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Implicit regularization refers to the property of optimization algorithms to be biased
towards a certain class of solutions. This property is relevant to understand the behav-

ior of modern machine learning algorithms as well as to design efficient computational

methods. While the case where the bias is given by a Euclidean norm is well understood,
implicit regularization schemes for more general classes of biases are much less studied.

In this work, we consider the case where the bias is given by a strongly convex functional,
in the context of linear models, and data possibly corrupted by noise. In particular, we
propose and analyze accelerated optimization methods and highlight a trade-off between
convergence speed and stability. Theoretical findings are complemented by an empirical

analysis on high-dimensional inverse problems in machine learning and signal processing,
showing excellent results compared to the state of the art.
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1. Introduction

Many data driven problems require estimating a quantity of interest based on

finitely many, and often noisy, measurements. When considering linear models this

question can naturally be phrased as a linear inverse problem. The most classical ap-

proach in this setting is Tikhonov regularization, corresponding to the minimization

of an empirical objective [?] where a data fit term is penalized using a regulariz-

ing functional, encoding a bias for the problem. From an optimization perspective,

this approach can be seen as the relaxation of a problem where the regularizing

functional is minimized under linear equality constraints defined by the data. The

latter would be the natural formulation in absence of noise or perturbations. From

a numerical point of view, minimization is often performed using first order meth-

ods because of their simplicity and small memory requirement [?]. In practice, a

regularization parameter balancing data fit and regularization needs to be chosen,

and the solution of multiple optimization problems is typically required. Algorithm

design is then typically split in two steps studied separately: first the design of an

objective and then its minimization.

In this paper, we investigate a different approach classically called iterative

regularization [?] and more recently implicit regularization in machine learning,

see e.g.[?,?,?,?,?]. We will use the term iterative and implicit regularization inter-

changeably. This approach naturally combines modeling and computational aspects,

potentially improving efficiency. Further, it was shown to be crucial to understand

the learning properties of modern machine learning approaches such as deep learn-

ing, see [?]. A basic idea to derive implicit regularization algorithms is to solve

directly the minimization of the regularizing functional under the linear constraints

for the noisy data, rather than a relaxation. This ensures the sequence of obtained

solutions to be biased to the regularization of interest. In this approach, the ro-

bustness of the considered optimization procedure in the presence of noise has to

be considered. Indeed, depending on the noise level, the iterations might need to

be stopped before convergence (early stopping [?]) to obtain a robust solution. In

iterative regularization, the number of iterations is the regularization parameter. In

this sense, this approach has a built-in warm restart property, that allows to easily

compute a whole set of solutions corresponding to different regularization levels,

while running the iteration a single time.

Robustness of optimization in the presence of disturbances is a classic topic of

study [?]. However, in the optimization literature, the disturbances are typically

assumed to disappear as the number of iterations increases so to preserve con-

vergence, see e.g. [?]. The situation where disturbances might persist is typically

studied in inverse problems, where they are seen as noise in the data. In this context

there is a large literature on implicit/iterative regularization and [?] provides an
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exhaustive overview. Of interest to our discussion are the results considering reg-

ularizations which are not Euclidean norms and in particular the case of possibly

non-smooth regularization functionals. One relevant research direction is the one

considering regularization in Banach spaces, see e.g. [?] and references therein. For

general nonsmooth functionals a number of works have considered the so called

Bregman iteration approach [?]. As we discuss in the following, this is very much

related and often equivalent with classic and older ideas in optimization methods,

such ad proximal methods [?] and mirror descent methods [?], see also [?].

In this paper, we consider non-smooth strongly convex regularization and ana-

lyze the regularization properties of a dual gradient descent approach. The latter

can be shown to be equivalent to mirror descent and the linearized Bregman iter-

ation, but has a more direct derivation, see [?]. Notably, the approach reduces to

Landweber iteration when the bias is given by a Euclidean norm. Our approach

allows to consider all biases for which a corresponding proximity operator can be

computed in closed form [?], or possibly up-to a given precision, see e.g. [?]. Com-

pared to previous results we focus on two main novel aspects. First, we analyze the

interplay between convergence and stability for deterministic noise. In particular,

we derive explicit stability estimates for the noisy iterates and convergence results

for the noiseless iterates. This contrasts in particular with previous results where,

in the presence of noise, error estimates are studied only for suitable stopping rules,

e.g. given by the discrepancy principle [?]. The interplay between convergence and

stability is not clear in this setting. Second, we consider accelerated approaches

using ideas from [?]. In this context, explicit stability bounds are crucial since a

a trade-off between convergence speed and stability arises. Faster convergence is

at the expense of stability and the advantage of accelerated methods is that more

aggressive stopping rules can be considered. These results generalize similar obser-

vations made for Euclidean norms [?] and complement recent results in optimization

[?,?,?]. From a technical point of view, we largely draw from the optimization lit-

erature, in particular results considering non-smooth convex optimization [?,?] and

related robustness results [?].

Our theoretical findings are complemented by empirical results on three different

applications from machine learning and signal processing: variable selection, matrix

completion, and image deblurring. The experiments confirm the theoretical results

and show that the recovery properties of iterative regularization are comparable to

penalization approaches with much lower computational costs.

The rest of the paper is organized as follows: in Section ?? we describe the

setting and the main assumptions, in Section ?? we introduce the iterations we

study, and in Section ?? we state the main results, discuss them, and provide the

main elements of the proof. The complete proof of the results is given in Section ??.

In Section ?? we present several experimental results on matrix completion, variable

selection, and deblurring problems.
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2. Problem setting

We consider a problem of the form

y = Xw, (2.1)

for a given matrixa X : Rp → Rn, an observation y ∈ Rn, and a vector w ∈ Rp.
Such a formulation include for instance regression, feature selection, as well as

many image/signal processing problems. In general, the solution of the above linear

equation is not unique, and a selection principle is needed to choose an appropriate

solution (e.g. in the high dimensional scenario, where p > n). In this paper, we

assume that the solution of interest w† minimizes a function R : Rp → ]−∞,+∞]

encoding some bias known a priori on the problem at hand. We assume R to be

proper, lower semicontinuous, strongly convex, and we let w† to be the unique

solution of the optimization problem

minimize
y=Xw

R(w). (2.2)

Note that existence of a solution to problem (??) is assumed. We will see later that

a weaker formulation of the problem can also be analyzed. Further, in practice, one

does not have access to y, but only to a noisy version ŷ. In particular, we consider

a worst case scenario, where the noise is deterministic, i.e. ‖y − ŷ‖ ≤ δ, for some

δ > 0. The goal is then to find a stable solution observing only X and ŷ.

The classical way to achieve this goal is to relax the equality constraints, and

use a Tikhonov regularization scheme,

min
w∈Rp

‖ŷ −Xw‖2 + λR(w).

A data fidelity term is added to the function R, multiplied by a regularization

parameter λ. Such an approach usually requires two steps: first, the solution of a

regularized problem for several values of the regularizing parameter, and second the

best regularized solution is selected among the computed ones (model selection).

In this paper we follow a different route, which avoids relaxation, and is based

on iterative regularization. This latter idea dates back at least to [?], it is classical

in inverse problems [?,?], but it is also a common trick in machine learning, where

it is referred to as early stopping [?] or implicit regularization [?,?]. Within the

setting of the paper, this idea translates into defining a sequence (ŵt)t∈N derived

by applying an appropriate minimization algorithm to the noisy problem

minimize
ŷ=Xw

R(w). (2.3)

This is somewhat odd from an optimization perspective, since the sequence con-

verges to a minimizer of the noisy problem (??), which is not the solution we are

aFor simplicity, the results are stated in finite dimensional euclidean spaces, but all the conclusions
hold if Rp and Rn are replaced by Hilbert spaces H and G.
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looking for. The key insight is that the optimization itself iteratively (and implic-

itly) enforces regularization. The stopping time is the regularization parameter,

and model selection coincides with defining a suitable stopping criterion, hence the

name early stopping.

We next provide some discussion illustrating why such a procedure is sensible.

The goal is to see why depending on the noise level, we can select an element

ŵtδ , of the sequence (ŵt)t∈N, that converges to w† when the noise goes to zero.

An intuition of why this is possible can be derived from the proof’s strategy. To

analyze the behavior of the sequence (ŵt)t∈N we define an auxiliary (regularizing)

sequence (wt)t∈N, that is the sequence obtained applying the same minimization

algorithm devised for problem (??), to the ideal problem (??), which therefore

converges to w†. The choice of the stopping time is derived from the following error

decomposition

‖ŵt − w†‖ ≤ ‖ŵt − wt‖+ ‖wt − w†‖.

The term ‖wt−w†‖ is an optimization error, but can be seen as the regularization

or approximation error [?]. We will show that it vanishes for increasing t and in

fact will prove non asymptotic bounds. The term ‖ŵt − wt‖ measures stability to

noise and we will see to increase with t and δ. Given data and knowledge of the

noise level, our actual regularization procedure is specified by a suitable choice tδ
and this results in the explicit bound ‖ŵtδ−w†‖ ≤ cδ1/2. Note that the dependence

on the noise level δ is the same as in Tikhonov regularization [?]. In the rest of the

paper, we develop the above idea providing all the details.

3. Iterative regularization for general penalty

In this section we begin presenting the iterative regularization procedures we study

based on dual gradient descent (DGD) and accelerated dual gradient descent

(ADGD). The first one is a basic algorithm, while the second is its accelerated ver-

sion, requiring some additional steps. First, recall that the regularizing function R

in (??) is assumed to be strongly convex. This implies that there exists α ∈ ]0,+∞[

and a proper, lower semicontinuous, and convex function F : Rp → [0,+∞] such

that

R = F +
α

2
‖ · ‖2. (3.1)

Both DGD and ADGD belong to the class of first order methods, requiring only

matrix and vector multiplications, and the computation of the proximity operator

of α−1F , which is defined as

(∀w ∈ Rp) proxα−1F (w) = argminu∈Rp
{
F (u) +

α

2
‖u− w‖2

}
. (3.2)

The computation of the proximity operator involves a minimization problem, which

can be solved explicitly in many relevant cases, see e.g. [?]. In particular, it reduces

to the well-known soft-thresholding operator when F is equal to the `1 norm, and



November 15, 2022 18:35 Implicit˙AA˙final

6 S. Villa, S. Matet, B.C.Vũ, and L. Rosasco

to a projection, when F is the indicator function of a convex and closed set [?]. We

will show in the next section that DGD reduces to a gradient descent on the dual of

problem of (??). Its convergence properties for Problem (??), which is not the one

we want to solve, have been studied in [?]. By considering a Nesterov acceleration

[?] of gradient descent, we derive ADGD, that is the FISTA variant on the dual

problem, which has been considered in [?,?]. The algorithms DGD and ADGD can

also be seen from an inexact optimization perspective, see e.g. [?] and reference

therein. In this view, they solve the dual of the original noise free problem in (??),

in the presence of a nonvanishing error on the gradient.

3.1. Derivation of the algorithms

We start showing that the proposed procedures DGD and ADGD are indeed a

gradient and an accelerated gradient descent algorithm applied to the dual problem

of the noisy minimization problem

min
Xw=ŷ

R(w), with R = F +
α

2
‖ · ‖2. (3.3)

Let C be a convex and closed subset of Rn. With δC we denote the indicator function

of C, which takes value 0 on C and +∞ otherwise. The optimization problem in

(??) can be equivalently written as

min
w∈Rp

R(w) + δŷ(Xw). (3.4)

The above optimization problem is given by the sum of two convex, proper, and

lower semicontinuous functions, where one of the two is composed with a linear

operator. This is the suitable form to apply Fenchel-Rockafellar duality (see Ap-

pendix ?? for the definition of Fenchel conjugate of a convex function). The dual

of the problem in (??) is then (see Appendix ??)

min
v∈Rn

R∗(−XT v) + 〈ŷ, v〉. (3.5)

As recalled in Appendix ??, its conjugate is differentiable with Lipschitz continuous

gradient and

∇R∗(v) = proxα−1F (α−1v).

We derive that one step of gradient descent applied to the problem in (??) can be

written as

vt+1 = vt + γ
(
X proxα−1F (−α−1XT vt)− ŷ

)
,

and this is the main iteration in DGD. The derivation of ADGD is analogous,

simply the gradient descent method is replaced by FISTA acceleration [?], see also

[?]. Here not one, but two previous iterates are used at every step, resulting in

faster convergence speed to the objective.
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Dual Gradient Descent (DGD)

Let v̂0 = 0 ∈ Rp and γ = α‖X‖−2

For t = 0, 1, . . . iterate

ŵt = proxα−1F

(
− α−1XT v̂t

)
v̂t+1 = v̂t + γ(Xŵt − ŷ)

If t > 0

ût = (1/t)
∑t
k=1 ŵk

Accelerated Dual Gradient Descent (ADGD)

Let v̂0 = ẑ−1 = ẑ0 = 0 ∈ Rp, γ = α‖X‖−2, and θ0 = 1

For t = 0, 1, . . . iterate

r̂t = proxα−1F

(
− α−1XT v̂t

)
ẑt = v̂t + γ(Xr̂t − ŷ)

θt+1 = (1 +
√

1 + 4θ2t )/2

v̂t+1 = ẑt + θt−1
θt+1

(ẑt − ẑt−1)

ŵt = proxα−1F

(
− α−1XT ẑt

)
3.2. DGD and ADGD with inexact proximity operators

In this section, we present and discuss the situation in which the proximity operator

of F is not available and can be computed only up to a certain precision. There are

various ways to appropriately define computational errors in the approximation of

the proximity operator [?,?]. Here we adopt the more general one, which corresponds

to an inexact solution of the minimization problem defining the proximal point (??).

To this aim, given w ∈ Rp, define

(∀u ∈ Rp)(∀σ > 0) Φσ(u) = F (u) +
1

2σ
‖u− w‖2.

Definition 3.1. Let w ∈ Rp and σ > 0. We say that p̄ ∈ Rp is an approximation

of proxσF (w) with ε-precision and we write p̄ ≈ε proxσF (w) if

Φσ(p̄)−min Φσ ≤
ε2

2σ
.

Since Φσ is σ−1 strongly convex, if p̄ ≈ε proxσF (w), then p̄ ∈ domF and

‖p̄− proxσF (x)‖ ≤ ε. (3.6)

This observation will be relevant for the subsequent analysis of the inexact version

of the DGD and ADGD algorithms given below.

Inexact Dual Gradient Descent (IDGD)

Let v̂0 = 0 ∈ Rp and γ = α‖X‖−2

For t = 0, 1, . . . iterate

ŵt ≈δ proxα−1F

(
− α−1XT v̂t

)
v̂t+1 = v̂t + γ(Xŵt − ŷ)

If t > 0

ût = (1/t)
∑t
k=1 ŵk

Inexact Accelerated Dual Gradient Descent (IADGD)

Let v̂0 = ẑ−1 = ẑ0 = 0 ∈ Rp, γ = α‖X‖−2, and θ0 = 1

For t = 0, 1, . . . iterate

r̂t ≈δ proxα−1F

(
− α−1XT v̂t

)
ẑt = v̂t + γ(Xr̂t − ŷ)

θt+1 = (1 +
√

1 + 4θ2t )/2

v̂t+1 = ẑt + θt−1
θt+1

(ẑt − ẑt−1)

ŵt = proxα−1F

(
− α−1XT ẑt

)
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3.3. Connections with other approaches

Before studying the regularizing properties of the proposed procedures, we add a

few remarks discussing our approach in the context of related studies. First, we

show that DGD is a generalization of the well-known Landweber iteration (see [?]).

Remark 3.1 (Connection to Landweber iteration). Consider Algorithm

DGD in the special case F = 0. Noting that, for every w ∈ Rp, proxα−1F (w) = w,

we derive

ŵt+1 = ŵt − γα−1XT (Xŵt − ŷ), (3.7)

which coincides with the Landweber iteration for solving Problem ??, studied in

the context of regression in [?]. ADGD provides a FISTA variant of Landweber

iteration, for which we prove here regularization properties, see also [?].

The previous remark shows that the proposed algorithms are generalizations of

the Landweber iteration for a more general penalty term of the form in (??). The

next remark shows that the choice of F 6= 0 is in a sense equivalent to a gradient

descent algorithm with respect to a different geometry.

Remark 3.2 (Connection to Mirror Descent and Linearized Bregman

algorithms). Define G : Rp → Rn, G(w) = ‖Xw − ŷ‖2/2, for every w ∈ Rp. Each

step of the Landweber iteration (??) coincides with a gradient descent step on G,

e.g. with the solution of the minimization problem

ŵt+1 = argmin

{
G(ŵt) + 〈∇G(ŵt), w − ŵt〉+

γ−1α

2
‖w − ŵt‖2

}
, (3.8)

where the objective function is linearized and regularized with the Euclidean dis-

tance. The idea behind mirror descent [?] is to replace the Euclidean distance with

the Bregman divergence induced by R and, starting from w̃0 ∈ Rp and ṽ0 ∈ ∂R(w̃0),

to consider the iteration{
ṽt ∈ ∂R(w̃t)

w̃t+1 = argmin
{
G(w̃t) + 〈∇G(w̃t), w − w̃t〉+ γ−1α (R(w)−R(w̃t)− 〈ṽt, w − w̃t〉)

}
(3.9)

which yields

0 ∈ γα−1∇G(w̃t) + ∂R(w̃t+1)− ṽt. (3.10)

If we define ṽt+1 = ṽt − γα−1∇G(w̃t) we obtain

ṽt+1 ∈ ∂R(w̃t+1)

The Young-Fenchel equality yields

w̃t+1 = ∇R∗(ṽt+1).

and therefore {
w̃t+1 = proxα−1F (α−1ṽt+1)

ṽt+1 = ṽt − γα−1XT (Xw̃t − ŷ)
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Such an iteration corresponds to a change of variables in the DGD algorithm.

Indeed, if we start from DGD, it is easy to see that ṽt = −XT ŵt for every t ∈
N satisfies the update rule in (??). The point of view taken above is discussed

and studied in a series of paper [?,?,?,?,?,?], where however no acceleration is

considered.

Remark 3.3 (Connection to Bregman iterations). Another algorithm used to

solve constrained optimization problems of the form (??) is the Bregman iteration

introduced in [?] (closely related to the augmented lagrangian method [?]). As

before, define the Bregman divergence induced by R and, starting from w̃0 ∈ Rp
and ṽ0 ∈ ∂R(w̃0), and consider the iteration{

ṽt ∈ ∂R(w̃t)

w̃t+1 = argmin
{
G(w) + γ−1α (R(w)−R(w̃t)− 〈ṽt, w − w̃t〉)

}
.

(3.11)

Regularization properties of (??) have been studied in [?] (see also references

therein), but the main drawback is the fact that the solution of the subproblems

in (??) are rarely available in closed form and require the solution of a regularized

problem at each iteration. To tackle this issue, the linearized Bregman iteration

described in the previous remark is introduced

While it is well known that early stopping of the Landweber iteration leads to

stable approximations of the minimal norm solution of an inverse problem, here

we generalize such a result to obtain stable approximations of the solution defined

by a wide class of regularizing functionals. The presence of the additional term F

in the regularization function introduces in the algorithm a (nonlinear) proximal

operation.

4. Theoretical analysis

In this section, we present and discuss the main results of the paper.

4.1. Properties of DGD with and without averaging

We start with DGD and state an early stopping result for two variants of the

method, namely with and without iterates averaging.

Theorem 4.1 (Dual gradient descent). Let δ ∈ ]0, 1] and consider the (DGD)

algorithm. Assume that there exists v̄ ∈ Rp such that −XT v ∈ ∂R(w†). Set a =

2‖X‖−1 and b = ‖X‖‖v†‖α−1, where v† is a solution of the dual problem of (??).

Then the following hold:

(i) For every t ∈ N,

‖ût − w†‖ ≤ at1/2δ + bt−1/2. (4.1)

In particular, choosing tδ = dcδ−1e for some c > 0, we derive

‖ûtδ − w†‖ ≤
[
a(c1/2 + 1) + bc−1/2

]
δ1/2. (4.2)
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(ii) There exists tδ ∈ {bcδ−1c, . . . , 2bcδ−1c} such that

‖ŵtδ − w†‖ ≤
[
a(c1/2 + 1) + bc−1/2

]
δ1/2. (4.3)

The proof of this result can be found in Section ??; here we briefly discuss

it. Regarding the assumptions, the condition −XT v ∈ ∂R(w†) can be interpreted

as an abstract regularity condition on the subdifferential of R at the solution of

interest [?]. When R = ‖ · ‖2/2, and more generally when R is real-valued, it is

automatically satisfied under our assumptions, and it corresponds to what is called

a source condition [?,?].

As anticipated in Section ??, the bounds in (??) and (??) are derived by opti-

mizing a stability plus regularization/optimization bound. Note in particular that

the constants appearing in the regularization error are determined by the strong

convexity constant of R, the norm of a dual solution, and the norm of the operator

X. The above result shows that, given a noise level δ, regularization is achieved by

computing a suitable number tδ of iterations of DGD, both for the averaged and

the original sequence. The number of required iterations is a decreasing function

of the noise level, guaranteeing efficiency of the proposed approach, and tends to

infinity as the noise goes to zero. The definition of tδ in Theorem ?? is an early

stopping rule. The dependence of the noise that we get in Theorem ?? is optimal

[?], and coincides with the Tikhonov regularization one.

The stability result that we obtain for the original sequence ŵt does not hold

for every t ∈ N, see equation (??) later in the proof. Nevertheless, we are still

able to derive an early stopping rule for the non averaged sequence. This may be

useful when structural properties of the solution are of interest. The main example

is sparsity: if the solution to be recovered is sparse, averaging of the iterates is

not appropriate, since the averaged iterates would not be sparse, invalidating for

instance the advantages of a soft-thresholding step.

4.2. Properties of ADGD

Next, we derive an analogous of Theorem ?? for the accelerated variant of the

algorithm.

Theorem 4.2 (Accelerated dual gradient descent). Let δ ∈ ]0, 1] and let

(ŵt)t∈N be the sequence generated by ADGD. Assume that there exists v̄ ∈ Rp such

that −XT v ∈ ∂R(w†). Set a = 4‖X‖−1 and b = 2‖X‖‖v†‖α−1, where v† is a

solution of the dual problem of (??). Then, for every t ≥ 3,

‖ŵt − w†‖ ≤ atδ + bt−1. (4.4)

In particular, choosing tδ = dcδ−1/2e for some c > 0,

‖ŵt − w†‖ ≤
[
a(c+ 1) + bc−1

]
δ1/2. (4.5)

As can be directly observed, the results proved in Theorem ?? are analogous

to the ones in Theorem ??. In particular, the constants involved in the bounds are
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the ones appearing in the DGD algorithm. As for DGD, the early stopping rule

gives optimal dependence with respect to the noise, and again coincides with the

Tikhonov one. The difference between DGD and ADGD is in the computational

aspects: indeed, to achieve the same recovery accuracy, a number of iterations of

the order of δ−1 are needed for the basic scheme, and only δ−1/2 iterations are

needed for the accelerated method. This kind of result resembles the behaviour of

the ν-method for the minimal norm solution [?].

4.3. Results for inexact proximity operators

In some interesting cases, the proximity operator is not available in closed form,

but can be still computed at reasonable cost, see [?,?] for a throughout discussion.

The results in Theorem ?? and ?? hold also if the proximity operator is computed

inexactly. The proof is a straightforward generalization of the one for the exact

case. We include it for the sake of completeness.

Theorem 4.3 (Dual gradient descent with inexact prox). Let δ ∈ ]0, 1]. Let

(ût)t∈N be the averaged sequence generated by IDGD. Assume that there exists v̄ ∈
Rp such that −XT v ∈ ∂R(w†). Set a = 12(1 + ‖X‖)‖X‖−1 and b = ‖X‖‖v†‖α−1,

where v† is a solution of the dual problem of (??). Then, for every t ∈ N,

‖ût − w†‖ ≤ at1/2δ + bt−1/2. (4.6)

In particular, choosing tδ = dcδ−1e for some c > 0, we derive

‖ûtδ − w†‖ ≤
[
a(c1/2 + 1) + bc−1/2

]
δ1/2. (4.7)

Before discussing the above result, we state an analogous result for the acceler-

ated variant.

Theorem 4.4 (Accelerated dual gradient descent with inexact prox). Let

δ ∈ ]0, 1] and let (ŵt)t∈N be the sequence generated by IADGD. Assume that there

exists v̄ ∈ Rp such that −XT v ∈ ∂R(w†). Set a = 4(1 + ‖X‖)‖X‖−1 and b =

2‖X‖‖v†‖/α, where v† is a solution of the dual problem of (??). Then, for every

t ≥ 2,

‖ŵt − w†‖ ≤ atδ + bt−1. (4.8)

In particular, choosing tδ = dcδ−1/2e for some c > 0,

‖ŵt − w†‖ ≤
[
a(c+ 1) + bc−1

]
δ1/2. (4.9)

Remark 4.1 (Beyond worst case). While we considered a general regularization

R and obtained worst-case results, an interesting question is if these results can be

improved under additional assumptions on R, e.g. assuming it is sparsity inducing.

We refer to [?] and [?,?] for some results in this direction.
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4.4. Comparison with related work

We next compare our iterative regularization methods with related work. The case

R = ‖ · ‖2 is classic, see [?]. In [?] an iterative regularization procedure based on

the so called Bregman iteration is considered. An early stopping rule based on a

discrepancy principle in the case of noisy data is also presented. There is one main

difference with respect to our contribution. Each DGD or ADGD step does not

require inner algorithms if the proximity operator is available in closed form, while

Bregman iteration requires the solution of a nontrivial minimization problem at

each step. Such step is computationally as costly as solving a Tikhonov regularized

problem. A stability analysis for the Bregman iteration is presented in Theorem 4.2

in [?], while weak convergence without the strong convexity assumption is proved

in [?]. A qualitative early stopping rule for the DGD algorithm has been considered

in [?] for the total variation case. Finally, a related algorithm to the DGD is the

one considered in [?]. The setting of [?] is more general than ours, but the obtained

results are weaker: the stopping rule is of the form O(δ−2) and no quantitative

bounds of ‖ŵtδ−w†‖ are given. In this paper we focused on general strongly convex

regularization functions. For results related to general data fit terms see [?,?].

5. Proofs: convergence and stability

In this section we develop the proofs of our main results. The proof of Theorem ??

is based on a decomposition of the error to be estimated in two terms. The idea is to

build an auxiliary sequence and to majorize the error with the sum of two quantities

that can be interpreted as a stability and an optimization (regularization) error,

respectively. Bounds on these two terms are then provided. We first introduce the

corresponding algorithm to solve the target problem in (??). This algorithm is not

used in practice, but is needed only for the theoretical analysis, and is the noise free

version of DGD, where ŷ is replaced by y. Starting from v0 = 0, the t-th iteration

is defined by the gradient descent algorithm applied to the dual of problem (??)

(see Appendix ?? for the definition of dual problem)

wt = proxα−1F

(
− α−1XT vt

)
, vt+1 = vt + γ(Xwt − y), ut =

t∑
k=1

wk/t. (5.1)

Note that ut is defined only for t > 0.

The distance of the noisy solution from the ideal one is upper bounded as follows:

‖ût − w†‖ ≤ ‖ût − ut‖+ ‖ut − w†‖.

The term ‖ut−w†‖ is called approximation, but also optimization or regularization

error and it vanishes for increasing t. The term ‖ût − ut‖ measures stability and

it increases with t and δ. The choice of the early stopping bound tδ is obtained

optimizing the resulting upper bound with respect to t ∈ N.

The stopping rule for ADGD follows analogously from a general result about

convergence of proximal methods in the presence of computational errors [?]. In
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this case, a similar upper bound is derived from a slightly different analysis, where

the error is not explicitly split in two terms.

The case of implementation with errors can be treated in a very similar way.

Interestingly, computational errors comparable to the noise level does not impact

the overall reconstruction capabilities of the proposed method.

5.1. Proof of Theorem ??

Here we proof the convergence and stability results for the DGD algorithm and

derive the proof Theorem ??.

Theorem 5.1 (Convergence of DGD). Consider the iterates generated by the

DGD algorithm in (??). Assume that there exists v̄ ∈ Rp such that

−XT v ∈ ∂R(w†)

and let v† be a solution of the dual problem. Then

‖wt − w†‖ ≤
‖X‖‖v†‖
α
√
t

and ‖ut − w†‖ ≤
‖X‖‖v†‖
α
√
t

.

Proof. Lemma ?? implies that the dual problem has a solution v†. For every

v ∈ Rp, let D(v) = R∗(−XT v) + 〈ŷ, v〉. Then it holds (see for instance [?, Theorem

3.1]) that D(vt)−D(v†) is a decreasing sequence and

t∑
k=1

(
D(vk)−D(v†)

)
≤ ‖X‖

2‖v0 − v†‖2

2α
, (5.2)

and therefore

D(vt)−D(v†) ≤ ‖X‖
2‖v0 − v†‖2

2αt
. (5.3)

Next, Lemma ?? yields

α

2
‖wt − w†‖2 ≤ D(vt)−D(v†).

Combining the two inequalities, and recalling that v0 = 0, we derive

‖wt − w†‖ ≤
‖X‖‖v†‖
α
√
t

.

Let t > 1. To derive the statement about the averaged iterates (ut) note that, by
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convexity of the squared norm and equation (??)

‖ut − w†‖2 = ‖
t∑

k=1

wk/t− w†‖2

≤ (1/t)

t∑
k=1

‖wk − w†‖2

≤ (1/t)

t∑
k=1

(
D(vk)−D(v†)

)
≤ ‖X‖

2‖v†‖2

α2t

Next we prove the main stability result.

Proposition 5.1 (Stability of DGD). Consider the sequences generated by

DGD. Let (wt)t∈N and (ut)t>0 be defined as in (??). Assume δ < 1. Then the

following hold:

i) There exists tδ ∈ {b1/δc, . . . , 2b1/δc} such that

‖wtδ − ŵtδ‖ ≤ 3‖X‖−1δt1/2δ . (5.4)

ii) For every t ∈ N,

‖ut − ût‖ ≤ 3‖X‖−1δt1/2. (5.5)

Proof.

i): For every t ∈ N, using the firm nonexpansiveness of proxα−1F (see Proposi-

tion ??) and the definition of γ

‖v̂t − vt + γX(ŵt − wt)‖2 = ‖v̂t − vt‖2 + 2γ〈v̂t − vt, X(ŵt − wt)〉+ γ2‖X(ŵt − wt)‖2

≤ ‖v̂t − vt‖2 − 2γα‖ŵt − wt‖2 + γ2‖X(ŵt − wt)‖2

≤ ‖v̂t − vt‖2 − γα‖ŵt − wt‖2

≤ ‖v̂t − vt‖2. (5.6)

Consequently,

‖v̂t+1 − vt+1‖ = ‖v̂t − vt + γX(ŵt − wt)− γ(ŷ − y)‖
≤ ‖v̂t − vt‖+ γδ

and therefore

‖v̂t+1 − vt+1‖ ≤ γδ(t+ 1). (5.7)

Moreover,

‖v̂t − vt + γX(ŵt − wt)‖2 = ‖v̂t+1 − vt+1 + γ(ŷ − y)‖2

= ‖v̂t+1 − vt+1‖2 + γ2‖y − ŷ‖2 + 2γ〈v̂t+1 − vt+1, ŷ − y〉
≥ ‖v̂t+1 − vt+1‖2 + γ2‖y − ŷ‖2 − 2γδ‖v̂t+1 − vt+1‖.
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Hence, (??) and (??) yield

γα‖ŵt − wt‖2 ≤ ‖v̂t − vt‖2 − ‖v̂t − vt + γX(ŵt − wt)‖2

≤ ‖v̂t − vt‖2 − ‖v̂t+1 − vt+1‖2 + 2γδ‖v̂t+1 − vt+1‖
≤ ‖v̂t − vt‖2 − ‖v̂t+1 − vt+1‖2 + 2γ2δ2(t+ 1). (5.8)

Summing the previous inequality for t ∈ {T, . . . , 2T −1}, for some T ≥ 1, we derive

γα

2T−1∑
t=T

‖ŵt − wt‖2 ≤ ‖v̂T − vT ‖2 + 2γ2δ2T 2 ≤ 3γ2δ2T 2 (5.9)

Taking T = bc/δc it follows that

2T−1∑
t=T

‖ŵt − wt‖2 ≤ 3‖X‖−2δ2bc/δc2.

Thus there exists at least a tδ ∈ {bc/δc, . . . , 2bc/δc} such that

‖ŵtδ − wtδ‖2 ≤ 3‖X‖−2δ2
⌊ c
δ

⌋
≤ 3‖X‖−2δ2tδ. (5.10)

ii): Summing the inequalities in (??) for t = 1, . . . , T we derive:

γα

T∑
t=1

‖ŵt − wt‖2 ≤ 3γ2δ2T 2 (5.11)

Convexity of ‖ · ‖2 implies

‖ûT − uT ‖2 ≤
1

T

T∑
t=1

‖ŵt − wt‖2 ≤ 3‖X‖−2δ2T (5.12)

Proof. [of Theorem ??] Theorem ?? and Proposition ?? imply

‖ût − w†‖ ≤ at1/2δ + bt−1/2.

Since tδ = dcδ−1e, we have cδ−1 ≤ tδ ≤ cδ−1 + 1, therefore

‖ût − w†‖ ≤ at1/2δ + bt−1/2 ≤ a(cδ−1 + 1)1/2δ + bc−1/2δ1/2.

The statement follows noting that (cδ−1 + 1)1/2 ≤ (c1/2 + 1)δ−1/2. The statement

for the sequence ŵt follows analogously.
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5.2. Proof of Theorem ??

The following lemma characterizes the asymptotic behavior of the sequence (θt)t∈N.

Lemma 5.1. Let (θt)t∈N be the sequence defined in ADGD. Then, for every t ∈ N
t+ 1

2
≤ θt ≤ t+ 1

Proof. We prove the first inequality by induction. The case t = 0 is clear since

θ0 = 1. Now suppose that the inequality is true for t. We derive

θt+1 =
1 +

√
1 + 4θ2t
2

≥
1 +

√
1 + (t+ 1)2

2
≥ t+ 2

2
.

For the second inequality, the case t = 0 is also clear. Now suppose that the in-

equality is true for t. We derive

θt+1 =
1 +

√
1 + 4θ2t
2

≤
1 +

√
1 + 4(t+ 1)2

2
≤ 1 + 1 + 2(t+ 1)

2
= t+ 2.

The following theorem is obtained exploiting existing results on convergence of

accelerated forward-backward algorithm in the presence of computational errors.

In particular, the result is derived combining [?, Proposition 3.3] (see also [?,?] for

related results) with Lemma ?? and the relationship between convergence of the

dual objective function and the primal iterates.

Theorem 5.2. Let (ŵt)t∈N be the sequence generated by ADGD. Then, for every

t ∈ N, t ≥ 3,

‖ŵt − w†‖ ≤
2‖X‖‖v†‖

αt
+ 4‖X‖−1δt. (5.13)

Proof. For every v ∈ Rp, let D(v) = R∗(−XT v) + 〈ŷ, v〉. Then Lemma ?? yields

(∀t ∈ N)
α

2
‖ŵt − w†‖2 ≤ D(v̂t)− min

v∈Rp
D(v). (5.14)

Proposition 3.3 in [?] and Lemma ?? imply

D(v̂t)− min
v∈Rp

D(v) ≤ 1

2γθ2t

(
‖v†‖+ γδ

t∑
k=0

θk

)2

(5.15)

≤ 1

γ(t+ 1)2

(
‖v†‖+ γδ

(t+ 2)(t+ 3)

2

)2

we derive

‖ŵt − w†‖ ≤
2‖X‖‖v†‖

αt
+

4

‖X‖
δt (5.16)

Finally, we prove Theorem ??.
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Proof. [of Theorem ??] Theorem ?? yields

‖ŵt − w†‖ ≤ atδ + bt−1.

Since tδ = dcδ−1/2e, we have cδ−1/2 ≤ tδ ≤ cδ−1/2 + 1, therefore

‖ût − w†‖ ≤ atδ + bt−1 ≤ a(cδ−1/2 + 1)δ + bc−1δ1/2.

The statement follows noting that (cδ−1/2 + 1) ≤ (c+ 1)δ−1/2.

5.3. Proof for inexact versions

In this section we sketch the proof Theorems ?? and ??. Note that we only need to

prove stability results, since the error decomposition will be the same one used for

the exact case. We start with a stability result for the IDGD algorithm, whose proof

follows the same line as the one of Proposition ??, but deals with an additional error

term due to the inexact computation of the proximal step.

Proposition 5.2 (Stability of IDGD). Consider the sequences generated by

IDGD. Let (wt)t∈N and (ut)t>0 be defined as in (??). Assume δ < 1. Then the

following hold:

i) There exists tδ ∈ {b1/δc, . . . , 2b1/δc} such that

‖wtδ − ŵtδ‖ ≤ 12(1 + ‖X‖)‖X‖−1δt1/2δ . (5.17)

ii) For every t > 1,

‖ut − ût‖ ≤ 10(1 + ‖X‖)‖X‖−1δt1/2δ . (5.18)

Proof.

i): We need to introduce an additional auxiliary iteration,

w̃t = proxα−1F

(
− α−1XT v̂t

)
. (5.19)

Since ŵt ≈δ proxα−1F (−α−1XT v̂t), equation (??) yields

(∃et ∈ Rp) ŵt = w̃t + et, with ‖et‖ ≤ δ. (5.20)

For every t ∈ N, using the firm nonexpansiveness of proxα−1F (see Proposi-

tion ??) and the definition of γ

‖v̂t − vt + γX(w̃t − wt)‖2 = ‖v̂t − vt‖2 + 2γ〈v̂t − vt, X(w̃t − wt)〉+ γ2‖X(w̃t − wt)‖2

≤ ‖v̂t − vt‖2 − 2γα‖w̃t − wt‖2 + γ2‖X(w̃t − wt)‖2

≤ ‖v̂t − vt‖2 − γα‖w̃t − wt‖2

≤ ‖v̂t − vt‖2. (5.21)

Consequently, recalling (??)

‖v̂t+1 − vt+1‖ = ‖v̂t − vt + γX(w̃t − wt)− γ(ŷ −Xet − y)‖
≤ ‖v̂t − vt‖+ γ(1 + ‖X‖)δ
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and therefore

‖v̂t+1 − vt+1‖ ≤ γ(1 + ‖X‖)δ(t+ 1). (5.22)

Moreover,

‖v̂t − vt + γX(w̃t − wt)‖2 = ‖v̂t+1 − vt+1 + γ(ŷ −Xet − y)‖2

= ‖v̂t+1 − vt+1‖2 + γ2‖ŷ −Xet − y‖2 + 2γ〈v̂t+1 − vt+1, ŷ −Xet − y〉
≥ ‖v̂t+1 − vt+1‖2 + γ2‖ŷ −Xet − y‖2 − 2γ(1 + ‖X‖)δ‖v̂t+1 − vt+1‖.

Hence, (??) and (??) yield

γα‖w̃t − wt‖2 ≤ ‖v̂t − vt‖2 − ‖v̂t − vt + γX(w̃t − wt)‖2

≤ ‖v̂t − vt‖2 − ‖v̂t+1 − vt+1‖2 + 2γ(1 + ‖X‖)δ‖v̂t+1 − vt+1‖
≤ ‖v̂t − vt‖2 − ‖v̂t+1 − vt+1‖2 + 2γ2(1 + ‖X‖)2δ2(t+ 1). (5.23)

Summing the previous inequality for t ∈ {T, . . . , 2T −1}, for some T ≥ 1, we derive

γα

2T−1∑
t=T

‖ŵt − wt‖2 ≤ 2γα

2T−1∑
t=T

(
‖ŵt − w̃t‖2 + ‖w̃t − wt‖2

)
≤ 2γαTδ2 + 2‖v̂T − vT ‖2 + 8γ2(1 + ‖X‖2)δ2T 2 ≤ 12γ2(1 + ‖X‖)2δ2T 2

Taking T = b1/δc it follows that

2T−1∑
t=T

‖ŵt − wt‖2 ≤ 12(1 + ‖X‖)2‖X‖−2δ2b1/δc2.

Thus there exists at least a tδ ∈ {b1/δc, . . . , 2b1/δc} such that

‖ŵtδ − wtδ‖2 ≤ 12(1 + ‖X‖)2‖X‖−2δ2
⌊

1

δ

⌋
≤ 12(1 + ‖X‖)2‖X‖−2δ2tδ.

ii): Summing the inequalities in (??) for t = 0, . . . , T , and the fact that ŵ0 = w0

we derive:

γα

T∑
t=0

‖ŵt − wt‖2 ≤ 10γ2(1 + ‖X‖)2δ2T 2 (5.24)

Convexity of ‖ · ‖2 implies

‖ûT − uT ‖2 ≤
1

T

T∑
t=1

‖ŵt − wt‖2 ≤ 10γ2(1 + ‖X‖)2δ2T. (5.25)

The following theorem is similar to Theorem ??. We write the main steps of the

proof for completeness.

Theorem 5.3. Let (ŵt)t∈N be the sequence generated by IADGD. Then, for every

t ∈ N, t ≥ 1,

‖ŵt − w†‖ ≤
2‖X‖‖v†‖

αt
+ 4(1 + ‖X‖)‖X‖−1δt. (5.26)
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Proof. We introduce an auxiliary iteration

w̃t = proxα−1F

(
− α−1XT v̂t

)
. (5.27)

Since ŵt ≈δ proxα−1F (−α−1XT v̂t), equation (??) yields

(∃et ∈ Rp) ŵt = w̃t + et, with ‖et‖ ≤ δ. (5.28)

and this implies that the IADGD is an accelerated gradient method with errors

applied to the dual of the original problem, where at each step the error we make

on the true gradient is

Xet + ŷ − y, with ‖Xet + ŷ − y‖ ≤ (‖X‖+ 1)δ.

The proof then proceeds as the one of Theorem ??, with δ replaced by (‖X‖+ 1)δ

in (??).

Theorems ?? and ?? can be proved in the same way as Theorems ?? and ??,

respectively.

6. Numerical experiments

In this section we compare our iterative regularization techniques (DGD and ADGD

with early stopping) with Tikhonov regularization on three different problems: vari-

able selection, matrix completion, and image deblurring. The performance of the

Tikhonov regularization scheme depends of course on the chosen algorithm to solve

the regularized problems. We use state of the art techniques: accelerated proximal

gradient descent with warm-restart [?]. The model selection phase is performed as

follows: we first solve the regularized problem with a very large value λ0, and then

for the sequence λi = 2−iλ0. Since in practice the noise level is unknown, we choose

λ using holdout cross-validation keeping 1/10 of the available points for validation.

For initializing the accelerated gradient descent on the regularized problem we use

the warm-restarting trick, which is known (in practice) to dramatically accelerate

the computation of the regularization path [?]. The comparison relies heavily on

the stopping rule used for stopping the iteration computing the minimizer of the

Tikhonov regularized functional. We used a very loose stopping rule for the al-

gorithm for a given λi to make Tikhonov regularization more competitive. More

precisely the iterations were stopped when the distance between two successive it-

erations was less than 0.001 ·δ. Since accelerated proximal gradient descent involves

steps with the same computational complexity to those of DGD and ADGD, the

comparison between the three approaches is made in terms of number of itera-

tions. The number of iterations for Tikhonov regularization is the total number of

iterations for all different λ values.
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6.1. Variable selection

We consider a linear regression problem with n = 500 examples and p = 2000 vari-

ables. We assume that ŷ ∈ R500 is obtained corrupting with a Gaussian noise of

mean zero and variance δ/
√
n a measurement Xw∗, where w∗ is a vector having a

small number of nonzero components (10, 30, or 60, respectively). In this example,

the covariates are correlated with a random covariance matrix Σ with Σ = CTC,

where C is a random matrix with entries drawn independently at random from a

gaussian distribution with standard deviation 0.1. To perform variable selection,

and obtain a sparse estimator we apply our iterative regularization methods, DGD

and ADGD, to the elastic net regularizing function R(w) = ‖w‖1 + (α/2)‖w‖2. We

compared the number of iterations of DGD, ADGD, and Tikhonov regularization

on 50 different realizations of sample points. The parameters were chosen using a

validation set of 100 samples. The results are shown in Table ??. For Tikhonov reg-

ularization, we used a second least squares step on the selected variables to compute

the validation score, requiring an extra computation load that we did not quantify

here. It is worth noticing that iterative regularization does not require this further

step. The results suggest that Tikhonov regularization and iterative regularization

algorithms have very similar prediction and variable selection performances. DGD

is approximately as fast as state of the art variational regularization, while ADGD

is much faster.

6.2. Matrix completion

We consider the problem of recovering a low-rank data matrix W ∈ Rn×p from

a sampling of its entries. We denote by Ω the subset of indices corresponding to

sampled entries. We find an approximate solution of this problem by minimizing

a strongly convex relaxation [?] given by the sum of the nuclear norm with the

squared Frobenius norm, that is:

min
XW=Ŷ

‖W‖∗ +
α

2
‖W‖2F , (6.1)

where Ŷ ∈ Rn×p, is such that, for every (i, j) 6∈ Ω, Ŷi,j = 0, and X : Rn×p → Rn×p
is such that (XW )i,j = Wi,j if (i, j) ∈ Ω and 0 otherwise. DGD applied to this

problem is the Singular Value Thresholding (SVT) algorithm described in [?] and

note that, interestingly, ADGD is its accelerated counterpart. The most expensive

computational part is the proximal step, which requires an SVD decomposition

[?]. While in [?] the authors apply the algorithm to noisy data, they then propose

as an improvement a different relaxation [?]. Here we show that SVT with early

stopping is indeed an efficient algorithm to deal with matrix completion of noisy

data. We tested the performance on simulated data using a standard procedure

described in [?]. We multiplied random gaussian matrices with independent entries

and variance 1 of size n × r and r × p where r is the chosen rank, and then we

added an additive gaussian noise. We computed the Root Mean Square Error of
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Table 1. Performances of DGD, ADGD, and warm-started Tikhonov regularization with
accelerated proximal gradient descent. False positives are the selected irrelevant variables.
False negatives are the discarded relevant features. Prediction error is the average predic-
tion error of the estimated solution in percent. The results are averaged over 50 trials with
the standard deviation between parentheses.

Noise
Relevant

Algorithm
False False Prediction

Iterations
Variables Positive Negative Error

0.1

10

DGD 0.10 (0.3) 0.53 (0.7) 3.7 (0.6) 890 (200)

ADGD 0.40 (0.9) 0.53 (0.7) 3.7 (0.6) 140 (30)

Tikhonov 0.62 (1) 0.28 (0.5) 3.6 (0.3) 580 (40)

30

DGD 8.8 (5) 1.8 (1) 4.8 (0.4) 860 (90)

ADGD 5.0 (5) 1.8 (1) 4.6 (0.4) 110 (16)
Tikhonov 12 (9) 2.1 (1) 5.4 (0.6) 860(140)

60

DGD 49 (10) 5.2 (2) 8.1 (0.8) 940 (100)

ADGD 27 (10) 5.7 (2) 7.4 (0.7) 170 (30)

Tikhonov 53 (20) 5.7 (2) 7.4 (0.7) 1800 (400)

1

10
DGD 2.2 (3) 2.7 (1) 46 (2) 480 (100)
ADGD 1.1 (2) 2.8 (1) 45 (2) 92 (40)

Tikhonov 2.3 (2) 2.9 (1) 48 (4) 360 (90)

30

DGD 17 (10) 14 (3) 65 (3) 560 (50)

ADGD 14 (10) 15 (3) 64 (3) 220 (3)
Tikhonov 8.0 (7) 15 (2) 63 (4) 990 (300)

60
DGD 40 (10) 33 (4) 77 (3) 560 (10)
ADGD 40 (20) 33 (6) 77 (3) 220 (3)

Tikhonov 35 (30) 36 (8) 78 (2) 1700 (500)

the proposed approximation: RMSE(Ŵ) = (
∑

(i,j)∈A(Ŵi,j − Yi,j)2)1/2/|A| , where

A is the test set. As can be seen in Table ?? ADGD is comparable to state of the

art Tikhonov regularization, with a significantly lower computational cost. In ad-

dition, we compare DGD with Tikhonov regularization (with accelerated proximal

gradient+warm restart) on the MovieLens 100k datasetb. We averaged our results

over five trials. We left out one tenth of the known entries at each trial and chose

the best step/parameter via 2-fold cross validation. The mean RMSE for DGD

and Tikhonov was 1.02. It required 250 iterations on average using DGD, and 550

iterations using Tikhonov.

6.3. Image deblurring

Finally, we apply ADGD to an image processing problem, namely deblurring, with a

strongly convex perturbation of total variation. More precisely, given an image W ∈
R256×256, we consider the regularization function R(W ) = TV (W )1,2 + 3

2‖W‖
2,

where TV is the discrete total variation. In this application the proximity operator

of the total variation penalty is not available in closed form. In our experiments, this

is computed at each iteration using 20 steps of accelerated dual forward backward

bhttp://grouplens.org/datasets/movielens/
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Table 2. Minimal achieved RMSE and associated cost of ADGD and Tikhonov approach
solved with warm-starting, accelerated proximal gradient method, on simulated data with
additive gaussian noise of standard deviation δ. We used the ground truth to select the
best parameter. The percentage of known entries (knowledge ratio) is 0.12, 0.39 and 0.57
for, respectively, ranks 10, 50 and 100. The matrices are of size 1000x1000. The results
were averaged over 5 simulations with the standard deviation between parentheses. For
ADGD, the iterative trials were capped at 500 iterations (for noise levels of 0.01) and 250
(noise of 0.1 and 1).

Noise Rank
RMSE RMSE Iterations Iterations
ADGD Tikhonov ADGD Tikhonov

0.01
10 2.1 · 10−3(3.8 · 10−5) 7.6 · 10−3(1.5 · 10−4) 500 (0) 527 (3)
50 3.2 · 10−3(2.2 · 10−5) 9.1 · 10−3(4.1 · 10−5) 500 (0) 295 (1)

100 4.7 · 10−3(2.9 · 10−5) 1.1 · 10−2(6.4 · 10−5) 500 (0) 273 (1)

0.1

10 0.23(4.6 · 10−3) 0.75(9.0 · 10−3) 250 (0) 539 (3.7)

50 0.35(2.1 · 10−3) 0.95(2.7 · 10−3) 250 (0) 425 (0.49)
100 0.48(2.0 · 10−3) 1.1(4.3 · 10−3) 190 (0) 470 (0.4)

1
10 27(0.28) 76(1.1) 191 (0) 698 (3.6)
50 41(0.20) 108(0.20) 205 (0.4) 729 (3.6)

100 55 (0.18) 125(0.11) 210 (0.4) 742 (2.8)

Fig. 1. From left to right: original Cameraman image, noisy blurred image, restored image
with Tikhonov regularization, restored image with ADGD.

on the denoising problems corresponding to (??), and by warm starting with the

previous approximate proximal point. We assume to have access to a noisy image ŷ,

obtained corrupting the original image with a Gaussian blur of one pixel and an ad-

ditive Gaussian noise with variance 0.01. We compared the iterative regularization

ADGD with early stopping with the solution obtained with the Tikhonov approach

corresponding to the best regularization parameter on the cameramen image. The

quality of an approximation of the original image is measured in terms of PSNR,

and the best results are reported in Figure ??. On the computational side, for the

Tikhonov approach we set λ0 = 105, and then decreased it by multiplying it by 0.8

at each step. The best solution is obtained for λ = 6.8, while iterative regularization

achieves the best results at the third iteration.
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Appendix A. Useful results from convex optimization

Here we report a number of both classical and recent previous results used in

our analysis. All the proof is based on duality techniques. We recall the classical

definition of Fenchel conjugate of a convex function.

Definition Appendix A.1. Let X be a Hilbert space and let f : X → R∪ {+∞}
be a proper, and lower semicontinuous function. The Fenchel conjugate of f is the

function f∗ : X → R ∪ {+∞} defined by

(∀u ∈ X ) f∗(u) = sup
x∈X
〈x, u〉 − f(x).

It is well known that f∗ is a convex, proper and lower semicontinuous function.

Proposition Appendix A.1. Let X be a Hilbert spaces, let h : X → R ∪ {+∞}
be a proper, convex, and lower semicontinuous function, and let σ > 0. Define

f = h+(σ/2)‖ ·‖2. Then, f∗ is differentiable and ∇f∗ is σ−1 Lipschitz continuous.

In addition, ∇f∗(v) = proxσ−1h(v/σ) for all v ∈ X .

Proof. Let v ∈ X . Proposition 12.29 in [?] yields

∇R∗(v) = α−1v − α−1∇(α
−1

F )(α−1v)

= α−1v − α−1
(
α
(
α−1v − proxα−1F (α−1v)

))
= proxα−1F (α−1v). (A.1)

Definition Appendix A.2. Let X and Y be Hilbert spaces and let f : X →
R ∪ {+∞} and g : Y → R ∪ {+∞} be proper, convex, and lower semicontinuous

functions. Let A : X → Y be a bounded linear operator. The Fenchel-Rockafellar

dual of the problem inf(f + g ◦A) is the problem

min
u∈X

f∗(−A∗u) + g∗(u).

The next result establishes a relation between the dual objective value and the

distance from the unique solution of the primal problem in the strongly convex

case. Its proof can be found in [?, Lemma 5].

Lemma Appendix A.1 (Primal-dual values-iterates bound). Let X and Y
be Hilbert spaces, let f : X → R ∪ {+∞} be a proper, σ-strongly convex, and lower

semicontinuous function, let g : Y → R ∪ {+∞} be a proper, convex and lower

semicontinuous function, and let A : X → Y be a bounded linear operator. Let x†

be the unique minimizer of p := f + g ◦A, and let d := f∗ ◦ (−A∗) + g∗. Then

argmin d 6= ∅ ⇐⇒ 0 ∈ ∂f(x†) +A∗∂g(Ax†).

In that case, for every u ∈ Y and every x := ∇f∗(−A∗u), we have

σ

2
‖x− x†‖2 ≤ d(u)−min

Y
d.
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The following is a classical result about a crucial property of the proximity

operator. Its proof is in [?, Propositon 12.28].

Proposition Appendix A.2 (Firm nonexpansiveness of prox). Let X be a

Hilbert space, let f : X → R∪{+∞} be a proper, convex, and lower semicontinuous

function and let σ > 0. Then proxσf : X → X is firmly nonexpansive, namely

(∀(w, u) ∈ X 2) ‖proxσf (w)− proxσf (u)‖2 ≤ 〈w − u,proxσf (w)− proxσf (u)〉.


