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Abstract

To see is to sketch. Since prehistoric times, people use sketch-like petroglyphs as an effective

communicative tool which predates the appearance of language tens of thousands of years ago.

This is even more true nowadays that with the ubiquitous proliferation of touchscreen devices,

sketching is possibly the only rendering mechanism readily available for all to express visual

intentions. The intriguing free-hand property of human sketches, however, becomes a major

obstacle when practically applied – humans are not faithful artists, the sketches drawn are iconic

abstractions of mental images and can quickly fall off the visual manifold of natural objects.

When matching discriminatively with their corresponding photos, this problem is known as fine-

grained sketch-based image retrieval (FG-SBIR) and has drawn increasing interest due to its

potential commercial adoption. This thesis delves deep into FG-SBIR by intuitively analysing

the intrinsic unique traits of human sketches and make such understanding importantly leveraged

to enhance their links to match with photos under deep learning. More specifically, this thesis

investigates and has developed four methods for FG-SBIR as follows:

Chapter 3 describes a discriminative-generative hybrid method to better bridge the domain

gap between photo and sketch. Existing FG-SBIR models learn a deep joint embedding space

with discriminative losses only to pull matching pairs of photos and sketches close and push

mismatched pairs away, thus indirectly align the two domains. To this end, we introduce a
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generative task of cross-domain image synthesis. Concretely when an input photo is embedded

in the joint space, the embedding vector is used as input to a generative model to synthesise the

corresponding sketch. This task enforces the learned embedding space to preserve all the domain

invariant information that is useful for cross-domain reconstruction, thus explicitly reducing the

domain gap as opposed to existing models. Such an approach achieves the first near-human

performance on the largest FG-SBIR dataset to date, Sketchy.

Chapter 4 presents a new way of modelling human sketch and shows how such modelling can

be integrated into existing FG-SBIR paradigm with promising performance. Instead of mod-

elling the forward sketching pass, we attempt to invert it. We model this inversion by translat-

ing iconic free-hand sketches to contours that resemble more geometrically realistic projections

of object boundaries and separately factorise out the salient added details. This factorised re-

representation makes it possible for more effective sketch-photo matching. Specifically, we

propose a novel unsupervised image style transfer model based on enforcing a cyclic embedding

consistency constraint. A deep four-way Siamese model is then formulated to importantly utilise

the synthesised contours by extracting distinct complementary detail features for FG-SBIR.

Chapter 5 extends the practical applicability of FG-SBIR to work well beyond its training

categories. Existing models, while successful, require instance-level pairing within each coarse-

grained category as annotated training data, leaving their ability to deal with out-of-sample data

unknown. We identify cross-category generalisation for FG-SBIR as a domain generalisation

problem and propose the first solution. Our key contribution is a novel unsupervised learning

approach to model a universal manifold of prototypical visual sketch traits. This manifold can

then be used to paramaterise the learning of a sketch/photo representation. Model adaptation to

novel categories then becomes automatic via embedding the novel sketch in the manifold and

updating the representation and retrieval function accordingly.

Chapter 6 challenges the ImageNet pre-training that has long been considered crucial by the

FG-SBIR community due to the lack of large sketch-photo paired datasets for FG-SBIR train-

ing, and propose a self-supervised alternative for representation pre-training. Specifically, we

consider the jigsaw puzzle game of recomposing images from shuffled parts. We identify two
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key facets of jigsaw task design that are required for effective performance. The first is formu-

lating the puzzle in a mixed-modality fashion. Second we show that framing the optimisation

as permutation matrix inference via Sinkhorn iterations is more effective than existing classifier

instantiation of the Jigsaw idea. We show for the first time that ImageNet classification is unnec-

essary as a pre-training strategy for FG-SBIR and confirm the efficacy of our jigsaw approach.
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Chapter 1

Introduction

We are living in a time where visual contents are astoundingly produced and consumed. Inex-

pensive digital cameras are tirelessly working and form a new dimension of our life – CCTV

footage for various hierarchies of security networks, pics and vids we share on social media,

and our faces to verify our own phones. The availability of these large-scale visual data and the

request of its real-time understanding has enabled researchers to develop powerful and efficient

algorithms, which have witnessed impressive progress over the past few years. Given an image,

we can now detect the individual objects within (Ren et al., 2015), tell their categories (He et al.,

2016) and relationships (Lu et al., 2016), retrieve similar instances (Radenović et al., 2018), and

even play a visual-question-answering game (Antol et al., 2015) or translate it to a Monet style

painting (Gatys et al., 2016).

While these advances help to better manipulate the visual world around us, most of them are

dealing with a single visual domain - natural images in the eyes of cameras. This is not an issue

when the visual contents fed to a model can be able directly captured and recorded by the digital

devices but is a problem if they only exist in our minds. Indeed, we all ceaselessly perceive

information in the visual form, but sadly only a chosen few are skilful enough to effectively
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express themselves visually. Any less-than-perfect drawing or editing will immediately drive

away from visual realism and fall off the visual manifold of natural objects. In other words, we

humans are not born as faithful artists. For computer vision problems and learning paradigms

that long used to admit data input without a human in the loop, this implies a new family of

challenges: can machine handle the human subjectivity in visual rendering?

The recent resurgence of research interests on human free-hand sketching, e.g, sketch recog-

nition (Eitz et al., 2012; Yu et al., 2015), sketch modelling (Riaz Muhammad et al., 2018),

sketch-based image retrieval (Sangkloy et al., 2016; Yu et al., 2016) or synthesis (Chen and

Hays, 2018; Sangkloy et al., 2017), are attempts to such call. In a broader sense, by explaining

seeing via drawing, machine vision is given the best chance to understand how human visual

systems operate. Because the domain it functions on offers probably the only visually interpre-

tive way to imitate the imagery processed inside the human brain. In view of the complement

to existing computer vision algorithms, the unique traits of sparse black strokes and vast white

backgrounds presented in human sketch brings opportunities to re-examine their efficacy and

potentially underpin new insights. For example, while deep networks already show superior

performance on many perceptual tasks, the ability to quickly adapt or generalise under novel

settings has come under increasing scrutiny. The sketch is ideal for learning a meta representa-

tion under such purpose as particular styles and details are thrown away to encourage invariance.

Models learned on sketches are also less likely to take a tricky shortcut to deceive optimisation

objectives, e.g., learning by memorising. The complexity of human-informed data space makes

it hard for overfitting unless real understandings of visual primitives are delivered.

This thesis delves deep into an important line of sketch-related research to teach machines

to conduct instance-level image search based on human free-hand sketch query input. This

is also known as the problem of fine-grained sketch-based image retrieval (FG-SBIR) and has

drawn increasing research interests over the past few years due to its potential commercial val-

ues. Again, let us be absolutely clear: free-hand sketching is not tracing – there is a fundamental

process of abstraction and iconic rendering, where overall geometry is warped and salient details

are selectively included. Thus, brute force matching will not solve the problem and deeper com-
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puter vision reasoning is necessary to understand the inner workings of sketch-photo matching

as humans do.

But why would FG-SBIR be useful? Indeed, compared with mainstream texts-as-query via

keywords, attributes and hashtags etc, sketches are intrinsically more flexible and accurate given

the rich contents in images and the subjectivity of human perception which is more essential to

convey when conducting the search. Visual primitives once hard to be expressed by a common

language (as per flexibility) or described quantitatively (as per accuracy) become natural under

drawing. The benefits manifest even in our most mundane tasks. Consider the scenario where a

lady walks on the street and loves the shoes of a passer-by. How can she look for the shoes on the

shopping website later? The conventional way is to type in “a Nike sandal with mid-heel, pointy-

toe and slingback” and the search engine will retrieve back a ranked list of images with sorting

preference to those tags. However, it is very likely that she will soon find out that there exists

noticeable uncertainty in her query itself (e.g., inches of heel, the curvature of the toe and the

location of logo.) so that none of the results suits her within acceptable precision. She may also

find it difficult trying to enhance the query as that needs words in length of a paragraph to infer

both the relative spatial arrangements and stylish subtle details. Conversely, the cumbersome

process can be greatly alleviated if replaced by finger sketching her mental picture of that shoes

directly on the touchscreen devices. A sketch speaks for a “hundred” words.

In this thesis, we investigate a number of data-driven approaches borrowing the power from

deep learning to improve the reliability and practicality of FG-SBIR models. Below we first

review previous FG-SBIR works, pinpoint their left unsolved challenges, and demonstrate how

we address them in Section 1.1. We then wrap the Introduction part by giving the outline of this

thesis in Section 1.2.

1.1 Background, Challenges, and Solutions

Two concurrent works (Sangkloy et al., 2016; Yu et al., 2016) provide the first step towards the

capabilities of a practical FG-SBIR system and still underpin the basis of most contemporary FG-
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SBIR works. Both models are multi-branch Convolutional Neural Networks (CNNs) designed

to learn a joint embedding space in which sketch and photo can be directly compared. The

popular pairwise contrastive loss and triplet ranking loss are evaluated by both works and the

latter is shown to be superior in both models. The two models differ mainly in whether the photo

and sketch CNN branches are Siamese (i.e., with weight sharing) or heterogeneous (i.e., without

sharing). Subsequent research focuses on issues surrounding multi-branch deep learning that

learns to extract more comparable features. For example, attributes to enable embedding space

of enhanced semantics (Li et al., 2017b; Song et al., 2016), attention mechanism for visual focal

learning (Song et al., 2017b) and exploration of query synergy between texts and sketches (Song

et al., 2017a). It is also noteworthy that unlike some SBIR works (Chen et al., 2009; Zhu et al.,

2014) that use a sketch and additional successive steps of text or colour cues to refine retrieval,

we cope with non-interactive black & white sketch-based retrieval.

This thesis starts from the prevalent multi-branch deep CNN with a triplet ranking objective

and brings forward solutions to the challenges underlying its current practice.

Challenge A: Sketch-photo domain gap There is a large domain gap between sketch and

photo – a sketch captures object shape/contour information and contains no information on

colour and very little on texture. Existing efforts indirectly narrow the discrepancy between the

two domains by learning a discriminative model to pull matching pairs of photos and sketches

close and push mis-matched pairs away. Some with additional attempts adopt programmatically

extracted edgemaps to either replace photos as input (Yu et al., 2016) or pre-train a matching

model with photos (Radenovic et al., 2018) to enhance domain invariance. But the choice to

what threshold value we set to eliminate weak and noisy edgemap detection responses from

photos remains heuristic.

Solution A: We propose a more principled way to deal with sketch-photo domain gap. The

key component is to introduce a generative task of cross-domain image reconstruction – when an

input photo is embedded in the joint space, the embedding vector is used as input to a generative

model to synthesise the corresponding sketch. Therefore, it explicitly preserves domain-invariant

information and reduces the domain gap as opposed to existing models.
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Challenge B: Sketch-photo abstraction gap The abstraction issue is manifested in the fact

that two people can draw very different sketches of the same object due to different backgrounds,

drawing abilities and styles, and different subjective perspectives about the salience of visual

elements to include. The resulting gap to match with photos has been tackled together with

domain gap via the aforementioned deep metric learning on the whole sketch level. However, a

closer inspection of human sketching process reveals that it contains two components with quite

distinctive characteristics of abstraction that demand different treatments. The overall geometry

of sketch contours usually composed of long strokes is heavily warped, while distortion is less

of a problem for shorter strokes in details. But the choice and amount of details vary by artists.

Solution B: We propose to better bridge the abstraction gap by enabling complementary fea-

ture learning between object sketching contours and salient details, i.e., the model needs to learn

to separately extract non-overlapping (factorised) features from the two components. This is

tackled in two stages. We first show that it is possible to factorise out detail part from a sketch

and invert it into a distortion-free object contour via a style transfer model. We then importantly

leverage the synthesised contour and feed it together with the original whole sketch to Siamese

two deep branches. The complementarity of the outputs is ensured with the decorrelation loss.

Challenge C: Generalisation beyond training categories The promising performance of

Siamese triplet network has thus far implicitly assumed the availability of instance-level sketch-

photo paired annotations for every coarse category to be evaluated. However, as we find out, it

generalises very poorly in practice if training and testing categories are disjoint.

Solution C: We propose a novel framework that automatically adapts the deep feature extrac-

tion to a given query sketch. This ensures a good representation is produced at testing-time, even

when dealing with out-of-sample data in the form of sketches and photos from new categories.

The key component is an auxiliary unsupervised learning approach that maps any given sketch

to the manifold embedding that represents a universal dictionary of prototypical sketch traits.

The generalisability is then obtained by embedding this universal feature to update the retrieval

function accordingly.

Challenge D: Dependence on ImageNet pre-training Compared with datasets for conven-
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tional vision task consistently growing bigger towards million scale (Benenson et al., 2019; Car-

reira et al., 2019; Lin et al., 2014; Rothe et al., 2018), the largest single-category FG-SBIR dataset

remains on a size of few thousands. Thus ImageNet pre-training has long been deemed essential

by the FG-SBIR community to enable quick competitive performance under deep learning. But

the practice of disregarding the fitness between pre-training and the specific downstream task

is also intuitively problematic – training for categorisation leads to learning invariance on high-

level semantics, while instance level matching asks for both fine-grained and spatially-aware

capabilities.

Solution D: We propose a self-supervised pre-training alternative for representation learning.

We consider the game of jigsaw puzzle to recover an image from its shuffled patches. By for-

mulating the puzzle in a mixed-modal fashion, a model that can solve it must be able to learn a

feature that is: (i) locally invariant to whether a given patch is provided as sketch/photo (since

patch modality is randomly selected), and (ii) relationally invariant to the modality of either

patch in a disjoint pair (it must be able to use either sketch/photo representation in pairwise

comparisons for sorting). It is thus a better-aligned pre-training task for the final task of sketch

to photo image retrieval.

1.2 Thesis Outline

This thesis is organised into five chapters:

Chapter 3 presents a discriminative-generative hybrid model for FG-SBIR problem which

explicitly aligns the sketch and photo domains. A multi-branch cross-domain deep encoder-

decoder model is formulated and in-depth analysis is provided on the model architectural design.

The state-of-the-art result is achieved on the largest multi-category FG-SBIR dataset Sketchy

(Sangkloy et al., 2016) and to our knowledge the very first study that approaches human perfor-

mance (50.14% vs. 54.27%).

Chapter 4 identifies the problem of factorised inverse-sketching as a key for both sketch

modelling and sketch-photo matching. A novel unsupervised sketch style transfer model is pro-
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posed to translate a sketch into a geometrically realistic contour as to invert human sketching

process. This makes possible to develop a new FG-SBIR model which separately extracts an

object detail representation to complement the synthesised contour for effective matching against

photos.

Chapter 5 provides the first solution to the cross-category generalisation problem for FG-

SBIR. This is introduced based on a novel universal prototypical visual sketch trait for instance-

specific latent domain discovery, which is importantly utilised later to automatically adapt the

model embedding for sketches from unseen categories. Extensive experiments validate the

efficacy of our method compared to a variety of competitors including direct transfer, other

approaches to defining instance-embeddings, and state-of-the-art domain generalisation meth-

ods.

Chapter 6 proposes the first study of pre-training approaches for FG-SBIR. A self-supervised

objective is formulated to solve the popular game of jigsaw puzzle based on permutation infer-

ence via Sinkhorn iterations. Extensive experiments on all four publicly available product-level

FG-SBIR datasets show the longstanding practice of ImageNet classification is unnecessary as

a pre-training strategy for FG-SBIR and confirm the superiority of our jigsaw approach. The

results also show that this leads to improved generalisation across object categories.

Chapter 7 provides a conclusion and suggests several research problems and directions to

be pursued as further work.



Chapter 2

Literature Review

This chapter provides a summary of related work to the main contributions of this thesis. We

start from an overview for sketch-based image retrieval in Section 2.1, and move onto image-to-

image translation works in Section 2.2. Section 2.3 reviews a specific line of methods for domain

generalisation and finally self-supervised representation pre-training is covered in Section 2.4.

2.1 Sketch-based Image Retrieval

Research on sketch-based visual search can be traced back to the 1990s, which is of particular

focus when the concept of content-based image retrieval was first raised (Hirata and Kato, 1992;

Kato et al., 1992). While imagery can be manifested in many forms, e.g., 3D shape, video,

the most studied visual search problem based on sketch query is on 2D images, known as the

problem of sketch-based image retrieval (SBIR). We will first review some early work relying

on hand-crafted features for category-level SBIR, then focus on relevant techniques on deep

features and for fine-grained SBIR that go beyond category-level matching precision.
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2.1.1 Category-level SBIR

Shallow features Category-level SBIR requires the retrieved photo to come from the same

category as the query sketch. A key characteristic of most early works (Cao et al., 2010, 2011;

Chans et al., 1997; Del Bimbo and Pala, 1997; Matusiak et al., 1998; Parui and Mittal, 2014;

Rajendran and Chang, 2000) is to represent an image as programmatically-generated contour

via edge detection (e.g., Canny edge detector) and to match with sketches based on pure local

geometric similarity (e.g., blob-based pixels or curvature correlations). More sophisticated hand-

crafted features (Bui and Collomosse, 2015; Cao et al., 2013; Parui and Mittal, 2014; Qi et al.,

2015; Saavedra et al., 2015; Tolias and Chum, 2017) are later introduced into play with the

hope to better bridge the gap between sketches and images. These include explorations of both

local (Eitz et al., 2011; Hu and Collomosse, 2013; Hu et al., 2011) and global representations

(Chalechale et al., 2004; Eitz et al., 2010; Saavedra, 2014), and histogram of oriented gradients

(HOG) (Dalal and Triggs, 2005) is a prevailing choice for both. Local representations are also

shown to be superior to its global counterpart across a number of feature types (e.g., scale-

invariant feature transform (SIFT) (Lowe, 2004), self-similarity descriptor (SSIM) (Shechtman

and Irani, 2007), shape context (SC) (Belongie et al., 2002), HOG) in a comprehensive survey

(Hu and Collomosse, 2013). Since each image contains a few thousand of such local descriptors,

noisy unfavourable information becomes inevitable. To alleviate this issue, bag-of-words (BoW)

model (Eitz et al., 2011) is also explored by first clustering the local features extracted from

the whole dataset into k clusters (e.g., k-means) as to build a visual vocabulary. Each local

feature of one image is then quantised as a histogram of the weighted distance of visual words.

Overall, these shallow features do not achieve semantic understanding and limit their efficacy to

simple datasets where sketches within lack of details and only permit exceedingly small local

deformations.

Deep features Thanks to the availability of large-scale human sketch datasets (Eitz et al., 2012;

Sangkloy et al., 2016), deep convolutional neural networks (CNNs) have been able to apply to

SBIR. Sketch-a-Net (Yu et al., 2015) is the first deep CNN model specifically designed for human

sketch data, despite it targets on recognition task rather than visual search. (Qi et al., 2016)
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adapts Sketch-a-Net for SBIR into a two-branch Siamese network by learning a joint embedding

space with contrastive loss by pulling similar sketch-photo pairs close and pushing dissimilar

ones apart. Such deep metric learning has extended to triplet (Bui et al., 2017) and quardruplet

(Seddati et al., 2017) networks and shown promising performance. Additional efforts towards

more practical SBIR system are devoted including performance trade-off with the number of

training samples and categories (Bui et al., 2018), efficient indexing via short hash code (Liu

et al., 2017a) and allowing external aesthetics context to be leveraged in matching (Collomosse

et al., 2017). While deep features offering better accuracy compared with learning-free shallow

features, their generalisability to novel unseen object categories are usually unsatisfactory and

has triggered a relevant line of works on zero-shot SBIR (Dey et al., 2019; Liu et al., 2017b,

2019; Yelamarthi et al., 2018). Methods proposed in this thesis are also based on deep metric

learning but step forward to the problem of fine-grained SBIR (FG-SBIR) that requires instance-

level search precision. Despite FG-SBIR shares many technical insights with aforementioned

methods, the data and evaluation change from one-to-many (i.e., a sketch can have many true

match gallery photos as long as they come from the same category) to one-to-one (i.e., a sketch

normally corresponds only one true match gallery photo) potentially invalidates the conclusions

from category-level SBIR and makes FG-SBIR a de facto independent field.

2.1.2 Fine-grained SBIR

The problem of fine-grained SBIR was first introduced in (Li et al., 2014) which employs a

deformable part-based model (DPM) representation (Felzenszwalb et al., 2009) followed by a

graph matching strategy for cross-domain pose correspondence. However, their definition of

fine-grain is very different from ours here – a sketch is considered to be a match to a photo if the

objects have similar viewpoint, pose and zoom parameters; in other words, they do not necessar-

ily have to contain the same object instance. We attribute the delay of FG-SBIR development to

the lack of sketch-photo paired data and expensiveness of collecting them compared to annotat-

ing data in more conventional computer vision tasks: the user is first displayed with an image for

seconds, and asked to sketch on a blank canvas based on the mental imagery that must reflect the

key visual traits essential for instance-level identification. It is until recently FG-SBIR regains
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the attention of researchers thanks to the advent of three FG-SBIR datasets. Sketchy (Sangkloy

et al., 2016) is the largest FG-SBIR dataset to date covering 125 object categories with each

category containing 100 natural photos and each photo having at least 5 corresponding human

sketches. QMUL-V1 (Yu et al., 2016) focuses on product images and contributes three common

fashion categories, namely shoe, chair, and handbag, with each on a size of a few hundreds. Shoe

category is later expanded in (Yu et al., 2017b) as QMUL-Shoe-V2 with 6648 sketch-photo pairs,

which becomes the current largest single-category FG-SBIR dataset. It is important to note that

while Sketchy and QMUL-X datasets are all designed for the task of FG-SBIR, the granularity

of their collected sketch-photo pairs is different. This is because the aim of Sketchy is more

towards a direct continuation and upgrade of general-purpose category-level SBIR. Gallery pho-

tos in Sketchy are natural images carefully curated from ImageNet (Russakovsky et al., 2015),

where pose and shape play a noticeable role in differentiating instances within the same cate-

gory. The sketches rendered based on those photos are thus inevitably affected to overlook or

downplay certain key details but still able to conduct an instance-level search from drawer’s per-

spective. On the other hand, the collection of QMUL-X orients from the purpose of commercial

applications for shopping and the product photos come with clean background and single pose,

and often differ only in diverse stylish parts (e.g., decorations on a shoe body or the buckle type

to open a bag). The dataset contributors are also required to work on one category only per

time to encourage proficiency. The resulting sketch-photo pairs are understandably more fine-

grained where local subtle visual traits must be rendered. The works included in this thesis have

developed methods for both datasets.

With the availability of datasets, FG-SBIR is mostly tackled by deep learning. There are

mainly two lines of work among the very few studies: (i) How to learn a more comparable

sketch-photo joint embedding space. The two pioneering works (Sangkloy et al., 2016; Yu et al.,

2016) confirm the efficacy of the paradigm by first pre-training the sketch and photo branches on

various perceptual tasks (e.g., ImageNet classification) and fine-tuning with triplet ranking loss

on target FG-SBIR dataset. (Song et al., 2017b) improves it by introducing an attention module

at conv layer to focus representation learning on specific discriminative local regions rather than
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being spread evenly over the whole image. Outputs of conv and final fully-connected (FC) layer

are further added to keep both coarse and fine semantic information, as similarly proposed in

(Yu et al., 2017a). (Song et al., 2016) utilises visual attributes to encourage domain-invariance

of the embedding space via integrating extra attribute prediction and attribute-based ranking

training objectives. Text is also explored as a complementary input to sketch (Song et al., 2017a)

and trained jointly in an end-to-end fashion via two triplet ranking losses - for sketch-photo and

text-photo alignment, respectively. (ii) How to train a FG-SBIR model without using any sketch-

photo pairs and bypass the needs of the expensive collection process. (Riaz Muhammad et al.,

2018) trains a stroke removal policy that learns to predict which strokes can be safely removed

without affecting recognisability. This makes possible to transform an edge to multiple images

of variable abstractions, which then regard as synthesised sketches to form pseudo sketch-photo

pairs for FG-SBIR training. A similar idea is adopted in (Li et al., 2018), which develops a

grouper that organise image edges into semantically meaningful parts. The pseudo sketch is then

obtained by removing less salient groups with a smaller number of segments, shorter lengths but

occupying a bigger region. (Radenovic et al., 2018) takes a different approach by directly assum-

ing edge as a pseudo sketch and train an edge-photo matching network. To reduce the domain

gap, an edge filtering layer is introduced to threshold weak edge responses, which typically does

not present in human sketching. This thesis falls into the former line of FG-SBIR study and

addresses some unique challenges underlying current approaches, as described in Section 1.1.

2.2 Image-to-Image Translation

Remarkable progress has been made on deep generative models, which can be broadly cate-

gorised into Variational Autoencoder (VAE) (Kingma and Welling, 2013), Autoregressive Model

(Uria et al., 2016) and Generative Adversarial Network (GAN) (Goodfellow et al., 2014). These

advances have been actively applied to various practical applications including image stylisation

(Gatys et al., 2016; Johnson et al., 2016), single image super-resolution (Ledig et al., 2017),

video frame prediction (Mathieu et al., 2016), image manipulation (Korshunova et al., 2017;

Zhu et al., 2016) and conditional image generation (Mirza and Osindero, 2014; Odena et al.,
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2017; Reed et al., 2016; Yan et al., 2016; Zhang et al., 2017). The works most relevant to

ours are deep image-to-image translation models (Isola et al., 2017) formulated in conditional

generative adversarial network (cGAN). Such a model takes an image as input and produces a

bottleneck latent code embedding via an encoder, which is then used by a decoder as input to

generate an image in another domain that shares the same identity or semantic information. A

naive but common training objective is Euclidean distance between each generated pixel and

ground truth counterpart, but this usually causes blurry effect due to its tendency to average all

plausible outputs (Mathieu et al., 2016). Therefore, an additional adversarially-trained discrim-

inator (Radford et al., 2015) is introduced in cGAN, where the generated pixels are guided to

fool the discriminator from the real ones, and where the discriminator tries best to tell the dif-

ference between them. In this way, the blurry pixels will become unacceptable in the eyes of

the discriminator and optimise towards sharp visual realism. cGAN also calls for two datasets

of training images that represent the visual styles of source and target domain, respectively. The

input-output image pairs in a training batch can be either paired or unpaired, where this thesis

focus on the latter. Apart from realistic image translation, this thesis also introduces the gen-

erative task (as per decoder) as an auxiliary task to help discriminative feature learning (as per

encoder). In other words, we do not care about image synthesis quality under this setting. How

to improve the encoder is the sole purpose here.

2.2.1 Deep discriminative-generative hybrid models

A desirable property of learning models is the ability to exploit the advantageous information

from both discriminative and generative models. A popular early attempt (Bengio et al., 2013)

is to first pre-train auto-encoder in a layer-wise fashion via unsupervised reconstruction term

and fine-tune the entire stack of encoders in a supervised discriminative manner. Recently, deep

discriminative-generative hybrid models have been proposed to leverage both labelled and unla-

belled data in a unified framework. An important line of efforts are dedicated to building lateral

connections between the symmetric layers of encoder and decoder, thus relieving the pressure

of only lower layers are busy at reconstructing while upper layers become idle and not regu-

larised. (Zhao et al., 2015) proposes a stacked what-where autoencoder, where the locations (as
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per where) of the most numerically activated (as per what) local neurons in an encoding layer

are used to guide its corresponding layer in the generative decoder. A similar idea is adopted by

(Rasmus et al., 2015). It takes a more direct approach that the output of each decoder layer is

determined by both the output of its previous layer and its corresponding encoder layer output

via perceptrons. In Chapter 3, we also introduce a generative task and integrate it with FG-SBIR

discriminative learning. However, apart from the fact that we are dealing with cross-domain

reconstruction between sketch and photo rather than single domain, there is another fundamental

difference: instead of trained from scratch, our encoder is already well pre-trained on ImageNet

classification task with generic visual understanding learned from million-scale images. The

question remains open that given such dramatic imbalance, the addition of generative decoder

starting from random parameterisation can even help from the first place. Chapter 3 shows this is

possible with asymmetrical design choice, i.e., the complexity of decoder’s architecture does not

mirror that of the encoder and a different learning strategy to favour the learning of the encoder

over the decoder.

2.2.2 Unpaired image-to-image translation

Three concurrent works (Kim et al., 2017; Yi et al., 2017; Zhu et al., 2017) set the basis of

how to learn a deep parametric translation function for discovering the underlying relationship

between domains with two independently collected sets of images and without any extra cross-

domain pair labels. Given an image in the source domain, it goes through the encoder-decoder

of one cGAN and asked to translate into an image indistinguishable by the discriminator in the

target domain. However, the pure supervision on the level of domain leads to potentially many

candidates satisfying the condition but failing to pair with the input in a meaningful way. If

some paired data are available, the model is at least informed to optimise towards preserving

the identity of the input, but without it, an additional structural constraint is expected. The idea

of transitivity is thus applied that enforces forward-backward cycle consistency and encourages

one-to-one translation. That is, a generated image from one cGAN should be able to reconstruct

back to itself via another cGAN. The two cGANs coupled together makes bidirectional mapping

between two visual domains possible even under unpaired data setting. In Chapter 4, we aim
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to stylise a human sketch to a distortion-free contour extracted from the photo edge and frame

the problem in the context of unpaired image-to-image translation. And because of the severe

perceptual abstraction and line deformation exhibited in sketches, we make two key modifica-

tions: (i) The cyclic constraint on visual space is too tight. Instead, we relax it and apply cycle

consistency on the embedding space, i.e., given a translated output, it just needs to return to the

same place in the high-dimensional embedding with its original input. (ii) Encoder trained from

scratch struggles to provide consistently useful gradients for keeping basic visual structures in

noisy sketches and sometimes deviates from sane learning to collapse. We replace it with conv

layers of VGG-16 (Simonyan and Zisserman, 2015) well pre-trained on ImageNet classification

task and keep it fixed throughout. Both qualitative and quantitative results validate the efficacy

of both.

2.3 Domain Generalisation via Predicting Novel Domains

Generalising to novel categories beyond the training set is an important capability for computer

vision to move out of the lab and impact the real world. This motivates, for example, extensive

research in zero-shot object recognition (Changpinyo et al., 2016; Frome et al., 2013; Kodirov

et al., 2017). Nevertheless, in the context of SBIR, only two previous works studied cross-

category generalisation. Both make use of external category-level features to guide learning:

(Shen et al., 2018) adopt word-vector of category name learned from language model (Mikolov

et al., 2013) to regularise visual learning. By seeing the distributions of words in texts as a seman-

tic space for understanding what objects look like, matching is learned beyond training instances

in the visual modality, but also from large, unsupervised text corpus filled with vast amount

of human knowledge - which is general. Without ever seeing a cat, such model with visual-

semantics embedding may get a bit perplexed with the novel unseen visual trait (e.g., whiskers),

but it knows it is closer to the dogs in the training set rather than cars or even tigers as they share

similar semantics as small four-leg animals and affinity to humans. Very differently, (Yelamarthi

et al., 2018) assumes that ImageNet pre-trained photo features (Simonyan and Zisserman, 2015)

are already generalisable enough and focus on bridging sketch-photo heterogeneity by using
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photo features as guidance for sketch feature regression via a deep conditional generative model.

To our best finding, there is no prior work exploring the cross-category generalisation issue in

FG-SBIR (CC-FG-SBIR), which is more challenging that requires generalisable instance-level

differentiation.

Chapter 5 for the first time tackles the problem of CC-FG-SBIR, i.e., a FG-SBIR model

generalises well to a novel category without data collection and model re-training. By casting

a change of category as domain shift and sketch-photo matching as binary pair classification,

solving CC-FG-SBIR is reminiscent of domain generalisation (DG) (Shankar et al., 2018) and

domain adaptation (DA) (Csurka, 2017) tasks. Our key idea comes close to a particular group

of DG/DA learning approaches: find external descriptors that can improve knowledge sharing

across domains and use it to synthesise an appropriate model on the fly for the novel domain

(Bertinetto et al., 2016; Lei Ba et al., 2015; Li et al., 2017a; Yang and Hospedales, 2015, 2016).

In the context of deep networks, a model is then automatically calibrated where its parameters are

predicted from a network conditioned on the external descriptor. Such dynamic parameterisation

has been termed hypernetworks (Ha et al., 2017) – where one network synthesises the weights

of another. Our proposed method addresses the DG problem in CC-FG-SBIR by embedding the

query sketch in a universal embedding space and using this embedding as the meta-descriptor for

any sketches coming from the new domain (in place of the external manually-defined descriptor),

from which parts of the feature extraction network of both photo and sketch are synthesised (as

per hypernetworks).

2.4 Self-supervised Representation Learning

Many deep CNN based computer vision models assume that a rich universal representation has

been captured in ImageNet pre-trained CNN (Donahue et al., 2014; Sharif Razavian et al., 2014;

Yosinski et al., 2014; Zeiler and Fergus, 2014), which can then be fined-tuned with task-specific

data using various strategies (Geng et al., 2016; Long et al., 2015; Ren et al., 2015; Schroff

et al., 2015; Xu et al., 2015). Especially for tasks with limited training data, fine-tuning an

ImageNet pre-trained model is a near-ubiquitous step, to an extent that its efficacy is rarely
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questioned. Very recently, (He et al., 2019) challenges the conventional wisdom of ImageNet

pre-training for downstream tasks like object detection, and demonstrate how similar results can

be obtained by training from scratch. However, even in that study, the scale of data required for

effective generalisation is beyond that of typical FG-SBIR datasets used throughout this thesis,

thus pre-training for FG-SBIR is a must. In Chapter 6, we show that an appropriately designed

self-supervised task (mixed-modal jigsaw solving) and model (permutation inference) leads to a

strong initial representation for FG-SBIR that outperforms the classic ImageNet pre-training.

Self-supervised learning is an approach to solving unsupervised learning problems by using

the mechanism of supervised learning. The supervision signal is achieved by forming pretext

tasks from data itself and the learned intermediate representation is expected to carry good

semantics or structural understanding that sets as a beneficial initial state to practical down-

stream tasks. Various pretext visual tasks have been proposed, and mostly designed for the

downstream purpose of image classification and semantic segmentation. (Doersch et al., 2015)

formulates it as predicting the relative position between two random patches from one image.

(Noroozi and Favaro, 2016) enhances it to tell the relative positions between all possible com-

binations of every two parts, i.e., to recover all shuffled patches within an image back to their

original locations. A model needs to master the spatial configurations and contexts of objects

to play this popular jigsaw game. Another idea is to consider the visual primitives within each

patch as a quantifiable attribute vector that can be compared across multiple patches. Simple

arithmetic can then be devised for visual learning, e.g., the count of visual primitives within

the whole image should be equal to the sum of that in each local patch (Noroozi et al., 2017).

Pretext task is also defined on image-level that trains a model to identify the same image with

different rotation angles (Gidaris et al., 2018). In a completely different line of work, self-

supervised representation learning is regarded as a by-product in generative tasks, e.g., image

inpainting (Pathak et al., 2016) or colourisation of greyscale images (Zhang et al., 2016). A key

finding of Chapter 6 is what constitutes a “strong” self-supervised method varies dramatically

with the downstream task. Methods once work reasonably well for classification may simply

fail for FG-SBIR. We also show that Sinkhorn-permutation solution to Jigsaw pre-training is
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crucial to obtaining dramatic improvement for FG-SBIR as opposed to popular classifier formu-

lation of the problem (Carlucci et al., 2019; Noroozi and Favaro, 2016), where their difference

is commonly perceived as minor/negligible before for more conventional vision tasks, e.g., clas-

sification/detection (Santa Cruz et al., 2017).



Chapter 3

Cross-domain Generative Training for FG-SBIR

3.1 Background and Motivation

In this chapter, we aim to learn a discriminative-generative hybrid model for FG-SBIR. The state-

of-the-art FG-SBIR models (Sangkloy et al., 2016; Yu et al., 2016) are deep models that aim to

close the domain gap by learning a joint feature embedding for the two domains. Concretely,

multi-branch deep convolutional neural networks (CNNs) are employed where each branch cor-

responds to one domain and the final shared layer defines the embedding space which is subject

to various discriminative losses such as pairwise contrastive loss or triplet ranking loss. These

losses are designed to pull matching pairs of photos and sketches close and push mis-matched

pairs away. These models thus indirectly align the two domains. However, with limited train-

ing data and by focusing only on discriminative losses, these models struggle to capture all the

domain-invariant information and thus generalise poorly to test data where the domain discrep-

ancies and misalignments could be different from those in the training data.

Our model also aims to learn a joint embedding space. The key difference to the existing

models is that we introduce a generative task of cross-domain image synthesis. When an input

19
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photo is embedded in the joint space, the embedding vector is used as input to a generative model

to synthesise the corresponding sketch. By doing so, we explicitly enforce the model to preserve

all the domain-invariant information in the embedding space. This richer representation thus

enables the model to generalise better to unseen test data. More specifically, the proposed model

is a multi-branch cross-domain deep encoder-decoder model. The encoder in each branch is a

deep CNN that takes an image as input and outputs a feature embedding vector. This vector is

then used as input to a deep transposed-convolutional (deconvolutional) network (Zeiler et al.,

2010) regularised by the reconstruction loss to reconstruct the corresponding sketch. It is a

discriminative-generative hybrid model because both discriminative and generative losses are

used for learning the embedding, corresponding to the photo-sketch matching discriminative

task and the cross-domain image synthesis generative task respectively.

3.2 Methodology

3.2.1 Network Architecture

Overview The overall network architecture of the proposed discriminative-generative hybrid

FG-SBIR model is illustrated in Figure 3.1. It consists of four sub-networks: (1) a three-branch

Siamese encoder subnet E that aims to learn a joint embedding space for matching input sketch-

photo pairs, (2) a Siamese decoder subnet D that takes an embedding vector and reconstruct a

target sketch, (3) a classification subnet C to make the embedding vector class-discriminative

and (4) a triplet ranking subnet T to make the vector instance-discriminative. Each encoder

branch has the same base network and share their parameters, hence the name Siamese; so does

each decoder branch. The four subnets are connected by the joint embedding layer: it is the

output of E and input of D, C and T .

Encoder The encoder architecture is based on that of VGGNet (Simonyan and Zisserman,

2015), which has been widely used as the base network in many vision applications. The

final classification layer of the network pre-trained on classifying the 1000 ImageNet classes

is dropped and an additional shared 256-D fully-connected (FC) layer is added after the 4096-D

penultimate FC layer of VGGNet. The `2 normalised 256-D output of the encoder is the joint
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Figure 3.1: Architecture of the proposed deep encoder-decoder FG-SBIR model.

embedding layer and once learned shall be used as the feature representation for both domains

for retrieval.

Classification Subnet Although FC layers can be added in the classification subnet, in this

work, the classifier directly feeds the latent code to a softmax layer with classification loss LC

being the cross-entropy loss, and the number of output nodes equalling the number of object

categories. The classification loss makes sure that the learned embedding space preserves class-

discriminative information.

Triplet Ranking Subnet Similar to the classification subnet, we directly add the triplet rank-

ing layer after the shared 256-D embedding layer. In this subnet, each instance tuple {s, p+, p−}

contains an anchor sketch s, a positive photo p+ containing the same object instance and a neg-

ative photo p−. The subnet has three branches and the goal is to learn a instance-discriminative

embedding space where the positive photo p+ is ranked above the negative photo p− in terms of

its distance to the query sketch s. Note our model is flexible in that any instance-discriminative

loss can be used. But as in (Sangkloy et al., 2016; Yu et al., 2016), we found that the triplet

ranking loss alone works the best.
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Input Size Filters Stride BN Activation

7 x 7 x 512 512 2 x 2 Yes ReLU
14 x 14x 512 256 2 x 2 Yes ReLU
28 x 28 x 256 128 2 x 2 Yes ReLU
56 x 56 x 128 64 2 x 2 Yes ReLU
112 x 112 x 64 32 2 x 2 Yes ReLU
224 x 224 x 32 3 1 x 1 No Tanh

Table 3-A: Detailed architecture of the decoder subnet.

Decoder The decoder network consists of five upsampling blocks and one final convolution

block with a filter size of 4× 4 (see Table 3-A for details). Each upsampling block has the struc-

ture of Deconvolution-BatchNorm(BN)-ReLU, except the final layer which uses Deconvolution-

Tanh for generating the final output. Compared with the encoder-decoder architectures in exist-

ing deep generative models (Isola et al., 2017; Sangkloy et al., 2017; Yoo et al., 2016; Zhang

et al., 2016), ours differs in that: (i) The decoder is not architecturally symmetric with the

encoder. (ii) The decoder is much shallower than the encoder. This design is due to the fac-

tor that with the limited training sketch-photo pairs, a deeper decoder network would be prone

to overfitting which can make the training process unstable. Furthermore, rather than producing

a loyal reconstruction output, the sole objective of this decoder is to help the encoder to learn a

richer representation in the embedding layer which is domain-invariant. (iii) The generative pro-

cess is also asymmetric: We use the embedding vector of the anchor sketch to reconstruct itself,

and the positive photo to also reconstruct the anchor sketch. The opposites are not attempted,

i.e., sketch-to-photo and photo-to-photo reconstructions. The reason is simple: to compare a

photo with a sketch, the additional colour and texture information in the photo domain has to be

removed in the embedding layer, so any effort to recover that in the decoder would be futile.

3.2.2 Model Learning and Deployment

Learning Objectives Suppose the encoder, classification and decoder subnets are denoted as

φE , φC , and φD, where they are parametrised by θE , θC and θD respectively. Given N sketch-
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photo triplets X = {xsi ,x
p+

i ,xp
−

i }Ni=1 within a training batch, our learning objective is:

argmin
θE ,θC ,θD

L = LC + λDLD + λTLT , (3.1)

where LC is the cross-entropy softmax loss for classification:

LC = −
N∑
i=1

(p̂i
s log pi

s + p̂i
p+ log pp

+

i + p̂i
p− log pp

−

i ), (3.2)

p
{s, p+, p−}
i =

exp(φC(φE(x
{s, p+, p−}
i )))∑N

j=1 exp(φC(φE(x
{s, p+, p−}
j )))

, (3.3)

LD is the pixel-wise `2 reconstruction loss that takes either the input sketch or photo from a

ground-truth pair as input and synthesises the input sketch1 as

LD =

N∑
i=1

||xsi − φD(φE(xsi ))‖2 + ||xsi − φD(φE(xp
+

i ))‖2, (3.4)

and LT is the triplet ranking loss:

LT =

N∑
i=1

max(0,∆ + ||φE(xsi )− φE(xp
+

i )‖2 − ||φE(xsi )− φE(xp
−

i )‖2). (3.5)

λD and λT weight the three losses by keeping them in roughly the same value range.

Model training strategy The most straightforward way for training a deep model with mul-

tiple losses is to update all the parameters together; however the disadvantage of this strategy

is that it could lead to detrimental competition between the downstream and upstream tasks.

For example, when two sketches belong to different categories but exhibit similar structural

and visual cues, θE may be sacrificed by pursuing the optimal θD. This motivates us an alter-

nate training strategy that learns the encoder first, then fine-tune it with the decoder. One may

argue that this would potentially undermine the interpretability of the decoder; nevertheless it is

the encoder θE that this learning process really cares about, and the image synthesis quality is
1We have also experimented adding the popular adversarial loss (Goodfellow et al., 2014) and found that the

decoder would suffer from significant mode collapsing problems due to the visual sparsity of sketches, which is
commonly observed in generative adversarially trained nets (Salimans et al., 2016).
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Figure 3.2: Three different weight sharing strategies for FG-SBIR task.

expandable. Specifically, we first minimise LC + λDLD with respect to θE and θC , then min-

imise L with respect to θE , θC and θD. In practice, we find this leads to more stable training

behaviour.

Model Deployment Once trained, during testing the decoder, classifier and triplet ranking

subnets are stripped off. Given a query sketch xs, we compute the 256D feature representation

and use its euclidean distance

Distxs,xp = ||φE(xs)− φE(xp)‖2 (3.6)

to rank each photo xp in the gallery set. Note that we can pre-compute the feature for each

photo in the gallery set, which means the retrieval process only involves one forward pass of the

encoder followed by Euclidean distance computation; it is thus very efficient.

3.2.3 Discussion on Weight-Sharing Strategies

As illustrated in Figure 3.2, three different weight-sharing strategies exist. Our multi-branch

network is Siamese with weight-sharing everywhere between branches. The same strategy is

adopted in (Yu et al., 2016). In contrast, the network in (Sangkloy et al., 2016) is heterogeneous
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meaning there is not weight sharing in any layer between the photo and sketch branches. The

Siamese strategy attempts to align the two domains from the very beginning of feature extraction

(convolution layers), whilst the heterogeneous one allows feature extraction filters as well as the

embedding layer to be learned independently and use the discriminative losses at the network

output to align them. As far as domain alignment is concerned, leaving it to the end seems to be

counter-intuitive; however, the heterogeneous network has one advantage: one could exploit the

far bigger auxiliary data in each domain to pre-train each branch as in (Sangkloy et al., 2016).

There is a third way that lies in-between these two extremes: a hybrid strategy whereby the

branches are only tied at the joint embedding layer. In our experiments, all three strategies are

evaluated.

3.3 Experiments

3.3.1 Experimental Setting

Dataset Experiments are conducted on the Sketchy dataset (Sangkloy et al., 2016), which is

the largest free-hand FG-SBIR dataset to date. It contains 125 categories with 100 photos per

category and at least 5 sketches for one photo crowd-sourced from Amazon Mechanical Turk

(AMT). We use the same training and testing split as in (Sangkloy et al., 2016), where the held-

out test set consists of 6312 query sketches and 1250 photos spanning all 125 categories. Another

notable FG-SBIR dataset is the QMUL-Shoe-Chair dataset (Yu et al., 2016). However, it is two-

magnitudes smaller and contains only two categories. We found that the training of decoder on

this dataset is unstable making it difficult to draw any conclusion. It is thus not selected.

Implementation Details Our model is implemented on Tensorflow with a single NVIDIA

Tesla P100 GPU. We set the importance weights for different subnets to: λD = 10, λT = 1, with

the triplet loss margin ∆ = 0.1. The Adam optimiser (Kingma and Ba, 2015) is used with the

parameters β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate is set as 10−5 at first 20000

iterations and further decreased to 10−6 for another 10000 iterations with a batch size of 32. We

used the uniformly scaled and centred version of sketches so that the learned representation is

not sensitive to the absolute location and scale of a sketch. We randomly cropped an original
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256× 256 sketch/photo of size 224× 224 for data augmentation during training.

Evaluation Metrics We use the same evaluation metrics of recall @K as in (Sangkloy et al.,

2016), where for one query sketch, recall @K is 1 if the corresponding photo is within the top

K retrieved results and 0 otherwise. We report acc@1 by averaging over all queries in the test

set.

Competitors To our knowledge, only two works report results on the Sketchy dataset (Liu

et al., 2017b; Sangkloy et al., 2016). However, the model in (Liu et al., 2017b) is designed

for category-level SBIR with different experiment settings to FG-SBIR, and the focus is on

retrieval speed using hashing techniques rather than accuracy. This leaves the various models

proposed in (Sangkloy et al., 2016) as the main competitors. These include a heterogeneous

GoogLeNet triplet model (Heter-GN-Tri), a heterogeneous GoogLeNet pairwise contrastive

model (Heter-GN-Pair) and a heterogeneous AlexNet pairwise contrastive model (Heter-AN-

Pair). The other competitor is the Siamese triplet ranking model in (Yu et al., 2016) (Sia-SN-

Tri). Its base network is called Sketch-a-Net (SN) which is a modified version of AlexNet.

It takes an additional preprocessing step to extract edgemaps from photos (Zitnick and Dollar,

2014) in the hope that the domain gap is reduced. For fair comparison, we pre-train the model in

stages exactly as described in (Yu et al., 2016) and use the stage-3 pre-trained model to fine tune

on the Sketchy dataset with the same classification and triplet ranking losses. The performance

of humans (Human) on FG-SBIR is also reported in (Sangkloy et al., 2016).

3.3.2 Quantitative Results

Comparisons against the state-of-the-art Our model is compared to the state-of-the-art alter-

natives as well as humans in Table 3-B. The following observations can be made: (i) Our

discriminative-generative hybrid model significantly outperforms all compared models (13.04%

improvement over the second best Heter-GN-Tri). (ii) It is now fairly close to the human per-

formance (4.12% lower). (iii) Note that all three heterogeneous baselines in (Sangkloy et al.,

2016) took advantage of extensive within-domain pre-training. Our results suggest that it is not

necessary with our Siamese hybrid network, significantly simplifying the training process. (iv)
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Sia-SN-Tri Heter-AN-Pair Heter-GN-Pair Heter-GN-Tri
16.17% 21.36% 27.36% 37.10%
Ours Human (Sangkloy et al., 2016)

50.14% 54.27%

Table 3-B: Comparative results against state-of-the-art FG-SBIR performance.

(a) Contributions of the decoder φD (vs. -D) and different
basenets φE . (vs. GN)

Ours-D Ours Our GN-D Ours GN
47.18% 50.14% 45.52% 48.24%

(b) Contributions of different weight sharing strate-
gies in φE .

Ours-Heter Ours-Hybrid Ours
41.52% 49.55% 50.14%

Table 3-C: Performance of the ablated version of our proposed FG-SBIR model.

The poor result of Sia-SN-Tri (Yu et al., 2016) suggests that replacing natural photos with their

edgemap has a negative side-effect given a challenging dataset such as Sketchy. Specifically, as

shown in Figure 3.4, the photos in Sketchy often contain other objects and cluttered background.

Removing colour information from the very beginning deprives the model of its ability to learn

an implicit foreground-background segmentation mechanism to align photos with sketches that

have clean background. Note that the objective of the generative decoder is not to synthesise

sharp, visually appealing images. Instead, our goal is to reduce the domain gap and extract

domain invariant and discriminative features – images in Figure 3.4, albeit blurry, are almost

identical when a matching pair of photo and sketch are used as input respectively, showing that

this goal has been achieved.

Ablation Study on Competitors Our model differs from competitors in both the base network

and the additional generative decoder. To find out what contributes to the superior performance

of our model, we compare a few variants with and without the generative decoder and with differ-

ent base network in Table 3-C(a), where GN refers to replacing our VGGNet with GoogLeNet,

-D means dropping the generative decoder part. The results show that (i) Regardless of the choice

of basenet, adding an additional generative decoder consistently improves the performance and

(ii) Compared with GoogLeNet, VGGNet is better for our problem.

Ablation Study on Weight Sharing Strategies In this experiment, we compare our model

with the three weight-sharing strategies described in Sec.3.2.3. Table 3-C(b) shows that with-

out any weight-sharing, the heterogeneous version of our model is the weakest in aligning the
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Figure 3.3: Qualitative results. For each query sketch, the top 10 ranked photos out of 1250
candidate photos in the gallery are shown in each row. Green boxes indicate the correct matches
and when they are outside the top 10, their actual ranks are given.

two domains, whist the partial-sharing strategy results in a slightly inferior performance. Since

a Siamese network has much less parameters than the other two, this justifies the use of the

Siamese architecture. Note that such conclusion seemingly counters to some of the existing stud-

ies (Bui et al., 2018; Rozantsev et al., 2018) that show partially shared weights can lead to more

effective cross-domain image understanding. However, they are not contradictory. Our conclu-

sion suggests that Siamese architecture is a favourable choice when directly fine-tuning a triplet

ranking network initialised with ImageNet pre-trained weights for FG-SBIR task. When com-

bined with additional learning signals (e.g., reducing the Maximum Mean Discrepancy between

the representations of the two domains as in (Rozantsev et al., 2018)) or pre-training strategies

(e.g., multi-stage layer-wise pre-training as in (Bui et al., 2018)), conclusion is understandably

subjected to vary.

3.3.3 Qualitative Results

Example retrieval results of the proposed model are shown in Figure 3.3. The results suggest

that the model is very effective in removing other objects in the scene and cluttered background
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（a） （b） （c）

Figure 3.4: Examples of generated images on unseen test sets. In each sub-figure, top: input
sketch/photo; bottom: corresponding generated images using the decoder.

and is able to capture subtle instance-level differences, e.g. the first two rifles are matched

correctly among some very similar-looking rifle instances. Failure cases are those where true

matches are ranked outside the top-10. Two of them are shown in the bottom of Figure 3.3. It

is obvious that these failure cases are caused mainly by the poor quality of sketch drawing (e.g.,

too abstract) with critical details missing in the sketches, giving the model no chance to find the

correct matches.

3.3.4 Why Generative Learning Helps

The decoder is designed to help the encoder preserve domain-invariant information. One thus

would expect that given a pair of matching photo and sketch, the generated images would be very

similar to each other with any domain discrepancies, such as lack of texture, lighting, occlusions

and background information in the sketch domain, removed. Figure 3.4 shows that this is exactly

what a trained model produces on a test set: (i) Despite the drastically different background clut-

ter (Figure 3.4(a) and (c)) and occlusions (Figure 3.4(b)) exhibited in natural photos, the decoder

is able to discard these irrelevant information and focus on the main visual structures. (ii) Given

a matched sketch-photo pair, the synthesised images are almost identical; they clearly preserve

the shared visual cues (i.e., pose, shape) and neglect the unshared ones such as background and

other details ignored by the human sketcher (e.g., Figure 3.4(a), the digit 27 on the side door).

(iii) Sketches drawn by different humans for a single photo often varied greatly in the level of

abstraction. Figure 3.4(c) shows that our decoder normalises these variations making the retrieval
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task easier. We thus conclude that having the generative decoder encourages the learned feature

representation in the joint embedding layer to focus on the cross-domain shared semantic visual

cues rather than the domain-specific information. Importantly it directly reduces the domain gap

and enables the learning of a richer representation useful for model generalisation.

3.4 Summary

This chapter has proposed a hybrid discriminative-generative approach for FG-SBIR based on

a cross-domain deep encoder-decoder network architecture. The hypothesis was that by intro-

ducing the additional generative task, the learned joint embedding space would capture domain-

invariant information and explicitly reduce the domain gap between photo and sketch. Extensive

experiments validated the hypothesis and demonstrated that the proposed model outperforms

existing discriminative models by a large margin.



Chapter 4

Deep Factorised Inverse-Sketching for FG-SBIR

4.1 Background and Motivation

In this chapter, we aim to devise a framework for inverting the iconic rendering process in human

free-hand sketch, and for contour-detail factorisation learning in FG-SBIR. A closer inspection

of the human sketching process reveals that it includes two components. As shown in (Li et al.,

2017c), a sketcher typically first deploys long strokes to draw iconic object contours, followed

by shorter strokes to depict visual details (e.g., shoes laces or buckles in Figure 4.1(a)). Both the

iconic contour and object details are important for recognising the object instance and matching

a sketch with its corresponding photo. The contour is informative about object subcategory (e.g.,

a boot or trainer), while the details distinguish instances within the subcategory – modelling both

are thus necessary. However, they have very different characteristics demanding different treat-

ments. The overall geometry of the sketch contour experiences large and user-specific distortion

compared to the true edge contour of the photo (compare sketch contour in Figure 4.1(a) with

photo object contour in Figure 4.1(b)). Photo edge contours are an exact perspective projection

of the object boundary; and free-hand sketches are typically an orthogonal projection at best,

and usually much more distorted than that – if only because humans seem unable to draw long

31
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Figure 4.1: (a) A free-hand object instance sketch consists of two parts: iconic contour and
object details. (b) Given a sketch, our style transfer model restyles it into distortion-free contour.
The synthesised contours of different sketches of the same object instance resemble each other
as well as the corresponding photo contour.

smooth lines without distortion (Flash and Hogan, 1985). In contrast, distortion is less of an

issue for shorter strokes in the object detail part. But choice and amount of details varies by

artist (e.g., buckles in Figure 4.1(a)).

We propose to model human sketches by inverting the sketching process. That is, instead

of modelling the forward sketching pass (i.e., from photo/recollection to sketch), we study the

inverse problem of translating sketches into visual representations that closely resemble the per-

spective geometry of photos. We further argue that this inversion problem is best tackled on

two levels by separately factorising out object contours and the salient sketching details. Such

factorisation is important for both modelling sketches and matching them with photos. This

is due to the differences mentioned above: sketch contours are consistently present but suffer

from large distortions, while details are less distorted but more inconsistent in their presence and

abstraction level. Both parts can thus only be modelled effectively when they are factorised.

We tackle the first level of inverse-sketching by proposing a novel deep image synthesis

model for style transfer. It takes a sketch as input, restyles the sketch into natural contours resem-

bling the more geometrically realistic contours extracted from photo images, while removing
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object details (see Figure 4.1(b)). This stylisation task is extremely difficult because (a) Col-

lecting a large quantity of sketch-photo pairs is infeasible so the model needs to be trained in

an unsupervised manner. (b) There is no pixel-to-pixel correspondence between the distorted

sketch contour and realistic photo contour, making models that rely on direct pixel correspon-

dence such as (Isola et al., 2017) unsuitable. To overcome these problems, we introduce a new

cyclic embedding consistency in the proposed unsupervised image synthesis model. It forces

the sketch and unpaired photo contours to share some support in a common low-dimensional

semantic embedding space.

We next complete the inversion in a discriminative model designed for matching sketches

with photos. It importantly utilises the synthesised contours to factor out object details to better

assist with sketch-photo matching. Specifically, given a training set of sketches, their synthesised

geometrically-realistic contours, and corresponding photo images, we develop a new FG-SBIR

model that extracts factorised feature representations corresponding to the contour and detail

parts respectively before fusing them to match against the photo. The model is a deep Siamese

neural network with four branches. The sketch and its synthesised contours have their own

branches respectively. A decorrelation loss is applied to ensure the two branch’s representations

are complementary and non-overlapping (i.e., factorised). The two features are then fused and

subject to triplet matching loss with the features extracted from the positive and negative photo

branches to make them discriminative.

4.2 Sketch Stylisation with Cyclic Embedding Consistency

Problem definition: Suppose we have a set of free-hand sketches S drawn by amateurs based

on their mental recollection of object instances (Yu et al., 2016) and a set of photo object con-

tours C sparsely extracted from photos using an off-the-shelf edge detection model (Zitnick and

Dollar, 2014), with empirical distribution s ∼ pdata(S) and c ∼ pdata(C) respectively. They

are thematically aligned but otherwise unpaired and non-overlapped meaning they can contain

different sets of object instances. This makes training data collection much easier. Our objective

is to learn an unsupervised deep style transfer model, which inverts the style of a sketch to a
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cleanly rendered object contour with more realistic geometry, and user-specific details removed

(see Figure 4.1(b)).

4.2.1 Model Formulation

Our model aims to transfer images in a source domain (original human sketches) to a target

domain (photo contours). It consists of two encoder-decoders, {ES , GS} and {EC , GC}, which

map an image from the source (target) domain to the target (source) domain and produce an

image whose style is indistinguishable from that in the target (source) domain. Once learned, we

can use {ES , GC} to transfer the style of S into that of C, i.e., distortion-free and geometrically

realistic contours. Note that under the unsupervised (unpaired) setting, such a mapping is highly

under-constrained – there are infinitely many mappings {ES , GC} that will induce the same

distribution over contours c. This issue calls for adding more structural constraints into the loop,

to ensure s and c lie on some shared embedding space for effective style transfer and instance

identity preserving between the two. To this end, the decoder GS (GC) is decomposed into two

sub-networks: a shared embedding space construction subnet GH , and an unshared embedding

decoder GH,S (GH,C), i.e., GS ≡ GH ◦GH,S , GC ≡ GH ◦GH,C (see Figure 4.2(a)).

Embedding space construction: We construct our embedding space similarly to (Liu and

Tuzel, 2016; Liu et al., 2017c): The GH projects the outputs of the encoders into a shared

embedding space. We thus have hs = GH(ES(s)), hc = GH(EC(c)). The projections in

the embedding space are then used as inputs by the decoder to perform reconstruction: ŝ =

GH,S(hs), ĉ = GH,C(hc).

Embedding regularisation: As illustrated in Figure 4.2 (b), the embedding space is learned

with two regularisations: (i) Cyclic embedding consistency: this exploits the property that the

learned style transfer should be ‘embedding consistent’, that is, given a translated image, we can

arrive at the same spot in the shared embedding space with its original input. This regularisation

is formulated as:

hs = GH(ES(s))→ GH,C(GH(ES(s)))→ GH(EC(GH,C(GH(ES(s))))) ≈ hs
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Figure 4.2: Schematic of our sketch style transfer model with cyclic embedding consistency. (a)
Embedding space construction. (b) Embedding regularisation via cyclic embedding consistency
and an attribute prediction task. ES , GH,S and EC , GH,C represent domain-specific encoder-
decoder for sketch and contour respectively. GH is the shared domain embedding learner.

hc = GH(EC(c))→ GH,S(GH(EC(c)))→ GH(ES(GH,S(GH(EC(c))))) ≈ hc

for the two domains respectively. This is different from the cyclic visual consistency used by

existing unsupervised image-to-image translation models(Liu and Tuzel, 2016; Liu et al., 2017c;

Zhu et al., 2017), by which the input image is reconstructed by translating back the translated

input image. The proposed cyclic embedding consistency is much ‘softer’ compared to the

cyclic visual consistency since the reconstruction is performed in the embedding space rather

than at the per-pixel level in the image space. It is thus more capable of coping with domain

discrepancies caused by the large pixel-level mis-alignments due to contour distortion and the

missing of details inside the contours. (ii) Attribute prediction: to cope with the large variations

of sketch appearance when the same object instance is drawn by different sketchers (see Figure

4.1(a)), we add an attribute prediction task to the embedding subnet so that the embedding space

needs to preserve all the information required to predict a set of semantic attributes.

Adversarial training: Finally, as in most existing deep image synthesis models, we introduce

a discriminative network to perform adversarial training (Goodfellow et al., 2014): the discrim-

inator is trained to be unable to distinguish generated contours from sketch inputs and the photo

contours extracted from object photos.

4.2.2 Model Architecture

Encoder: Most existing unsupervised image-to-image translation models design a specific

encoder architecture and train the encoder from scratch. We found that this works poorly for
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Figure 4.3: A schematic of our specifically-designed encoder-decoder.

sketches due to lack of training data and the large appearance variations mentioned earlier. We

therefore adopt a fixed VGG encoder pre-trained on ImageNet. This is particularly critical at

the beginning of learning to ensure the basic visual structures presented in both s and c to be

retained while otherwise prone to lost and derailed to trivial solutions. As shown in Figure 4.3,

the encoder consists of five convolutional layers before each of the five max-pooling operations

of a pre-trained VGG-16 network, namely conv1 2, conv2 2, conv3 3, conv4 3 and conv5 3.

Note that adopting a pre-trained encoder means that now we have ES = EC .

Decoder: The two subnets of the decoder: GH andGH,S (GH,C) use a residual design. Specif-

ically, for convolutional feature map extracted at each spatial resolution, we start with 1∗1 conv,

upsample it by a factor of 2 with bilinear interpolation and then add the output of the correspond-

ing encoder layer. It is further followed by a 3 ∗ 3 residual and 3 ∗ 3 conv for transformation

learning and adjusting appropriate channel numbers for the next resolution. Note that shortcut

connections between the encoder and decoder corresponding layers are also established in the

residual form. As illustrated in Figure 4.3, the shared embedding construction subnet GH is



Chapter 4. Deep Factorised Inverse-Sketching for FG-SBIR 37

composed of one such block while the unshared embedding decoders GH,S (GH,C) have three.

For more details of the encoder/decoder and discriminator architecture, please see Sec. 4.4.1.

4.2.3 Learning Objectives

Embedding consistency loss: Given s (c), and its cross-domain synthesised imageGC(ES(s))

(GS(EC(c))), they should arrive back to the same location in the embedding space. We enforce

this by minimising the Euclidean distance between them in the embedding space:

Lembed = Es∼S,c∼C [||GH(ES(s))−GH(EC(GC(ES(s))))||2

+||GH(EC(c))−GH(ES(GS(EC(c))))||2].
(4.1)

Self-reconstruction loss: Given s (c), and· its reconstructed result GS(ES(s)) (GC(EC(c))),

they should be visually close. We thus have

Lrecons = Es∼S,c∼C [||s−GS(ES(s))||1 + ||c−GC(EC(c))||1]. (4.2)

Attribute prediction loss: Given a sketch s and its semantic attribute vector a, we hope its

embedding GH(ES(s)) can be used to predict the attributes a. To realise this, we introduce an

auxiliary one-layer subnet Dcls on top of the embedding space h and minimise the classification

errors:

Lcls = Es,a∼S [− logDcls(a|GH(ES(s)))]. (4.3)

Domain-adversarial loss: Given s (c) and its cross-domain synthesised image GC(ES(s))

(GS(EC(c))), the synthesised image should be indistinguishable to a target domain image c

(s) using the adversarially-learned discriminator, denoted DC (DS). To stabilise training and

improve the quality of the synthesised images, we adopt the least square generative adversarial

network (LSGAN) (Mao et al., 2017) with gradient penalty (Gulrajani et al., 2017). The domain-
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adversarial loss for generator is defined as:

Ladvg = Es∼S [||DC(GC(ES(s)))− 1||2]

+ Ec∼C [||DS(GS(EC(c)))− 1||2]
(4.4)

and for the discriminator:

Ladvds = Es∼S [||DS(s)− 1||2] + Ec∼C [||DS(GS(EC(c)))||2]

− λgp Es̃[(||∇s̃DS(s̃)||2 − 1)2]

Ladvdc = Ec∼C [||DC(c)− 1||2] + Es∼S [||DC(GC(ES(s)))||2]

− λgp Ec̃[(||∇c̃DC(c̃)||2 − 1)2]

(4.5)

where s̃, c̃ are sampled uniformly along a straight line between their corresponding domain pair

of real and generated images. We set weighting factor λgp = 10.

Full learning objectives: Our full model is trained alternatively as with a standard conditional

GAN framework, with the following joint optimisation:

argmin
DS ,DC

λadvLadvds + λadvLadvdc

argmin
ES ,EC ,GS ,GC ,Dcls

λembedLembed + λreconsLrecons + λadvLadvg + λclsLcls

(4.6)

where λadv, λembed, λrecons, λcls are hyperparameters that control the relative importance of

each loss. In this work, we set λadv = 10, λembed = 100, λrecons = 100 and λcls = 1 to

keep the losses in roughly the same value range.

4.3 Discriminative Factorisation for FG-SBIR

The sketch style transfer model in Sec. 4.2.1 addresses the first level of inverse-sketching by

translating a sketch into a geometrically realistic contour. Specifically, for a given sketch s, we

can synthesise its distortion-free sketch contour sc as GC(ES(s)). However, the model is not
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Figure 4.4: (a) Existing three-branch Siamese Network (Sangkloy et al., 2016; Yu et al., 2016)
vs. (b) Our four-branch network with decorrelation loss.

trained to synthesise the sketch details inside the contour – this is harder because sketch details

exhibit more subjective abstraction yet less distortion. In this section, we show that for learning

a discriminative FG-SBIR model, such a partial factorisation is enough: we can take s and sc

and extract complementary detail features from s to complete the inversion process.

Problem definition: For a given query sketch s and a set of N candidate photos {pi}Ni=1 ∈ P ,

FG-SBIR aims to find a specific photo containing the same instance as the query sketch. This

can be solved by learning a joint sketch-photo embedding using a CNN fθ (Sangkloy et al.,

2016; Yu et al., 2016). In this space, the visual similarity between a sketch s and a photo p can

be measured simply as D(s, p) = ||fθ(s)− fθ(p)||22.

Enforcing factorisation via de-correlation loss: In our approach, clean and accurate contour

features are already provided in sc via our style transfer network defined previously. Now we

aim to extract detail-related features from s. To this end we introduce a decorrelation loss to

minimise the cross-covariance between fθ(s) and fθ(sc):

Ldecorr = ||fθ(s)T × fθ(sc)||2F , (4.7)

where fθ(s) and fθ(sc) are obtained by normalising fθ(s) and fθ(sc) with zero-mean and unit-

variance respectively in a batch, and ||.||2F is the squared Frobenius norm. This ensures that fθ(s)

encodes detail-related features in order to meet the decorrelation constraint with complementary

contour encoding fθ(sc).
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Model design: Existing deep FG-SBIR models (Pang et al., 2017; Yu et al., 2016) adopt a

three-branch Siamese network architecture, shown in Figure 4.4(a). Given an anchor sketch s

and a positive photo p+ containing the same object instance and a negative photo p−, the outputs

of the three branches are subject to a triplet ranking loss to align the sketch and photo in the

discriminative joint embedding space learned by fθ. To exploit our contour and detail repre-

sentation, we use a four-branch Siamese network with inputs s, sc, p+, p− respectively (Figure

4.4(b)). The extracted features from s and sc are then fused before being compared with those

extracted from p+ and p−. The fusion is denoted as fθ(s)⊕fθ(sc), where⊕ is the element-wise

addition1. The triplet ranking loss is then formulated as:

Ltri = max(0,∆ +D(fθ(s)⊕ fθ(sc), fθ(p+))−D(fθ(s)⊕ fθ(sc), fθ(p−))) (4.8)

where ∆ is a hyperparameter representing the margin between the query-to-positive and query-

to-negative distances. Our final objective for discriminatively training FG-SBIR becomes:

min
θ

∑
t∈T

Ltri + λdecorrLdecorr (4.9)

we set ∆ = 0.1, λdecorr = 1 in our experiments so two losses have equal weights.

4.4 Experiments

4.4.1 Experimental Settings

Dataset and preprocessing: We use the public QMUL-Shoe-V2 (Yu et al., 2017b) dataset, the

largest single-category paired sketch-photo dataset to date, to train and evaluate both our sketch

style transfer model and FG-SBIR model. It contains 6648 sketches and 2000 photos. We follow

its standard train/test split with 5982 and 1800 sketch-photo pairs respectively. Each shoe photo

is annotated with 37 part-based semantic attributes. We remove four decoration-related ones

(‘frontal’, ‘lateral’, ‘others’ and ‘no decoration’), which are contour-irrelevant and keep the rest.
1Other fusion strategies like element-wise multiplication have been tried and found to be inferior.
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Since our style transfer model is unsupervised and does not require paired training examples,

we use a large shoe photo dataset UT-Zap50K dataset (Yu and Grauman, 2014) as the target

photo domain. This consists of 50,025 shoe photos which are disjoint with the QMUL-Shoe-

V2 dataset. For training the style transfer model, we scale and centre the sketches and photo

contours to 64 × 64 size, while for FG-SBIR model, the inputs of all four branches are resized

to 256 × 256. In both experiments, to reduce the unnecessary data bias between sketch and

contours, we use (Simo-Serra et al., 2018) as a mean of post-processing.

Photo contour extraction: We obtain the contour c from a photo p as follows: (i) extracting

edge probability map e using (Zitnick and Dollar, 2014) followed by non-max suppression; (ii)

e is binarised by keeping the edge pixels with values smaller than x, where x is dynamically

determined so that when e contains many non-zero edge pixel detections, x should be small

to eliminate the noisy ones, e.g., texture. This is achieved by formulating x = esort(lsort ×

min(αe−β/r, 0.9)), where esort is the edge pixels detected in e sorted in the ascending order,

lsort is the length of esort, and r is the ratio between detected and total pixels. We set α =

0.08, β = 0.12 in our experiments2.. Examples of photos and their extracted contours can be

seen in the last two columns of Figure 4.5.

Implementation details: We implement both models in Tensorflow with a single NVIDIA

1080Ti GPU. For the style transfer task: as illustrated in Figure 4.3, we denote k ∗ k conv

as a k × k Convolution-BatchNorm-ReLU layer with stride 1 and k ∗ k residual as a residual

block that contains two k ∗ k conv blocks with reflection padding to reduce artifacts. Upscale

operation is performed with bilinear up-sampling. We do not use BatchNorm and replace ReLU

activation with Tanh for the last output layer. Our discriminator has the same architecture as in

(Isola et al., 2017), but with BatchNorm replaced with LayerNorm (Ba et al., 2016) since the

gradient penalty is introduced. The number of discriminator iterations per generator update is

set as 1. We trained for 50k iterations with a batch size of 64. Like FG-SBIR task: we fine-

tune ImageNet-pretrained ResNet-50 (He et al., 2016) to obtain fθ with the final classification

layer removed. Same with (Yu et al., 2016), we enforce l2 normalisation on fθ for stable triplet

2To make it intuitive, we show values of min(αe−β/r, 0.9) here with respect to r = 0.01, 0.03, 0.05, 0.07, 0.1,
0.3, 0.5, 0.7. They are 0.9, 0.9, 0.8819, 0.4442, 0.2656, 0.1193, 0.1017, 0.0950.
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learning. We train for 60k iterations with a triplet batch size of 16. For both tasks, the Adam

(Kingma and Ba, 2015) optimiser is used, where we set β1 = 0.5 and β2 = 0.9 with an initial

learning rate of 0.0001 respectively.

Competitors: For style transfer, four competitors are compared. Pix2pix (Isola et al., 2017)

is a supervised image-to-image translation model. It assumes that visual connections can be

directly established between sketch and contour pairs with l1 translation loss and adversarial

training. Note that we can only use the QMUL-Shoe-V2 train split for training Pix2pix, rather

than UT-Zap50K, since sketch-photo pairs are required. UNIT (Liu et al., 2017c) is the latest

variant of the popular unsupervised CycleGAN (Kim et al., 2017; Yi et al., 2017; Zhu et al.,

2017). Similar to our model, it also has a shared embedding construction subnet. Unlike our

model, there is no attribute prediction regularisation and visual consistency instead of embedding

consistency is enforced. UNIT-vgg: For fair comparison, we substitute the learned-from-scratch

encoder in UNIT to our fixed VGG-encoder, and introduce the same self-residual architecture in

the decoder. Ours-attr: This is a variant of our model without the attribute prediction task for

embedding regularisation. For FG-SBIR, competitors include: Sketchy (Sangkloy et al., 2016) is

a three-branch Heterogeneous triplet network. For fair comparison, the same ResNet50 is used

as the base network. Vanilla-triplet (Yu et al., 2016) differs from Sketchy in that a Siamese

architecture is adopted. It is vanilla as the model is trained without any synthetic augmentation.

DA-triplet (Song et al., 2018) is the state-of-the-art model, which uses synthetic sketches from

photos as a means of data augmentation to pretrain the Vanilla-triplet network and fine-tune it

with real human sketches. Ours-decorr is a variant of our model, obtained by discarding the

decorrelation loss.

4.4.2 Results on Style Transfer

4.4.2.1 Qualitative Results

Figure 4.5 shows example synthesised sketches using the various models. It shows clearly that

our method is able to invert the sketching process by effectively factorising out any details inside

the object contour and restyling the remaining contour parts with smooth strokes and more real-
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Sketch UNIT-vggUNIT Pix2pix Ours-attr Ours-full PhotoPhoto contour

Figure 4.5: Different competitors for translating (inverting) sketching abstraction at contour-
level. Illustrations shown here have never been seen by its corresponding model during training.

Sketch

Ours-full

Photo

Figure 4.6: Typical failure of our model when sketching style is too abstract or complex.

istic perspective geometry. In contrast, the supervised model Pix2pix failed completely due to

sparse training data and the assumption of pixel-to-pixel alignment across the two domains. The

unsupervised UNIT model is able to remove the details, but struggles to keep its original identity

with salient visual traits preserved, e.g., how the heel part is radically changed before and after

stylisation. Using a fixed VGG-16 as encoder (UNIT-vgg) alleviates the problem but still fails

to emulate the style for the object photo contours featured with smooth and continuous strokes.

These results suggest that the visual cycle consistency constraint used in UNIT is too strong

a constraint on the embedding subnet, leaving it with little freedom to perform both the detail

removal and contour restyling tasks. As an ablation, we compare Ours-attr with Ours-full and

observe that the attribute prediction task does provide a useful regularisation to the embedding

subnet to make the synthesised contour more smooth and less fragmented. Our model is far from
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Chance Pix2pix UNIT UNIT-vgg Ours-attr Ours-full
acc@1 0.50% 3.60% 4.50% 4.95% 6.46% 8.26%
acc@5 2.50% 10.51% 15.02% 17.87% 22.22% 23.27%
acc@10 5.00% 17.87% 26.28% 29.88% 31.38% 35.14%

Table 4-A: Comparative results of using the synthetic sketches obtained via different models to
retrieve photos from a well-trained FG-SBIR model.

(wc, wn) UNIT vs. Ours-full UNIT-vgg vs. Ours-full Ours-attr vs. Ours-full
(0.9, 0.1) 88.0% 72.0% 62.0%

(0.8, 0.2) 88.0% 70.0% 64.0%

(0.7, 0.3) 88.0% 70.0% 64.0%

(0.6, 0.4) 86.0% 68.0% 62.0%

(0.5, 0.5) 84.0% 70.0% 64.0%

Table 4-B: Pairwise comparison results of human perceptual study. Each cell lists the percentage
where our full model is preferred over the other method. Chance is at 50%.

being perfect. Figure 4.6 shows some failure cases. Most failure cases are caused by the sketcher

unsuccessfully attempting to depict objects with rich texture by an overcomplicated sketch. This

suggests that our model is mostly focused on the shape cues contained in sketches and confused

by the sudden presence of large amounts of texture cues.

4.4.2.2 Quantitative Results

Quantitative evaluation of image synthesis models remains an open problem. Consequently,

most studies either run human perceptual studies or explore computational metrics attempting to

predict human perceptual similarity judgements (Heusel et al., 2017; Salimans et al., 2016). We

perform both quantitative evaluations. Computational evaluation: In this evaluation, we seek

a metric based on the insight that if the synthesised sketches are realistic and free of distortion,

they should be useful for retrieving photos containing the same objects, despite the fact that the

details inside the contours may have been removed. We thus retrain the FG-SBIR model of

(Yu et al., 2016) on the QMUL-Shoe-V2 training split and used the sketches synthesised using

different style transfer models to retrieve photos in QMUL-Shoe-V2 test split. The results in

Table 4-A show that our full model outperforms all competitors. The performance gap over

the chance suggests that despite lack of detail, our synthetic sketches still capture instance-

discriminative visual cues. The superior results to the competitors indicate the usefulness of
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cyclic embedding consistency and attribute prediction regularisation. Human perceptual study:

We further evaluate our model via a human subjective study. We recruit N (N = 10) workers

and ask each of them to perform the same pairwise A/B test based on the 50 randomly-selected

sketches from QMUL-Shoe-V2 test split. Specifically, each worker undertakes two trials, where

three images are given at once, i.e., a sketch and two restyled version of the sketch using two

compared models. The worker is then asked to choose one synthesised sketch based on two

criteria: (i) correspondence (measured as rc): which image keeps more key visual traits of the

original sketches, i.e., more instance-level identifiable; (ii) naturalness (measured as rn): which

image looks more like a contour extracted from a shoe photo. The left-right order and the

image order are randomised to ensure unbiased comparisons. We denote each of the 2N ratings

for each synthetic sketch under one comparative test as ci and ni respectively, and compute

the correspondence measure rc =
∑N

i=1 ci, and naturalness measure rn =
∑N

i=1 ni. We then

average them to obtain one score based on a weighting: ravr = 1
N (wcrc+wnrn). Intuitively, wc

should be greater than wn because ultimately we care more about how the synthesised sketches

help FG-SBIR. In Table 4-B, we list in each cell the percentage of trials where our full model is

preferred over the other competitors. Under different weighting combinations, the superiority of

our design is consistent (> 50%), drawing the same conclusion as our computational evaluation.

In particular, compared with prior state-of-the-art, UNIT, our full model is preferred by humans

nearly 90% of the time.

4.4.3 Results on FG-SBIR

4.4.3.1 Quantitative Results

In Table 4-C, we compare the proposed FG-SBIR model (Ours-full) with three state-of-the-art

alternatives (Sketchy, Vanilla-triplet and DA-triplet) and a variant of our model (Ours-decorr).

The following observations can be made: (i) Compared with the three existing models, our

full model yields 14.27%, 2.41% and 2.11% acc@1 improvements respectively. Given that the

three competitors have exactly the same base network in each network branch, and the same

model complexity as our model, this demonstrates the effectiveness of our complementary detail

representation from contour-detail factorisation. (ii) Without the decorrelation loss, Ours-decorr
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Sketchy Vanilla-triplet DA-triplet Ours-decorr Ours-full
21.62% 33.48% 33.78% 33.93% 35.89%

Table 4-C: Comparative FG-SBIR results on QMUL-Shoe-V2 test split (Yu et al., 2017b).
Retrieval accuracy at rank 1 (acc@1).

produces similar accuracy as the two baselines and is clearly inferior to Ours-full. This is not

surprising – without forcing the original sketch (s) branch to extract something different from the

sketch contour (sc) branch (i.e., details), the fused features will be dominated by the s branch as

s contains much richer information. The four-branch model thus degenerates to a three-branch

model.

4.4.3.2 Factorisation Visualisation

We carry out model visualisation to demonstrate that fθ(s) and fθ(sc) indeed capture different

and complementary features that are useful for FG-SBIR, and give some insights on why such

a factorisation helps. To this end, we use Grad-Cam (Selvaraju et al., 2017) to highlight where

in the image the discriminative features are extracted using our model. Specifically, the two

non-zero dimensions of fθ(s) ⊕ fθ(sc) that contribute the most similarity for the retrieval are

selected and their gradients are propagated back along the s and sc branches as well as the photo

branch to locate the support regions. The top half of Figure 4.7 shows clearly that (i) the top

discriminative features are often a mixture of contour and detail as suggested by the highlighted

regions on the photo images; and (ii) the corresponding regions are accurately located in s and

sc; importantly the contour features activate mostly in sc and detail features in s. This validates

that factorisation indeed takes place. In contrast, the bottom half of Figure 4.7 shows that using

the vanilla-triplet model without the factorisation, the model appears to be overly focused on

the details, ignoring the fact that the contour part also contains useful information for matching

object instances. This leads to failure cases (red box) and explains the inferior performance of

vanilla-triplet.
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Figure 4.7: We highlight supporting regions for the top 2 most discriminative feature dimensions
of two compared models. Green and red borders on the photos indicate correct and incorrect
retrieval, respectively.

4.5 Summary

This chapter for the first time has defined and identified the problem of factorised inverse-

sketching as a key for both sketch modelling and sketch-photo matching. Given a sketch, our

deep style transfer model learns to factorise out the details inside the object contour and invert the

remaining contours to match more geometrically realistic contours extracted from photos. We

subsequently develop a sketch-photo joint embedding which completes the inversion process by

extracting distinct complementary detail features for FG-SBIR. We demonstrated empirically

that our style transfer model is more effective compared to existing models thanks to a novel

cyclic embedding consistency constraint. We also achieve state-of-the-art FG-SBIR results by

exploiting our sketch inversion and factorisation.
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Generalising FG-SBIR

5.1 Background and Motivation

In this chapter, we aim to improve cross-category generalisation in FG-SBIR. Existing work

have thus far implicitly assumed that instance-level annotations of positive and negative pairs

are available for every coarse category to be evaluated. This assumption limits the practical

applicability of FG-SBIR. More specifically, as we shall show in this paper, in practice FG-

SBIR generalises very poorly if training and testing categories are disjoint. This is of course

unsatisfactory for potential users of FG-SBIR such as e-commerce, where it would be desirable

to train a FG-SBIR system once on an initial set of product categories, and then have it deployed

directly to newly added product categories – without needing to collect and annotate new data

and retrain the FG-SBIR model. Compared to other category-level tasks such as object recogni-

tion in photo images, this annotation barrier is particularly high for FG-SBIR as instance-specific

sketches are expensive and slow to collect.

To understand why the existing FG-SBIR models have limited cross-category generalisa-

tion ability, consider that the task of FG-SBIR as essentially binary classification – to differ-

48
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entiate corresponding and non-corresponding sketch-photo tuples. In this sense, a change of

category is a domain-shift (Csurka, 2017) from the perspective of the machine learning model

trained to perform matching. For example, a model trained on fine-grained matching of car

photos and sketches, would struggle to perform fine-grained matching of bicycle images, due

to inexperience with handlebars and saddles. Exposed to such out-of-sample data, the triplet-

trained sketch/photo embedding networks may no longer place matching images nearby and

vice-versa. Having identified the challenge as one as domain-shift, this suggests two categories

of approaches to alleviating this issue: (i) Unsupervised domain adaptation approaches (Csurka,

2017; Ganin et al., 2016) would use unlabelled target data to adapt the model to better suit

the target data; and (ii) domain generalisation approaches (Shankar et al., 2018) aim to train a

model that is robust enough to immediately generalise to the new domain’s data off-the-shelf.

We address the harder domain generalisation setting – due to the practical value of not requiring

target domain (category) data collection and model retraining.

We propose a new framework that automatically adapts the deep feature extraction to a given

query sketch. This ensures a good representation is produced at testing-time, even when dealing

with out-of-sample data in the form of sketches and photos from novel categories. The key idea is

to learn an auxiliary unsupervised embedding network that maps any given sketch to a universal

dictionary of prototypical sketch traits or manifold embeddings. We call this universal because

it is a representation that cuts across categories. This network can thus be used to provide a

latent visual trait descriptor (VTD) of any sketch (from either a training or novel category). This

descriptor is in turn used to paramaterise both photo and sketch feature extractors to adapt them

to the current query sketch category. Figure 5.1 illustrates the unsupervised embedding learned

by our auxiliary network via an illustrative five (of 300) learned embeddings (dictionary words).

One can see how categories (such as flowers) span multiple embeddings and how individual

embeddings group thematically similar sketches. For example descriptor 2 and 140 encompass

“complicated-dense” and “simple-sparse” visual patterns for flowers and trees; while descriptor

207 and 249 model “leftwards full-body view” and “frontal face view” respectively for cows and

horses. We can also see how both training (left subgroups) and disjoint testing sketch category
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Figure 5.1: Illustration of our proposed method using four categories, organised into two related
pairs. TRN: triplet ranking network. VTD: visual trait descriptor. In each bar-type VTD, we
visualise its ten top distributed categories and highlight the specific one along with three rep-
resentative sketch exemplars. Each sketch is uniquely assigned to one VTD that describes a
category-agnostic abstract sketch trait, which is in turn used to dynamically paramaterise the
TRN so as to adapt it to the query sketch. See how both training and testing sketches themat-
ically and coherently mapped to some shared VTDs. Best viewed in colour and zoom, more
details in text.

(right subgroups) are assigned to the same descriptor according to common sketch traits.

The introduction of this auxiliary universal embedding network is inspired by the pioneering

Noise As Targets (NAT) (Bojanowski and Joulin, 2017) model. NAT proposes to pre-generate

the set of all embeddings randomly – as noise – and then learn a network to map the data to this

fixed noise distribution. However NAT approximately solves a cumbersome and costly discrete

assignment problem to match images with embeddings at each back-propagation iteration. In

contrast, we propose a novel approach to learning an embedding network based on the Gumbel-

Softmax (Jang et al., 2017) reparameterisation trick. As a result, the learning is faster and more

stable; and more flexible in that several alternative objectives can be considered in the same

formulation. Overall our framework can be considered as a solution to domain generalisation

(Shankar et al., 2018) that adapts a model via a domain-descriptor, but where the descriptor is

estimated from a single data instance rather than assuming it is given as metadata (Yang and

Hospedales, 2015, 2016); and where the perspective on descriptor definition is one of latent-

domain discovery (Xu et al., 2014).
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5.2 Methodology

5.2.1 Overview

Our framework consists of two main components. Firstly, our unsupervised embedding network

maps any sketch s into one of K unique visual trait descriptors Ds via an encoder-decoder

framework Ds = φ(s). So the full set of M -dimensional trait descriptors defines a matrix

D ∈ RK×M . This serves to provide the description of any sketch’s query domain. Secondly,

a dynamically paramaterised feature extractor with triplet loss is formulated, which actually

performs FG-SBIR by using the generated descriptor to adapt the feature extraction and retrieval

to any query sketch. Denoting ψ(·) as Deep CNN feature extractor, FG-SBIR is performed by

finding the photo p that minimises the distance dφ(s)(s, p) = ||ψφ(s)(s) − ψφ(s)(p)||22 to query

sketch s. The unsupervised embedding network is trained in an unsupervised way on the training

sketch categories. And the dynamically paramaterised FG-SBIR model is trained in a supervised

way on the training sketch categories. No components touch the held out testing category data

until evaluation. In the following sections we describe each component in detail.

5.2.2 Universal Visual Trait Embedding

5.2.2.1 Embedding for Categorical Variables

The unsupervised embedding network will map any sketch to an entry in a dictionary of descrip-

tors D. Inspired by NAT (Bojanowski and Joulin, 2017), we pre-generate the descriptor dictio-

nary at random so that each row of D, denoted Di is sampled from the standard Gaussian and

then `2 normalised. This ensures that the descriptor dictionary spans the available M dimen-

sional space well. The network’s goal is then to learn to map any sketch onto one of these K

(random) dictionary elements so that the representations of the full sketch dataset spread out

over the whole embedding space.

Encoder-Decoder We start by feeding an input sketch s into a CNN encoder E(s). We then

use one fully-connected (FC) layer to predict a K-dimensional vector of unnormalised proba-

bilities p and select the most probable one as sketch s’s descriptor Ds out of the full dictionary
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Figure 5.2: Schematic illustration of our proposed unsupervised encoder-decoder model. D is
a dictionary of descriptors that represent universal sketch visual traits. Since self-reconstruction
is the only learning signal here, we introduce skip-connection that generates an instance-specific
perturbation of the chosen dictionary element to help ease optimisation, and in turn benefits
dictionary learning.

D:

p = WpE(s) + bp

ph = onehot(argmax(softmax(p)))

Ds = phD, ŝ = R(Ds)

(5.1)

To ensure that each descriptor corresponds to a visually meaningful trait, the assigned descriptor

is then decoded by decoder R with de-convolutional layers that reconstruct the input sketch

ŝ ≈ s. We denote the extraction of a sketch trait descriptor in this way as Ds = φ(s).

A Practical Consideration Since the number of descriptorsK (300) is much less than sketches

(tens of thousands), our approach means that sketches will be coarsely quantised, and reconstruc-

tion error will be high. (The clusters do not contain enough information to accurately reconstruct

each sketch). Therefore we modify this approach with the following skip connection to improve

the decoding via R.

Zs = Ds(1 + αtanh(WskE(s) + bsk))

ŝ = R(Zs)

(5.2)

where we set α = 0.02. This passes through some detailed features of the sketch to augment the

coarse dictionary encoding. See Figure 5.2 for an intuitive illustration.
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5.2.2.2 Optimisation for argmax

The method as presented so far is hard to optimise because: (i) The use of argmax is non-

differentiable and would naively require Monte Carlo estimates and a REINFORCE-type algo-

rithm (Williams, 1992), which suffers from high variance. (ii) A trivial minimiser of the recon-

struction loss is to output one or few constant one-hot vectors ph. Especially in the early phase of

training, this will trap the model in a local minima forever. To alleviate this problem, we employ

a low-variance gradient estimated based on a reparameterisation trick.

Hard Assignment via Gumbel-Softmax Applying the Gumbel-Softmax reparameterisation

trick (Jang et al., 2017) and straight-through (ST) gradient estimator, ph is replaced as:

pg = softmax((p+ g)/τ)

phg = onehot(argmax(pg))

(5.3)

where g ∈ RK with g1...gk are i.i.d samples drawn from Gumbel(0, 1), and τ is the temper-

ature1. We further enforce a uniform categorical prior on ps = softmax(p) to avoid sketches

being assigned to only a subset of dictionary elements, and form a Kullback-Leibler loss as:

qy = [1/K, 1/K, ..., 1/K] ∈ RK

DKL(ps||qy) =
1

B

B∑
i=1

psi,: log(psi,:/qy)
(5.4)

where B is the batch size. For simplicity, we use bold ps to denote the batch counterpart of ps,

with psi the ith example and psi,j as its jth element. We will follow this convention for other

symbols. This ensures that across the batch as a whole, sketches are encouraged to assign to

diverse descriptors.

Soft Assignment via Entropy Constraint We also explore an alternative strategy, which is to

adopt a soft assignment approach during training. By replacing ph with ps, each sketch takes
1For the forward pass, phg is used thus a real one-hot vector is generated, while for the backward pass, it is

replaced by pg to make the (estimated) gradient flows back. In practice, we just assign it a mild value like 1.0 instead
of an annealing strategy as in (Jang et al., 2017).
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a linear combination of D, rather than selecting a row of D for representation learning. In this

soft assignment of sketches to descriptors, we want to motivate sparse probabilities so that each

s tends to receive one dominant label assignment. Thus we add a row entropy loss:

Hrow = − 1

B

B∑
i=1

K∑
j=1

psi,j log(psi,j) (5.5)

Eq. 5.5 achieves its minimum 0 only if psi is an one-hot vector specifying a deterministic distri-

bution. We further encourage equal usage of all ps:,j via a column entropy term:

pc =
1

B

B∑
i=1

ps:,j ∈ RK

Hcol = −
K∑
j=1

pcj log(pcj )

(5.6)

Eq. 5.6 achieves its maximum 1 only if elements in pc are uniformly distributed. However, the

row entropy constraint is only valid for a large enough minibatch and we empirically find that

on average around 30% of ph are still empty, (no assignments of any sketches). Therefore, we

dynamically replace the stale and inactive Di during training and bring them back in to compete

with over-active ones. Specifically, we extract ph of all training sketches after each epoch, and

select the most concentrated Di. A small random perturbation is then added to define a new

centre, i.e., Di(1 + βN (0, 1)). We find this simple strategy works well2.

5.2.2.3 Full Objectives

Depending on which assignment strategy we use (Gumbel-Softmax vs. Entropy), and combined

with reconstruction loss Lrec = ||s− ŝ||2, we obtain our two optimisation objectives:

minEs∼S [Lrec + λKLDKL(ps||qy)]

minEs∼S [Lrec + λrowHrow − λcolHcol]

(5.7)

2A side effect is to trade quality with time. We spend almost one-third of the time extracting representations for
all training sketches. We set β = 0.05 throughout the experiments and find it works well empirically.
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where hyper-parameters λKL, λrow, λcol control the relative weighting importance. In summary,

optimising the unsupervised objective Eq. 5.7 trains an autoencoder that internally represents

sketches in terms of a pre-defined K-element dictionary D. In the following section, we will

re-use the sub-network that assigns sketches to dictionary elements Ds = φ(s) as a descriptor

for dynamically paramaterising our FG-SBIR network.

5.2.3 Dynamic Parameterisation for FG-SBIR

The unsupervised embedding network shown in Figure 5.2 extracts a visual trait descriptor

(VTD), φ(s), from each sketch, which is then used to parameterise a triplet ranking network

(TRN), ψ(·), for learning domain-generalisable representations for sketch and photo, as illus-

trated in Figure 5.1. Note that sketch and photo feature extractors ψ is Siamese – applied to both

sketch and photo for FG-SBIR. Denoting ψφ(s)(·) as the feature extractor calibrated to sketch s,

and F (·) as a vanilla CNN feature extractor, we have:

ψφ(s)(·) = η(φ(s))� F (·) + F (·) (5.8)

The above can be interpreted as a small hypernetwork (Ha et al., 2017), where we generate a

sketch-conditional diagonal weight layer to adapt the conventional CNN feature F to the current

sketch, along with a residual connection. It can also be interpreted as a generating a sketch-

specific soft attention mask on F where η indicates salient dimensions. Using this dynamically

paramaterised feature extractor, we finally apply a standard triplet loss to match photos and

sketches:

Ltri = max(0,∆ + d(ψφ(s)(s), ψφ(s)(p
+))

− d(ψφ(s)(s), ψφ(s)(p
−)))

(5.9)

A Stochastic Paramaterisation A standard solution for the weight generator η(·) in Eq. 5.8

is to transform the input sketch embedding through a few FC layers (Ha et al., 2017). However,

as the input is a discrete set of descriptor vectors, this causes discontinuity in weight generation.

We take inspiration from (Zhang et al., 2017) and mitigate this by introducing layers that predict
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a Gaussian mean and variance, and then sample these to more smoothly generate the target

parameters. This yields more training pairs to encourage robustness to small perturbations along

the conditioning manifold.

µs = Wµφ(s) + bµ

σs = exp(
Wσφ(s) + bσ

2
)

η(φ(s)) = µs + σs �N (0, 1).

(5.10)

Optimisation and Inference Finally, to further enforce the smoothness over the conditioning

manifold and avoid overfitting (Doersch, 2016), we add the commonly applied variational regu-

larisation term, Lcon = DKL(η(φ(s))||N (0, I)), weighted by a small value λcon. Our FG-SBIR

objective is:

minEt∼T [Ltri + λconLcon] (5.11)

where t stands for a triplet tuple, consisting of {s, p+, p−}. During testing, for a query sketch

s, we sample η(φ(s)) ten times to calculate distance for each sketch-photo gallery pair and take

the smallest as the final measure.

5.3 Experiments

5.3.1 Experimental Settings

Dataset and Pre-processing We use the public Sketchy (Sangkloy et al., 2016) and QMUL-

Shoe-V2 (Yu et al., 2017b) to evaluate our methods. Sketchy contains 125 categories with 100

photos each and at least 5 sketches per photo. We follow the same dataset split as (Yelamarthi

et al., 2018) and partition Sketchy into 104 train and 21 test categories to ensure the test ones are

not present in 1000 ImageNet Challenge classes (Russakovsky et al., 2015). For QMUL-Shoe-

V2, we test generalisation by transferring between fine-grained sub-categories and design five

groups of such experiments as shown in Table 5-C. We scale and centre the sketches to 64× 64

when training VTD, while for FG-SBIR, the inputs of all three branches are resized to 299×299.

Implementation Details We implement both models in Tensorflow on a single NVIDIA 1080Ti
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GPU. For unsupervised embedding network: our CNN-based encoder-decoder, E and R, con-

tains five stride-2 convolutions and five fractional-convolutions with stride 1/2, with one 1 × 1

convolution at the end and start of each. BatchNorm-Relu activation is applied to every con-

volutional layer, except the output of R with Tanh. All hyper-parameters are set to undergo a

warm-up phase, so that reconstruction loss dominates the training at the beginning. We train

the models for 200 epochs under all settings with λkl, λrow, λcol linearly increasing from 0, 1, 1

to 1.5, 2, 10 respectively. The dictionary D has M = 256 dimensions and K = 300 elements

throughout. We use Adam optimiser with learning rate 0.0002. For FG-SBIR: we fine-tune

ImageNet-pretrained Inception-v3 (Szegedy et al., 2016) to obtain F with the final classification

layer removed. We enforce `2 normalisation on the output of η to stabilise triplet learning and

set hyper-parameters ∆ = 0.1, λcon = 0.004. We train for 20 epochs on Sketchy, and 10 epochs

on QMUL-Shoe-V2 with a learning rate of 0.0001 and Adam optimiser under all settings.

Evaluation Metric We use Acc.@ K to measure the FG-SBIR performance, which is the

percentage of sketches whose true-match photos are ranked in the top K.

5.3.2 Competitors

Sketchy If not otherwise mentioned, all competitors are implemented based on Inception-v3,

and our model is trained with soft assignment. Hard-Transfer (Yu et al., 2016) trains a vanilla

Siamese triplet ranking model and is directly tested on unseen categories. CVAE-Regress3

(Yelamarthi et al., 2018) is the state-of-the-art zero-shot SBIR method by learning a conditional

generative model to regress ImageNet-pretrained photo features to their corresponding sketch

features. Reptile (Alex and Johnn, 2018) is a recent meta-learning algorithm that repeatedly

samples tasks, trains them, and moves the initialisation towards the trained weights. We inte-

grate it in (Yu et al., 2016) by each time randomly sampling 52 categories to form two sub-

tasks and train parallelly for 500 iterations. CrossGrad (Shankar et al., 2018) is a state-of-the-

art domain generalisation method that trains both a label and a domain classifier on examples

perturbed by each other’s loss gradients. For our task, we regard each of 104 training cate-
3This method is designed for category-level characterisation, so is expected to perform poorly. The reason we

didn’t adapt it to embrace triplet ranking loss is that even with it, since the photo features are fixed rather than
learned, some poor performance is still naturally expected.
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Competitor Acc.@ 1 Acc.@ 5 Acc.@ 10 Competitor Acc.@ 1 Acc.@ 5 Acc.@ 10
Hard-Transfer 16.0% 40.5% 55.2% Ours-WordVector 18.0% 43.5% 58.7%
CVAE-Regress 2.4% 9.5% 17.7% Ours-Classify 16.2% 41.4% 57.2%
Reptile 17.5% 42.3% 57.4% Ours-Full/Edge 16.8% 41.3% 56.2%
CrossGrad 13.4% 34.9% 49.4% Ours-Full/Hard 20.1% 46.4% 61.7%
Ours-VAE 12.7% 34.5% 49.7% Ours-Full 22.6% 49.0% 63.3%
Ours-VAE-Kmeans 17.6% 41.9% 56.9% Upper-Bound 29.9% 65.5% 81.4%

Table 5-A: Comparative Cross-Category FG-SBIR results on Sketchy (Sangkloy et al., 2016).

gories as a unique domain and 100 inter-category photo ids as labels. Ours-VAE corresponds

to training a conventional variational autoencoder (VAE) (Kingma and Welling, 2013) with-

out our visual trait descriptor and using the per-instance latent representation as the descriptor

φ to parameterise the FG-SBIR model. Ours-VAE-Kmeans performs K-means clustering in

the VAE latent space, to generate a dictionary of sketch descriptors analogous to our approach,

but without end-to-end learning. Ours-WordVector and Ours-Classify replace our descriptor

with the category-level semantics driven descriptor either drawn from the class name (Mikolov

et al., 2013) or extracted from the penultimate feature layer of a sketch classification network.

Lastly, we compare our proposed model (Ours-Full) with its two ablated versions, including

Ours-Full/Hard and Ours-Full/Edge, which are trained with hard assignment strategy instead

of soft, on edgemaps other than human freehand sketches respectively.

QMUL-Shoe-V2 This is a single category product-level FG-SBIR dataset. We do not have

enough data to train a dictionary D from scratch. Therefore we take the advantage of the best

visual trait descriptor trained on Sketchy and introduce two variants Ours-Sketchy and Ours-

Sketchy-Ft. They differ in if we directly use the Sketchy dictionary or further fine-tune it on the

seen sub-category of QMUL-Shoe-V2. Hard-Transfer is the competitor.

Caveat Since we use all images within one category for constructing a challenging test set.

The Upper-Bound for both datasets is therefore likely a slight overestimate, as it uses half of

these for training before before testing on all.
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5.3.3 Results on Sketchy

5.3.3.1 Comparison with Competitors

We compare the performance of different models in Table 5-A and make the observations: (i)

The gap between direct transfer (16%) and a model trained using data from the target (unseen)

categories (Upper-Bound, 30%) is large, confirming the cross-category generalisation gap. (ii)

Our model beats all 10 competitors in bridging this gap. (iii) For DG meta-learning competi-

tors, CrossGrad fails to improve on the direct transfer baseline, but Reptile does improve on

it. However both are worse than our full model. (iv) Comparing our two proposed optimisaton

methods, soft assignment outperforms hard. We attribute this to the rigid approach of the latter –

it enforces a uniform distribution over assignment to descriptors, which may not hold in practice

since some will be more common than others. (v) Our visual trait descriptor approach is bene-

ficial as manifested by the dramatic performance gap between ours and the conventional VAE,

VAE-Kmeans alternatives in particular. (vi) Using visually abstract but neat human free-hand

sketches as source data to train our descriptor is important. Replacing these with the detailed

but noisy edgemaps extracted from natural photos hurts the performance. This suggests that the

model is able to exploit the clean and iconic free-hand sketches to learn abstract visual traits

more effectively.

5.3.3.2 Qualitative Impact of Descriptors

We now qualitatively examine how a visual trait descriptor Ds = φ(s) impacts sketch photo

matching and how retrieval is affected if using another sketch descriptor Dŝ, ŝ 6= s instead. To

achieve this, we select one dimension from ψφ(s) that contributes the most to successful matching

and use Grad-Cam (Selvaraju et al., 2017) to propagate gradients back to highlight discrimina-

tive image regions. This can be seen as a visualisation of the implicit attention mechanisms that

different visual trait descriptors define to adapt the feature extraction. We illustrate this in Figure

5.3 across five different Dss for each of six sketch-photo pairs. It shows that (i) The correspond-

ing Ds helps focus attention on regions with similar spatial support for both s and p+, while a

mismatched Dŝ fails to do this; (ii) Individual descriptors Di are useful for multiple categories,
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Figure 5.3: Visualisation of how the VTD adapts the sketch-photo matching process. Coloured
image box border indicates when the correct (corresponding to query sketch) descriptor is used
to paramaterise the embedding space.
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Figure 5.4: Word-Vector vs. Visual-Semantics. Comparing illustrative category pairs: (a) Visu-
ally close but semantically far.(b) Semantically related but visually far. (c) Visually and seman-
tically related. Vis-Sim is cosine distance between the histograms, and Sem-Sim is the cosine
distance between word-vectors. Histograms shown here are the ten most similar descriptors
jointly shared between two categories. Best viewed in colour and zoom.

e.g., the 155th descriptor for parrots and giraffes.
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No. Hard Assignment Soft Assignment

Acc.@ 1 Acc.@ 5 Acc.@ 10 Acc.@ 1 Acc.@ 5 Acc.@ 10
20 18.4% 43.3% 58.4% 19.5% 46.0% 60.4%
100 19.6% 45.7% 60.9% 20.7% 47.7% 62.7%
300 20.1% 46.4% 61.7% 22.6% 49.0% 63.3%
1000 17.8% 42.3% 57.6% 18.3% 43.8% 59.0%

Table 5-B: Effects of different number of VTDs on Cross-Category FG-SBIR performance on
Sketchy dataset(Sangkloy et al., 2016).

5.3.3.3 How Many Descriptors?

We investigate the impact of the descriptor dictionary size K on CC-FG-SBIR performance in

Table 5-B. We can see that our model is not very sensitive to K under either hard and soft

assignment strategies, and a few hundred suffices for good performance.

5.3.3.4 Descriptor-Category Spread

We can verify that VTDs cross-cut rather than mirror the category breakdown of sketches. On

average, training sketches from each category are assigned to 138± 30 unique descriptors. Test-

ing category sketches (upon which the embedding is not trained) are assigned to 129±33 descrip-

tors, indicating that the cross-cutting spread is retained despite the train/test domain-shift.

5.3.3.5 Word-Vector vs. Visual-Semantics

The quantitative results (Table 5-A) showed that word-vector descriptors do improve perfor-

mance over hard-transfer, albeit much less than our approach. We can contrast similarity as

estimated by word-embeddings, with that of our VTD. Figure 5.4(a) shows a pair of categories

which are far in semantic word similarity, but near in visual visual trait descriptor similarity.

Here category level visual similarity is measured by the number of sketches (y-axis) from differ-

ent categories (bars) co-assigned to a single descriptor (x-axis). In contrast, Figure 5.4(b) shows

semantically related categories that are visually distinct (shark/sea turtle) and Figure 5.4(c) illus-

trates categories that are both semantically and visually related (dog/cat).
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Sub-category Fine-grained
Transfer

No. Train /
Test

Competitor Acc.@ 1 Acc.@ 5 Acc.@ 10

Sandal Flat→Wedge 560 / 227

Hard-Transfer 9.25% 32.2% 48.0%
Ours-Sketchy 13.2% 34.3% 50.4%
Ours-Sketchy-Ft 15.4% 37.9% 54.6%
Upper-Bound 28.6% 56.8% 72.2%

Toe-shape Closed→ Fish-mouth 400 / 351

Hard-Transfer 14.8% 44.7% 61.5%
Ours-Sketchy 22.2% 50.4% 65.0%
Ours-Sketchy-Ft 24.2% 54.5% 66.7%
Upper-Bound 29.3% 56.7% 71.8%

Shoe-height Ankle-→ Knee-high 2010 / 245

Hard-Transfer 10.6% 32.2% 43.3%
Ours-Sketchy 14.7% 38.0% 51.0%
Ours-Sketchy-Ft 18.4% 40.8% 55.1%
Upper-Bound 25.3% 54.3% 71.8%

Heel-shape Thick→ Thin 828 / 411

Hard-Transfer 12.2% 35.0% 48.7%
Ours-Sketchy 15.1% 41.4% 59.4%
Ours-Sketchy-Ft 17.3% 41.1% 57.7%
Upper-Bound 26.3% 61.8% 80.5%

Topline Small→ Big 5015 / 1543

Hard-Transfer 7.25% 22.9% 34.5%
Ours-Sketchy 12.2% 28.9% 39.7%
Ours-Sketchy-Ft 15.5% 31.4% 43.8%
Upper-Bound 19.6% 44.2% 61.5%

Table 5-C: Comparative FG-SBIR results on generalising between sub-categories on QMUL-
Shoe-V2 dataset (Yu et al., 2017b)

5.3.4 Results on QMUL-Shoe-V2

In this section, we borrow the best VTD dictionary D (Ours-Full) trained on Sketchy and use

it to help transfer between sub-categories in QMUL-Shoe-V2. To test generalisation on this

benchmark, we design five groups of experiments, each defining a different type of train/test gap,

and with diverse split sizes. We report their performance in Table 5-C and find that compared

with Hard-Transfer, even when directly applyingD to this novel dataset, Ours-Sketchy improves

performance in all experiments. This is promising as a Sketchy-trained dictionary is generally

applicable and it has potential to benefit other specific FG-SBIR applications. When further fine-

tuned on the train data split of each experiment, we also usually improve performance (Ours-

Sketchy-Ft vs. Ours-Sketchy).

5.4 Summary

This chapter for the first time identified the generalisation problem in cross-category FG-SBIR

and proposed a novel solution via learning a universal visual trait descriptor embedding. This

embedding dictionary is mapped to a set of latent domains that cross-cut sketch categories, and
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enable a retrieval network to be suitably paramaterised given a query sketch – by mapping query

sketches to the corresponding descriptor in the dictionary. Extensive experiments on Sketchy

and QMUL-Shoe-V2 demonstrate the superiority of our proposed method for cross-category

FG-SBIR.



Chapter 6

Solving Mixed-modal Jigsaw Puzzle for FG-SBIR

6.1 Background and Motivation

In this chapter, we aim to propose a self-supervised pre-training alternative to ImageNet pre-

training which is long considered to be critical for promising FG-SBIR performance. Despite

the great strides made, almost all contemporary competitive FG-SBIR models depend crucially

on one necessary condition: the model must be fine-tuned from the pre-trained weights of an

ImageNet (Deng et al., 2009) classifier. The reason behind this is that collecting instance-

level sketch-photo pairs for FG-SBIR is very expensive, with the largest current single product-

category dataset being only on a scale of thousands. Scaling such data collection to the size

required to train a contemporary deep CNN from scratch is infeasible. Thus, ImageNet pre-

training is ubiquitously leveraged to provide initialisation for FG-SBIR.

While useful in ameliorating the otherwise fatal lack of data for FG-SBIR, ImageNet pre-

training suffers from mismatch to the intended downstream task. Training for object category

classification requires detecting high-level primitives that characterise different object categories,

while learning to ignore certain fine-grained details critical for the instance-level recognition

64
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Figure 6.1: Conventionally, a competitive FG-SBIR system relies on two prerequisites: Ima-
geNet pre-training and triplet fine-tuning. Here we investigate substituting the former with a
mixed-domain jigsaw puzzle solver, leading to improved FG-SBIR accuracy and generalisation.

task in FG-SBIR. Crucially, ImageNet only contains images from the photo modality, while

FG-SBIR requires cross-modality matching between photo and sketch. This suggests that Ima-

geNet classification may not be the most effective pre-training strategy for FG-SBIR. Indeed,

recently (Radenovic et al., 2018) explored the self-supervised task of matching a photo with its

edgemap to substitute the sketch-photo pair for model training. This could potentially be used

for pre-training as well. However, its effectiveness is limited because the task boils down to

edge detection and is not challenging enough for the model to learn fine-grained cross-modal

discriminative patterns for matching.

We propose to perform representation pre-training by recovering an image from mixed-

modal shuffled patches. That is, patches drawn randomly from photo and edgemap domains.

Solving this problem, as illustrated in Figure 6.1, requires learning to bridge the domain discrep-

ancy, to understand holistic object configuration, and to encode fine-grained detail in order to

characterise each patch accurately enough to infer their relative placement.

Note that jigsaw solving has been studied before (Carlucci et al., 2019; Noroozi and Favaro,

2016) for single-modal recognition problems. In this work, differently, we deal with a more
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challenging mixed-modal jigsaw problem. Solving jigsaw puzzle as a task itself is hard; as a

result, instead of directly solving it, i.e., recovering the un-shuffled original image where all

patches are put back to the right places, most prior work (Carlucci et al., 2019; Kim et al., 2018;

Noroozi and Favaro, 2016) poses jigsaw solving as a recognition task. In contrast, we frame the

jigsaw solving problem as a permutation inference problem and solve it using Sinkhorn iterations

(Adams and Zemel, 2011; Santa Cruz et al., 2017). Our experiments show that this formalisation

of a jigsaw solver provides a much stronger model for self-supervised representation pre-training

on all four publicly available product-level FG-SBIR datasets. A surprising outcome is that this

approach can completely break the category associations between representation pre-training and

FG-SBIR fine-tuning without harming performance, as well as lead to improved generalisation

across categories between FG-SBIR fine-tuning and run-time testing stage.

6.2 Jigsaw Pre-training for FG-SBIR

6.2.1 Overview

This section aims to introduce a self-supervised pre-training strategy in the form of solving

mixed-modal jigsaw puzzles. The whole FG-SBIR training pipeline thus consists of two stages:

self-supervised jigsaw pre-training and supervised FG-SBIR triplet fine-tuning. The first self-

stage will use photos p and corresponding programmatically produced edgemaps e to produce

mixed modal jigsaw images x. Our jigsaw solver J(x) trains a representation by learning to solve

these jigsaws. In the second stage, we use the learned representation as an initial condition,

and fine-tune a FG-SBIR model by supervised triplet ranking on annotated pairs of free-hand

sketches and photos.

6.2.2 Jigsaw Puzzle Generation

We first define a cross-modality shuffling operator x = T (e, p,O,R), that transforms a photo

p and its edgemap counterpart e to form a mixed-modal jigsaw image x. Assume the jigsaw

image is to contain N patches in a
√
N ×
√
N array. O is then a random permutation of an array

[1 . . . N ] that describes the mapping of input image patches to the jigsaw patches in x, and R
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Figure 6.2: Schematic of our proposed Jigsaw pre-training for FG-SBIR. We take a jigsaw puzzle
of 9 tiles as an example. Both photo p and its edgemap counterpart e are first divided into
3 × 3 grid and reshuffled based on a permutation order O. Using a random binary vector R,
these are then stitched into the final mixed-modality jigsaw x. x is fed to our jigsaw solver
J(x) = G(F (x)) including a ConvNet feature extractor F (·) and Sinkhorn-based permutation
solver G(·) to obtain the permutation matrix A+ that solves the jigsaw. After pre-training, we
take the CNN module F (·) and use it as a feature extractor for FG-SBIR fine-tuning.

is a N -dimensional vector of Bernoulli samples that will determine whether input patches are

drawn from photo p or edgemap e. Thus, as shown in Figure 6.2, x is generated by drawing the

ith patch from location Oi of the inputs, specifically from sketch if Ri = 1 and photo if Ri = 0.

6.2.3 Jigsaw Puzzle Solver

Our jigsaw solver J(x) processes the mixed-modal jigsaw image x and returns A+, a N ×

N assignment matrix that maps each jigsaw patch to the target patch of an un-shuffled image

(Figure 6.2). The jigsaw solver J(x) = G(F (x)) is implemented via a CNN feature extractor

F (·), followed by a permutation solver G(·). The solver applies a fully connected layer W on

the CNN’s output to produce an affinity matrix A ∈ RN×N , where Aij describes the CNNs

preference strength for assigning the ith input puzzle location to the jth target location. It then

infers the most likely global assignment of jigsaw patches to output patches by applying the

Sinkhorn operator to the affinity matrix A+ = Sinkhorn(A). This will help to un-shuffle the

input patches and solve the jigsaw by producing an assignment matrix with constraint1: (i) all

elements are either 0 or 1; (ii) each row and column has exactly one assignment. For instance,
1Strictly speaking, the Sinkhorn iterator only guarantees a “soft” assignment matrix, i.e., a doubly stochastic

matrix where each row and column adds up to 1, and reach to a strict assignment matrix by further framing it as a
maximisation problem via argmax. But in practice even with such relaxation, we found that optimised by cross-
entropy loss, Sinkhorn(A) can already approximate a strict assignment matrix well and saves the efforts to deal with
non-differentiable issue with argmax.
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A+
ij = 1 means assigning ith input patch to the jth target patch, and the mapping between input

and output patches is 1-to-1.

Sinkhorn Operator Sinkhorn(·) To implement the Sinkhorn operator, we follow (Adams and

Zemel, 2011) and iteratively normalise its rows of the input in order to approximate the doubly

stochastic matrix A+:

Sinkhorn 0(A) = exp(A)

Sinkhorn l(A) = Tc(Tr(Sinkhorn l−1(A)))

Sinkhorn(A) = lim
l→∞

Sinkhorn l(A)

(6.1)

where Tr(X) = X�(X1N1
T
N ), Tc(X) = X�(1N1

T
NX) as the row and column-wise normali-

sation operations of a matrix, with� denoting the element-wise division and 1N a column vector

of ones. l is a hyper-parameter to control the number of Sinkhorn iterations used to estimate the

assignment.

Loss Functions For jigsaw pre-training, our loss function aims to close the distribution gap

between A+ and the true assignment matrix Y (generated from from O), defined as:

loss(A+, Y ) = −
N∑
i=1

N∑
j=1

[log(A+
ij)× Yij + log(1−A+

ij)× (1− Yij)] (6.2)

Summary At each iteration, training images are edge extracted, and randomly shuffled and

modality mixed. Training the jigsaw solver J to un-shuffle the images requires the CNN to learn

a feature extractor which is both modality invariant, and encodes enough fine-grained detail to

enable the permutation solver to successfully un-shuffle.

6.3 FG-SBIR Fine-Tuning

In the fine-tuning stage we perform supervised learning of free-hand sketch to photo retrieval.

Specifically, we strip off the permutation solver module G and use the feature extractor F (·) in
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the standard triplet ranking loss:

loss(s, p+, p−) =

max(0,∆ + d(F (s), F (p+))− d(F (s), F (p−)))

(6.3)

where s is a query sketch, p+ and p− are positive and negative photo examples, d(s, p) =

||F (s) − F (p)||22, and ∆ is a hyper-parameter as the margin between the positive and negative

example distance. For evaluation we retrieve the photo p with minimum distance to a query

sketch s according to d(s, p).

6.4 Experimental Settings

To pinpoint the advantages of jigsaw pre-training, we control all baselines and ablated variants to

use the same CNN architecture and optimisation strategy. Learning rates and hyper-parameters

are not grid-searched for optimal performance. Only training iterations may vary across datasets.

Dataset and Pre-processing For Jigsaw pre-training: The FG-SBIR benchmarks used are

the Shoe, Chair and Handbag product search datasets from (Yu et al., 2017b). For pre-training,

additional photo images of the same category are collected. (1) Shoes – we take all 50,025

product images from (Yu and Grauman, 2014). (2) Handbags – we randomly select 50k photos

from Handbag-137k (Zhu et al., 2016) which is crudely crawled from Amazon without manual

refinement. We filter out the ones with noisy background or irrelevant visuals, e.g., a handbag

with a human model, which leaves a final size of 42,734. (3) Chair – we collect chair images from

various sources to assure their diversity, including MADE, IKEA and ARGOS, and contribute

7,813 chair photos overall. We take 90% of these photos for self-supervised training, and use

the rest as validation for model selection. We extract edgemaps from photos using (Zitnick and

Dollar, 2014). For Triplet fine-tuning: We use all four publicly available product FG-SBIR

datasets (Yu et al., 2017b) to evaluate our methods, namely QMUL Shoe V1, QMUL Shoe V2,

QMUL Chair and QMUL Handbag, with 419, 6,648, 297, 568 sketch-photo pairs respectively.

Of these, we use 304, 5,982, 200, 400 pairs for training and the rest for testing following the
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same splits as in (Yu et al., 2017b). Since noticeable data bias exists between edgemaps for

pre-training and sketches in fine-tuning, e.g., stroke width, blurriness, we process both sketches

and edgemaps via a cleanup and simplification model (Simo-Serra et al., 2018). We scale and

centre all input images at both stages on a 256x256 blank canvas before feeding into a model.

Implementation Details All experiments are carried out with a base architecture F (·) of

GoogleNet (Szegedy et al., 2015) running on Tensorflow with a single NVIDIA 1080Ti GPU.

For Jigsaw pre-training: the initial learning rate is set to 1e-3 for 50k iterations and decreased

to 1e-4 for another 10k with a batch size of 128. Since product images have white background,

it’s likely when dividing it into a N × N grid that some corner patches will be completely

empty. Thus in practice, we first draw bounding boxes around the object (by simple pixel-

value thresholding) in both photo and edgemap images and perform patch shuffling within them.

The number of iterations l for the Sinkhorn operator is set to 5, 10, 15, 20 for the patch number

N = 4, 9, 16, 25 respectively. Intuitively, denser jigsaws pose more complicated un-shuffling

problems and thus require more Sinkhorn iterations. To discourage overfitting to patch-edge

statistics (Noroozi and Favaro, 2016), we leave a random gap between the patches. For Triplet

fine-tuning: We train triplet ranking with a batch size of 16. We train 50k iterations for

QMUL Shoe V2 and 20k iterations for the rest. The learning rate is set 1e-3 with a fixed margin

value ∆ = 0.1. As a run-time augmentation, we also adopt the multi-cropping strategy as in (Yu

et al., 2016). In both stages, common training augmentation approaches including horizontal

flipping and random cropping, as well as colour jittering are applied. MomentumOptimizer

is used with momentum value 0.9 throughout.

Evaluation Metrics Following community’s convention, FG-SBIR performance is quantified

by acc@K, the percentage of sketches whose true-match photos are ranked in top K. We focus

on the most challenging scenario of K=1 through our experiments. Each experiment is run five

times. The mean and standard deviation of the results obtained over the five trials are then

reported.

Baselines As our focus is on pre-training, our baselines consist of alternative pre-training

approaches, while the final triplet fine-tuning is kept the same throughout. Counting (Noroozi
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et al., 2017) and Rotation (Gidaris et al., 2018): These are two popular self-supervised alter-

natives to Jigsaws. The former asks for the total number of visual primitives in each split tile

to equate that in the whole image. The latter requires the model to recognise the 2d rotation

applied to an image. We found the common 2x2 split for learning to count may seemingly suf-

fice for categorisation purpose, but empirically too coarse for fine-grained matching. Therefore

in our implementation, we enhance it to count within 3x3 split, which is equivalent to train-

ing a 11-way Siamese network (9 tiles + 1 original image + 1 contrastive negative image2 to

circumvent trivial learning). We follow the same definition of geometric rotation set (Gidaris

et al., 2018) by multiples of 90 degrees, i.e., 0, 90, 180, and 270 degrees, which makes a 4-way

classification objective. Contrastive Predictive Coding (CPC) (Oord et al., 2018): A state

of the art self-supervised method that predicts the representations of patches below a certain

position from those above it via autoregressive model. This is learned by correctly classifying

the “future” representation amongst a set of unrelated negative representations. We follow the

authors’ implementations by predicting up to five rows from the 7 × 7 grid. Matching: This

trains a triplet ranking model between an edgemap query and the positive and negative photo

counterparts (Radenovic et al., 2018). ImageNet (Szegedy et al., 2015): this corresponds to the

standard pre-trained 1K classification model on ImageNet, GoogleNet in our case. Our/1000-

way: we adapt our mixed-modality jiasaw solving based model, but instead of solving it, we

follow (Kim et al., 2018; Noroozi and Favaro, 2016) to solve a substitute problem of 1000-way

jigsaw pattern classification. Lastly, Ours and Ours/ImageNet, two means of training our pro-

posed method either from scratch or building upon the initialised weights of ImageNet.

6.5 Results and Analysis

6.5.1 Comparison with Baselines

Our first discovery is that self-supervised jigsaw pre-training from scratch on target category

photos (i.e., For FG-SBIR on shoe products, collect un-annotated shoe photos for pre-training)

followed by standard FG-SBIR fine-tuning is highly effective. Belows is more detailed analysis
2A potential shortcut is that it can easily satisfy the constraint by learning to count as few visual primitives as

possible, so many entries of the feature embedding may collapse to zero without a contrastive signal.
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Pre-training FG-SBIR Dataset
Method Self-supervised? QMUL Shoe V14×4 QMUL Shoe V23×3 QMUL Chair3×3 QMUL Handbag4×4

Counting 3 41.74%± 2.30 30.42%± 0.54 72.78%± 4.35 54.05%± 2.77
Rotation 3 32.17%± 2.68 28.83%± 0.40 70.31%± 3.45 38.33%± 1.86
CPC 3 21.91%± 1.69 8.65%± 0.34 35.24%± 0.42 15.36%± 0.69
Matching 3 39.13%± 0.87 31.05%± 0.84 75.69%± 1.53 50.36%± 0.68
ImageNet 7 43.48%± 1.74 33.99%± 1.09 85.16%± 1.56 52.62%± 2.04
Ours/1000-way 3 42.78%± 3.75 30.24%± 1.74 79.59%± 1.53 49.40%± 3.97
Ours/ImageNet 73 48.00%± 2.91 31.26%± 0.65 79.59%± 1.34 61.07%± 1.50
Ours 3 56.52%± 2.75 36.52%± 0.84 85.98%± 2.01 62.97%± 2.04

Table 6-A: Comparisons with different baselines as pre-training approaches for FG-SBIR task.
The top-right superscript on each dataset name indicates the granularity of the jigsaw game
solved that brings the best FG-SBIR performance respectively.

of the results with reference to Table 6-A.

Is solving a cross-modality jigsaw task a better strategy than ImageNet pre-training? Yes.

It is evident that the proposed method (Ours) outperforms all the other baselines including the

conventional ImageNet pre-training based one (ImageNet) on all four datasets, sometimes with

significant margins. Furthermore ImageNet pre-training does not provide any benefits, but harm-

ful when combined with our jigsaw solver (Ours/ImageNet). These results show that training for

single-modality object classification is of limited relevance compared to our mixed-modal pre-

training strategy.

Does the way the jigsaw puzzle is solved matter? Yes. The significant gap between Ours and

Ours/1000-way confirms the significance of our technical choice: Formalising jigsaw solving

as permutation estimation via Sinkhorn operator to actually solve it. This difference in effi-

cacy is due to two reasons: (i) How to choose the pre-defined permutation set for classification

determines the ambiguity of the task. Despite efforts to maximise task efficacy via evolution

of classification sets (Noroozi and Favaro, 2016), classifying among a fixed set of permutations

is worse than our assignment matrix estimation which must select among all possible permuta-

tions. (ii) The Sinkhorn operator provides a direct representation and estimation of permutation,

so that latent features are properly learned to support this purpose, rather than a coarse correlate

to permutation.

Why is Edge-photo-matching ineffective? At the first glance, training an edge-photo match-

ing model (Radenovic et al., 2018) seems a natural task choice for pre-training FG-SBIR, given
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the similarity between edges and human sketches3. However, the very poor performance of the

baseline (Matching) suggests that even though the edgemap is useful substitute to sketch (as

demonstrated by our method), how to design the cross-modal task matters. The Edge-photo-

matching task only requires whole image level photo to edgemap matching, which can be effec-

tively solved by learning an edge detector. In contrast, our mixed-modal jigsaw puzzle problem

is much harder – solving it requires the model to understand the two modalities both at the image

level and the local patch level.

Why do the improvements vary across datasets? It is noted that our method exhibits a bigger

margin on the shoes and handbags compared to chairs. Although our pre-training task is well

aligned with the downstream SBIR-task, data sourced from different categories is likely to shape

the model’s behaviour in different ways. We believe overall solving jigsaw puzzles on shoes

and handbags are harder than chairs due to the more complicated and diverse design styles they

present, and thus better model capabilities are required and gained through the jigsaw solving

pre-training stage.

6.5.2 Cross-Category Generalisation of Jigsaws

Our second discovery is that models pre-trained to solve jigsaw puzzles are surprisingly gen-

eralisable. Pre-training on one category followed by triplet fine-tuning and testing on another

category is similar or sometimes even better compared with two stages within the same cate-

gory.

Analysis of Jigsaw-informed Pre-training Model We first investigate the importance of hav-

ing the same object category during jigsaw pre-training and triplet fine-tuning stages. From

the results in Figure 6.3(a), we make the following observations: (i) Matching pre-training and

fine-tuning category is not crucial. Indeed using the Shoe dataset for pre-training tends to pro-

vide the best performance across all four fine-tuning/testing categories. (ii) This suggests what

really matters is not whether the pre-train/fine-tune categories are aligned, but the richness of

each individual pre-training dataset itself. In this regard we observe Shoe>Handbag>Chair in
3Indeed, especially in the field of image-to-image translation, people tend to treat the terms sketch and edgemap

interchangeably.
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Figure 6.3: Cross-Category generalisation in pre-training and FG-SBIR. Symbols A, B, C refer
to FG-SBIR model learning pattern A+B�C, where A represents our jigsaw training data, fur-
ther fine-tuned by a triplet ranking model on category B, and finally testing on category C. We
slightly abuse the notation here, as sometimes A can also be ImageNet. We use the notation
= to denote using the same category for two of these stages. (a) Cross-category generalisa-
tion between jigsaw pre-training and fine-tuning/testing. Fine-tuning/testing is kept the same
throughout (B=C). (b) Cross-category generalisation between pre-training/fine-tuning and test-
ing. Pre-training/fine-tuning are kept the same throughout (A=B). Best viewed in zoom.

terms of which dataset provides the most effective pre-training across a variety of target datasets.

This result also coincides with our intuition that a good pre-training model should be category-

agnostic. (iii) Overall, as long as pre-training uses our proposed jigsaw strategy, and is provided

with a moderate sized set of product photos from any fashion category, the standard ImageNet
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pre-training strategy can be beaten. A key implication of these results are to provide a new route

to scaling FG-SBIR systems in practice. While collecting large annotated free-hand sketch-photo

pair datasets for each object category is prohibitively expensive, collecting product photos in any

fashion category at large scale is quite feasible and can be used to boost FG-SBIR performance.

Analysis of Jigsaw-enabled FG-SBIR Model A second type of generalisability we explore

is the impact of the chosen pre-training approach on the ability of the resulting FG-SBIR model

to transfer across categories between training and testing. From the results in Figure 6.3(b),

we can see that as expected, the performance drops in this cross-category testing setting com-

pared to Figure 6.3(a). However, in every case Jigsaw pre-training leads to better cross-category

generalisation than standard ImageNet pre-training.

6.5.3 Ablation Study

In this section, we compare our proposed method with a few variants to validate some key design

choices in our jigsaw puzzles pre-training paradigm.

Granularity of Puzzle The difficulty of the jigsaw game depends on the granularity of the

pieces shuffled for recomposition. If the granularity is very coarse, e.g., 2×2, the task is rela-

tively simple and may not pose sufficient challenge for effective feature learning. If the granu-

larity is very fine, e.g., 10×10, it may be too hard for even humans to solve and lead to models

overfitting on noise. We explore this effect by enumerating jigsaw sizes from 2×2 to 5×5 and

show the results in Figure 6.4(a). We make the following observations: (i) Except for 2×2, the

difference in FG-SBIR results across different granularities is small and all larger jigsaws usu-

ally outperform the ImageNet baseline. (ii) The optimal granularity of jigsaw pre-training for

each dataset slightly differs, but generally a puzzle of 3×3 or 4×4 provides a good choice.

Construction of Puzzle Modality Given the collected photos and extracted edgemaps of one

category, there are four ways to construct the modality of the pre-training puzzles, namely: photo

domain only, edgemap domain only, photo and edgemap mixed at image-level (both modalities

of images are used, but each puzzle only contains a single randomly chosen modality), photo
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Figure 6.4: Comparisons between different ablated variants of the proposed jigsaw pre-training
on the performance of FG-SBIR task – (a) Granularity of the jigsaw. (b) Data modality of the
image. The red error bar represents the standard deviation among the five repeated trials. More
details in text. Best viewed in zoom.

and edgemap mixed at patch-level (ours). We summarise the results of these variants in Figure

6.4(b) and draw some conclusions: (i) Although our downstream task is cross-domain, pre-

training on photo domain only seemingly sufficient for quite good performance across datasets.

This is in contrast to using edgemaps alone where performance plummets. (ii) Mixing photo and

edgemap images into a single dataset of both modalities provides limited benefit over photo only

(Jigsaw both unmixed). (iii) Our patch-wise mixed-modal input strategy (Jigsaw both mixed)

leads to the best performance on all four datasets.
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Datasets Variants Methods Acc@1

QMUL Shoe V1

C2FF ImageNet 44.57%± 1.58
Oursshoe 4×4 55.30%±2.27

HOLEF ImageNet 44.18%± 2.25
Oursshoe 4×4 54.61%± 1.13

UFG-SBIR ImageNet 26.96%± 1.74
Oursshoe 4×4 35.30%± 2.92

QMUL Chair

C2FF ImageNet 83.30%± 1.85
Oursshoe 4×4 91.54%± 1.98

HOLEF ImageNet 85.77%± 2.24
Oursshoe 4×4 89.90%± 1.34

UFG-SBIR ImageNet 72.37%± 2.35
Oursshoe 4×4 72.16%± 2.53

QMUL Handbag

C2FF ImageNet 57.14%± 2.59
Oursshoe 4×4 57.38%± 2.21

HOLEF ImageNet 54.29%± 1.70
Oursshoe 4×4 63.33%± 2.68

UFG-SBIR ImageNet 32.86%± 2.03
Oursshoe 4×4 56.43 %± 0.98

Table 6-B: Comparisons between our jigsaw approach and ImageNet pre-training when using
different FG-SBIR variants.

6.6 Further Discussions

Sensitivity to Existing FG-SBIR Frameworks Thus far we have focused entirely on differ-

ent pre-training approaches and datasets, while keeping a standard CNN and FG-SBIR matching

architecture to facilitate direct comparison. We next examine to what extent our pre-training

methods complement recent improvements in FG-SBIR method design. We consider three FG-

SBIR variants, including: (i) Architecture enhancements: Coarse to fine fusion (Song et al.,

2017b; Yu et al., 2017a), which we denote C2FF; (ii) Training objective: (Song et al., 2017b):

Triplet ranking loss with a higher order learnable energy function - HOLEF; (iii) Problem formu-

lation: Unsupervised FG-SBIR - UFG-SBIR, where edgemap is treated as a human sketch for

SBIR training (Radenovic et al., 2018). From the results in Table 6-B, we can see that our self-

supervised mixed-modal jigsaw pre-training matches or improves on ImageNet performance for

each of the FG-SBIR variants tested.

The effect of Sinkhorn Iterations l In practice, there is a trade-off on selecting the value of
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Figure 6.5: Jigsaw solver success rate vs. Sinkhorn iterations once trained under l. Patch success
rate and Instance success rate refer to the percentage of the shuffled patches that are correctly
ordered and the percentage of the instances where all patches within are perfectly recovered
respectively. Note that since it’s practically infeasible to test all possible permutations of one
sample, for each subfigure, we generate one mix-modality shuffling strategy for each input and
apply it to all x-axis values.
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Figure 6.6: Illustrations of our product-level FG-SBIR dataset and the existing general-purpose
counterpart, Sketchy (Sangkloy et al., 2016).

l: if it is too small, then the resultant assignment matrix will be far from a true permutation

one, while when it’s unhelpfully big, the optimisation becomes harder as the gradients vanished

accordingly. In Figure 6.5, we show how jigsaw solver reacts to the linear slicing of different

values ranging from 1 to l. The following observations can be made: (i) Generally, the jigsaw

model saturates when the number is approaching l, with few exceptions that best performance

is gained halfway (Figure 6.5(c)). (ii) For many settings after one round of Sinkhorn normalisa-

tion, the jigsaw performance already reaches to a reasonable level. This implies that even if we

apply l times of Sinkhorn iteration during training, the model only improve the solving success

marginally, but continue to pre-train a better model. (iii) Despite failing to get instances perfectly

un-shuffled, e.g., less than 1% on 5 × 5 puzzle, the solver can consistently get a large number

of patches right. (iv) Different jigsaw granularities corresponds to very different scales of jigsaw

success rates, in a stark contrast with that on FG-SBIR (Figure 6.4 (a)), where little difference is

witnessed as long as the granularity exceeds 2x2.

Caveat: SBIR Dataset Flavours We note that thus far the superiority of our jigsaw pre-

training is validated when applied to product-level FG-SBIR benchmarks because this is where

FG-SBIR is most likely to be applied. Here we consider two other type of datasets: The
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Dataset Methods

Oursshoe 4×4 Oursshoe 4×4/ImageNet ImageNet

Sketchy 53.45%± 0.28 51.86%± 0.17 60.26%± 0.16
Flickr15k 27.23%± 0.81 24.03%± 0.84 44.15%± 0.30

Table 6-C: Performance comparison on coarser-grained SBIR datasets. Values reported on
Sketchy (Sangkloy et al., 2016) and Flickr15k (Bui et al., 2017) are measured with Acc@1
and mAP respectively.

Flickr15k (Bui et al., 2017) benchmark for category-level SBIR (i.e., the goal is to retrieve

any instance of a particular category rather than one specific instance), and Sketchy (Sangk-

loy et al., 2016), with sketch-photo paired data covering 125 real-world object categories. We

follow the standard splits for these benchmarks, and evaluate our Jigsaw pre-training approach

vs. the standard ImageNet pre-training in Table 6-C. We can see that our Jigsaw strategy is not

effective for these benchmarks, and direct ImageNet pre-training clearly leads to the best results.

To understand why, we show in Figure 6.6 the test set photos of the shoe category in Sketchy

and a random 10 shoe photos in QMUL Shoe V2. It can been seen : (i) Pose and shape play

pivotal roles in matching for sketchy, rather than fine-grained details in product-level FG-SBIR.

This lesser pose variability in QMUL Shoe V2 contributes to the poor transferability to Sketchy.

(ii) Sketchy and Flickr15k images have complicated backgrounds, unlike the white-background

product images. Pre-training on product photos thus is unsurprisingly ineffective in teaching a

model to deal with complex backgrounds required for Sketchy and Flickr15k. In these cases

ImageNet pre-training is understandably more appropriate.

6.7 Summary

This chapter introduced a new mixed-modal jigsaw self-supervised pre-training strategy for FG-

SBIR with a novel solver. We showed that the proposed method outperforms the conventional

ImageNet pre-training stage. This strategy generalises well across categories, and furthermore

leads to FG-SBIR models with better cross-category generalisation properties. We hope this

pre-training strategy can become the norm for future FG-SBIR work, as well as be adopted by

other cross-modal retrieval/recognition tasks.



Chapter 7

Conclusion and Future Work

Because of the belief that seeing can be better explained by drawing and the practical availability

of relevant large-scale datasets that makes a model to be evaluated of statistical significance,

sketch-related researches have flourished in recent years. In this thesis, we focus on the problem

of FG-SBIR and have described a number of data-driven deep learning approaches to effectively

solve it. We have dedicated to making each approach to address a critical part unidentified in

the prior work. This is achieved by delving deep into the unique visual characteristics of the

human sketch domain and exploit it to define and devise novel frameworks for better instance-

level sketch-photo matching. Overall, this thesis has pushed the frontier of FG-SBIR research

not only from benchmarking perspective (as in all chapters) but also in a way to cater for the

potential needs in the practical adoption: The contour-detail factorisation study in Chapter 4

may inspire a new human sketching interface by separately tracing and recording the contours

and details part. Chapter 5 alleviates the additional complexity of a deployed FG-SBIR system

– the model does not have to recollect data and be re-trained to give reasonable responses to

the user’s sketch queries from object categories it has not seen before. The behaviours of self-

supervised Jigsaw pre-training in Chapter 6 shows that we can cut the category tie between model

pre-training and fine-tuning stage. This is of particular interest to FG-SBIR system developers:

81
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because a pre-training solution of universal category wisdom is possible, efforts can finally be

focused on fine-tuning stage only.

However, while this thesis has concretely demonstrated its efficacy for FG-SBIR, the problem

stills remains largely open and some possible improvements building on our current models are

summarised here: (i) rather than posing the cross-domain generation task as an auto-encoder

In Chapter 3, we can re-formulate it to variational auto-encoder (Kingma and Welling, 2013)

or adversarial auto-encoder (Makhzani et al., 2015) to make the embedding space tractable and

thus better regularised. (ii) The better performance of soft assignment strategy in Chapter 5

indicates our assumption that one sketch is represented by one visual trait descriptor (VTD) only

is over-constrained. Relaxing the freedom to multiple VTDs and learning a dynamic weighting

combination between them seems to be more reasonable. (iii) Chapter 6 shows that ideal self-

supervised pre-training task depends on the downstream target task and Jigsaw prevails for FG-

SBIR. A better pre-training model is expected by tuning the distribution over self-supervision

objectives compared to picking any one of them or using them all with uniform weight. Simple

meta learning technique like (Alex and Johnn, 2018) should be an effective way to start.

Below we discuss several potential future directions for FG-SBIR:

On-the-fly Fine-grained SBIR Two barriers still exist that hinders the practicality of FG-

SBIR — the time taken to draw a complete sketch, and the drawing skill shortage of the user.

Interactive FG-SBIR tackles this problem by aiming to conduct retrieval at every stroke drawn

as opposed to the requirement of a complete sketch. This in practice can also enhance the user’s

sketching patience and simultaneously adapt their drawing behaviours because one can see the

immediate result of each incremental rendering.

Editing-based Fine-grained SBIR Thus far, the human sketches for FG-SBIR all assume a

drawing process starting from a white canvas. However, in practical scenarios, we may often

have an initial image and want to edit upon. This requires different model capabilities where

both the impact of the initial image should be considered (its difference to the target image is

often very small) and much finer-grained differentiation is required (the few strokes of edited
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subtle part should be fully reflected in the retrieval).

Standardised FG-SBIR Dataset Collection Previous FG-SBIR datasets are collected mainly

via two ways: crowd-sourcing platform like Amazon Mechanical Turk (e.g., Sketchy (Sangk-

loy et al., 2016) or private recruitment (e.g., QMUL-V1 datasets (Yu et al., 2016)). The former

has the advantage of effortlessly scaling the size of the dataset while the latter prevails on qual-

ity control. Nevertheless, there still lacks a systematic study on quantitatively evaluating the

faithfulness of collected sketch-photo pairs and how it will affect the FG-SBIR model learn-

ing. Because unlike other human-involved annotation processes, for example drawing bounding

boxes in object detection (Lin et al., 2014) or locating key points (Cao et al., 2018) in pose esti-

mation, the subjectivity in the process of sketching based on a mental image is particularly high.

This can constitute a major casual factor for data-driven deep models .
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