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Abstract

As touching devices have rapidly proliferated, sketch has gained much popularity as an

alternative input to text descriptions and speeches. This is due to the fact that sketch

has the advantage of being informative and convenient, which have stimulated sketch-

related research in areas such as sketch recognition, sketch segmentation, sketch-based

image retrieval, and photo-to-sketch synthesis. Though these field has been well touched,

existing sketch works still suffer from aligning the sketch and photo domains, resulting

in unsatisfactory quality for both fine-grained retrieval and synthesis between sketch and

photo modalities. To address these problems, in this thesis, we proposed a series novel

works on free-hand sketch related tasks and throw out helpful insights to help future

research.

Sketch conveys fine-grained information, making fine-grained sketch-based image retrieval

one of the most important topics for sketch research. The basic solution for this task

is learning to exploit the informativeness of sketches and link it to other modalities.

Apart from the informativeness of sketches, semantic information is also important to

understanding sketch modality and link it with other related modalities. In this thesis,

we indicate that semantic information can effectively fill the domain gap between sketch

and photo modalities as a bridge. Based on this observation, we proposed an attribute-

aware deep framework to exploit attribute information to aid fine-grained SBIR. Text

descriptions are considered as another semantic alternative to attributes, and at the same

time, with the advantage of more flexible and natural, which are exploited in our pro-

posed deep multi-task framework. The experimental study has shown that the semantic

attribute information can improve the fine-grained SBIR performance in a large margin.

Sketch also has its unique feature like containing temporal information. In sketch synthe-

sis task, the understandings from both semantic meanings behind sketches and sketching
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process are required. The semantic meaning of sketches has been well explored in the

sketch recognition, and sketch retrieval challenges. However, the sketching process has

somehow been ignored, even though the sketching process is also very important for us

to understand the sketch modality, especially considering the unique temporal charac-

teristics of sketches. in this thesis, we proposed the first deep photo-to-sketch synthesis

framework, which has provided good performance on sketch synthesis task, as shown in

the experiment section.

Generalisability is an important criterion to judge whether the existing methods are able

to be applied to the real world scenario, especially considering the difficulties and costly

expense of collecting sketches and pairwise annotation. We thus proposed a generalised

fine-grained SBIR framework. In detail, we follow the meta-learning strategy, and train

a hyper-network to generate instance-level classification weights for the latter matching

network. The effectiveness of the proposed method has been validated by the extensive

experimental results.
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Chapter 1

Introduction

Sketch research has attracted great interest for a long time, especially since the flourish-

ing of touch-screen devices in recent decades [3]. Sketch research encompasses popular

topics including sketch recognition [1, 7–10], sketch-based image retrieval [11, 11–13],

fine-grained sketch-based image retrieval [3, 14–16], sketch synthesis [4, 17, 18], and oth-

ers [19–21]. All these sketch-related tasks require a thorough understanding of sketch

modality. For example, in a sketch-recognition task, the model needs to understand the

semantic meaning of given sketches [1]. In fine-grained sketch-based image retrieval, an

even more advanced, fine-grained understanding is required in addition to and under-

standing of the semantic meaning behind sketches [3]. ‘Sketch’ is mostly understood to

has the meaning of a static modality in both sketch-recognition tasks and sketch-based

image-retrieval tasks. However, in a sketch-synthesis task, the sketching process itself, as

a kind of human drawing process, must also be understood and modelled. Knowing how

the sketching process works can actually help us understand one of the unique attributes

of sketches: the temporal, while semantic and fine-grained understandings describe the

informative characteristics of sketches. These unique features of sketches make sketch-

ing a preferred modality for sketch-related research, assisted by existing sketch datasets

1
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Dataset Statistics
Sketch Photo

Train Test Train Test

TU-Berlin
# Categories 250 250 – –

# Instances/Category 54 26 – –

QuickDraw
# Categories 345 345 – –

# Instances/Category 70,000 2,500 – –

Skechy
# Categories 125 125 125 125
# Instances 11,250 11,250 1,250 1,250
# Images 65,064 6,312 11,250 1,250

QMUL-Shoe
# Instances 304 115 304 115
# Images 304 115 304 115

QMUL-Chair
# Instances 200 97 200 97
# Images 299 97 299 97

QMUL-ShoeV2
# Instances 1,800 200 1,800 200
# Images 6,051 679 1,800 200

QMUL-ChairV2
# Instances 300 100 300 100
# Images 951 324 300 100

Table 1-A: Dataset statistics for the popular sketch datasets.

like TU-Berlin, QuickDraw, QMUL-Shoe/Chair and so on (See Tab. 1-A for the statis-

tics of different sketch datasets). However, drawing sketches and annotating the pair

information is extremely expensive; developing a generalised model for sketch-related

tasks is important because we will be able to get an acceptable performance in upcom-

ing categories directly, thus saving expensive sketch collection and annotation for new

categories.

The unique attributes of sketches have inspired many sketch-related research studies

with promising application value. For example, studies in the semantic information and

fine-grained details of sketches have enabled fine-grained sketch-based image retrieval.

Studying the temporal aspects of sketches has helped us understand the sketching process

and provide more human-like solutions for sketch synthesis tasks. Due to the great

expense of collecting sketches and pairwise annotations, we decided to investigate the

general abilities of sketch models, in order to avoid the expensive annotation of novel

categories. Thus the contents of this chapter will be organised in three sections according

to the three previously mentioned sketch-related tasks: fine-grained sketch-based image

retrieval, sketch synthesis, and the general learning of fine-grained sketch-based image
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Figure 1.1: An example of sketch-based image retrieval.

retrieval, which together introduce the main applications of sketch research.

1.1 Fine-grained Sketch-based Image Retrieval

Sketch is informative. This advantage makes sketch modality one of the most appropri-

ate modalities for retrieval tasks, especially in situations where photos are not readily

available. This specific retrieval task is called sketch-based image retrieval (SBIR) and

it presents one of the most fundamental problems in sketch research: how to retrieve the

photos in a gallery that match with a given sketch. Previous SBIR projects [11] typi-

cally used hand-crafted features and assembled them using a bag-of-words framework.

Recent SBIR projects use a deep learning framework to achieve better performance,

as the learned features are usually more powerful than the hand-crafted features [22].

One of the drawbacks of traditional sketch-based image retrieval is that it only treats

a sketch as a semantic modality similar to a text-based description, neglecting the fine-

grained details embedded in the sketches. Figure 1.1 presents some typical examples of

sketch-based image retrieval.

Fine-grained SBIR tasks require the model to find the exact photo required by a

given query sketch, rather than returning any given photo from the same category. This
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demonstrates the unique advantages of informativeness, making sketch modality more

effective than other modalities such as text in instance-level image retrieval. Yi et al . first

tried to encode the fine-grained features of sketches via deformable part-based models,

while Qian et al . later developed the deep version of the fine-grained SBIR model with

satisfying results.

The problem with most existing fine-grained SBIR methods is that they ignore the

semantic connection between sketch and photo modality, which constrains the model’s

understanding to a feature level rather than a semantic level, thus impeding the model’s

ability to achieve a satisfactory result. We find that attributes can play this semantic role,

helping the fine-grained SBIR model bridge the domain gap between sketch and photo at

the semantic level. We then proposed a deep attribute-driven multi-task framework [23]

to exploit the attribute information and improve the fine-grained SBIR performance.

Finally, we compared the sketch modality to the text modality, and discovered that

text can also be used to help the fine-grained SBIR task via the additional semantic

information using our multi-modal framework [24].

1.2 Sketch Synthesis

Temporal information is another valuable attribute of sketches clearly reflected in the

sketching process. Understanding the sketching process is the first step in creating

advanced sketch tasks like photo-to-sketch synthesis. Sketch synthesis is another chal-

lenging application of sketch research: creating the ability to render photos into human-

like sketch drawings.

Similar to other vision tasks, before overwhelmed by deep learning methods, most

sketch synthesis methods followed the process of extracting the edges from photos, then

either deforming the edges into sketch-like strokes or replacing edges with matching

strokes [17, 25]. The generative adversarial network (GAN) [26] has achieved amazing

results in image style transfer tasks, and outperforms most existing non-deep methods.
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GAN was also applied on photo-to-sketch translation in [27], though they mainly worked

on facial sketches, which have less deformation and fewer abstraction gaps than free-hand

sketches.

However, treating sketch synthesis as one kind of image translation task with ‘sketch

style’ as the target style will cause a host of problems: first, the temporal/sequential

drawing process in sketching is ignored in these GAN-based methods [26, 27]. Second,

existing image translation struggles with free-hand sketch synthesis, as it requires that

the input photo needs to be aligned with the target sketch, which is not suitable for

free-hand sketches as there is an abstraction gap between free-hand sketches and photos.

Therefore, we proposed a CNN-RNN framework [28] to model both static image content

and the temporal drawing process, and it has surpassed existing methods.

1.3 Generalised Learning for Fine-grained SBIR

Though sketches have a number of valuable attributes including fine-grained information,

collecting sketches and annotating the pair information is extremely time-consuming and

expensive. The expense of collecting sketches has motivated research into generalised

learning for fine-grained SBIR and similar tasks. Generalisation problems arise when

applying trained fine-grained SBIR models to practical scenarios where the input cate-

gories might be unseen before. Thus the concept of generalised learning for fine-grained

SBIR is proposed to strengthen the generalisation ability of fine-grained SBIR models.

The uncertainty of new testing categories in the fine-grained SBIR system will make

existing fine-grained SBIR models suffer, as they will more or less overfit to known cat-

egories in the training set. We observed that the parameters of existing fine-grained

SBIR deep models were highly dependent on training categories. Therefore, we consider

learning to generate the parameters of the matching model based on individual instances.

Specifically, we propose a generalised fine-grained SBIR model, where a HyperNetwork

is introduced to synthesise the parameters for the matching module based on current
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instance information, independent of training categories. Experimental results have

shown that the proposed method can achieve satisfying performance in generalisation

and has outperformed baseline methods.

1.4 Contributions

The contributions of this thesis are:

1)For Fine-grained SBIR:

We propose an attribute-driven fine-grained SBIR framework that exploits attributes

as semantic clues to improve the fine-grained SBIR performance. Experiments show that

attributes can help the fine-grained SBIR task on both “shoe” and “chair” datasets.

We also investigate the fine-grained model’s ability to compare between sketches and

photos and implement a multi-modal framework to fulfil the multi-modal retrieval task

between sketch, text and photo modalities. We discover that text can also be used as a

semantic bridge between sketch and photo modalities. We collect a multi-modal dataset

with 2,000 sketch-text-photo tuples to aid the multi-modal retrieval research. Experi-

ment results show that the proposed multi-modal multi-task framework can effectively

achieve satisfying performance for the multi-modal retrieval task.

2)For Sketch Synthesis:

We propose a CNN-RNN architecture to capture semantic information in given pho-

tos and draw sketches segment by segment with the supervision of ground-truth sketches.

Both qualitative and quantitative results show that the proposed framework can outper-

form state-of-the-art methods. We further show that our methods can also be employed

to generate synthetic data as the pre-training data for the fine-grained SBIR task.

3)In the Generalised Fine-grained SBIR:
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To address the generalisation problem in fine-grained SBIR, we proposed a generalised

learning framework for fine-grained SBIR. We took a meta-learning strategy to help our

framework learn a generalised metric for fine-grained SBIR. During the inference stage,

the model can generate classifiers for new classes, which will then be used to predict

the matching relations among target data. The proposed method can achieve better

generalised performance than comparable methods.

1.5 Outline of the Thesis

From here, the thesis is organised as follows:

Chapter 2 presents a thorough literature review of the main areas of sketch research,

e.g ., sketch recognition, fine-grained SBIR, sketch synthesis and the generalised learning

for sketch-related tasks like fine-grained SBIR.

Chapter 3 proposes an attribute-driven multi-task framework for fine-grained SBIR,

with the attribute functioning as a semantic bridge to narrow the domain gap between

sketch and photo.

Chapter 4 covers a comparison among sketch, text and photo modalities, and intro-

duce a framework for multi-modal retrieval.

Ch. Method Task Contribution Input Output

III
FG-SBIR
with Attri

. FG-SBIR
Consider semantic understanding

from attributes;
Better retrieval performance

Sketch
Photo

Distance

IV
FG-SBIR
with Text

FGIR
Accept more flexible

inputs like text;
Improve retrieval performance

Sketch
Photo

Distance

V
Neural

Sketcher
Sketch

Synthesis
First deep approach for

sketch-to-photo synthesis
Sketch
Photo

Generated
Sketch
offsets

VI DIMN
Generalised
FG-SBIR

Achieve more generalised
performance for FG-SBIR

Sketch
Photo

Distance

Table 1-B: Contributions of each proposed method.
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Chapter 5 addresses a novel design of a stroke-level photo-to-sketch framework,

which can simulate the sketch-drawing process of a human.

Chapter 6 describes a generalised learning framework for fine-grained SBIR tasks,

and evaluates the generalisation of the proposed method and its alternatives.

Chapter 7 presents the conclusion and some thoughts for future research.

A tabular summary of the contribution coming from each chapter is presented in

Table. 1-B.



Chapter 2

Literature Review

This literature review presents a summary of existing methods of sketch applications such

as fine-grained sketch-based image retrieval, sketch synthesis, and generalised learning

for fine-grained sketch-based image retrieval. To provide a better understanding of these

fields, the literature review also covers related sketch research topics such as sketch

recognition, sketch-based image retrieval, domain generalisation and meta-learning. We

review related works based on their topics in the following order: the state of sketch,

fine-grained sketch-based image retrieval, sketch synthesis, generalised learning for fine-

grained sketch-based image retrieval, review on sketch benchmarks.

2.1 The State of Sketch

Sketch has been used to record events since historical time. Since then, sketch has been

widely applied in many format of human drawings, like free-hand sketches, professional

sketches, and so on. Admittedly, professional sketches have significant usage for forensic

science such as face synthesis [29] and recognition [30]. However, compared to free-

hand sketches, professional sketches are out of reach for the common users without

9
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professional art training. In contrast, free-hand sketch is a more user-friendly human

drawings, thus we mainly focus on researching with free-hand sketches in this thesis, and

if not mentioned specifically in the following content, sketch in this thesis represents for

free-hand sketch.

Sketch has shown many unique features beneficial for vision research. For example,

sketch is first informative, containing semantic information which can be understood

by sketch recognition techniques [1, 31]. Beyond semantic information, sketch also con-

veys fine-grained detailed information, facilitating the fine-grained sketch-based image

retrieval [3, 14–16]. Such fine-grained details inherited in sketch modality make sketch

a strong competitors for modalities used for object retrieval [3, 14–16, 32, 33] like text

and photo.

Different with other informative modalities like photo, sketch also brings feature of

temporal information. When human make sketch drawings, the stroke order, and also

the coordinates flow in each stroke reflect the temporal feature inside this modality, while

in comparison, photo is captured by image sensing from charge coupled device (CCD)

cameras immediately, without any temporal information recorded other than the static

pixel information. Such advantages of encoding temporal orders open the research on

sketch generation [2] and sketch synthesis [17]. Moreover, sketching process also involves

human’s analysis and visual understanding for the given object. Thus researches on

human sketch drawing to some extent open the gate for human visual understandings.

The last unique attribute of sketches is the abstractness, removing the redundancy of

normal drawings while keeping the essential components. Related researches are like

sketch abstraction [21], sketch perceptual grouping [19, 20], and so on. In the following

sections, we will give the literature review on the main sketch research areas driven by

the aforementioned sketch unique attributes, such as sketch recognition, sketch-based

image retrieval, fine-grained sketch-based image retrieval, sketch synthesis and so on.
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2.2 Sketch Recognition

As a fundamental topic of sketch research, sketch recognition considers how to recognise a

given sketch, most practically how to recognise free-hand sketches [1]. Sketch recognition

also provides a useful understanding of closely correlated sketch tasks such as sketch-

based image retrieval and sketch synthesis. A typical example of a sketch recognition

task is shown in Fig. 2.2, with a query sketch and prediction results returned from the live

demo we developed, which can be accessed at https://sketchx1.eecs.qmul.ac.uk/.

As a field of research, sketch recognition lacked a large-scale dataset, meaning earlier

sketch recognition methods were primitive, and mainly worked on symbols and curves

[7, 8]. The introduction of the TU-Berlin dataset has greatly improved research [1] with

its carefully curated collection of free-hand sketches of both good quality and quantity.

The TU-Berlin dataset is a large-scale object-level sketch dataset, which includes 20,000

sketches spanning 250 categories. Alongside the dataset, this work proposes a typical

solution [1], which extracts orientation-specific hand-crafted features and applies a sup-

port vector machine (SVM) to classify the bag-of-features representation. An improved

version in [9] further considers the assembly of local features using a star graph, and

achieves better recognition results. Fisher vectors are also successfully applied to sketch

recognition in one of the recent works [10]. Later on, in 2017, Google collected an even

larger sketch dataset [2], with many more categories (345) and sketches (50 million),

but the drawing quality is inferior to those in TU-Berlin. Besides supporting research

into sketch recognition tasks, the temporal order recorded in QuickDraw datasets allow

sketch synthesis methods [5] to interpret temporal information and model sketching

processes more effectively. A comparison between representative sketches in TU-Berlin

datasets and those in QuickDraw datasets are shown in Fig. 2.1, where we can see that

TU-Berlin has a much better quality of data than the QuickDraw datasets in the given

categories like ‘airplane’, ‘clock’, ‘elephant’ and ‘television’, while QuickDraw provides

the largest-scale existing collection of sketches.
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Figure 2.1: Comparison of representative sketches between the TU-Berlin
dataset [1] and the QuickDraw dataset [2].

Deep learning has demonstrated superior performance when applied to sketch recogni-

tion tasks. Among all the deep learning-based sketch recognition methods, Sketch-a-Net

[31] is the first deep network specifically designed for sketch recognition, which achieves

the state-of-the-art performance and beats human as well. Wang et al . [34] applied

PointNet [35] to sketch recognition, which can achieve comparable results to [31], but

it engages far fewer parameters. In [36], a recurrent neural network (RNN) is used to

temporally model the sketch feature based on a convolutional neural network (CNN);

this achieved better performance than [31], but the drawback of this method is its huge

time consumption. Another recent work [37] also incorporated RNN and CNN to achieve

a satisfying performance, and at the same time embedded a hashing module to ensure

scalable sketch recognition. In our work in fine-grained SBIR, we also use Sketch-a-

Net as the backbone to encode the sketches, as it has been shown to develop a good

understanding of free-hand sketches.
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Figure 2.2: An example of sketch recognition.

2.3 Sketch-based Image Retrieval

Sketch-based image retrieval is the ability to retrieve photos using sketches as input.

Compared with traditional text-based image retrieval (TBIR) [38–40] and content-based

image retrieval (CBIR) [41, 42], SBIR provides a more intuitive and convenient method

to users. For example, it is easy to sketch the object in our mind, but harder to output

with an identical image or a detailed description of it. Owing to its advantages, SBIR is

very promising in commercial applications. The illustration of comparison among SBIR,

TBIR and CBIR is shown in Fig. 2.3.

Most existing SBIR methods exploit the unique properties of sketches and find a

bridge to cross the domain gap between photos and sketches. For example, inspired

by the histogram of oriented gradients (HoG) descriptor, Hu et al . proposed a gradient

field HoG (GF-HoG), which is specifically designed for sketch-based image retrieval tasks

[11]. Later on, Hu applied GF-HoG feature into a bag-of-regions (BoR) representation

to finish an SBIR process [12] and show improvements compared to the classical bag-of-

words framework [11]. A newly designed descriptor called soft-histogram of edge local

orientations (S-HELO) can also achieve good performance in this task [13].

A deep framework was proposed in [43] to achieve both SBIR and sketch recognition

tasks, which customise AlexNet [44] to an R-Net and an S-Net for photo and sketch
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Figure 2.3: Comparison among SBIR, TBIR and CBIR.

branches, respectively. Bui et al . also tasked a CNN to learn a compact descriptor,

with the help of triplet loss [45]. Hashing is also considered and embedded in CNN

to accelerate the SBIR efficiency by learning concise hash code [22, 46, 47]. Recently,

Radenovic et al . [48] proposed the EdgeMAC descriptor which is learned from a deep

network and has shown good ability in SBIR.

However, traditional SBIR tasks focus on category-level retrieval. In other words,

existing SBIR methods only care that the retrieved the photo comes from the same

category as the query sketch. Fine-grained details are neglected, making it unable to

retrieve the exact photo which is most similar to the query sketch and thus users might

prefer TBIR to SBIR.

2.4 Fine-grained Sketch-based Image Retrieval

Fine-grained sketch-based image retrieval (FG-SBIR) aims to retrieve the target photo

among very similar photos in the gallery according to the query sketch, which requires the
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designed model to capture the instance-level fine-grained details of both the sketches and

the photos. This task is very challenging because of the difficulty of finding discriminative

features and eliminating the domain gap between sketch and photo modalities. The

retrieval examples returned from our demo in Fig. 2.4 intuitively present this interesting

task and its promising application value.

Figure 2.4: A retrieval example obtained through our FG-SBIR demo.

Yi et al . initially defined this problem in [15], and proposed an entire pipeline for

FG-SBIR, which extracts HOG features from each sketch and photo, and encodes them

through deformable part models (DPM) [49] with a graph-based part matching module

followed to deal with pose changes. Inspired by this work, Ke et al . proposed a synergistic

representation combining low-level, mid-level and high-level features, which has proved

to be beneficial for fine-grained SBIR performance in experimental results. One recent

work [50] summarised the popular cross-modal subspace learning methods and applied

them to the fine-grained SBIR task.

Deep neural network (DNN) provides an end-to-end solution for fine-grained SBIR

[3, 14], and has proven to be superior to shallow methods which are normally based on

hand-crafted features [15, 16]. [3] formulates a triplet-ranking network to align sketch

and photo modalities. It adopts a Siamese architecture, and utilises a triplet loss to learn

a joint embedding space. The Sketchy network [14] uses a heterogeneous architecture

instead and employs GoogleNet on each branch to learn modality-dependent feature
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representations. A triplet loss is used on the final fully-connected (FC) layers to align

the two modalities. A classification loss is also used after both sketch and photo branches

to ensure that the retrieval result belongs to the correct category.

The problem in the existing deep learning based FG-SBIR method is that they neglect

semantic information, thus limiting the performance of fine-grained SBIR models. In

Chapter 3, we for the first time developed deep model-considering attribute-semantic

information, forming a deep multi-task framework. Another problem unexplored in this

field is how different the contribution of text and sketch modalities are to the fine-grained

image retrieval problem, and whether these two modalities can help each other. There-

fore, in Chapter 4, we introduce a multi-modal fine-grained image retrieval framework,

adopting the former’s Siamese architecture, and extending the triplet ranking loss to a

quadruplet one in order to embed three modalities (sketch, text and photo).

2.5 Sketch Synthesis

Sketch synthesis refers to the ability to draw a sketch like a human according to a given

photo. This is an extremely challenging task because photo and sketch domains differ

significantly. Furthermore, human-drawn sketches exhibit various levels of sophistication

and abstraction even when depicting the same object in a reference photo.

Previous sketch synthesis works follow a rendering pipeline by breaking down the

translation from photo to sketch into various levels of abstraction to synthesise the

sketch. One example of this kind of attempt is [25], which extracted edges from pho-

tos and replaces edges with strokes based on learned parameters reflecting the style

and abstraction level. Another attempt learned a deformable stroke model (DSM) on

human stroke data in a given category, and fit the learned DSM model to given photos

and synthesised free-hand sketches, as presented in [17]. Recent advances in generative

adversarial networks (GANs) make realistic image generation possible [4]. Zhang et al .

take a classic image-to-image translation framework called pGAN to efficiently generate
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face sketches based on input photos. [18] develops a two-branch style-transfer network,

which synthesises the final sketch by combining the content of a given photo and a certain

target style.

The main problem for existing sketch synthesis methods is that they treat a sketch

as one certain style of static image, thus neglecting the sequential information encoded

in sketches. Therefore, sketches generated by most existing methods look like drawings

with sketch-style edges, rather than real human sketches made by a human sketching

process, which would be drawn stroke by stroke. We proposed to build ties between

raster and vector sketch images through a CNN-RNN paradigm, as detailed in Chapter

5. In this work, sketches are modelled as sequential vectors and an RNN decoder is

employed to draw sketches conditional on CNN encoder embedding.

2.6 Generalisation for FG-SBIR

Traditional FG-SBIR methods focus on learning fine-grained features in given categories.

However, these methods will suffer when applied to real scenarios, where new unseen

categories will factor into the designed FG-SBIR system. Existing deep FG-SBIR models

that are directly applied to new categories without model updating are known to suffer

from considerable performance degradation [3, 15, 51], thus leading to model overfitting

and poor generalisation.

The domain generalisation (DG) [52, 53] problem is closely related to the mentioned

task. DICA [53] proposed learning the domain-invariant features via a kernel-based

optimisation. Recently, Motiian et al . extended a supervised domain adaptation net-

work to domain generalisation by explicitly imposing a semantic alignment loss on every

unpaired data set [54]. The idea of adversarial training for unseen domain data synthesis

is exploited in CrossGrad [55], where pseudo-training scenarios are generated by pertur-

bations in the direction of the gradients of the domain classifier and category classifier

respectively. As an early attempt to apply meta-learning techniques to domain general-
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isation, MLDG [56] proposed to align meta-train and meta-test gradients by using the

same training schedule, i.e., task (re)sampling, where the idea is similar to the meta-

learning model, MAML [57].

Meta-learning is also correlated to our task. Meta-learning [58] is a frequent topic

in the machine learning community, and one of its well-received applications is few-shot

learning (FSL). FSL aims to recognise novel visual categories from limited labelled exam-

ples in situations where conventional fine-tuning is unlikely to work due to overfitting. As

one of the classic meta-learning methods, prototypical networks [59] proposed learning a

prototype for each class, where the classification is based on computing the distances to

those prototypes. Instead of using the prototype to generate the linear classifier, PPA

[60] learned to derive classifier parameters from the average supporting activations.

In Chapter 6, we first consider the generalisation problem in fine-grained sketch-based

image retrieval. Note that this problem is much more challenging than the conventional

FG-SBIR problem, as target categories/instances are different from source ones, which

means we have to deal with domain gap and disjoint label space simultaneously. We

propose a generalised framework for FG-SBIR and show that our method is much more

effective than a number of baseline methods, due to its unique end-to-end image-to-

classifier learning.

2.7 Sketch Benchmarks

Sketch datasets have set the benchmarks for different sketch research fields, and drive

the corresponding researches. A good sketch dataset should include common sketching

styles as many as possible and also cover a large variety of categories/instances. The

collection of sketch dataset is normally costly and also time consuming as many amateur

volunteers need to be recruited to draw sketches within acceptable quality and carefully

label them.
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“TU-Berlin” dataset [1] is the first large-scale database in sketch recognition commu-

nity. There are 20,000 sketches spanned 250 categories in this dataset. As one of the most

popular benchmark in this field, TU-Berlin dataset has witnessed many outstanding deep

and non-deep approaches in sketch recognition area [1, 9, 10, 31]. Later, a much larger

database,“QuickDraw” [2] has been published by Google in 2017. QuickDraw dataset

has provide much more (75,000 vs 80) sketches for each category, and also much more

(345 vs 250) categories are considered. Apart from the contribution of a larger dataset

in sketch recognition community, the vast number of vectorized sketch drawings are also

helpful for exploiting the sequential information standalone [21] or alongside with the

static visual information [37].

When go to sketch-based image retrieval, only dataset with pair information can

be used to learn the matching between sketch and photo and also evaluate the learned

matching function. Flickr15K [45] is widely used for traditional category-level sketch-

based image retrieval in the beginning stage, with 330 sketches and 10,000 images across

33 categories, paired in a category level. However, the matching ability learned in the

traditional sketch-based image retrieval task remains in a rather coarse level, as the fine-

grained details has been largely omitted, and that’s why fine-grained sketch-based image

retrieval has now become more and more popular in retrieval task. An initial contribution

in fine-grained sketch-based image retrieval is the intra-category sketch retrieval bench-

mark proposed in [15], considering 14 categories with in total 1,120 sketches and 7,267

photos. A more well-defined benchmark is then proposed in [3], namely QMUL-Shoe

and QMUL-Chair, where the sketches are matched in instance-level by asking volunteers

to draw sketches according to the given object photos. Sketchy dataset is the latest and

largest published dataset in this field, collecting 12,500 photos and 75,471 fine-grained

paired sketches.

In the field of photo-to-sketch synthesis, the datasets need to be with fine-grained

paired photos and sketches, as well as the sequential information of the sketch drawings,

which is demanded by the nature of sketching process. Sketch synthesis is for now
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supported by the datasets like QMUL-ShoeV2 [61], QMUL-ChairV2 [61], and QuickDraw

dataset [2]. Apart from these mentioned sketch related tasks, sketch has even wider

usage for different research topics, with corresponding sketch datasets supporting these

researches. For example, a scene sketch dataset is proposed in [62] to aid the research in

scene-level sketch synthesis and retrieval. Moreover, SHREC’13 [63], SHREC’14 [64], and

SHREC’16 [65] databases is helpful for sketch-based 3D retrieval. Specifically, sketches

collected in SHREC’16 benchmark are 3D sketches, while the others are normal 2D

sketches. Though there already exist many sketch databases, more and more sketch-

related databases are still demanded with the high pacing progress of sketch-related

researches. In this thesis, we also contributed a multi-modal fine-grained dataset, as

detailed in Chapter 4.

2.8 Summary

2.8.1 Fine-grained Sketch-based Image Retrieval

Compared to the traditional SBIR task, fine-grained SBIR focuses on capturing fine-

grained details in both sketches and photos, thus taking informative advantage of the

sketches. We further investigate the important role of semantic information such as

attributes and text descriptions to this problem.

For attributes, we propose a multi-task framework to leverage the semantic infor-

mation in attributes to aid the fine-grained SBIR performance, as described in Chapter

3. For text description, we develop a multi-modal framework which can conduct both

sketch-to-photo retrieval and text-to-photo retrieval. We also show that the two tasks

can help each other in our unified framework.
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2.8.2 Sketch Synthesis

Photo-to-free-hand sketch synthesis aims to mimic the sketching ability of a human, i.e.,

to draw sketches stroke by stoke based on the analysis of a given object. We indicate

that the sketch drawing process has somehow been neglected by most existing methods,

where sketches are treated as static images rather than sequential vectors.

In Chapter 5, a deep photo-to-sketch synthesis model is proposed, which tries to

understand given photos based on a CNN encoder while drawing sketches at stroke

level with the help of RNN decoder. Auxiliary tasks like photo synthesis and sketch

reconstruction are also considered to assist in the main task.

2.8.3 Generalisation for FG-SBIR

Generalisation for FG-SBIR considers the generalisation abilities of FG-SBIR models,

which are not considered by existing FG-SBIR models despite their significant value for

practical applications.

In Chapter 6, inspired by the idea of few-shot learning, we design a generalised

learning framework for FG-SBIR using meta-learning strategies. The main idea of our

framework is to classify matching relationships between the photo and sketch pairs, using

generalised parameters learned across different meta-epochs.
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Fine-grained Sketch-based Image

Retrieval with Attribute

With touch-screen devices becoming ever more ubiquitous, sketch possesses a great

advantages as an intuitive and efficient mode of input compared to traditional alter-

natives such as text or speech. One of the most promising attributes is conveying fine-

grained information. This unique promise of the sketch modality has motivated a major

revival of interest in vision-based analysis of sketches, notably in sketch-based image

retrieval (SBIR). Most existing SBIR methods operate at the category-level [11, 12, 66–

70]: i.e., retrieving photos of the object coming from the same category as the query

sketch among photos from a set of categories. However this means that sketch as a query

modality is in direct competition with text – the user typically can specify a category

more clearly and easily using text, making SBIR a less appealing retrieval paradigm. In

contrast, a more unique property of sketch is the ability to encode fine-grained visual

details that would otherwise be hard to describe in text, especially considering there are

some components need to be described with professional knowledge. This observation

has led to the recent emergence of fine-grained SBIR [3, 14, 15].

22
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Fine-grained sketch-based image retrieval (FG-SBIR) focuses on finding specific pho-

tos in the gallery that match as closely as possible the details encoded in the query sketch.

Due to the drastic appearance differences across the sketch and photo domains, especially

between free-hand sketches and photos, FG-SBIR is an extremely challenging task and

very few attempts are reported. An earlier method in [15] extracts histogram of gradients

(HOG) features from each sketch/photo and encodes them into deformable part models

(DPM); a graph-based part matching is then followed to deal with the pose changes. In

contrast to hand-engineering features, recently a deep learning approach is proposed [3],

aiming to learn a higher-level feature representation with the right (in)variance proper-

ties across the sketch-photo domains jointly with the matching function. Specifically, a

three-branch deep neural networks (DNN) is trained with a triplet ranking loss to match

sketches to the corresponding photos. Optimising this objective function requires the

network to re-represent the photo/sketch in an aligned embedding subspace to eliminate

the domain gap while emphasising the fine-grained details. Similarly, a two-branch DNN

is developed in [14] for instance-level SBIR, with Heterogeneous GoogleNet [71] used as

the basic framework. While such DNNs outperform prior work based on hand-crafted

features, their efficacy is limited by the lack of knowledge about the semantic properties

shared by a matching sketch-photo pair. Moreover, in order to learn this triplet-ranking

based DNN, fine-grained human annotations are required which are both costly and

error-prone to generate: for any given query sketch, the number of ranking pairs of pho-

tos is quadratic of the number of photos; and many photos are visually too similar for

even humans to differentiate reliably (as illustrated in Figure 3.2).

In this work, we wish to take advantage of a DNN’s strength as a representation

learner, but also combine this with semantic attribute learning, resulting in a deep multi-

task attribute-based ranking model for FG-SBIR. In particular, we introduce a multi-task

DNN model, where the main task is a retrieval task with triplet-ranking objective similar

to [3], and attributes are detected and exploited in two auxiliary tasks. The first side-

task is to predict the attributes of the input sketch and photo images. By optimising
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this task at training-time, we encourage the learned representation to more meaningfully

encode the semantic properties of the photo/sketch. The second side-task is to perform

retrieval ranking based on the attribute predictions themselves. At test-time, this means

that the retrieval ordering is explicitly driven by semantic attribute-level similarity as

well as the similarity of the internally learned representation. This novel deep multi-task

attribute-based ranking network architecture has a number of advantages over existing

methods: (1) The unique domain-invariant nature of visual attributes helps to bridge

the cross-domain gap between photos and sketches. (2) By introducing multiple tasks in

the network, the model generalises better and further can rely less on expensive human

ranking annotation. Specifically, we show that the highly non-scalable step of triplet

annotation required by the model in [3] can now be avoided and an automatic attribute-

based strategy is developed instead to focus on the most informative ‘hard’ training

samples for more efficient learning of the model.

It is worth noting that, although this is the first time a deep multi-task learning

(MTL) approach is developed for FG-SBIR, similar approaches have been successfully

applied to other vision problems to exploit the fact that different tasks can effectively

regularise each other when solved simultaneously, thus allowing all tasks to generalise

better to test data. For example, deep facial landmark detection task is improved when

trained alongside facial attribute classification [72]: the representation necessary to sup-

port attribute prediction is also helpful for encoding the location of facial landmarks.

In the video thumbnail selection problem, the image search task based on click-through

is set as the side task while the main task is the deep visual-semantic embedding [73].

Another example is pedestrian attribute prediction improving the main task of pedes-

trian detection [74]. However, dealing with a cross-domain matching problem such as

FG-SBIR has additional challenges which are addressed uniquely in this work by care-

fully designing learning tasks and strategies tailor-made for the fine-grained retrieval

problem.

The contributions of this work are two-fold: (1) A novel deep MTL model is pro-
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posed to exploit two attribute-based auxiliary tasks for learning semantically meaning-

ful and domain-invariant representation for FG-SBIR. (2) A new attribute-based triplet

generation and sampling strategy is developed to boost the effectiveness of the deep

MTL model. Extensive experiments are carried out on two benchmarks and the results

demonstrate that the proposed model significantly outperforms the state-of-the-art while

simultaneously requiring less costly annotation.

3.1 Methodology

3.1.1 Multi-task Fine-Grained SBIR Network

In this section we describe our multi-task deep neural network for fine-grained SBIR.

The DNN architecture is illustrated in Figure 3.1. The proposed network is a three

branch network. Each input tuple consists of three images corresponding to the query

sketch (gone through the middle branch), positive photo image (top branch) and negative

photo image (bottom branch) respectively. The positive photo has been annotated as

more visually similar to the query than the negative photo. The learned deep model

aims to enforce this ranking in the model output.

3.1.1.1 Network Structure

The network structure of the proposed model is shown in Figure 3.1. We take a similar

encoder following the state-of-the-art FG-SBIR approach [3]. Basically, we have a triplet

branch network, where there branches take the input of anchor sketch, positive photo

and negative photo. We implement the Siamese netwwork for the proposed framwork,

i.e., the photo branches and the sketch branch share the parameters, which is designed

to overcome the overfitting problem in expensive and limited sketch dataset [3]. The

first part of the triplet branch network are shared by diffrent tasks, including main

sketch-to-photo retrieval task and auxiliary attribute tasks, while the second part are
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designed separately for different tasks, which is a common network designing strategy in

multi-task frameworks [72–74].

The architecture of the task-shared part consists of five convolution layers with max

pooling, as well as a fully-connected (FC) layer, to learn a better representation of

original data via feature maps. After these shared layers, different tasks evolve along

separate branches: in the main task, one more FC layer with dropout and rectified linear

unit (RELU) are added to represent the learned fine-grained feature vectors. Similarly,

in the auxiliary task, another FC layer (with dropout and RELU) extracts fine-grained

attribute representations followed by a score layer to make the prediction. The three

tasks and their uniquely associated layers are described in detail in the below part.

3.1.1.2 Main Triplet Ranking Task

Our main task is sketch-photo ranking, and in this respect our network is similar to

the state-of-the-art triplet network used in [3], except for the additional dropout to

reduce overfitting. The main task is trained by supervision in the form of triplet tuples,

with each instance tuple {s, p+, p−} containing an anchor sketch s, positive photo p+

and negative photo p−. Corresponding to these input elements, the network has three

branches and the goal is to learn a representation, such that the positive photo p+ is

ranked above the negative photo p− in terms of its similarity to the query sketch s. To

this end, the main task loss function is triplet ranking loss:

Lθ
(
s, p+, p−

)
= max

(
0,∆ +D

(
fθ (s) , fθ

(
p+
))
−D

(
fθ (s) , fθ

(
p−
)))

(3.1)

where θ represents the parameters of the network, fθ(·) denotes the learned deep feature

of the corresponding network branch, D(·, ·) denotes the squared Euclidean distance,

and ∆ is the required margin in the triplet loss.
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Figure 3.1: Network architecture of the proposed deep multi-task fine-grained
SBIR model.

3.1.1.3 Attribute Prediction Task

In order to encourage the learned network representation to encode semantically salient

properties of objects (and thus help the main task to make better (dis)similarity judge-

ments for ranking), we let the network be aware of the semantic information by requiring

the network to predict semantic attributes – such as whether a shoe is with shoelace,

or whether a chair has wheels. For this task we assume that each training sketch s

(or photo p) is annotated with N different semantic attributes, thus providing training

tuples {s, ts1 . . . tsN}, where tsi denotes the ith attribute for the sketch s, with 1 ≤ i ≤ N .

Prediction of the attribute vector of the input sketch and photo is thus a multi-label clas-

sification problem because attributes are not mutually exclusive. For convenience, we

assume that each attribute is binary. Although some attributes can be correlated, this is

not a limitation of our framework as our attribute prediction branch can still deal with

most general case. The attribute prediction loss in our framework is the cross-entropy

between the attribute labels and predictions fapθ (·), so for sketch attribute prediction we

can have
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Lp (s, ts) = − 1

N

N∑
n=1

[
tsn log fapθ,n (s) + (1− tsn) log

(
1− fapθ,n (s)

)]
, (3.2)

and similarly the loss functions for the positive and negative photos are obtained by

replacing s with p+ and p− respectively. This attribute prediction task can then be

trained simultaneously with the main sketch-photo ranking task. Note that the attribute

prediction task is considered in both photo and sketch branch, indirectly helping the two

domains align.

3.1.1.4 Attribute Ranking Task

The attribute-prediction task above ensures that the learned representation encodes

semantically salient features that support attribute prediction. Since retrieval ranking

is the main task, the attribute prediction would not be used during test-time. This

task’s effect on the main task is thus implicit rather than direct. However, as a semantic

representation, attributes are domain invariant and thus intrinsically useful for matching

a photo with a query sketch. To this end, we introduce a third task of attribute-level

sketch-photo matching which matches sketch to photo based on the predicted attributes

of sketch and photo input rather than on an internally generated representation.

The loss function used for this task deserves some thought. A straightforward choice

would be treating the attribute prediction exactly the same way as the learned deep

representations from the bottom five feature extraction layers of the network and use a

loss that is similar to that in Eq. (3.1), i.e., a triplet ranking loss. Specifically, since the

attribute predictions are probabilities, we compare attribute predictions from the three

branches with cross-entropy rather than squared Euclidean distance as in the main task:

La
(
s, p+, p−

)
= max

(
0,∆ +H

(
fapθ (s) , fapθ

(
p+
))
−H

(
fapθ (s) , fapθ

(
p−
)))

, (3.3)
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where H(·) is the cross-entropy between the attribute prediction vectors of the corre-

sponding branches. However, there is a subtle but critical difference between the learned

deep feature representation and attribute predictions: they have very different dimen-

sionalities – the attributes are in the order of 10s whilst the deep features are 1000s. This

means that they have different levels of discriminative power and thus need to be treated

differently when designing cross-domain matching losses. In particular, given a dozen of

attributes, many similar photo images could have very similar or even identical sets of

attributes; forcing them to be different in order to enforce the ranking as in Eq. (3.3)

would be too strong a constraint that is difficult to meet. Taking this into consideration,

a more relaxed attribute-similarity loss function is adopted instead:

La
(
s, p+, p−

)
= H

(
fapθ (s) , fapθ

(
p+
))
, (3.4)

which forms a less strong constraint that the positive photo should have similar

attributes to the anchor sketch, and is found to be empirically better than the full

triplet version of attribute ranking loss in our experiments. This attribute similarity

loss obviously has an effect on how the training tuples are selected, i.e., the sampling

strategy which will be discussed in Sec. 3.1.3.

3.1.1.5 Multi-Task Training

With the three tasks, the overall loss function for multi-task training of our network is

given by a weighted sum in Eq. (3.5).

L
(
s, p+, p−

)
= Lθ

(
s, p+, p−

)
+ λaLa

(
s, p+, p−

)
+ λsLp (s, ts) + λp+Lp

(
p+, tp

+
)

+ λp−Lp

(
p−, tp

−
)

+ λθ‖θ‖22
(3.5)
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where the first term is the main ranking task, the second term is the attribute ranking

task, the next three are attribute predictions for anchor sketch branch, positive photo

branch, and negative photo branch, respectively, and the last one is a regularization term

to suppress the complexity of weights [75]. Here the relative weight of each side task is

denoted by the hyper parameters λ =
(
λa, λs, λp+ , λp−

)
.

3.1.1.6 Multi-Task Testing

At run-time the main and attribute-ranking tasks are used together to generate an overall

similarity score for a given sketch/photo pair. All sketch/photo pairs are ranked, and

the retrieval for a given sketch is the similarity-sorted list of photos. Specifically, for a

given query sketch s the similarity to each image p in the gallery set is calculated as

Rs (s, p) = D (fθ (s) , fθ (p)) + λaH
(
fapθ (s) , fapθ (p)

)
. (3.6)

where D(·) and H(·) are squared Euclidean distance and cross-entropy respectively.

3.1.2 Staged Model Pre-training

A staged pre-training strategy is adopted similar to that of [3]. Specifically, first, a single

branch classification model with the same feature extraction layers as the proposed full

model is pre-trained to first classify ImageNet-1K data (encoded as edge maps). This

model is very similar to the Sketch-a-Net model [31] designed for sketch classification.

This is followed by fine-tuning on the 250 classes TU-Berlin sketch recognition task.

After that, this single branch network is extended to form a three-branch Siamese triplet

ranking network. Each branch is initialised as the pre-trained single-branch model, and

the model is then fine-tuned on a category-level photo-sketch dataset re-purposed for

fine-grained SBIR as in [3]. After these three stages of pre-training, the full model with

two added auxiliary-tasks and the overall loss in Eq. (3.5) is then initialised and fine-
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Figure 3.2: Rank lists generated automatically and by global ranking of human
triplets.

tuned with the fine-grained SBIR dataset for instance-level sketch-based photo retrieval.

3.1.3 Attribute-based Sampling Strategy

Determining an optimal sampling strategy for constructing the anchor-positive-negative

triplet tuples for model training is critical. There two major choices: (1) how to generate

the triplets and (2) how to select a subset of them for model training. For the former,

one straightforward choice is that given each anchor/query sketch, to form exhaustive

photo pairs and present the resultant triplets for humans to annotate which photo is

more similar to the anchor. However, this is intractable even for a moderate data size.

Hence in [3] the top-10 ranked photos for a given anchor is selected, where exhaustive

human annotation is collected, yielding a total of 10 · 9/2 = 45 triplets per sketch. All

such superset of 45 human annotated triplets are then used to train a triplet ranking

model. However, there are two problems: (1) even with pre-screening, the exhaustive

annotation is still expensive, and (2) the collected annotations are error-prone, since top

ranked photos are all very similar to each other, making triplet ranking a challenging

task for humans to perform reliably (see Figure 3.2 – some pairs in the list are hard to

order by similarity with respect to the query). The reliability of human annotation can

be improved by employing a global ranking method such as [76] to correct annotation

noise. However, there is no solution to the scalability issue. In this work, a new way to

generate the triplets and a novel sampling strategy are developed, which entirely removes
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the need for the otherwise non-scalable and unreliable human triplet annotations.

3.1.3.1 Triplet Generation

Instead of choosing top-10 most similar photos and asking humans to annotate (as in [3]),

we automatically generate triplets based on a strict top-10 ranking induced by attribute

and feature similarity. More specially, we first use attribute similarity to construct a top-

10 candidate list of most similar photos given a query sketch. ImageNet CNN features

are then used to further rank these photos by similarity with respect to the ground-truth

match. Intuitively this strategy can be seen as using semantic attribute properties to

generate a meaningful short list, but otherwise driving the cross-domain ranking objec-

tive by more subtle photo-photo similarity encoded by a well-trained ImageNet CNN.

It follows that a total of 45 triplets can be automatically generated by enforcing ranks

among candidate photos within each triplet (i.e., photo with higher rank is annotated

as positive and vise versa). In Figure 3.2, we compare our automatic top-10 ranking

with a globally optimised ranking computed from human triplets [76]. Overall the auto-

matic one is of comparable (or better) quality than the more costly manually generated

list. Another motivation behind this well-trained ImageNet CNN based triplet gener-

ation is to transfer the knowledge of ranking in the same domain from a well-trained

heavier model to our model. Since well-trained ImageNet CNN are super informative

to differentiate thousands of classes and the ranking is generated on the same domain

avoiding ranking them with gap cross sketches and photos, we believe the knowledge of

this generated ranking is more reliable and suitable to be transferred.

3.1.3.2 Triplet Sampling

The second novel feature is that instead of using all 45 triplets as per [3], we sample

the 9 hardest ones for model training, each consisting of the anchor and two photos of

neighbouring ranks (e.g ., anchor-R1-R2 or anchor-R4-R5). We show empirically that
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this choice of learning curriculum significantly boosts model performance compared to

alternatives ranging from exhaustive sampling, easy, and medium. Seemingly counter-

intuitive to the conventional ‘more data is better’ maxim, there are two explanations of

why sampling a small subset of hard samples helps: (a) After extensive (three) stages of

model pre-training, the model has already learned a strong domain-invariant represen-

tation; it is therefore ‘ready’ to accept hard training samples [77]. (b) Importantly, the

introduction of the two additional attribute-based side tasks means that the model is

much more robust against overfitting with small training data size. (c) In addition, the

model is seeing the same data in both cases, but in our sampling strategy, the model is

able to focus more on some hard comparisons.

3.2 Experiments

3.2.1 Datasets and Settings

3.2.1.1 Training and Evaluation Data

We use the same shoe and chair FG-SBIR datasets introduced by [3]. For training, 304

sketch-photo pairs of shoes, and 200 pairs of chairs are used. Each sketch/photo comes

with attribute annotations, which are used to obtain the top 10 photo rank list in [3] and

additionally to learn attribute-based tasks in our multi-task model. Data augmentation

like flipping and cropping is applied.

3.2.1.2 Network Implementation

We use the Caffe library [78] to implement our deep multi-task model. Task-importance

parameters are set to λ =
(
λa, λs, λp+ , λp−

)
= {1, 0.01, 0.01, 0.01}, i.e., the main and

attribute-level ranking tasks have equivalent weight, and the attribute-prediction tasks

all have the same lower weights, considering that the classification task is a much easier
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task compared to the ranking task. The single loss margin is set to ∆ = 1. During joint

training, the batch size is set to 128, and the network is trained with a maximum of

25000 iterations. The base learning rate is 0.001 and weight decay (λθ) is set to 0.0005.

3.2.1.3 Evaluation metrics

To evaluate performance, we use the same two evaluation metrics as [3, 79]: Top K

retrieval accuracy for K = 1 and K = 10. This corresponds to the use scenario where

there is a particular object that the user needs to retrieve exactly. An alternative sce-

nario, is where the user just wants to see similar items to the sketch, and in this case

the overall ordering is the salient metric. For this we use % of correctly ranked triplets,

which reflects how well the predicted triplet ranking agrees with that of humans.

3.2.1.4 Baselines

We compare our multi-task model with several baselines, including the state-of-the-art

fine-grained instance-level triplet ranking [3] (termed as the Triplet model), which is also

the main deep alternative to the proposed framework. As representatives of the classic

approaches, RankSVM is trained base on HOG features extracted and encoded as either

bag of words (termed as BoW-HOG+rankSVM), or large dense vectors (termed as Dense-

HOG+rankSVM). As representatives of alternative deep feature-based approaches, we

also extract Sketch-A-Net deep features [31], and 3D shape deep features [33] for RankSVM

training (termed as 3DS Deep+RankSVM and ISN Deep+RankSVM respectively).
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3.2.2 Results

3.2.2.1 Comparisons against the State-of-the-art

FG-SBIR retrieval performance is first evaluated to compare our multi-task model with

the state-of-the-art methods outlined previously. From the results in Table 3-A we can

see that our MTL obtains much higher accuracy compared to previous work, especially

for Rank 1 (Top 1) matching accuracy – around 10% improvements over the state-of-

the-art in [3] are achieved, despite the fact that the triplet model in [3] requires costly

human triplet annotations which are not used by our framework.

Table 3-A: Comparative results against state of the art retrieval performance.
Shoe Dataset Top 1 Top 10 Trip Acc Chair Dataset Top 1 Top 10 Trip Acc

BoW-HOG + rankSVM 17.39% 67.83% 62.82% BoW-HOG + rankSVM 28.87% 67.01% 61.56%
Dense-HOG + rankSVM 24.35% 65.22% 67.21% Dense-HOG + rankSVM 52.57% 93.81% 68.96%
ISN Deep + rankSVM 20.00% 62.61% 62.55% ISN Deep + rankSVM 47.42% 82.47% 66.62%
3DS Deep + rankSVM 5.22% 21.74% 55.59% 3DS Deep + rankSVM 6.19% 26.80% 51.94%

Triplet model [3] 39.13% 87.83% 69.49% Triplet model [3] 69.07% 97.94% 72.30%
Ours 50.43% 91.30% 70.59% Ours 78.35% 98.97% 73.13%

3.2.2.2 Contributions of Auxiliary Tasks

The first ablation study investigates the contributions of different auxiliary tasks. The

main reason our MTL model outperforms the-state-of-the-art is due to the benefit pro-

vided by the auxiliary attribute-related auxiliary tasks: indirectly in the case of attribute

prediction (AP) and directly in the case of attribute ranking (AR). To demonstrate this

we compare the performance of our full model with the performance obtained by remov-

ing one or both of the auxiliary tasks (e.g ., “Ours - AP” means our full model with the

AP task removed). From the results in Table 3-B, we can see that each task helps, as

the performance drops when either auxiliary task is removed, and drops further when

both of them are removed. Notice that the hyper-parameters for the importance of aux-

iliary tasks is set by experience value. A too higher or lower may lead to different tasks

converge at a different time.
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Table 3-B: Contribution of the proposed attribute side tasks.
Shoe Dataset Top 1 Top 10 Trip Acc Chair Dataset Top 1 Top 10 Trip Acc

Ours - AP - AR 37.39% 82.61% 66.57% Ours - AP - AR 50.52% 91.75% 69.62%
Ours - AR 45.22% 87.83% 72.37% Ours - AR 72.16% 98.97% 72.00%
Ours - AP 44.35% 86.96% 71.34% Ours - AP 72.16% 98.97% 72.10%

Ours 50.43% 91.30% 70.59% Ours 78.35% 98.97% 73.13%

3.2.2.3 Comparison of Triplet Generation and Sampling Strategies

We investigate two ways of generating triplets and various sampling strategies in this sec-

tion. Generation: the triplets are generated either automatically (using attribute/feature

ranking) or manually by humans. As mentioned earlier, the original human annotation

can be noisy, we therefore clean human annotations by inferring a globally optimised

rank list from the annotated pairs using the generalised Bradley-Terry model [76]. Sam-

pling: using either generation method, 10 photos are ranked for any given sketch which

gives a total of 10 · 9/2 = 45 triplets. Sampling options include: (i) Exhaustive: use all

45 triplets with no sampling, or (ii) Hard : sample the 9 hardest triplets as proposed. We

also train a network using the same human annotated triplets used by [3] as baseline.

Table 3-C: Impact of different triplet annotation strategies.

Method
Shoe Dataset Chair Dataset

Top 1 Top 10 Trip Acc Top 1 Top 10 Trip Acc

Auto-generated (exhaustive) 43.48% 86.09% 70.38% 68.04% 97.94% 70.58%
Auto-generated (hard only) 50.43% 91.30% 70.59% 78.35% 98.97% 73.13%
Human-optimised (exhaustive) 43.48% 87.83% 70.88% 71.13% 98.97% 73.29%
Human-optimised (hard only) 47.83% 87.83% 70.28% 77.32% 100.00% 73.95%
Human original (as in [3]) 42.61% 89.57% 71.29% 71.13% 100.00% 73.84%

Table 3-C compares results obtained by our model using different triplet genera-

tion/sampling strategies. We can draw the following conclusions: (1) Our automatically

generated hard triplet sampling strategy performs the best overall. (2) In general, using

a smaller number of 9 hard triplets performs better than the 45 exhaustive triplets, for

either manual or automatic generation. This suggests that hard triplets help learn a

better fine-grained cross-domain representation. (3) Overall, the auto-generated triplets

produce better performance than the human annotated triplets. The above results are

somewhat surprising, as the conventional wisdom is that ‘more data is always better’
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Table 3-D: The influence of training triplet difficulty on testing performance.
Shoe Dataset Top 1 Top 10 Trip Acc Chair Dataset Top 1 Top 10 Trip Acc

Easy triplets 39.13% 80.87% 70.24% Easy triplets 69.07% 96.91% 68.75%
Medium triplets 41.74% 86.09% 71.05% Medium triplets 68.04% 97.94% 71.75%

Hard triplets 50.43% 91.30% 70.59% Hard triplets 78.35% 98.97% 73.13%

Figure 3.3: Retrieval results of our proposed method, compared with that of
[3].

and that careful manual annotation should be better than automatic annotation. We

attribute the superiority of fewer harder triplets to the fact that the base model is

already quite well pre-trained, so that at the point we start training it is ‘ready’ for

difficult examples, in a curriculum learning sense [77]; and the superiority of generated

triplets to manually annotated triplets to the fact that the similarity judgements are

quite hard to make reliably given the short list of similar images, so in this case the

human annotation is no more reliable than the automatic annotation.

We next investigate further the issue of sampling triplets according their difficulty

level. We define hard triplets as before, where each triplet spans a distance of 1 on the

rank list. Medium triplets are defined as those with distance 2 and 3, and easy triplets

are those with distance larger than 3. Thus within the top 10 list, the 45 exhaustive

triplets include 9 hard, 15 medium and 21 easy ones. The results in Table 3-D show

that performance increases with triplet difficulty, supporting our hypothesis that hard

triplets are the most valuable at this stage.
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3.2.2.4 Qualitative Results

Example retrieval results of our proposed multi-task model are shown in Figure 3.3,

where the retrieved image with green box is the ground truth. From the qualitative

results, we can see that our method can achieve satisfying result, and can find out the

ground-truth match in the rank 1 place in most cases, while the baseline model can only

guarantee less than half of the cases. Moreover, in the high-heel shoe test case, our model

can also correctly retrieve the true-match shoe, and returned it in the top 5 result, but

the baseline model fail to obtain the correct photo.

3.2.2.5 Computational Cost

Our deep multi-task model is trained on an Nvidia Tesla K80 GPU. The re-implementation

of the sketch triplet model takes about 5 days, as detailed in [3]. The joint training of

the proposed deep multi-task model takes about 7 hours for 25,000 iterations of batches

for either chair or shoe dataset. In the testing stage, the time cost on retrieval in the

shoe’s and chair’s gallery per query is about 0.22s and 0.18s, respectively.

3.3 Summary

In this chapter, we introduce a deep multi-task attribute-based model for fine-grained

SBIR. By constructing attribute-prediction and attribute-based ranking side-tasks along-

side the main sketch-based image retrieval task, the main task representation is enhanced

due to being required to encode semantic attributes of sketches and photos, and more-

over the attribute predictions can be exploited to help make similarity predictions at

test time. The combined result is that performance is significantly improved compared

to previous the state-of-the-art using a deep triplet ranking task alone. Beyond this we

showed that somewhat surprisingly the human subjective triplet annotation is not be

critical for obtaining good performance. This means that it is relatively easy to extend
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the method to new categories and larger datasets, since attribute annotation grows only

linearly rather than cubically in the amount of data.



Chapter 4

Fine-grained Sketch-based Image

Retrieval with Text

Semantic information is also expressed in sketches and can be exploited with the fine-

grained information in the sketch recognition and retrieval tasks. Specifically, fine-

grained image retrieval (FGIR) [14, 31, 80] aims to search for photos containing specific

object instances. It presents a paradigm shift to conventional image retrieval tasks, by

offering instance-level retrieval that underpins the need for many commercial applications

such as searching an online shopping website product catalogue. It is arguably a more

difficult problem when compared with fine-grained categorisation [81, 82] for that (i) it

seeks intra-category ranking other than basic categorisation, and (ii) retrieval is often

conducted cross-modal, e.g ., sketch/text as input modality, as oppose to within the sin-

gle photo modality. Specifically, different to traditional image retrieval paradigms where

input queries and results are often coarse (e.g ., keywords and general object categories),

FGIR aims to retrieve specific object instances based on a user’s precise description.

Such a description can be provided in two very different forms: text and sketch.

40



Chapter 4. Fine-grained Sketch-based Image Retrieval with Text 41

Text being a conventional input modality is arguably the most intuitive – people have

got used to typing in keywords in search engines to retrieve text documents. Keyword-

based text query can also do a decent job for category-level photo retrieval. For example,

using the keyword ‘shoe’ in a Google/Bing image search engine generates very satisfying

results - the first few return pages all contain shoe images. However, when it comes to

instance-level or FGIR, using text as an input modality is problematic: it is good at

describing semantic concepts or attributes of the objects but weak in detailing spatial

layout and complex shape related characteristics. After all, one picture is worth a thou-

sand words. A user can write a sentence in a pinch but will not be bothered with writing

an essay for retrieving a photo.

This limitation of text as an input modality for FGIR has inspired a recent surge

of interest in sketch-based FGIR approaches [3, 14]. Human sketches have been advo-

cated by many as a natural input modality since it implicitly captures both fine-grained

appearance and holistic structure information [3, 14]. A sketch is perhaps worth one

hundred words but takes much less efforts to produce. With the popularity of touch-

screen devices, drawing sketches has never been easier. However, sketch-based retrieval

paradigms still suffer the major drawback of varying drawing skills amongst users, which

ultimately render it unintuitively for many – the ‘I can’t sketch’ response is common. On

top of that, certain visual characteristics can be cumbersome to sketch, yet straightfor-

ward to describe in text (e.g ., material and fine texture). It is thus natural to hypothesise

that these two input modalities are complementary to each other (see Figure 4.1 for an

example) and thus should be modelled jointly. Nevertheless, as far as we know, there

is no systematic study on how these two modalities fare in FGIR and importantly, how

their complementarity can be exploited so that even when a single modality is used

during testing, it can still benefit from a joint modelling process during training.

Prior work on fine-grained image retrieval mainly investigate using sketches as input.

They primarily focus on closing the semantic gap between the two modalities while

completely ignoring the text modality. Specifically, state-of-the-art fine-grained sketch-
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Figure 4.1: Relationship between sketch, photo, and text modalities.

based image retrieval models [3, 14] adopt a multi-branch deep convolutional neural

network (CNNs). Each modality has a corresponding branch which consists of multiple

convolutional/pooling layers followed by pairwise verification or triplet ranking losses to

align the domains on the FC layers. There also exists plenty of work on aligning text and

photo for cross-modal retrieval. Again, all of them employ a two-modality setting and

use probabilistic model [83], metric learning [84], or subspace learning [85] to link the two

modalities. We differ from all previous text-photo cross-modal work on two key aspects:

(i) we employ full text descriptions similar to those studied in image captioning [86],

which is more fine-grained than tags/keywords found in popular text-photo cross-modal

datasets, and (ii) we conduct intra-category instance-level retrieval whereas all previous

work was designed and evaluated on category basis. Over and above all, none of the

previous literature addressed learning a unified embedded space for all three modalities

(text, photo and sketch), and investigated if text and sketch can complement each other

in the fine-grained retrieval setting.

In this chapter, we set out to answer the question whether text or sketch as an input

modality is a clear favourite when it comes to fine-grained retrieval of photos, or if

there is complementary information to be explored for them to benefit from each other

– and if there is, how it can be exploited in a joint model? The first contribution of

this work is to provide the first dataset for FGIR with both sketch and text as query

modalities. Specifically, each object instance has three modalities: photo, sketch and



Chapter 4. Fine-grained Sketch-based Image Retrieval with Text 43

sentence description enabling research into not only sketch-text based FGIR in this

work, but also fine-grained retrieval tasks between any of the three modalities.

As the second contribution, we propose a multi-modal quadruplet deep network to

align sketch, text and photo embeddings. The main novelty is a quadruplet loss after

the final FC layers of the network, which not only aligns the three modalities, but also

provides fine-grained ranking similar to triplet losses previously used in two-modality

fine-grained retrieval [3, 14]. As the final contribution, we carry out extensive experi-

ments to investigate the usefulness of each modality as an input query on its own and

when combined with other modalities. We demonstrate that on its own the sketch modal-

ity is far more informative than text even when multiple sentences are used, but both

sketch and text benefit from being modelled jointly during training, even when used as

the sole query modality during testing.

4.1 Methodology

In this section, we proposed a multi-modal deep network to achieve fine-grained retrieval

among sketch, text and photo modalities. We first introduce the whole network architec-

ture, and then go through the multi-modal feature embeddings and losses used to align

them.

4.1.1 Network Architecture

The architecture of our model is shown in Figure 4.2. It consists of four branches and

extends the common architecture of a triplet ranking network: the middle two branches

encodes sketch (S) and text (T) respectively, whereas the top and bottom branches are

standard positive (PP) and negative (NP) photos branches as per the triplet fine-grained

network of [3]. Specifically, the backbone part of sketch branch and photo branches share

the network parameters, and are configured with 5 consecutive convolutional layers with
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Figure 4.2: Architecture of the proposed multi-modal learning framework.

ReLU activation and 2 fully-connected layers afterwards also with ReLU activation,

following the state-of-the-art FG-SBIR approach [3].

Each of the three branch configurations of our multi-modal framework, S-PN-NN,

and T-PN-NN, relates to the task of fine-grained sketch-based image retrieval and fine-

grained text-based image retrieval respectively. A novel quadruplet loss unifies these two

related tasks and aligns these cross modality embeddings. Experimental results show that

the proposed framework has outperform all the baselines, including the state-of-the-art

alternative [3].

4.1.2 Fine-grained Sketch and Photo Feature Embedding

In the fine-grained sketch-based image retrieval task, it is important to learn a deep

representation which encodes the fine-grained visual features shared between sketch and

photo modalities. To achieve this, branches similar to the state-of-the-art sketch-photo
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ranking model in [3] are constructed, where we use Siamese convolution and pooling

layers with weights tied among different domains. Then fully-connected layers are applied

to reduce the high dimensional convolution layer feature to a lower dimensional feature

space, while the following fully-connected layer weights project the embedding from each

modality to the shared latent space.

We also apply the shared/pairwise dropout strategy [87] for the activation in Siamese

branches. This is to depress the negative influence of standard dropout strategy on

learning the ranking on pairwise/triplet feature map, as different masks will introduce

mask difference error when we compare features in the ranking loss. Our experiments

show that this pairwise dropout strategy is helpful on multi-view matching/ranking tasks.

4.1.3 Fine-grained Text Description Embedding

It is natural to utilise RNN based methods as our language model, to exploit the high-

level information embedded in text descriptions. We use bidirectional long short-term

memory (LSTM) network to capture the fine-grained text features since it gives the

best performance amongst alternatives. In detail, sentences are chunked to tokenized

word lists, then words are fed into into a word embedding (learned based on the gensim

model). The encoded vectors from different timestamps are then sent to the bidirectional

LSTM network to train the cells. Our dynamic LSTM cells are then updated following

[88]. Finally, different to sentence generation or image caption models, where they use

the output from all word units, under a per-word softmax loss to predict each word,

we only take the last hidden activation of the bidirectional LSTM [89] as the overall

representation of the input sentence, i.e., the text embedding.

4.1.4 Multi-modal Alignment

Given the learned sketch-photo and text-photo embeddings, the following task is to align

these cross-modal embeddings. A cross-modal quadruplet loss is proposed to align the
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different embeddings. Given an instance quadruplet sample {s, t, p+, p−}, where the s,

t, p+, p−, represent the anchor sketch, anchor text, positive photo and negative photo,

respectively, the multi-modal model is supervised by our multi-modal quadruplet loss as

below,

L
(
s, t, p+, p−

)
= max

(
0,∆ +D

(
Φ1(f(s)),Φ1(f(p+))

)
−D

(
Φ1(f(s)),Φ1(f(p−))

))
+ max

(
0,∆ +D

(
g (t) ,Φ2(f(p+))

)
−D

(
g(t),Φ2(f(p−))

))
(4.1)

where g(t), f(s), f(p+) and f(p−) denote the learned anchor text, anchor sketch, the

positive and negative photo embedding, respectively. D(·, ·) is the distance metric, here

we take the l2 normalised squared euclidean distance to measure the cross-domain simi-

larity. The margin in the quadruplet loss is ∆. Two linear transform layers are embedded

in our quadruplet loss as Φ1(·) and Φ2(·) to further eliminate the domain gap among

sketch, photo and text modalities. For example,

Φ1(f(p))) = W>1 f(p) + b1 (4.2)

, where W>1 and b1 denote the weights and biases in the domain adaptation layer,

respectively. And the matching metric between sketch and photo branch share the same

linear transform due to the Siamese branch setting.

By training this unified model of both modalities, each of the FGIR tasks will benefit

via learning a shared latent representation between the two tasks. At the inference

stage, we can construct either photo-sketch, or text-sketch ranking/retrieval using the

corresponding distance from the objective:
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Figure 4.3: Example of the shoe multi-modal dataset.

Rs (s, p) = −D (Φ1(f(s)),Φ1(f(p))) (4.3)

Rs (t, p) = −D (g (t) ,Φ2(f(p))) (4.4)

4.2 Fine-grained Multi-modal Retrieval Dataset

We contribute a new dataset for multi-modal learning, especially for fine-grained cross-

modal retrieval. We collected 1374 sketch-photo-text triplets for shoes. Specifically, we

collect shoe photos (in side view) and their corresponding descriptions from an online

shopping website. After that, we ask volunteers to draw free-hand sketch for each given

photo. Some examples are given in Figure 4.3. The collected fine-grained multi-modal

dataset is available from http://www.eecs.qmul.ac.uk/~js327.

We split shoe samples from each subcategory (boots, heels, sandals, slippers and so

on) with the ratio 4:1, to form the train and test set. In total, we have 1,112 sketches, text

descriptions and photos to train our multi-modal deep neural network, and 262 instances

for testing. The dataset sounds small, but they can form much more quadruplets, and

with proper data augmentation strategy, the data size problem is much more relieved.
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4.3 Experiments

4.3.1 Implementation Details

4.3.1.1 Data Preprocessing and Augmentation

We pre-process the photos into edge maps via EdgeBox [90]. We then do random crop

and random flip on both sketches and photos to enrich the training data, which is also

a common data augmentation strategy. Similar to other preprocessing strategies in text

modality, we remove all the stop words and symbols in the raw text description, as well

as some rare words with maximum word count less than 5.

4.3.1.2 Network Implementation

We implement our multi-modal network in Tensorflow. Before fine-tuning on our dataset,

we follow similar pre-training stages as detailed in [3]. More specially, we first pre-train

the sketch and photo branches on TU-Berlin dataset [1] and extracted edges from Ima-

geNet [3], respectively. For the text branch in our model, we first use gensim word2vec

model [91] (pretrained on Google News dataset) on our training text description to pre-

train the word embedding on our network. After the pre-training stage, we then fine-tune

our model on the collected dataset, with batch size 128. We choose stochastic gradient

descent (SGD) as the optimizer to train our multi-modal model, with a learning rate at

0.0001. Moreover, to prevent over-fitting, we add the dropout layer on the fully-connect

layer and the bidirectional LSTM cells at a 0.5 dropout rate, and we also put an l2

regulariser with 0.0005 weight decay to reduce over-fitting.

4.3.1.3 Sampling Strategy

Our quadruplet sampler is inspired by sampling strategy in [92]. We stick the ground-

truth photo as the positive instance to the anchor sketch and the anchor text, and select
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100 nearest neighbour photos in the VGG feature space [93] as the hard negative samples

for each sketch and corresponding text and ground-truth photo. Therefore, before data

augmentation, 111,200 quadruplets are generated for the training stage. The benefit of

our sampling strategy is that expensive human annotation on exhaustive generated pairs

can be saved though this may or may not give a more accurate ranking considering that

it is hard to distinguish between very similar instances.

4.3.2 Results

We compare our multi-modal fine-grained model with several baselines. First, we show

the performance of our model is superior to baseline methods on the fine-grained top

1 and top 10 retrieval performance metrics. Then we present various further analysis

to show insight about modality alignment, and how sketch-photo and text-photo can

benefit each other.

4.3.2.1 Comparative Results against Baselines

Three baselines are chosen for comparison. The first is multi-view shallow CCA [94]. To

obtain the multi-modal representations for this multi-view CCA framework, Sketch-a-

Net features (pool5 layer) are extracted for photo edges and sketches, respectively, while

bag-of-words are applied to encode the text description. In the deep CCA baseline [95],

one hidden fully-connected layer with 256 dimension (256D) transformed the same deep

representation, and the CCA layer (32D) followed then project the multi-modal embed-

ding to the shared correlated latent space. The deep CCA model is learned via optimising

the sketch-photo correlation and text-photo correlation, alternatively. Another baseline

is a three branch (sketch, photo, and text branch) deep model, with two l2 losses to match

the embedding between sketch and photo, and between text and photo. The results in

Tab. 4-A demonstrate that our proposed method are clearly superior to the other base-

lines. It is also interesting to find that both shallow CCA loss and deep CCA are not
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suitable for fine-grained retrieval, compared to the L2 loss and our unified quadruplet

loss, as there are many images in our gallery are with high similarity, i.e., already highly

correlated.

Table 4-A: Comparative results against baselines on fine-grained SBIR and
TBIR performance.

Model
sketch → photo text → photo
Top 1 Top 10 Top 1 Top 10

Multi-view CCA[94] 0.38% 4.20% 0.76% 4.58%
Deep CCA[95] 7.25% 11.83% 0.38% 4.96%

Deep model + L2 loss 33.97% 72.14% 1.53% 5.73%
Our full model 50.38% 84.73% 12.60% 37.40%

4.3.2.2 Benefit from Each Cross-Modal Learning

Our multi-modal learning model can also be viewed as a multi-task learning model, which

has been proven useful in many computer vision problem. In multi-task learning, each

task can regularise the others, thus reducing over-fitting and promoting generalisation.

In the deep learning context, this means they both provide more data to help to train

“latent tasks” in the form of a shared representation. Moreover, the side tasks can also

benefit each other, as different side tasks in return provide more data to the shared

latent tasks. Thus a better shared representation is learned from more data and help to

improve the performance of both tasks.

In our multi-modal framework, one task is the fine-grained sketch-to-photo retrieval,

while the other one is fine-grained text-to-photo retrieval. The shared latent task is

mining both the high semantic-level information (with the help of text modality) and

also the low-level of structure and texture information (with the help of sketch modality)

from the photo modality. In the ablation study, we first split our multi-modal model

to two single-task cross-modality learning models, i.e., the fine-grained SBIR and fine-

grained TBIR models. We also train our full model by jointly training the two retrieval

tasks. The retrieval performance is evaluated on our multi-modal dataset, as shown in

Tab. 4-B.
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Table 4-B: Contribution and performance of component tasks.

Model
sketch → photo text → photo
Top 1 Top 10 Top 1 Top 10

Sketch-photo model 49.24% 82.06% – –
Text-photo model – – 8.78% 33.97%

Our full model 50.38% 84.73% 12.60% 37.40%

4.3.2.3 Performance comparison on fine-grained SBIR

The multi-modal image retrieval task can be separated to fine-grained SBIR and TBIR

tasks, and the fine-grained SBIR performance can also be evaluated with the sketch-photo

subset of our multi-modal dataset. This is also to show the effectiveness of the proposed

sketch-to-photo retrieval module. Here we compared our sketch-photo model with two

most recent state-of-the-arts: triplet Sketch-a-Net model [3] and triplet GoogleNet [14].

The results in Tab. 4-C shows that both our sketch-photo model and Triplet Sketch-a-

Net model works well, while ours can achieve the best top 1 and top 10 accuracy. Triplet

GoogleNet can achieve similar performance compared to the triplet Sketch-a-Net model,

but may suffer the over-fitting problem with more parameters.

Table 4-C: Performance comparison on fine-grained SBIR.
Model Top 1 Top 10

Triplet Sketch-a-Net[3] 46.56% 82.82%
Triplet GoogleNet[14] 45.42% 79.77%

Our sketch-photo model 49.24% 82.06%
Our full model 50.38% 84.73%

4.3.2.4 Photo-text Embedding Alignment Performance

We evaluate against the captioning approach to FG-TBIR by applying the CNN-RNN

architecture as detailed in [86] to generate descriptions for our gallery photos, and then

perform text-to-text search. Another baseline model here is the deep CCA model, but

with only two modalities as oppose to all three used in earlier experiments. From the

results shown in Tab. 4-D, our text-photo model and caption model can achieve similar

retrieval performance and are better than the deep CCA method. However our full
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multi-modal framework achieves the best performance.

Table 4-D: Photo-text embedding alignment performance with different meth-
ods.

Model Top 1 Top 10

Shallow CCA[94] 0.38% 5.34%
Deep CCA[95] 3.05% 18.70%

Photo caption model[86] 7.60% 24.40%
Our text-photo model 8.78% 33.97%

Our full model 12.60% 37.40%

4.3.2.5 Qualitative Results

With our multi-modal retrieval model, we can apply the trained model to both sketch-

to-photo retrieval and text-to-photo retrieval. Our model shows good performance on

fine-grained SBIR, and the visual results of our proposed multi-modal framework is

given in Fig. 4.4, where the ground-truth photo is highlighted using a green bounding

box. Note that even though all the photo are left to right oriented, our model is robust

to the view point change, as we do data augmentation by random horizontal flip.

For text-to-photo retrieval, we test the model by giving the text description in the

testing dataset, and then retrieve photos from the image gallery. For instance, if query

text is given, the most similar photos retrieved are shown as Fig. 4.5.

4.3.2.6 Further Insights on Multi-Modal Query Retrieval

An unique characteristic of our model, compared with all previous fine-grained retrieval

methods, is that it simultaneously embed all three modalities. As a result, we are able

to use multi-modal query to conduct retrieval, i.e., instead of using sketch alone, we

could feed in sketch and text under one query to make retrieval even more fine-grained

and comprehensive. For example, as Fig. 4.6 shows, when given a sketch query to the

trained model, the network is able to retrieve structurally similar shoes. Yet it was not

until text is added that the model could return true matches. This is because sketch can



Chapter 4. Fine-grained Sketch-based Image Retrieval with Text 53

Query Top 10 retrieval result

Figure 4.4: Example of fine-grained sketch-based image retrieval.

Text Query Top 5 retrieval result

With a soft suede upper, the Topanga from adidas is a 

classic street style trainer with the signature three 

stripe branding in suede and a herringbone pattern 

white rubber outsole. Grey red off white colourway.

Cross strap, peep toe heels with lace ankle tie and slim 

stiletto heel, taupe leather upper, leather sock & lining, 

synthetic sole, 11.8cm heel height.

Figure 4.5: Example of fine-grained text-based image retrieval.

Query Top 5 retrieval result Query with text Top 5 retrieval result

Leather

Chunky

lace

Figure 4.6: Example of fine-grained image retrieval with both sketch and text
query.

not convey features like material and fine texture, which are however straightforward

to describe in text. Table 4-E shows that after fusing the two query modalities, the

retrieval performance is improved compared to that obtained using each modality alone.

This also suggests that our model can exploit the complementarity of the two modalities
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for better retrieval performance.

Query Model Top 1 acc Top 10 acc

sketch → photo Our full model 50.38% 84.73%

text → photo Our full model 12.60% 37.40%

(sketch + text) → photo Our full model 52.67% 87.02%

Table 4-E: The performance of fine-grained image retrieval when both sketch
and text is available as input.

4.4 Summary

In this chapter, we proposed a multi-modal fine-grained retrieval framework, and also

contribute a multi-modal FGIR dataset, where each sample has a photo, corresponding

sketch and text. We investigate fine-grained SBIR and TBIR, showing that sketch is

more powerful in isolation, but with a shared representation, both can be improved.

Experiment results show that with the proposed multi-modal framework, our model can

achieve a good retrieval result both on fine-grained sketch-to-photo and text-to-photo

retrieval. Moreover, we offer insights on multi-modal query where sketch and text can

be combined at testing time to obtain the most accurate results.
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Photo-to-Sketch Synthesis

Temporal information is one specific feature for sketch modality, which is not possessed

by the photo modality. The temporal information therefore distinguishes the sketching

process with imaging process and required specific computer vision processing to handle.

The sketching process is also the key to understand human visual processing. Think

about this question: what do we see when our eyes perceive a grid of pixels from a

real-world object? We can quickly answer this question by sketching a few line strokes.

Despite the fact that drawings like this may not exactly match the object as captured

by a photo, they do tell us how we perceive and represent the visual world around us,

that is, we as humans convey our perception of objects abstractly but semantically.

In this context, it is natural to ask to what extent a machine can see. For decades,

researchers in computer vision have dedicated themselves to answering this question,

by injecting intelligence and supervision into the machine with the hope of seeing bet-

ter. This is mostly done by formulating several specific constrained problems, such as

classification, detection, identification, and segmentation.

In this chapter, we take one step forward – teaching a machine to generate a sketch

55
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Figure 5.1: Given one object photo, our model learns to sketch stroke by
stroke, abstractly but semantically, mimicking human visual inter-
pretation of the object. Our synthesised sketches maintain a
noticeable difference from human sketches rather than simple route
learning (e.g ., shoelace for top left shoe, leg for bottom right chair).
Photos presented here have never been seen by our model during
training. Temporal strokes are rendered in different colours. Best
viewed in colour.

from a photo just like humans do. This requires not only developing an abstract concept

of a visual object instance, but also knowing what, where and when to sketch the next

line stroke. Figure 5.1 shows that the developed photo-to-sketch synthesizer takes a

photo as input and mimics the human sketching process by sequentially drawing one

stroke at a time. The resulting synthesised sketches provide an abstract and semantically

meaningful depiction of the given object, just like human sketches do.

Photo-to-sketch synthesis can be considered as a cross-domain image-to-image trans-

lation problem. Thanks to the seminal work of [2, 96], we are able to construct a gener-

ative sequence model with recurrent neural network (RNN) acting as a neural sketcher.

However, the synthesised sketches are not conditional on specific object photos. To

address this problem, one can encode the photo via a convolutional neural network

(CNN) and feed the code into the neural sketcher. Such a photo-to-sketch synthesizer

essentially follows the traditional encoder-decoder architecture (see Figure 5.2(a)), and

has been taken by most existing image-to-image translation models [4, 97]. Training such
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Figure 5.2: (a) Existing supervised image-to-image translation framework,
where mapping is one-way only. (b) Existing unsupervised image-
to-image translation models enforce cycle consistency to address
the highly under-constrained one-to-one mapping problem. (c)
Our supervised-unsupervised hybrid model with dual/two-way
supervised translation sub-models and two unsupervised sub-
models with shortcut cycle consistency. This takes advantage of
the noisy supervision signal offered by photo-sketch pairs, as well
as learning from within-domain reconstruction.

a model is done in a supervised manner requiring cross-domain image pairs: in our prob-

lem, these are photo-sketch pairs containing the same object instances. Compared to

image-to-image translation, the key challenge for learning instance-level photo-to-sketch

synthesis is that training pairs provide highly noisy supervision: Different sketches of

the same photo have large style and abstraction differences between them (see Figure

5.3). This makes our problem highly noisy and under-constrained.

In order to achieve photo-to-sketch synthesis under noisy photo-sketch pairs as super-

vision, we address the limitations of existing cross-domain image translation models by

proposing a novel framework based on multi-task supervised and unsupervised hybrid

learning (see Figure 5.2(c)). Taking an encoder-decoder architecture, our primary task

is D(E(photo)) → sketch) where a photo is first encoded by E and then decoded into

a sketch by D. To help learn a better encoder and decoder, we introduce the inverse

problem (D(E(sketch)) → photo) so that the supervised model learning can be done
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Figure 5.3: Given a reference photo, sketches drawn by different people exhibit
large variation in style and abstraction levels. Some of them are
poor in depicting the object instances in the corresponding photos.

in both directions. Importantly, we also introduce two unsupervised learning tasks for

within-domain reconstruction, i.e., D(E(photo))→ photo and D(E(sketch))→ sketch.

This hybrid learning framework differs significantly from existing approaches in that:

(1) It combines supervised and unsupervised learning in a multi-task learning frame-

work in order to make the best use of the noisy supervision signal. In particular, by

sharing the encoder and decoder in various tasks, a more robust and effective encoder

and decoder for the main photo-to-sketch synthesis task can be obtained. (2) Different

from the existing unsupervised models based on cycle consistency (Figure 5.2(b)), our

unsupervised learning tasks exploit the notion of shortcut cycle consistency: instead of

passing through a different domain to get back to the input domain for reconstruction,

our model takes a shortcut and completes a reconstruction within each domain. This is

particularly effective given the large domain gap between photo and sketch.

Figure 5.1 shows that our model successfully translates photos to sketches stroke

by stroke, demonstrating that the model has acquired an abstract and semantic under-

standing of visual objects. We compare against a number of state-of-the-art cross-domain

image translation models, and show that superior performance is obtained by our model

due to the proposed novel supervised and unsupervised hybrid learning framework with

the shortcut cycle consistency. We also quantitatively validate the usefulness of the

synthesised sketches for training a better fine-grained sketch-based image retrieval (FG-
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SBIR) model.

Our contribution can be summarised as follows: (1) To our best knowledge, for

the first time, the photo-to-sketch synthesis problem is addressed using a learned deep

model, which enables stroke-level cross-domain visual understanding from a reference

photo. (2) We identify the noisy supervision problem caused by subjective and varied

human drawing styles, and propose a novel solution with hybrid supervised-unsupervised

multi-task learning. The unsupervised learning is accomplished more effectively using

a new shortcut cycle consistency constraint. (3) We exploit the synthesised sketches as

an alternative to expensive photo-sketch pair annotation for training a FG-SBIR model.

Promising results are obtained by using the synthesised photo-sketch pairs to augment

manually collected pairs.

5.1 Methodology

5.1.1 Overview

We aim to learn a mapping function between the photo domain X and sketch domain

Y , where we denote the empirical data distribution as x ∼ pdata(x) and y ∼ pdata(y)

and represent each vector sketch segment as (sxi , syi), a two-dimensional offset vector.

Our model includes four mapping functions, learned using four subnets namely a photo

encoder, a sketch encoder, a photo decoder, and a sketch decoder. They are denoted as

Ep, Es, Dp and Ds respectively.

5.1.2 Sub-Models

As illustrated by Figure 5.2(c), our model consists of four sub-models, each comprising an

encoder subnet and a decoder subnet. (1) A supervised sub-model that translates a photo

to a sketch; (2) a supervised sub-model that maps a sketch back to the photo domain;
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(3) an unsupervised sub-model to reconstruct photo and (4) an unsupervised sub-model

to reconstruct sketch. This means that our learning objective consists of two types of

losses (to be detailed later): supervised translation loss for matching cross-domain and

shortcut cycle consistency loss for traversing within domain.

5.1.3 Variational Encoders

The two encoders Ep and Es are CNN and RNN respectively (see Figures 5.4(a) and

(c)). In particular, Es is a bidirectional LSTM. They take in either a photo or sketch

as input and output a latent vector. They are variational because the latent vector is

then projected into two vectors µ and σ with one fully connected (FC) layer. From the

FC layer we construct our final embedding layer (bottleneck layer in each sub-model)

by fusing it with a random vector, N (0, I), sampled from independent and identically

distributed (IID) Gaussian distribution. To enable efficient posterior sampling, the re-

parameterisation trick is used as in [98]:

z = µ+ σ �N (0, I) (5.1)

5.1.4 Sketch Decoder

We build an LSTM-based sequence model as in [2] to sample output sketches segment by

segment conditioned on the latent vector z (see Figure 5.4(b)). This is done by predicting

each sketch segment offset p(∆sxi ,∆syi) using a Gaussian mixture model (GMM) and

modelling pen state qi for each time step as a categorical distribution, as detailed in [2].

To train the LSTM decoder, the reconstruction loss is formulated as:

Lrnn(S, Ŝ) = Ex∼S,y∼Ŝ[
− 1

Nmax

( Ns∑
i=1

log(p(∆sxi ,∆syi |x, y))−
Nmax∑
i=1

3∑
k=1

pk,ilog(qk,i|x, y)
)] (5.2)
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where Nmax represents the maximum number of segments in one sketch in the training

set, and Ns denotes the actual length of segments for one particular sketch, thus Ns is

usually smaller than Nmax. Index i and k indicate the time step and one of three pen

states, respectively.
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Figure 5.4: (a) bidirectional LSTM encoder Es. (b) conditional LSTM
decoder Ds. (c) generative CNN encoder Ep. (d) conditional
CNN decoder Dp.

5.1.5 Photo Decoder

We use a CNN-based deconvolutional-upsampling block, as is commonly adopted by

various generative tasks, where an l2 loss

L→p(P, P̂ ) = Ex∼P,y∼P̂ [||x− y||2] (5.3)

is used to measure the difference, which often leads to a blurry effect, known as the

regression to mean problem [99]. An obvious solution is to add adversarial loss [26] for

obtaining sharper photo visual effect. This was however not adopted because: (a) We

did not observe improved photo-to-sketch synthesis, and even slightly worse due to the

mode collapse issue, commonly observed with generative adversarial training [100]. (b)

Synthesising photos is not the main goal of the model; it is used as an auxiliary task

to help the main photo-to-sketch synthesis task. (c) Adding adversarial training loss to

the synthesised sketch is not intuitive as the sketch is still vectorised and by doing the

rasterisation, the gradient back-propagation will be stopped.
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5.1.6 Shortcut Cycle Consistency

We might expect that learning a one-way mapping from photo to sketch should suffice, as

paired examples exist for providing a supervision signal. However, as discussed, photo-

sketch pairs provide a weak and noisy supervision signal, so such a one-way mapping

function cannot be learned effectively. Our solution is to introduce two-way mapping

using supervised learning and unsupervised reconstruction tasks. Since the four encoders

and decoders are shared by these supervised and unsupervised tasks, they benefit from

multi-task learning.

For the under-constrained mapping in the unsupervised self-reconstruction tasks,

cycle consistency [6, 101] is developed to alleviate the non-identifiable [102] problem by

reducing the space of possible mappings. This is achieved from the intuition that for each

source image, the translation should be cycle consistent as to bring back to itself from

the translated target domain. Taking photo to sketch translation for example, we have

x→ Ep(x)→ Ds(Ep(x))→ Es(Ds(Ep(x))→ Dp(Es(Ds(Ep(x))). However, since we do

have noisy but paired data to provide weak supervision, the approximate posterior can

actually be learned within each domain from the encoder’s embedding. This is achieved

by enforcing a variational bound and this is exactly where the shortcut can happen in

the new cycle consistency proposed in this work.

Specifically, to form a photo to photo cycle now requires only traverse within domain,

i.e., x → Ep(x) → Dp(Ep(x)), which we term as shortcut cycle consistency. We find

that apart from resulting in faster convergence in our supervised-unsupervised hybrid

framework, our unsupervised sub-models with the shortcut cycle consistency can produce

much better photo-to-sketch synthesis compared with the model learned with conven-

tional cycle consistency. We postulate that given the large domain gap between photo

and sketch, doing a long walk across domains potentially makes it harder to establish

cross-domain correspondence. Formally, to enforce the shortcut cycle consistency, we

minimise the following loss:
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Lshortcut(X,Y ) = L→s(Y,Ds(Es(Y )))

+ L→p(X,Dp(Ep(X)))

(5.4)

5.1.7 Full Learning Objective

The four sub-models are learned jointly. Therefore, in additional to the unsupervised

loss above, there are thus two supervised translation losses:

Lsupervised(X,Y ) = L→s(Y,Ds(Ep(X)))

+ L→p(X,Dp(Es(Y )))

(5.5)

Furthermore, to enable efficient posterior sampling, we add KullbackLeibler (KL)

losses for the bottleneck layer embedding space distributions to force the four sub-models

to use a similar distribution to feed to their decoders. For simplicity, we combine them

into one term:

LKL = Ex∼X,y∼Y,x̂∼X̂,ŷ∼Ŷ [−1

2
(1 + σ2 − exp(σ))|x, y, x̂, ŷ] (5.6)

Our full objective thus becomes:

Lfull(X,Y ) = Lsupervised(X,Y ) + λshortcutLshortcut(X,Y ) + λKLLKL (5.7)

where λshortcut, λKL controls the relative importance of each loss. With the full loss, we

aim to optimise:

argmin
Ep,Es,Dp,Ds

Lfull(X,Y ) (5.8)
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5.2 Experiments

5.2.1 Datasets and Settings

5.2.1.1 Dataset Splits and Preprocessing

We use the publicly available QMUL-Shoe-Chair-V2 [61] dataset, the largest stroke-

level paired sketch-photo dataset to date, to train and evaluate our deep photo-to-sketch

synthesis model. There are 6,648 sketches and 2,000 photos for the shoe category, where

we use 5,982 and 1,800 of which respectively for training and the rest for testing. For

chairs, we split the dataset as following strategy: 300/100 photos, 1275/725 sketches for

training/testing respectively. It is guaranteed that each photo is paired with at least

one human sketch. We scale and centre crop the photos to 224 × 224 pixels and pre-

process original sketches via stroke removal and spatial sampling to reduce to number of

segments to the level suitable for LSTM-based modelling.

5.2.1.2 Pretraining on QuickDraw Dataset

Due to the limited number of sketch-photo pairs in QMUL-Shoe-Chair-V2, we pretrain

our model with 70,000 shoe and 70,000 chair training sketches from the QuickDraw

dataset [2]. Despite the fact that only abstract iconic vector sketches exist with no

associated photos, we form our pretrained photos by transforming sketches to raster

pixel images.

5.2.1.3 Implementation Details

Our CNN-based encoder and decoder, Ep and Dp consist of five stride-2 convolution

layers, two fully connected layers and five fractionally-strided convolutional layers with

stride 1/2, similar to [4] but without skip connections. We use instance normalisation

instead of batch normalisation as in [103]. We adopt bidirectional and unidirectional
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Photo Pix2pix Pix2seq CycleGAN CycleGAN-S Ours Ground Truth

Figure 5.5: Photo-to-sketch synthesis on the QMUL-Shoe-Chair-V2 test splits.
From left to right: input photo, Pix2pix [4], Pix2seq [5], CycleGAN
[6], CycleGAN with supervised translation loss, ours and ground
truth human sketch.

LSTM for our RNN encoder Es and decoder Ds respectively, while keeping other learning

strategies the same as [2]. We implement our model end-to-end on Tensorflow [104] with

a single Titan X GPU. We set the importance weights λshortcut = 1 and λKL = 0.01

during training and find this simple strategy works well. Both pretraining and fine-

tuning stages are trained for a fixed 200,000 iterations with a batch size of 100. The

model is trained end to end using the Adam optimiser [105] with the parameters β1 =

0.5, β2 = 0.9, ε = 10−8. A fixed learning rate of 0.0001 is adopted for experiments.

5.2.2 Evaluation Metric

Evaluating the quality of synthesised images is still an open problem. Traditional max-

imum likelihood approaches (e.g ., kernel density estimation) fail to offer a true reflec-

tion of the synthesis quality, as validated in [106]. Consequently, most recent studies

either run human perceptual studies by crowd-sourcing or explore computational met-
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rics attempting to predict human perceptual similarity judgements [107]. Our measures

fall into the latter by discriminatively answering two questions: (i) How recognisable can

the synthesised sketch be when evaluated with a recognition model trained on human

sketch data? (ii) How realistic and diverse are the synthesised sketches, so that they can

be used as queries to retrieve photos using a FG-SBIR model trained on photo-human

sketch pairs? A good score under these metrics requires synthesised sketches to be both

realistic and instance-level identifiable. The metric thus shares the same intuition behind

the “inception score” [100]. More specifically, the two metrics are: (1) Recognition-

Accuracy: We feed the synthesised sketches into the Sketch-a-Net [31] model, which

is trained to recognise 250 real-world sketch categories with super-human performance.

The assumption is that if a synthesised sketch can be recognised correctly as the same

category as the corresponding photo, we can conclude with some confidence that it is

category-level realistic. (2) FG-SBIR Retrieval-Accuracy: Since our data are from

the same category (either shoe or chair), the recognition-score could still be high if the

model learns to one specific object instance regardless of the input photo instances (i.e.,

the typical symptom of mode collapsing [100]), or if the synthesised sketches are diverse

but hardly resemble the object instances in the corresponding photos. To overcome this

problem, the FG-SBIR accuracy is introduced as a harder metric. We retrain the model

of [3] on the QMUL-Shoe-Chair-V2 training split [61] and used the synthesised sketches

to retrieve photos on the test-split.

5.2.3 Competitors

For fair comparison, we implement all the competitors under the same architecture and

training strategies as our model, except for CycleGAN [6], where we have to add two dis-

criminators for adversarial training to compensate for its unsupervised setting. Pix2pix

[4]: We compare with replacing vector sketch images with raster sketch images, where

translation happens within the pixel space. We tried different state-of-the-art cross-

domain translation models [4, 108, 109], but did not find much difference between them.
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We thus only report the results of the model in [4] as a representative one. Pix2seq [5]:

This corresponds to the ablated version of our full model: a one-way photo-to-sketch

supervised translation model with vector sketch as output. This is similar to [5], which

was originally designed for better sketch reconstruction, now re-designed and re-purposed

for the photo-to-sketch translation task. CycleGAN [6]: This is proposed to specifically

target image-to-image translation with the absence of paired training examples. Cycle

consistency is enforced to alleviate the highly under-constrained setting of the prob-

lem. CycleGAN-Supervised (CycleGAN-S): Additional supervised learning mod-

ules (two discriminators for adversarial training) are added on top of CycleGAN to give

a level playing field. This can be considered as an alternative supervised-unsupervised

hybrid model.

5.2.4 Qualitative Results

As illustrated in Fig. 5.5, all four competitors fail to generate high quality sketches

that match with the corresponding photo. Our model, in contrast, is able to sketch

object abstractly but semantically. Interestingly, our model produces some sketches

with certain level of fine-grained details, which is extremely challenging given the highly

noisy supervision signals as shown in Fig. 5.3. In some cases, e.g ., the third row shoe

example, the synthesised sketch matches the actually object shape better and contains

more fine-grained details compared to the human sketch.

The competitors suffer from various problems. We observe complete model collapse

when using CycleGAN under unsupervised setting, which suggests that CycleGAN may

only works with unpaired training examples under a strong cross-domain pixel-level

alignment assumption. After injecting supervision into CycleGAN (CycleGAN-S), the

synthesised results get better but still suffers from regular noisy stroke generation, i.e.,

it seems that a random meaningless stroke is always sketched on a shoe. In contrast, our

model with shortcut cycle consistency does not suffer from such issue. This is because our

model takes a shortcut from the bottleneck, which eases the burden on optimisation and
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Method
ShoeV2 ChairV2

Recognition Retrieval Recognition Retrieval
Top 1 Top 10 Top 1 Top 10 Top 1 Top 10 Top 1 Top 10

Human sketch [61] 36.50% 70.00% 30.33% 76.28% 10.00% 35.00% 47.68% 89.47%
Pix2pix [4] 0.00% 0.00% 0.50% 7.50% 0.00% 0.00% 2.00% 16.00%
Pix2seq [5] 51.50% 86.00% 4.50% 26.00% 5.00% 51.00% 3.00% 31.00%

CycleGAN [6] 0.00% 0.00% 0.50% 4.00% 0.00% 8.00% 1.00% 7.00%
CycleGAN-S 18.00% 51.50% 2.00% 18.00% 12.00% 55.00% 6.00% 33.00%

Our full model 53.50% 90.00% 6.00% 28.50% 13.00% 55.00% 8.00% 36.00%

Table 5-A: Recognition and retrieval results obtained using the synthesised
sketched. Numbers in red and blue indicate the best and second-
best performance among compared models. The results are in top-1
and top-10 accuracy.

enhances the representation power of the encoder. We also witness some success using

the Pix2seq model – the sketch looks adequate on its own, but when compared with the

corresponding photo, it does not bear much resemblance, often containing some wrong

fine-grained details, e.g ., ankle strap of the first-row shoe. This supports our hypothesis

that one-way image-to-image translation is not enough to deal with the highly-noisy

paired training data. Finally, the worst results are obtained by the Pix2pix model which

is the only model that treats sketch as a raster pixel image. The synthesised sketches are

blurry and lack sharp and clean edges. This is likely caused by the fact that the model

pays too much attention to handling the empty background which is also part of data

to model with the raster image format.

5.2.5 Quantitative Results

We compare the performance of different models evaluated using the two metrics (Sec. 5.2.2)

in Table 5-A. The following observations can be made: (i) Under the recognition metric,

our model beats all the competitors. Interestingly it also beats human, showing our

superior category-level generative realism. (ii) Under the retrieval metric, our model

still outperforms all competitors on both datasets. However, this time, the gap to the

human sketches’ performance is big. This suggests that when humans draw a sketch of

a specific object given a reference photo, attention is paid mainly to fine-grained details

for distinguishing different instances, rather than the category-level realism. Never-
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Figure 5.6: Sketch-to-sketch and photo-to-photo reconstruction results on
QMUL-Shoe-Chair-V2 dataset.

theless, compared to the chance level (0.5% Top 1 for ShoeV2 and 1% for ChairV2),

our model’s performance suggests the synthesised sketches do capture some instance-

identifiable details. (iii) The strongest competitor on ShoeV2 is Pix2seq [5]. However,

its place is taken by CycleGAN-S on ChairV2. This is expected: the ChairV2 dataset

is much smaller than ShoeV2, posing difficulties for a pure supervised-learning based

approach. The unsupervised CycleGAN yields poor performance all the time due to

model collapse, but its supervised learning boosted version CycleGAN-S fares quite well

on the small ChairV2 dataset. This further validates our claims that a hybrid model is

required and our shortcut consistency is more effective than the full cycle consistency. In

summary, our model quantitatively beats all competitors under both metrics and even

shows better category-level realism than human sketches, in accordance with qualitative

observations.

5.2.6 Image Reconstruction Quality

In Figure 5.6, we show a few samples of the reconstruction results obtained using our

unsupervised sub-models, i.e., sketch → Ds(Es(sketch)) and photo → Dp(Ep(photo)),

with our shortcut cycle consistency. We observe that the reconstructed photos are quite
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Dataset Top 1 Top 10

Without pretraining on synthetic data 30.33% 76.28%
With pretraining on synthetic data 32.43% 77.48%

Table 5-B: Evaluation of the contribution of synthetic sketch pretraining on
FG-SBIR.

close to the input, despite the expected blurry effects (as explained in Sec. 5.1.1). For

sketches, due to the existence of the KL loss (Eq. 5.6), the RNN-based decoder suffers

significant reconstruction degradation, which is also shown in [5]. However, as mentioned

earlier, among the four sub-models, only the photo-to-sketch one is what we are after,

and the other three are designed as auxiliary tasks to learn a better encoder and decoder

to serve the main sub-model. In this case, it appears that the sketch→ Ds(Es(sketch))

sub-model has sacrificed its own performance to help the main sub-model.

5.2.7 Data Augmentation for FG-SBIR

In this experiment, we evaluate whether the synthesised sketches using our model can

be used to form some additional photo-sketch pairs to train a better FG-SBIR model.

More concretely, we collect 1800 photos from a different shopping website (Selfridge’s),

called ShoeSF, which have no overlap with the ShoeV2 photos. Figure 5.7 shows some

examples of newly collected dataset, and the synthesised sketches based on out model.

We then apply our model trained on ShoeV2 to generate sketches for ShoeSF to form

some additional photo-sketch pairs. They are then used to pretrain the FG-SBIR model

in [3] before fine-tuning on the ShoeV2 provided photo-sketch pairs. Table 5-B shows

that using the synthesised data can boost the performance by 2.10% Top 1. One pos-

sible reason for the limited improvement can be the synthesis quality still needs to be

improved.
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Figure 5.7: Examples of our newly collected dataset and the corresponding
synthesised sketches.
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Figure 5.8: Exploring the embedding space by interpolating the latent vector.

5.2.8 Exploring the Embedding Space

With the help of latent vector z and the KL loss, we are able to explore the embedding

space from CNN encoder. We sample the latent vector by interpolate the random noise

from -1 to 1 with stride 0.5, and then visualise the synthesised sketches as Fig. 5.8.

5.3 Summary

We proposed the first deep stroke-level photo-to-sketch synthesis model that enables

abstract stroke-level visual understanding of an object in a photo. To cope with the noisy

supervision of photo-human sketch pairs, we proposed a novel supervised-unsupervised

hybrid model with shortcut cycle consistency. We show that our model achieves supe-
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rior performance both qualitatively and quantitatively over a number of state-of-the-art

alternatives. We also applied our synthetic sketches as a mean of data augmentation

for the FG-SBIR task, obtaining promising results. This application indicating that the

synthesis task can help retrieval task by enriching the training data, but the limitations

are the application may be constrained by the qualities of synthesised sketches.
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Generalisation for FG-SBIR

Sketch modality is considered with promising advantages like informative, conveying

semantic meaning, encoding temporal information and so on. However, sketch collection

and annotation are costly both in time, labour and price, thus will bring trouble to the

sketch researches. The high expense of data expense drives us to consider the generalisa-

tion learning of the sketch related models. In this chapter, we will discuss how to design

a generalised fine-grained SBIR model, which will be able to generalise well on novel

categories of sketches, without asking volunteers to label a large amount of sketches in

high expense.

The problem of fine-grained sketch-based image retrieval (FG-SBIR) has been studied

intensively. A FG-SBIR model is used to retrieve the most similar photo according to

the query sketch. To search for the target photo of the same object given the sketch,

most recent FG-SBIR models apply deep convolutional neural networks (CNNs) to learn

a feature embedding space where sketch modality and photo modality are aligned based

on feature distances [3, 14, 23]. These models are normally trained and tested on the

same category. In practice, however, the object may come from very different categories

for the training data, thus the model may fail to provide a satisfying retrieval result on

73
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the new category as the model is not be able to provide a generalised performance. Deep

FG-SBIR models that are directly applied to new category without model updating

are known to suffer from performance degradation [3, 14, 23], thus suggesting model

overfitting and poor domain generalisation.

In this chapter, we aim to learn a generalisable FG-SBIR model. Such a model

is trained on a set of source categories, and should be able to generalise to any new

unseen category for effective FG-SBIR without any model updating. Such a model

thus needs to solve a generalisation problem with different class label spaces for differ-

ent datasets/domains. A generalisable FG-SBIR model has great value for real-world

large-scale deployment. Specifically, when a customer purchases a FG-SBIR system

for a specific retrieval network, the system is expected to work out-of-the-box, without

the need to go through the tedious process of data collection, annotation and model

updating/fine-tuning.

Surprisingly, there is very little prior study of this topic. Existing FG-SBIR works

occasionally evaluate their models’ cross-category generalisation, but no specific design is

made to make the models more generalisable. Beyond FG-SBIR, the problem of domain

generalisation (DG) has been investigated in deep learning, with some recent few-shot

meta-learning approaches also adapted for domain generalisation. However, existing

domain generalisation methods [52, 53, 55, 56] assume that the source and target domain

have the same label space; whilst existing meta-learning models [57, 60, 110, 110, 111]

assume a fixed number of classes for target domains and are trained specifically for that

number using source data. They thus have limited efficacy for FG-SBIR, where target

domains have a different and variable number of categories and instances.

Our solution to generalisable FG-SBIR is based on a novel Domain-Invariant Mapping

Network(DIMN). DIMN is designed to learn a mapping between a photo image and its

instance classifier weight vector, i.e., it produces a classifier using a single shot. Once

learned, for a target domain, each photo will be fed into the network to generate the

weight vector of a specific linear classifier for the corresponding instance. A query sketch
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Figure 6.1: The proposed Domain-Invariant Mapping Networkfor generalised
FG-SBIR.

will then be matched with the gallery photo using the classifier by computing a simple

dot product between the weight vector and a deep feature vector extracted from the

query sketch. To make the model generalisable to different categories, we follow a meta-

learning pipeline and sample a subset of source training tasks (categories) during each

training episode. However, the model is significantly different from conventional meta-

learning methods in that: (1) No model updating is required for the target categories.

(2) Once trained, the model can be used to match an arbitrary number of categories in

the target application scenario.

Our contributions are as follows: (i) For the first time, the generalisation problem in

FG-SBIR is explicitly highlighted and also tackled by designing a FG-SBIR model that

is tailor-made for coping with unknown target categories. (ii) A novel Domain-Invariant

Mapping Network(DIMN) is proposed whose generalisability comes from its ability to

map an image directly into an instance classifier. Extensive experiments validate the

generalisability of our DIMN and suggest that it is superior to the baseline methods.
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6.1 Methodology

6.1.1 Overview

We study a generalised fine-grained sketch-based image retrieval problem, where in the

training stage, we have the access to M categories, D1, D2, ... and DM , and each category

has its own instance label space (indicating whether the sketch and photo coming from

the same instance or not). The trained model will be deployed directly to a new category,

and is expected to work without any further model update. To this end, we propose a

Domain-Invariant Mapping Network(DIMN), illustrated in Fig. 6.1. The training images

are organised into gallery and probe sets to simulate the testing scenario where a query

sketch is compared against a gallery set for matching. The proposed network consists of

three modules: (1) Two weight-tied base networks, the encoding subnets, which serve as

feature extractors for probe sketches and query photos respectively. (2) A hyper-network

[112], namely mapping subnet, which takes the gallery photo embedding as input and

tunes it into the instance classifier’s weight vector that represents the instance identity

of the gallery photo. (3) A logit-triplet ranking loss to better predict the matching

relations. We will detail the design of each module in the following sections.

6.1.2 Encoding Subnet

For the encoding subnet, we use MobilenetV2 [113] – a lightweight CNN with competitive

performance compared to heavier alternatives such as ResNet [114] and InceptionV3

[115]. We found it to be both more efficient and more effective for our generalised

FG-SBIR task.

As shown in Fig. 6.1, the two Siamese encoding subnets in DIMN are used in the

gallery and probe branches respectively. To generate the inputs for both branches, we

follow a specific mini-batch sampling procedure. Assuming we have C unique instances

in total in the overall M training categories, and more specifically, Ci is the number of
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instances for ith category. We sample Mb(Mb � M) categories from all the categories,

and for each category, sample Cb (Cb < Ci, i ∈ 1...M) instances randomly for each mini-

batch. For each instance yi, we further sample one sketch and one photo, of which we

assign the photo as gallery pi and the sketch as probe si. Therefore, we have MbCb

sketch/photo pairs in a mini-batch, as illustrated in Fig. 6.2.

Assuming the encoding subnet produces a D-dimensional feature vector, the first

training objective for DIMN is a classification loss for the total M categories, denoted

as Lcat,

Lcat =

Cb∑
i=1

Cross Entropy(li, Softmax(fθ(gφ(si)))) (6.1)

where si is the query sketch and li is the one-hot encoding of its category label (a M -

dimensional unit vector). gφ(·) is the encoding subnet parameterized by φ. fθ(·) is the

category classifier parameterized by θ where θ ∈ RD×M . Operation Cross Entropy and

Softmax are described in and , respectively.

Softmax(x) =
exi∑
exi

(6.2)

Cross Entropy(t, y) =
∑

tilogyi (6.3)

Notice that here we use cross-entropy loss as the classification loss. Admitedly, alter-

native losses can also be used for classification, like regression loss and KullbackLeibler

(KL) divergence losses. However, the former is sensitive to outliers while the latter is

exactly the same in the term of optimisation.

To increase the discriminativity of the learned feature, we also have a second training

objective for DIMN , which is an identification loss for the total C instances, denoted as
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Figure 6.2: An illustration of the mini-batch sampling strategy.

Lid,

Lid =

Cb∑
i=1

Cross Entropy(ti, Softmax(f ′θ(gφ(si)))) (6.4)

Similarly, ti is the one-hot encoding of its instance label (a C-dimensional unit vec-

tor). gφ(·) is the encoding subnet parameterized by φ. f ′θ(·) is the instance classifier

parameterized by θ′ where θ′ ∈ RD×C .

6.1.3 Mapping Subnet

Conventional identification loss like Lid can help discriminative representation learning

but it also suffers from overfitting problem, especially when it is applied to an unseen

domain. To alleviate this problem, we further designed a domain-independent classifica-

tion module to predict the matching relations in the training domains. Specifically, we
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propose to use a dynamical model, named as the “mapping net” to dynamically generate

the classifier weights for the matching network. The matching network is then using this

synthesised weights to classify the matching relations, instead of the static learned model

parameters.

The deep feature vector, extracted from each gallery photo using the encoding sub-

net, is then fed into a mapping subnet to compute a classifier weight vector for the

corresponding instance. Formally, given an instance of the jth category from the gallery

photo branch, denoted as pj . Instead of learning the jth classifier weight vector θ·,j as

part of the model parameters, as in a conventional classification CNN, we generate it as

a layer of the network using pj as input. We thus have:

θ̂·,j = hω(gφ(pj)), (6.5)

where the mapping subnet hω(·) can be understood as a hyper-network [112] since it

generates the parameters for another neural network (the probe sketch branch). Here we

simply apply a multi-layer perceptron (MLP) as the basic architecture of our mapping

subnet. Note that we omit the bias term in the weight generation for simplicity.

Given a gallery photo pj , and a query sketch si, the mapping subnet generates an

identity classifier weight vector θ̂·,j based on the gallery photo, pj . We then take the

dot product of the generated classifier weight vector θ̂·,j and the query sketch feature

gφ(si), to produce a logit vector p whose elements corresponding the identity of pj :

pj = hω(gφ(pj)) · gφ(si). Passing the vector p into a softmax layer then gives us the

predicted probability of how likely the input instance si in the query sketch branch is

matched with the instance pj in the gallery photo branch. The ground truth label y for

the matching network will be 1 if sj matches with pj , and 0 otherwise. y can then be

used for computing a classification loss. The new classification loss the matching network

is named as matching loss, as described as below,
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Lmat =

Cb∑
i=1

Cross Entropy(yi,Softmax(Ŵ T
b gφ(xi))) (6.6)

where [x1, x2, . . . , xCb
] are probe branch inputs. Ŵb is the classifier weights produced by

the hyper network and parametarised by the gallery photos, as shown in Eq.6.7.

Ŵb ← θ̂·,j ∀j ∈ [1, 2, . . . , Cb], (6.7)

Note that the logit vector p is a C-dimensional vector which can be of very high-

dimensionality with a large number of instances in the source domains. If we follow

the standard meta-learning practice and reduce the dimensionality to the much smaller

number MbCb, the model training becomes tractable. However, we then lose the dis-

criminative power: the mapping network is trained to perform a much easier task of

classifying Cb people rather than C. Thus we then designed a logit-triplet loss to keep

the discriminativity power in compensation.

6.1.4 Logit-triplet Loss

We further introduce a specific triplet loss built on our matching network, named as logit-

triplet loss. As a by-product of building the mapping subset, for every instance in the

query sketch branch, si, we can find its only positive pair pi in the gallery photo branch

and compute the logit: p = hω(gφ(pi)) · gφ(si), meanwhile, we can also find negative

pairs by computing: n = hω(gφ(pj)) · gφ(si)|j 6=i among all the gallery photos. Both p

and n will be further normalised to produce valid probabilities as the result of applying

softmax function in Eq. 6.6. Denote the normalised p and n as S(si, pi) and S(si, pj′)|j′ 6=i,

respectively, which also means the similarity score or matching probability between the

query sketch and gallery photo pairs. We can then adopt the following logit-triplet loss

with the hard mining [116],
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Algorithm 1 Training Domain-Invariant Mapping Network

Input: D1, D2, ... and DM ;
1: for t = 1 to Max Iter do
2: Sample a subset of categories Dl ∈ {D1, D2, ..., DM}
3: Sample {(s1, p1, y1), . . . , (sCb

, pCb
, yCb

)} ∈ Dl
4: θ̂ ← hω(gφ(p))
5: Calculate losses: Lid, Lmat, and Ltri
6: Optimise Lfull via the optimiser
7: end for

Ltri =

Cb∑
i=1

max

(
0,∆ + max

j′ 6=i
S(si, pj′)− S(si, pi)

)
(6.8)

Note that there are several main differences between our logit-triplet loss and the

traditional triplet loss: (i) we are using a similarity scalar of the matching probability

rather than the Euclidean distance between features. Therefore, we are actually hop-

ing this similarity scalar between the anchor and positive pairs larger, while the scalar

between the anchor and the negative pairs smaller. (2) The scalar in the logit-triplet

loss is normalised by the softmax layer, rather than the normally used l2 normalisation.

6.1.5 Training Objective

The model is trained in an end-to-end fashion and the full training objective Lfull is a

weighted sum of Eq. 6.4, Eq. 6.6, and Eq. 6.8.

Lfull = Lid + λ1Lmat + λ2Ltri (6.9)

The training pipeline is summarised in Alg. 1.
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6.1.6 Model Testing

Trained in a meta-learning pipeline by sampling training categories in each episode, both

the encoding subnet (gφ(·)) and mapping subnet (hω(·)) in our DIMN are supposed to be

category invariant. During the testing stage, given a query sketch si, and a gallery photo

pj , we directly take the logits (or probability after the softmax layer) hω(gφ(pj)) · gφ(si)

as the ranking score. It is importantly to point out that: (1) Although it looks like a

one-shot learning method, DIMN is a domain generalisation method as the model itself

(i.e., gφ(·) and hω(·)) is fixed once trained on training source. (2) Conventional deep

FG-SBIR models only have an encoding network gφ(·), and uses the Euclidean distance

between gφ(si) and gφ(pj) as the ranking score. Comparing to them, our DIMN has very

similar inference cost during the testing stage.

6.2 Experiments

6.2.1 Dataset and Settings

6.2.1.1 Generalised FG-SBIR benchmark

We introduce a generalised FG-SBIR benchmark to evaluate the generalisation ability

of a FG-SBIR model. We aim to simulate a real-world scenario where a FG-SBIR

model is trained with several seen categories, and most likely exposed to an unseen

category during the inference stage. To this end, we use the Sketchy dataset [14], which

is the large-scale FG-SBIR dataset covering 125 categories. We deliberately select 21

categories to form the target unseen categories, and leave the rest 104 categories as the

source training categories. When selecting the unseen categories, we follow the principle

of testing categories are excluded in the ImageNet 1000 categories [117], thus ensuring

that these categories are also unseen to our ImageNet pretrained model, similar to [118].

All the images in the Sketchy dataset, still keeps the original train/test splits for each
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Data Statistics
Train Test

Sketch Photo Sketch Photo

# Categories 104 104 21 21
# Instances 9360 9360 210 210
# Images 54228 9360 1069 210

Table 6-A: Dataset statistics of our generalised FG-SBIR benchmark based on
Sketchy.

category, i.e., we only use the train split from the seen categories, and test on the test

split of the unseen category. The reason is that for the future works we are able to use

the extra split to further tune our model. Another reason is that we can evaluate the

model performance on the standard testing split only, so our testing gallery size is the

same for each category. The dataset details are listed in Table 6-A. Note that the total

number of training categories is C = 104 with 54228 training sketches and 9360 training

images, while for testing, we have 21 unseen categories with 1069 testing sketches and

210 testing images. The gallery size for the testing stage is thus 210.

6.2.1.2 Implementation Details

We use MobileNetV2 [113] as the encoding subnet, with width multiplier of 1.4. The

output feature dimension is thus 1, 792. Our mapping subnet is composed of three fully-

connected (FC) layers. The output size is set to the same as the input size, as the

dimension of the classifier weights should be the same as the feature dimension. The

dimensions for the three FC layers are all set to 1, 792. The logit-triplet loss margin

(Eq. 6.8) is set to ∆ = 0.8. The weights for the classification loss and logit-triplet loss

are set as equal, i.e., λ1 = λ2 = 1. We implement our model in Tensorflow [104] and

train it with a single Titan X GPU. The model is trained for a fixed 180, 000 iterations

with batch size 64, which means in each iteration, we sample 2(Mb) categories in each

batch, and for each categories, we sample 8(Cb) sketch and photo pairs; each comes with

8 sketches used as the “probe” while the 8 photos are used as the “gallery”. Exponential

decay learning rate scheduling is used with initial rate 0.00035 and ending with 0.0001.
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Adam optimiser [105] is used for all experiments. For the training variables in the

network, we use Xavier initialisation [119] for a more robust performance.

6.2.1.3 Evaluation Metrics

We follow the standard single-view evaluation protocols on the testing dataset like most

existing FG-SBIR methods [3, 14]. Two commonly used evaluation metrics are used.

The first is cumulative matching characteristics (CMC). We report the CMC at rank-k,

where k = 1, 10, representing the ranking accuracy of the target identities in the top

k results. The second metric is the mean average precision (mAP), which reflects the

overall ranking quality rather than looking at top k positions only. In summary, we

report the mAP and Top 1 and Top 10 accuracy on the test set during the evaluation.

6.2.2 Comparisons against State-of-the-art

6.2.2.1 Baselines

We compare our model with the state-of-the-art baseline [3]. Besides this baseline, we

also consider the verification based ranking network [120] and one naive baseline where

only category-level information is used, termed as Ver and Clf, respectively. In the [3]

baseline (termed as Tri), we train a triplet model which is effective for the fine-grained

ranking. We uses the same MobileNetV2 backbone for fair comparison to our DIMN.

In addition, we also designed a baseline in a popular way for ReID task [87], which

engaged an identification loss, termed as IDE. The meta-learning method, PPA [60] is

effective for alleviating over-fitting in few-shot learning-to-learn, and can be adapted for

the generalised FG-SBIR problem here (unlike most others that require model updating).

Notice that for all the baselines except PPA, category-level classification loss is added.

PPA model do not need the extra classification loss as it starts from the feature and

the feature actually comes from a category-level classification model. Note that the our
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Sketchy Dataset Top 1 Top 10 mAP

Clf 12.63% 49.67% 23.86%
Ver [120] 30.59% 80.45% 46.70%
Tri [3] 36.20% 76.05% 50.05%
IDE [87] 37.23% 85.50% 52.81%
PPA [60] 36.86% 85.03% 52.31%

Ours 39.01% 86.44% 53.81%

Table 6-B: Comparison against state-of-the-art methods.

prior methods described in Chapter 3 and 4 cannot apply here, as no attribute or text

information are available.

6.2.2.2 Results

We compare the proposed method with several baselines on the target unseen dataset.

The retrieval performance is listed in Table 6-B. The following observations can be made:

(1) Overall, our method achieves the best result on this generalised FG-SBIR task among

all compared methods. (2) The triplet baseline indeed is very strong in this task, given

the second best performance among all the methods, but can not generalise as good as

our method which has the generalisation module specifically designed.

6.2.3 Generalised performance for conventional SBIR task

Our model is also capable to the conventional SBIR task, as it seeks the semantic under-

standing of the sketch and photo content, with the help of classification loss. We therefore

also evaluate the generalised performance of the proposed model and baseline methods

under the conventional SBIR setting. We take the same trained models without any

further model updating and using ranking accuracy (Top 1 and Top 10) and mAP as the

evaluation metric and report the generalised SBIR performance. The result is shown in

Tab. 6-C. From Tab. 6-C, we can see that our method is able to achieve the best gener-

alised SBIR performance overall. Admittedly, the IDE baseline can get a higher mAP,

but our method can get a more satisfied Top 1 accuracy, which is more beneficial espe-
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Sketchy Dataset Top 1 Top 10 mAP

Clf 53.23% 92.52% 39.49%
Ver [120] 69.50% 97.75% 43.86%
Tri [3] 68.57% 96.63% 35.13%
IDE [87] 78.77% 98.06% 55.75%
PPA [60] 78.58% 98.32% 50.54%

Ours 79.70% 99.06% 50.81%

Table 6-C: Generalised performance under conventional SBIR setting.

Sketchy Dataset Top 1 Top 10 mAP

Supervised [3] 45.74% 89.80% 60.80%

Ours 39.01% 86.44% 53.81%

Table 6-D: Comparison against supervised baseline.

cially for some case where we only feel interested in the most similar retrieved objects.

In addition, note that our model also achieve the highest generalised performance under

FG-SBIR setting, showing that our model is able to capture semantic feature while also

keeps the discriminativity.

6.2.4 Comparison against supervised baselines

We also compare with the supervised state-of-the-art baseline [3] trained in a supervised

manor, i.e., the target training data is visible under supervised setting for the baseline

model updating. The results are shown in Tables 6-D. Though our model is not perform-

ing as well as the supervised baseline, it is still under an acceptable margin behind the

competitor. However, the supervised baseline touches extra training data in the target

categories while our method is not far behind by keep a well-generalised performance.

The results reflect that the proposed model can be used out-of-the-box for any unseen

domain.
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Sketchy Dataset Top 1 Top 10 mAP

w/o Logit-triplet 37.79% 85.13% 53.26%
w/o Matching Subnet 37.23% 85.50% 52.81%

Ours-full 39.01% 86.44% 53.81%

Table 6-E: Contributions of different components.

6.2.5 Ablation Study

There are two important components in the proposed DIMN: the matching subnet pre-

dicting the matching relations between the query sketches and gallery photos and the

specifically designed logit-triplet loss built on the logit vector. To evaluate the contri-

bution of each component, we compare our full model with the stripped-down version,

which is obtained by removing the components. Note that by removing the matching

subnet, we will also lose the logit-triplet loss as the latter is built on top of the matching

subnet. Thus this ablated version is the same as the IDE baseline. Table 6-E shows that

each component contributes the ReID performance.

6.2.6 Qualitative Result

Some qualitative results are shown in Fig. 6.3. In this figure, the left column represents

the probe sketches randomly sampled from the testing dataset which spans 21 categories,

while the gallery photos are searched with the top candidates returned as the retrieved

result using DIMN. We use the green box to denote the ground-truth matched gallery

images corresponding to the input probe image. From Fig. 6.3, it is clear to see that our

method is able to achieve a generalised good performance on the unseen categories.

6.3 Summary

A generalisable fine-grained sketch-based image retrieval (FG-SBIR) approach was pro-

posed to enable a FG-SBIR model to be deployed out-of-the-box for any new cate-
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Figure 6.3: Retrieved result visualisation on the sketchy test set.

gory. Specifically, a novel deep FG-SBIR model termed Domain-Invariant Mapping

Network(DIMN) was introduced. It has an encoding subnet to extract features from

input sketches and photos and a mapping subnet that predicts a classifier weight vec-

tor from a single photo. The two subnets are trained end-to-end by using the mapping

subnet as a hyper-network. The training follows a meta-learning pipeline to make the

model domain invariant and generalisable to unseen categories. Extensive experiments

on a newly defined large-scale benchmark validated the effectiveness of our DIMN. The

experiments also showed that the generalisation in FG-SBIR is a very hard problem and

existing FG-SBIR methods failed to achieve a generalised performance. However, given

our promising results, and the practical value of a generalised FG-SBIR system, this is

an important avenue for the FG-SBIR work. In the future work, we will also considering

working on the generalisation learning for other sketch related tasks like sketch synthesis.



Chapter 7

Conclusions and Future Work

Sketch-related research has been advanced significantly with the help of collected sketch

datasets and existing solid algorithms proposed based on those datasets, which have

greatly exploited the promising potential of sketch modality. We contribute our idea and

provide solutions for popular sketch-related tasks like fine-grained sketch-based image

retrieval, sketch synthesis, and so on, as detailed in the previous chapters. In this

chapter, we would like to conclude our contributions on sketch-related tasks, and share

our views on future directions.

7.1 Conclusions

Sketch as a more and more popular modality involves attributes such as the informative,

temporal, semantic and so on. The advantageous features of sketches have stimulated

sketch-related research and shown great applicable value. In previous chapters we have

discussed how to take advantage of the unique attributes of sketches to solve different

challenging sketch-related tasks.

89
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7.1.1 Fine-grained Sketch-based Image Retrieval

In fine-grained sketch-based image retrieval, one of our major contributions is the pro-

posal of an attribute-driven deep multi-task framework which exploits semantic informa-

tion from both sketch and photo modalities and narrows the domain gap between the two

modalities. Our idea is based on the observation that existing FG-SBIR models depend

excessively on the fine-grained representing ability of learned features and thus neglect

semantic information. With our model, we are able to provide a more comprehensive

and accurate ranking based on both high-level and middle-level information.

7.1.2 Sketch Synthesis

Sketch synthesis is another major direction for sketch-related research. Sketch synthesis

research is very promising as it provides a deeper understanding of sketch modality

and the sketching process, and also helps related tasks like FG-SBIR as it can generate

synthetic data for training. We also contribute to the sketch synthesis community by

contributing a deep photo-to-sketch synthesis framework, which can achieve satisfying

results synthesising free-hand sketches. However, there are still some drawbacks to this

framework which need to be addressed in future work. At first, the synthesis quality

suffered in some instances where the trained model could not draw the fine-grained

details accurately or drew the sketch in the wrong shape. In addition, the framework is

not scalable as it needs to be applied to train different models for different categories.

A universal neural sketcher is waiting to be designed which will be capable of drawing

sketches according to given photos across multiple categories.

7.1.3 Generalisation for FG-SBIR

We also for the first time consider the generalisation problem for FG-SBIR tasks and

design a specific model to search for a solution that produces acceptable performance for
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unseen categories. The proposed method can generalise a good performance for FG-SBIR

on target unseen categories. However, the proposed method still has some drawbacks; for

example, we only mimic the data sampling strategy from the meta-learning community,

but we do not apply episode training to the model updating. In addition, there is a trade-

off between the discriminability of the matching network and the precision of parameter

updating, which also need to be reconsidered.

7.2 Future Works

7.2.1 Fine-grained Sketch-based Image Retrieval

Besides semantic information, there are also other clues omitted by existing deep FG-

SBIR models. One important clue that needs to be exploited is part-level information.

Part-level information is valuable to FG-SBIR tasks, as fine-grained features can also be

represented in different parts of a given object in both sketch and photo modalities. One

basic solution is based on the existing triplet-deep ranking model and integrates one of

the part-level detection models to localise different part of query sketches and gallery

photos. The designed model then needs to learn to rank in a part-level between sketches

and photos. The final score will be a comprehensive ranking based on different parts as

well as global features. The part-level localisation and ranking will release the constraint

that the sketch and photo need to be aligned, and has the advantage of being able to

describe which part distinguishes sketches and photos most by understanding part-level

ranking scores.

As we indicate in another chapter, text descriptions can be very good compensation

for sketches when doing FG-SBIR tasks. We thus propose a deep multi-modal retrieval

network and also contribute a large multi-modal dataset with thousands of sketch-text-

photo pairs. However, there is still much left to be done in this challenging task. In

terms of datasets, a much larger multi-modal dataset is urgently needed, as the existing
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one has limited categories and instances, and current text descriptions are a bit beyond a

common users’ usage. In terms of the model, a more complicated framework is expected,

which can learn to compensate between sketch and text modalities rather than simply

aligning these two modalities as the current method [24] does.

7.2.2 Sketch Synthesis

Generative adversarial network (GAN) technology has been shown to greatly improve

the image generation quality in style transfer tasks. Though photo-to-sketch synthesis is

different from popular style transfer tasks which typically focus on image translation, it is

still likely that generative adversarial training strategy will also help in sketch synthesis

tasks. The simplest solution is to add an RNN discriminator and a related GAN loss,

hoping that adversarial training can lead to a better RNN decoder to synthesise sketches.

We must also work urgently to solve the data issue in future works on sketch synthesis.

QuickDraw has a very large scale, but the quality of the collected sketches is quite low

and seeing some intact sketches is common because sketches are required to be finished

in 20 seconds, thus it is hard for typical users to provide a good-quality drawing. The

number of sketches in ShoeV2 and ChairV2 are still limited in order to train a better

synthesis model. More categories are also required to form a more diverse dataset.

7.2.3 Generalisation for FG-SBIR

Based on the conclusions drawn for the proposed generalisation framework for FG-SBIR

and its intrinsic limitations, further work can be dedicated to implementing the episode

training for the proposed method, which will produce meta-learner generated optimised

parameters for the generalised FG-SBIR task. At the same time, future work can also

research a better way to seek both discriminativity and scalability. In the end, as indi-

cated in the IBN-Net[121], instance normalisation is a better strategy to achieve the

ability to generalise. Thus, one straightforward path ahead is to combine the instance
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normalisation strategy with our framework and generate a better performance based on

this generalised FG-SBIR benchmark.

Our work also tries to let the research pay attention to the generalisation ability of

existing FG-SBIR models, as the real-world application scenario strongly requires the

generalisation ability of trained models. Moreover, we argue that the generalisation

performance is also important to other sketch-related research. For example, though

it is expensive and time-consuming to collect sketch and photo pairs to train a sketch

synthesis model for new categories, with a generalised model we can expect an accept-

able performance in synthesising sketches conditional on given photos coming from new

categories without collecting and annotating new photos and sketches. To summarise,

research to look for the generalised framework for other sketch-related works is promising.

7.2.4 Other Sketch Related Tasks

The advantages of sketches as a fine-grained and convenient input modality, are not only

beneficial to the three mentioned areas like fine-grained sketch-based image retrieval,

sketch-to-photo synthesis, and generalisation learning for FG-SBIR, but also very helpful

for other tasks like sketch-to-video synthesis, sketch-aided 3D editing, and so on. For

example, with a starting frame and the key actions/movements indicated by sketches,

we are able to synthesis the whole video based on the photo and sketches. Also, for

3D editing, we can simply sketch the part we want to make changes, and the proposed

model will automatically capture the modification guided by the sketch, and update the

corresponding 3D model.
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[91] R. Řeh̊uřek and P. Sojka, “Software framework for topic modelling with large

corpora,” in LRECW, 2010.

[92] J. Huang, R. S. Feris, Q. Chen, and S. Yan, “Cross-domain image retrieval with a

dual attribute-aware ranking network,” in ICCV, 2015.

[93] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[94] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding space for

modeling internet images, tags, and their semantics,” IJCV, 2014.

[95] W. Wang, R. Arora, K. Livescu, and J. Bilmes, “On deep multi-view representation

learning,” in ICML, 2015.

[96] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint

arXiv:1308.0850, 2013.

[97] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P.

Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image super-

resolution using a generative adversarial network.” in CVPR, 2017.

[98] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[99] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond

mean square error,” in ICLR, 2016.

[100] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,



Bibliography 106

“Improved techniques for training gans,” in NIPS, 2016.

[101] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T. Liu, and W.-Y. Ma, “Dual learning for

machine translation,” in NIPS, 2016.

[102] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin, “Towards

understanding adversarial learning for joint distribution matching,” in NIPS, 2017.

[103] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing

ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[104] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on

heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[105] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[106] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of generative

models,” in ICLR, 2016.

[107] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary

classifier gans,” in ICML, 2017.
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