1,366 research outputs found

    Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization

    Get PDF
    We study the extension of the Chambolle--Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant provided one part of the functional is strongly convex. We show the applicability of the accelerated algorithm to examples of inverse problems with L1L^1- and L∞L^\infty-fitting terms as well as of state-constrained optimal control problems, where convergence can be guaranteed after introducing an (arbitrary small, still nonsmooth) Moreau--Yosida regularization. This is verified in numerical examples

    Implicit regularization with strongly convex bias: Stability and acceleration

    Get PDF
    Implicit regularization refers to the property of optimization algorithms to be biased towards a certain class of solutions. This property is relevant to understand the behavior of modern machine learning algorithms as well as to design efficient computational methods. While the case where the bias is given by a Euclidean norm is well understood, implicit regularization schemes for more general classes of biases are much less studied. In this work, we consider the case where the bias is given by a strongly convex functional, in the context of linear models, and data possibly corrupted by noise. In particular, we propose and analyze accelerated optimization methods and highlight a trade-off between convergence speed and stability. Theoretical findings are complemented by an empirical analysis on high-dimensional inverse problems in machine learning and signal processing, showing excellent results compared to the state of the art

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    Cell Detection by Functional Inverse Diffusion and Non-negative Group Sparsity−-Part II: Proximal Optimization and Performance Evaluation

    Full text link
    In this two-part paper, we present a novel framework and methodology to analyze data from certain image-based biochemical assays, e.g., ELISPOT and Fluorospot assays. In this second part, we focus on our algorithmic contributions. We provide an algorithm for functional inverse diffusion that solves the variational problem we posed in Part I. As part of the derivation of this algorithm, we present the proximal operator for the non-negative group-sparsity regularizer, which is a novel result that is of interest in itself, also in comparison to previous results on the proximal operator of a sum of functions. We then present a discretized approximated implementation of our algorithm and evaluate it both in terms of operational cell-detection metrics and in terms of distributional optimal-transport metrics.Comment: published, 16 page

    Linear convergence of accelerated conditional gradient algorithms in spaces of measures

    Full text link
    A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear O(1/k)\mathcal{O}(1/k) rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear O(ζk)\mathcal{O}(\zeta^k) convergence rate is obtained locally.Comment: 30 pages, 7 figure
    • …
    corecore