2 3 4 5

0

200

400

600

Iterations

N
od

es
 L

ef
t

Figure 5·6: The average number of nodes remaining after each iteration for
the baseline (green) and successive-search space reduction (red) approaches
on archive graphs of size 500, 1000 and 3000. In the first row, pconn = .25
and |Fv| = 20. In the second row pconn = .5 and |Fv| = 30.

straightforward to solve - there are not a significant number of matches to any subtree of

Q, so correct selection does not matter. As the problem size grows, however, we reach

the other extreme - 5·6(c), where the graph is so densely connected that almost every node

is part of a correct match. However, in the middle, where the problem is non-trivial but

solvable, our approach consistently outperforms the baseline.

Using the recursive search space reduction to this technique reduces the number of

nodes remaining by a factor of 3.2, and the number of edges remaining by a factor of 33 on

average. Given that edges are the dominant term in most subgraph matching approaches,

this shows that there is significant value to the recursive approach.

VIRAT Dataset

We tested five queries on the VIRAT dataset: mount, dismount, object deposit, and group

meeting. We selected activities with relatively long temporal duration, highlighting the

ability of our algorithm to selectively downsample video based on relevance, as opposed to

101

a small spatio-temporal window.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall

Figure 5·7: Precision/Recall curves for the Object Deposit, Object Take-
out, Mount and Dismount activities in the VIRAT dataset. Recursive search
space reduction is shown in red, with a baseline approach based on space-
time feature accumulation shown in green. In these experiments, ground
truth was used for detection and track information.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1
P

re
ci

si
on

Recall
0 0.5 1

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall

Figure 5·8: Precision/Recall curves for the Object Deposit, Object Take-
out, Mount and Dismount activities in the VIRAT dataset. Recursive search
space reduction is shown in red, with a baseline approach based on space-
time feature accumulation shown in green. We track aggregate channel fea-
tures [Dollar et al., 2014] using [Andriyenko et al., 2012] in these experi-
ments.

In order to establish a baseline for performance, we compare algorithms on the ground

truth provided in [Oh et al., 2011]. This removes the noise due to imperfect detection and

tracking. The precision/recall curves for this for our algorithm, applied to ground truth

detections, are shown in Figure 5·7. While timing results vary by machine, they can be

indicative of feasibility. On this dataset, tree matching iterations took between .7 and 2.3

seconds, and all queries converged within three iterations.

Using the implementation described in Section 5.4.2, we generated tracks on objects

and people from raw data. These detections and tracks were significantly fragmented and

102

(a)

2970

(b)

10560

(c)

3480

Figure 5·9: This figure highlights some of the issues involved in tracking
and detection in surveillance scenarios. In (a), the algorithm misses a pair
of people talking in the shadow of a building. In (b), two people talking
are mis-classified as a single person. In (c), a person comes too near a car,
enters its shadow, and is not detected.

noisy. However, we were able to produce strong results on the shorter term scenarios

(under 1 minute) as shown in Figure 5·8. Errors in this dataset were largely due to missed

detections. In Figure 5·9 we see why detections are problematic: We miss detections in the

shadow of a building, near a car, and when two people are talking with eachother. However,

tracks on cars are quite reliable. As a result, detecting long-term events is difficult due to

identity gaps over time.

5.5 Conclusion

In this chapter, we introduced a method for iterative search space reduction in large graphs

and demonstrated its efficacy on simulated large-scale video surveillance data. We demon-

strated a complete system that took in raw surveillance footage, extracted features, created

detections and stored these in an archived inverted index. Using a simple query GUI,

we enabled a user to input activities in graphical form. In real-time, we downsample the

archive data to a filtered graph A′, and then use our novel recursive search space reduc-

tion algorithm to solve the NP-hard problem of graph matching in real-time even for large

103

datasets.

104

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have demonstrated that a structure and relationship-based approach to

search is an efficient and effective way of finding things in large datasets - both video

and otherwise. Specifically, we have shown that it is reasonable and realistic to represent

activities in video through combinations of simple elements structured appropriately and

that these representations can be extremely discriminative in video.

In our first work, we focused on simple temporal structure with an extremely limited

query vocabulary. The diverse set of activities represented and strong results compared to

state-of-the-art topic modeling and feature accumulation approaches suggested that struc-

ture was an effective tool for retrieval. As further work expanded our exploitation of struc-

ture to include trees, arbitrary graphs, and non-temporal relationships like identity and

proximity, it became clear that a weak set of descriptors could be significantly empowered

by user-provided structure.

At the core of this advance is a simple idea that should not be lost: as structure grows

more complex, it becomes more powerful, as it is less likely that it will be incidentally

replicated by chance. This makes sense - a system, provided with more information, should

perform better. With more complex structure comes a shared burden on user and the GUI

they are using to make query creation accessible and simple. We showed that this can be

done effectively in the area of video surveillance.

In 4, we also showed that, given a graphical structure provided by a user, subgraph

105

matching was an effective way to search over large video corpora in a manner that was

agnostic to background clutter. In order to mitigate this, we again exploited structure to

dramatically reduce the search space via tree matching with Maximally Discriminative

Spanning Trees. We showed that tree-matching, performed in a single step or iteratively, is

a strong method for reducing the search space in subgraph matching problems, both video

and otherwise.

In conclusion, properly exploited structure can compensate for other deficiencies (e.g.

simple attributes) in a video search system. Subgraph matching is an important way to

do video search in crowded scenes, but is computationally impractical without a strong

technique for search space reduction. It is our hope that future works will make use of

these techniques to advance the science of search in both video and other domains.

6.2 Future Work

Like all theses grounded in an unsolved real-world problem, there are a number of potential

extensions for this work. In this section, we will strive to name some of the most promising.

First is the question of query generation. Over the course of Chapters 3 through 5, we’ve

shown that we have a compact and efficient representation for activities which differentiates

them from background or unrelated activity. While having direct human input is an efficient

way to solve this problem, it does assume a level of system mastery. We’ve found this

mastery to be readily present in those who have tried our system, but in event where you’d

want an untrained user to be able to search, it would be good to be able to train our model

from exemplar videos, similar to [Lin et al., 2014].

Second, it would be interesting to explore how we could recover significantly dis-

connected/untracked queries. While the video corpora currently available are relatively

straightforward and feature minimal obscuration, creating long-term tracks in arbitrary

surveillance video has proven to be extremely challenging. With the aim of recovering

106

long-term activities like “group meeting”, it is less important for us to know exactly where

somebody is for the entirety of a video than to efficiently tell if two different locations

or points in time contain the same person. To this end, we could shift the burden of cre-

ating “same as” relationships from archival time to query time by using re-identification

algorithms like [Zhang et al., 2014b].

Third, given time we would like to explore the possibilities of iterating with a user to re-

fine search queries. In traditional active learning for search [Hsu et al., 2007], users inform

the search engine if a result is correct or wrong. This sort of binary feedback represents

the lowest-bandwidth communication channel between human and algorithm. It would

be interesting to explore both if this approach is effective at refining graphs, particular in

comparison to manual refinement.

Appendix A

Proofs and Additional Detail

A.1 Theorem: Low False Positives

Theorem A.1.1. Suppose that we have a random video: we sample independently across
time and at each instant uniformly from the set of all trees with replacement. Suppose
the query q consists of |q| distinct trees and the random video has Rq,τ (∆) matches. For
∆ = γ|q| the probability that log(vq,τ (∆)) ≥ α|q| for some α ∈ (0, 1) is smaller than
O(1/|q|2).

This result suggests that the false alarm probability resulting from an algorithm that is

based on thresholding vq,τ (∆) is small. This result is relevant because we expect log(vq,τ (∆))

for video segments that match the query to have a value larger than α|q| for some α when

∆ = Ω(|q|).

Proof. For simplicity we only consider each document to contain a single random tree
drawn from among |H| trees. The general result for a fixed number of trees follows in an
identical manner. We compute the value of random video of length τ , i.e.,

P {vq,0(∆) ≥ exp(α|q|)} = P {|Rq,0(∆)| ≥ α|q|+ γ} ,

where we substituted ∆
λ

= γ and taken logarithms on both sides to obtain the second
equation. Let, ∆j be the number of documents before we see a new document among the
set q after just having seen the j − 1th new document. This corresponds to the inter-arrival
time between the (j− 1)th and jth document. Given our single tree random model we note
that Rq,0(∆) is a counting process in ∆ and so we have the following equivalence,

Rq,0(∆) ≥ ` ⇐⇒
∑̀
j=1

∆j ≤ ∆.

107

108

Thus we are now left to determine the P
{∑`

j=1 ∆j ≤ ∆
}

where ` = α|q| + γ. Next,
∆1,∆2, . . . are independent geometric random variables. The jth random variable ∆j has
a geometric distribution with parameter pi = |q|−j

|H| . Using these facts we can determine the
mean value and variance of the sum using linearity of expectations. Specifically, it turns
out that

E

(∑̀
j=1

∆j

)
=
∑̀
j=1

1

pi
; V ar

(∑̀
j=1

∆j

)
=
∑̀
j=1

1− pi
p2
i

.

Upon computation the mean turns out to be O(|H|), while the variance turns out to be
O(|H|2/|q|2). We now apply Chebyshev inequality to conclude P {vq,0(∆) ≥ exp(α|q|)} ≤
O(1/|q|2), which establishes the result.

A.2 Proof of Lemma 4.3.1

Definition A.2.1 (Maximally Discriminative Spanning Tree (MDST)). We call a tree is
an MDST, T ∗, to a query graph Q with node weights ∀v ∈ V q, p(v) and edge weights
∀e ∈ Eq, p(e), if the tree satisfies

T ∗ = argmin
T∈T

p(T), (A.1)

where T denotes the set of all possible trees induced from query graph Q.

Proof. Based on the definition of MDST, we can rewrite Eq. 4.3 as follows:

T ∗ = argmin
T∈T

p(T) = argmin
T (V t,Et)∈T

∏
v∈V t

p(v)
∏
e∈Et

p(e)

≡ argmin
T (V t,Et)∈T

{∑
v∈V t

log p(v) +
∑
e∈Et

log p(e)

}
(A.2)

Since ∀p(v),∀p(e) are real numbers between 0 and 1, ∀ log p(v) and ∀ log p(e) are all non-
positive. Therefore, in order to minimize Eq. A.2, all the nodes in Q will be included, and
all the specific edges will be included as well, which (1) form a tree together with all the
nodes in Q, and (2) achieve the minimum summation. Deleting any node/edge from the
tree will either increase the objective value in Eq. A.2 or destroy the tree structure. This is
exactly the same as the definition of minimum spanning tree.

109

A.3 Proof of Lemma 4.3.2

Lemma A.3.1. Let M denote a match between a query graph Q = (V q, Eq) and a coarse
graph C. Let S(·, C,M) denote the matching score between any query (e.g. graphs, trees,
attributes, relationships) and C, and letQ′ = Q−T ∗ = (∅, Eq−Et) denote the residual of
graph Q. We further define S(Q,C,M) =

∑
v∈V q S(v, C,M) +

∑
e∈Eq S(e, C,M). Then

we have

|S(Q,C,M)− S(T ∗, C,M)| =

∣∣∣∣∣∑
e∈Q′

S(e, C,M)

∣∣∣∣∣
≤
∑
e∈Q′
|S(e, C,M)| ≤ |Q′| ·max

e∈Q′
max
M̃∈M

|S(e, C, M̃)|, (A.3)

where |Q′| denotes the number of edges in Q′, andM denotes the set of possible matches
between Q′ and C.

A.4 Proof of Lemma 4.3.3

Lemma A.4.1. By setting proper thresholds, we guarantee that the matches returned by
MDST cover all the matches for the original query graph.

Proof. Lemma 4.3.2 shows that the score difference between using query graph Q and
using its MDST T ∗ is upper-bounded. Let SQ = minMQ∈MQ

S(Q,C,MQ), where MQ

denotes the set of possible matches between Q and C, then in the worst case, we can set
the matching score threshold δ for returning solutions as

δ = SQ −∆Q′ = SQ − |Q′| ·max
e∈Q′

max
M̃∈M

|S(e, C, M̃)|, (A.4)

which guarantees to return all the solutions for query graph Q.

A.5 Proof of Lemma 5.3.1

P̂i(τv) =
1

|V (A)|
∑

va∈V (A)

1{d(va,vi)≤τv}, (A.5)

P̂ij(τe) =
1

|E(A)|
∑

(va,vb)∈E(A)

1{d((va,vb),(vi,vj))≤τe}. (A.6)

110

Let TQ be the collection of trees over the query graph Q. Our goal is to select a tree T ∗Q

to optimize the following function:

T ∗Q = argmin
T∈TQ

∑
vi∈V (T)

log(P̂i(τv)) +
∑

(vi,vj)∈E(T)

log P̂ij(τe), (A.7)

Lemma A.5.1. The solution to Eq. 5.11 is a minimum cost spanning tree.

Proof. Note first that for all T ∈ T , V (T) is identical because they are all spanning trees
of Q. Therefore, we can say that

T ∗Q = argmin
T∈TQ

∑
(vi,vj)∈E(T)

log P̂ij(τe). (A.8)

Because P̂ij(τe) is by definition between 0 and 1, log P̂ij(τe) is negative.
For all trees T , |E(T)| = |V (T)| − 1, defining a weight of wij = log P̂ij(τe) + 1 adds

|V (Q)| − 1 to the score of each tree, but does not re-order the solutions.
Weight wij is positive, so

T ∗Q = argmin
T∈TQ

∑
(vi,vj)∈E(T)

wij (A.9)

is the definition of a minimum spanning tree.

A.6 Proof of Lemma 5.3.2

Lemma A.6.1. Suppose the node and edge attributes take values in a finite set. Let Q be
a fixed query. Let A be a data archive where the node and edge features are generated
independently at random. Suppose the similarity function is binary valued (corresponding
to exact matching of attributes). Define U0(TQ) as the set of matches obtained by running
the sub-tree query TQ. Then among all trees we have that,

Prob{U0(T ∗Q)} ≤ Prob{U0(TQ)}

where the probability is taken with respect to data-archive generation.

111

If the similarity function is binary valued, we can re-write equations (5.9) and (5.10) as

independent of any parameters τv or τe:

P̂i =
1

|V (A)|
∑

va∈V (A)

1{d(va,vi)=0, (A.10)

P̂ij =
1

|E(A)|
∑

(va,vb)∈E(A)

1{d((va,vb),(vi,vj))=0. (A.11)

Let Pi and Pij denote the probability of the node or edge feature for query node i or

edge ij. Then the expected number of nodes and edges in the archive graph A with this

feature would be given by:

E
∑

va∈V (A)

1{d(va,vi)=0}] = Pi|V (A)|, (A.12)

E
∑

(va,vb)∈E(A)

= 1{d((va,vb),(vi,vj))=0} = Pi,j|E(A)|. (A.13)

Therefore, EP̂i = Pi and EP̂ij = Pij

Thus,

T ∗Q = argmin
T∈TQ

∑
vi∈V (T)

logPi +
∑

(vi,vj)∈E(T)

logPij, (A.14)

Without re-ordering trees, we can exponentiate to get:

T ∗Q = argmin
T∈TQ

∏
vi∈V (T)

Pi
∏

(vi,vj)∈E(T)

Pij (A.15)

Any tree T has |E(T)| independently generated edge attributes and |V (T)| indepedently-

112

generated node attributes. Thus, we can compute the probability of generating any partic-

ular tree T as:

Prob(T) =
∏

vi∈V (T)

Pi
∏

(vi,vj)∈E(T)

Pij (A.16)

Thus, T ∗Q is the spanning tree ofQ that has the minimum probability of being generated,

and

Prob{U0(T ∗Q)} ≤ Prob{U0(TQ)}. (A.17)

Appendix B

Additional Experiments

B.1 Jena Library

Query V (A) V (A′) V (A′t) e(A) E(A′) E(A′t)

|V (Q)| < 50 1822 814 797 4999 1133 1069

50 ≤ |V (Q)| < 100 1128 387 355 4812 1377 1197

100 ≤ |V (Q)| 2128 653 594 4959 1869 1642

B.2 Simulated Data

Query V (A) V (A′) V (A′t) e(A) E(A′) E(A′t)

|V (Q)| = 10 1000 92 10 249826 2617 26

|V (Q)| = 10 3000 106 10 2249446 4307 23

|V (Q)| = 10 5000 120 10 6248151 8973 26

B.3 VIRAT

Query V (A) V (A′) V (A′t) e(A) E(A′) E(A′t)

Mount 19353 2290 589 3.7e8 2913 931

Dismount 19353 3298 978 3.7e8 6145 1950

Deposit 19353 1508 100 3.7e8 10229 172

Take Out 19353 2070 116 3.7e8 13587 195

Group Meeting 19353 10687 9548 3.7e8 232047 227070

113

Appendix C

Software and Datasets

C.1 Software

Over the course of building a video surveillance system, we utilized a large amount of pre-

existing software. In this section, we briefly describe the uses we put it to and provide the

location of these packages for follow-up work.

1. Piotr’s Computer Vision Matlab Toolbox. We used Piotr’s Matlab Toolbox (PMT)

for extracting aggregate channel features (ACF) from video frames and performing

detection of people and cars. The toolbox can be downloaded at

https://github.com/pdollar/toolbox.

2. Anton Milan’s Discrete-Continuous Tracker. We used Anton Milan’s implemen-

tation of his tracker [Andriyenko et al., 2012] to stitch together detections of people,

objects and vehicles generated by the toolbox. The tracker can be downloaded at

http://www.milanton.de/dctracking/.

3. RTree for Python. We used the Rtree package, a libspatialindex wrapper, to im-

plement the spatial indexing of our bounding boxes for easy identification of spatial

displacement relationships. It can be found at http://toblerity.org/rtree/.

C.2 Datasets

Here are links to the publicly available datasets that were used in this paper.

114

115

1. VIRAT Ground 2.0 Dataset. A 40-GB video surveillance dataset with full ground

truth of people, objects, bicycles and cars. Available at http://www.viratdata.org/

2. Jena Library of Biological Macromolecules. Contains PDBSv1, a dataset of large,

sparse graphs of RNA, DNA and Proteins. Also has datasets of protein backbones

(PDBSv2) and contact maps of amino acids (PDBSv2).

Available at http://ferrolab.dmi.unict.it/ri/datasets.html.

3. PETS 2006 A video surveillance dataset with simple activities like abandoning ob-

jects. Available by request at http://www.cvg.reading.ac.uk/PETS2006/data.html

4. Mit-Traffic A video dataset for pedestrian detection and vehicle behavior. Available

at http://www.ee.cuhk.edu.hk/ xgwang/MITtraffic.html

5. Subway Video monitoring of a subway system in black and white. Available by

request from http://www.cs.technion.ac.il/ amita/.

References

I-LIDS.

Abramowitz, M., Stegun, I. A., and Others (1966). Handbook of mathematical functions.
Applied Mathematics Series, 55:62.

Adam, A., Rivlin, E., Shimshoni, I., and Reinitz, D. (2008). Robust Real-Time Unusual
Event Detection Using Multiple Fixed-Location Monitors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(3):555–560.

Andriyenko, A., Schindler, K., and Roth, S. (2012). Discrete-continuous optimization for
multi-target tracking. 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), (June):1926–1933.

Aytar, Y., Shah, M., and Luo, J. (2008). Utilizing semantic word similarity measures for
video retrieval. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Barnich, O. and Van Droogenbroeck, M. (2011). ViBe: A universal background subtrac-
tion algorithm for video sequences. IEEE Transactions on Image Processing, 20(6):1709–
1724.

Baugh, G. and Kokaram, A. (2010). A Viterbi tracker for local features. In IS&T/SPIE
Electronic Imaging, pages 75430L—-75430L. International Society for Optics and Pho-
tonics.

Benezeth, Y., Jodoin, P.-M., Emile, B., Laurent, H., and Rosenberger, C. (2010). Com-
parative Study of Background Subtraction Algorithms. Journal of Electronic Imaging,
19(3):1–12.

Berretti, S., Bimbo, A. D., and Pala, P. (2007). Graph Edit Distance for Active Graph
Matching in Content Based Retrieval Applications. The Open Artificial Intelligence
Journal, 1(1):1–11.

Bhattacharjee, A. and Jamil, H. M. (2012). WSM: A novel algorithm for subgraph match-
ing in large weighted graphs. Journal of Intelligent Information Systems, 38:767–784.

Blank, M. and Gorelick, L. (2005). Actions as space-time shapes. International Confer-
ence on Computer Vision, 29(12):2247–2253.

116

117

Blank, M., Gorelick, L., Shechtman, E., Irani, M., and Basri, R. (2005). Actions as Space-
Time Shapes. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1395–1402.

Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., and Ferro, A. (2013). A subgraph
isomorphism algorithm and its application to biochemical data. BMC bioinformatics,
14:13.

Bouman, C. A., Shapiro, M., Cook, G. W., Atkins, C. B., and Cheng, H. (1997). Cluster:
An unsupervised algorithm for modeling Gaussian mixtures.

Castañón, G. and Caron, A.-L. (2012). Exploratory search of long surveillance videos.
Proceedings of the 20th ACM International Conference on Multimedia.

Castañón, G., Chen, Y., Zhang, Z., and Saligrama, V. (2015). Efficient Activity Retrieval
through Semantic Graph Queries. Proceedings of the 23rd ACM International Confer-
ence on Multimedia, pages 391–400.

Çeliktutan, O., Akgul, C., Wolf, C., and Sankur, B. (2013). Graph-based analysis of physi-
cal exercise actions. Proceedings of the 1st ACM International Workshop on Multimedia
Indexing and Information Retrieval for Health Care, pages 23–31.

Çeliktutan, O., Wolf, C., Sankur, B., and Lombardi, E. (2012). Real-time exact graph
matching with application in human action recognition. In A.A. Salah (ed.) Human
Behavior Understanding (pp. 17-28). Lecture Notes in Computer Science, vol. 7559.
Berlin, New York: Springer.

Chang, S.-F., Chen, W., and Sundaram, H. (1998). VideoQ: a fully automated video
retrieval system using motion sketches. Proceedings of the IEEE Workshop on Applica-
tions of Computer Vision, pages 270–271.

Chen, S., Zhang, J., Li, Y., and Zhang, J. (2012). A hierarchical model incorporating
segmented regions and pixel descriptors for video background subtraction. IEEE Trans-
actions on Industrial Informatics, 8(1):118–127.

Cho, M., Lee, J., and Lee, K. (2010). Reweighted random walks for graph matching.
Proceedings of the European Conference on Computer Vision, pages 1–14.

Choe, T. E., Deng, H., Guo, F., Lee, M. W., and Haering, N. (2013). Semantic video-
to-video search using sub-graph grouping and matching. In Proceedings of the IEEE
International Conference on Computer Vision, number 1, pages 787–794.

Christmas, W., Kittler, J., and Petrou, M. (1995). Structural matching in computer vision
using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(8).

118

Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004). A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–72.

Cour, T., Srinivasan, P., and Shi, J. (2007). Balanced graph matching. Advances in Neural
Information Processing Systems, 19:313.

Dalton, J., Allan, J., and Mirajkar, P. (2013). Zero-shot video retrieval using content and
concepts. Information and Knowledge Management, pages 1857–1860.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. (2004). Locality-sensitive hashing
scheme based on p-stable distributions. In Symposium on Computation Geometry, pages
253–262, New York, NY, USA. ACM.

De la Torre, F. (2012). Factorized graph matching. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 127–134.

De Santo, M., Foggia, P., Sansone, C., and Vento, M. (2003). A large database of graphs
and its use for benchmarking graph isomorphism algorithms. Pattern Recognition Let-
ters, 24(8):1067–1079.

Demeyer, S., Michoel, T., Fostier, J., Audenaert, P., Pickavet, M., and Demeester, P. (2013).
The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in
Large Networks Using Optimized Search Trees. PLoS ONE, 8(4).

Dollár, P. Piotr’s Computer Vision MATLAB Toolbox.

Dollar, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for
object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(8):1532–1545.

Dollár, P. and Rabaud, V. (2005). Behavior recognition via sparse spatio-temporal features.
Performance Evaluation of Tracking and Surveillance, pages 65–72.

Dollár, P., Tu, Z., Perona, P., and Belongie, S. (2009). Integral channel features. Proceed-
ings of the British Machine Vision Conference, pages 91.1–91.11. doi:10.5244/C.23.91.

Efros, A. and Berg, A. (2003). Recognizing action at a distance. Ninth IEEE Conference
on Computer Vision, (October).

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object de-
tection with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1627–45.

Ferryman, J. (2006). PETS 2006. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

119

Gaur, U., Zhu, Y., Song, B., and Roy-Chowdhury, A. (2011). A ’string of feature graphs’
model for recognition of complex activities in natural videos. Proceedings of the IEEE
International Conference on Computer Vision, pages 2595–2602.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity Search in High Dimensions via
Hashing. In Proceedings of the Twenty-fifth International Conference on Very Large
Databases, pages 518–529.

Guttman, A. R.-t. and A (1984). dynamic index structure for spatial searching. Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of Data,
pages:47–57.

Horn, B. K. and Schunck, B. G. (1981). Determining optical flow. In Artificial Intelli-
gence, volume 17, pages 185–203. International Society for Optics and Photonics.

Hsu, W. H., Kennedy, L. S., and Chang, S.-F. (2007). Reranking methods for visual search.
Proceedings of the IEEE Conference on Multimedia, 14(3):14–22.

Hu, R., James, S., Wang, T., and Collomosse, J. (2013). Markov random fields for sketch
based video retrieval. Proceedings of the International Conference on Multimedia Re-
trieval, page 279.

Hu, W., Xie, D., Fu, Z., Zeng, W., and Maybank, S. (2007). Semantic-based surveillance
video retrieval. IEEE Transactions on Image Processing, 16(4):1168–1181.

Huehne, R. and Suehnel, J. (2009). The Jena Library of Biological Macromolecules–
JenaLib. Nature - Precedings. doi:10.1038/npre.2009.3114.1

Ikizler, N. and Forsyth, D. A. (2008). Searching for complex human activities with no
visual examples. International Journal of Computer Vision, 80(3):337–357.

Johnson, J., Krishna, R., Stark, M., Li, L.-j., Shamma, D. A., Bernstein, M. S., and Fei-fei,
L. (2015). Image Retrieval using Scene Graphs. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

Jung, M. Y. and Park, S. H. (2009). Semantic Similarity Based Video Retrieval. Springer
Berlin Heidelberg.

Koutra, D., Parikh, A., Ramdas, A., and Xiang, J. (2011). Algorithms for Graph Similarity
and Subgraph Matching. Technical Report of Carnegie-Mellon-University.

Kriege, N. and Mutzel, P. (2012). Subgraph Matching Kernels for Attributed Graphs.
Proceedings of the International Conference on Machine Learning, pages 1015–1022.

120

Kuettel, D., Breitenstein, M., Gool, L., and Ferrari, V. (2010). What’s going on? Dis-
covering spatio-temporal dependencies in dynamic scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1951–1958.

Kwak, S., Han, B., and Han, J. H. (2013). Multi-agent Event Detection: Localization and
Role Assignment. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2682–2689.

Laptev, I. (2005). On space-time interest points. International Journal of Computer
Vision, 64:107–123.

Laptev, I., Marsza\lek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic
human actions from movies. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE.

Le, T.-L., Thonnat, M., Boucher, A., and Brémond, F. (2009). Surveillance Video Indexing
and Retrieval Using Object Features and Semantic Events. International Journal of
Pattern Recognition and Artificial Intelligence, 23(07):1439–1476.

Le Gall, D. (1991). MPEG: A video compression standard for multimedia applications.
Communications of the ACM, 34(4):46–58.

Leordeanu, M. and Hebert, M. (2005). A spectral technique for correspondence prob-
lems using pairwise constraints. Proceedings of the IEEE International Conference on
Computer Vision, pages 1482–1489 Vol. 2.

Li, S. Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., and Shum, H. (2002). Statistical
learning of multi-view face detection. In Proceedings of the European Conference on
Computer Vision, pages 67–81. Springer.

Li, W., Mahadevan, V., and Vasconcelos, N. (2014). Anomaly detection and localization
in crowded scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(1):18–32.

Lin, D., Fidler, S., Kong, C., and Urtasun, R. (2014). Visual Semantic Search : Retrieving
Videos via Complex Textual Queries. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Lowe, D. (1999). Object recognition from local scale-invariant features. Proceedings of
the IEEE International Conference on Computer Vision, pages 1150–1157 vol.2.

Ma, S., Zhang, J., Ikizler-Cinbis, N., and Sclaroff, S. (2013). Action Recognition and
Localization by Hierarchical Space-Time Segments. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2744–2751.

Marszałek, M., Laptev, I., and Schmid, C. (2009). Actions in context. In Computer Vision
and Pattern Recognition Workshops, pages 2929–2936.

121

Meessen, J., Coulanges, M., Desurmont, X., and Delaigle, J.-F. (2006). Content-Based
Retrieval of Video Surveillance Scenes. In Multimedia Content Representation, Classi-
fication and Security, pages 785–792.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630.

Mita, T., Kaneko, T., and Hori, O. (2005). Joint haar-like features for face detection. In
Proceedings of the IEEE International Conference on Computer Vision, volume 2, pages
1619–1626. IEEE.

Niebles, J. C., Wang, H., and Fei-Fei, L. (2008). Unsupervised Learning of Human Action
Categories Using Spatial-Temporal Words. International Journal of Computer Vision,
79(3):299–318.

Oh, S., Hoogs, A., and Perera, A. (2011). A large-scale benchmark dataset for event
recognition in surveillance video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, number 2.

Oneata, D., Verbeek, J., and Schmid, C. (2013). Action and event recognition with Fisher
vectors on a compact feature set. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1817–1824.

Palatucci, M. and Pomerleau, D. (2009). Zero-shot learning with semantic output codes.
Proceedings of the Conference on Neural Information Processing Systems, pages 1–9.

Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. (2007). Object retrieval with
large vocabularies and fast spatial matching. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8.

Pitié, F., Berrani, S.-A., Kokaram, A., and Dahyot, R. (2005). Off-line multiple object
tracking using candidate selection and the viterbi algorithm. In Image Processing, 2005.
ICIP 2005. IEEE International Conference on, volume 3, pages III—-109. IEEE.

Raptis, M., Kokkinos, I., and Soatto, S. (2012). Discovering discriminative action parts
from mid-level video representations. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1242–1249. IEEE.

Raptis, M. and Sigal, L. (2013). Poselet key-framing: A model for human activity recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2650–2657.

Riesen, K. and Bunke, H. (2009). Approximate graph edit distance computation by means
of bipartite graph matching. Image and Vision Computing, 27(7):950–959.

122

Rodriguez, M. D., Ahmed, J., and Shah, M. (2008). Action mach a spatio-temporal maxi-
mum average correlation height filter for action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE.

Rubner, Y., Tomasi, C., and Guibas, L. (2000). The Earth Mover’s Distance as a Metric
for Image Retrieval. International Journal of Computer Vision, 40(2):99–121.

Ryoo, M. S. and Aggarwal, J. K. (2010). Stochastic Representation and Recognition of
High-Level Group Activities. International Journal of Computer Vision, 93(2):183–200.

Sadanand, S. and Corso, J. J. (2012). Action bank: A high-level representation of activity
in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1234–1241. IEEE.

Schüldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: a local SVM
approach. In Proceedings of the 17th International Conference on Pattern Recognition,
volume 3, pages 32–36. IEEE.

Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: a local SVM
approach. Proceedings of the International Conference on Pattern Recognition, pages
3–7.

Scovanner, P., Ali, S., and Shah, M. (2007). A 3-dimensional sift descriptor and its appli-
cation to action recognition. In Proceedings of the 15th ACM International Conference
on Multimedia, page 357, New York, New York, USA. ACM Press.

Shi, J. and Tomasi, C. (1994). Good features to track. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600. IEEE.

Siersdorfer, S., San Pedro, J., and Sanderson, M. (2009). Automatic video tagging using
content redundancy. In Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 395–402. ACM.

Sivic, J. and Zisserman, A. (2003). Video Google: A Text Retrieval Approach to Object
Matching in Videos. In Ninth International IEEE Conference on Computer Vision,
volume 2, pages 1470–1477.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197.

Solnon, C. (2010). AllDifferent -based Filtering for Subgraph Isomorphism. Artificial
Intelligence, 174(December 2009):850–864.

Song, X. M. and Fan, G. L. (2006). Joint Key-Frame Extraction and Object Segmenta-
tion for Content-Based Video Analysis. Circuits and Systems for Video Technology,
16(7):904–914.

123

Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A Dataset of 101 Human Ac-
tions Classes From Videos in The Wild. arXiv preprint arXiv:1212.0402, (November).

Stringa, E. and Regazzoni, C. (1998). Content-based Retrieval and Real Time Detection
from Video Sequences Acquired by Surveillance Systems. In Proceedings of the Inter-
national Conference on Image Processing, pages 138–142.

Sujatha, C. and Mudenagudi, U. (2011). A study on keyframe extraction methods for
video summary. In Proceedsings of the International Conference on Computational
Intelligence and Communication Networks, pages 73–77. IEEE.

Sun, Z., Wang, H., Shao, B., and Li, J. (2012). Efficient subgraph matching on billion node
graphs. Proceedings of the VLDB Endowment, pages 788–799.

Taubman, D. (2000). High performance scalable image compression with EBCOT. IEEE
Transactions on Image Processing, 9(7):1158–1170.

Taubman, D. and Marcellin, M. (2012). JPEG2000 Image Compression Fundamentals,
Standards and Practice: Image Compression Fundamentals, Standards and Practice,
volume 642. Springer Science & Business Media.

Tianmin Shu, Xie, D., Rothrock, B., Todorovic, S., and Zhu, S.-c. (2015). Joint inference
of groups, events and human roles in aerial videos. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4576–4584.

Ullmann, J. R. (1976). An Algorithm for Subgraph Isomorphism. Journal of the ACM,
23(1):31–42.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple
features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition.

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal
of Computer Vision, 57(2):137–154.

Wang, H., Kläser, A., Schmid, C., and Liu, C.-L. (2013). Dense trajectories and motion
boundary descriptors for action recognition. International Journal of Computer Vision,
103(1):60–79.

Wang, H. and Schmid, C. (2013). Action recognition with improved trajectories. In
Proceedings of the IEEE International Conference on Computer Vision, pages 3551–
3558.

Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., and Chua, T.-S. (2012). Event driven web
video summarization by tag localization and key-shot identification. IEEE Transactions
on Multimedia, 14(4):975–985.

124

Wang, M. and Wang, X. (2011). Automatic adaptation of a generic pedestrian detector
to a specific traffic scene. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3401–3408. IEEE.

Wang, X., Ma, X., and E.Grimson (2009). Unsupervised Activity Perception in Crowded
and Complicated Scenes Using Hierarchical Bayesian Models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(3):539–555.

Wang, Y. and Mori, G. (2009). Learning a discriminative hidden part model for human
action recognition. In Advances in Neural Information Processing Systems, pages 1721–
1728.

Wang, Y. and Mori, G. (2011). Hidden part models for human action recognition: Proba-
bilistic versus max margin. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 33(7):1310–1323.

Weinland, D., Boyer, E., and Ronfard, R. (2007). Action recognition from arbitrary views
using 3d exemplars. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1–7. IEEE.

Wu, S., Bondugula, S., Luisier, F., Zhuang, X., and Natarajan, P. (2014). Zero-Shot Event
Detection Using Multi-modal Fusion of Weakly Supervised Concepts. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2665–2672.

Xiang, T. and Gong, S. (2008). Video Behavior Profiling for Anomaly Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(5):893–908.

Yang, T., Li, S. Z., Pan, Q., and Li, J. (2005). Real-time Multiple Objects Tracking with
Occlusion Handling in Dynamic Scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, number 60172037.

Yang, Y., Lovell, B., and Dadgostar, F. (2009). Content-Based Video Retrieval (CBVR)
System for CCTV Surveillance Videos. In Digital Image Computing: Techniques and
Applications, pages 183–187.

Yao, B., Jiang, X., Khosla, A., Lin, A. L., Guibas, L., and Fei-Fei, L. (2011). Human
action recognition by learning bases of action attributes and parts. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1331–1338. IEEE.

Zhang, C. and Viola, P. A. (2008). Multiple-instance pruning for learning efficient cascade
detectors. In Advances in Neural Information Processing Systems, pages 1681–1688.

Zhang, D.-q. and Chang, S.-f. (2004). Stochastic Attributed Relational Graph Match-
ing for Image Near-Duplicate Detection. Proceedings of the 12th ACM International
Conference on Multimedia.

125

Zhang, H., Zhou, W., Reardon, C., and Parker, L. (2014a). Simplex-based 3D spatio-
temporal feature description for action recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 2059–2066.

Zhang, S., Yang, J., and Jin, W. (2010). SAPPER: subgraph indexing and approximate
matching in large graphs. Proceedings of the VLDB Endowment, 3:1185–1194.

Zhang, Z., Chen, Y., and Saligrama, V. (2014b). A Novel Visual Word Co-occurrence
Model for Person Re-identification. Proceedings of the European Conference on Com-
puter Vision.

Zhong, D. and Chang, S.-f. (1999). An integrated approach for content-based video
object segmentation and retrieval. IEEE Transactions on Circuits and Systems for Video
Technology, 9(8):1259–1268.

Zhou, F. and De la Torre, F. (2013). Deformable Graph Matching. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2922–2929.

Zhu, Y., Nayak, N. M., and Roy-Chowdhury, A. K. (2013). Context-Aware Activity
Recognition and Anomaly Detection in Video. IEEE Journal of Selected Topics in
Signal Processing, 7(1):91–101.

CURRICULUM VITAE

Gregory Castanon

• G. Castañón, Y. Chen, Z. Zhang, V. Saligrama. Efficient Activity Retrieval through
Semantic Graph Queries. ACM Multimedia, 2015.

• G. Castañón, M. Elgharib, V. Saligrama, P.M. Jodoin. Retrieval in Long Surveil-
lance Videos using User Described Motion and Object Attributes. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2014.

• G. Castañón, A. Caron, V. Saligrama, P.M. Jodoin. Real-Time Activity Search of
Surveillance Video. AVSS, 2012.

• G. Castañón, A. Caron, V. Saligrama, P.M. Jodoin. Exploratory search of long
surveillance videos. ACM Multimedia, 2012.

• C. Chong, G. Castañón, N. Cooprider, S. Mori, R. Ravichandran, R. Macior. Effi-
cient multiple hypothesis tracking by track segment graph. FUSION, 2009.

• E. Fortunato, W. Kreamer, S. Mori, C. Chong, G. Castañón. Generalized Murty’s
algorithm with application to multiple hypothesis tracking. FUSION, 2007.

