50 research outputs found

    Prospects for improving the representation of coastal and shelf seas in global ocean models

    Get PDF
    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape. We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1∕12°, and still reasonably well resolved at 1∕4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1∕12° global model resolves the first baroclinic Rossby radius for only  ∼ 8% of regions  < 500m deep, but this increases to  ∼ 70% for a 1∕72° model, so resolving scales globally requires substantially finer resolution than the current state of the art. We quantify the benefit of improved resolution and process representation using 1∕12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ε vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones. To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1∕4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1∕72° global model by 2026. However, we also note that a 1∕12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to  ∼ 1.5km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges

    HPC-enabling technologies for high-fidelity combustion simulations

    Get PDF
    With the increase in computational power in the last decade and the forthcoming Exascale supercomputers, a new horizon in computational modelling and simulation is envisioned in combustion science. Considering the multiscale and multiphysics characteristics of turbulent reacting flows, combustion simulations are considered as one of the most computationally demanding applications running on cutting-edge supercomputers. Exascale computing opens new frontiers for the simulation of combustion systems as more realistic conditions can be achieved with high-fidelity methods. However, an efficient use of these computing architectures requires methodologies that can exploit all levels of parallelism. The efficient utilization of the next generation of supercomputers needs to be considered from a global perspective, that is, involving physical modelling and numerical methods with methodologies based on High-Performance Computing (HPC) and hardware architectures. This review introduces recent developments in numerical methods for large-eddy simulations (LES) and direct-numerical simulations (DNS) to simulate combustion systems, with focus on the computational performance and algorithmic capabilities. Due to the broad scope, a first section is devoted to describe the fundamentals of turbulent combustion, which is followed by a general description of state-of-the-art computational strategies for solving these problems. These applications require advanced HPC approaches to exploit modern supercomputers, which is addressed in the third section. The increasing complexity of new computing architectures, with tightly coupled CPUs and GPUs, as well as high levels of parallelism, requires new parallel models and algorithms exposing the required level of concurrency. Advances in terms of dynamic load balancing, vectorization, GPU acceleration and mesh adaptation have permitted to achieve highly-efficient combustion simulations with data-driven methods in HPC environments. Therefore, dedicated sections covering the use of high-order methods for reacting flows, integration of detailed chemistry and two-phase flows are addressed. Final remarks and directions of future work are given at the end. }The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CoEC project, grant agreement No. 952181 and the CoE RAISE project grant agreement no. 951733.Peer ReviewedPostprint (published version

    Coupled Kinetic-Fluid Simulations of Ganymede's Magnetosphere and Hybrid Parallelization of the Magnetohydrodynamics Model

    Full text link
    The largest moon in the solar system, Ganymede, is the only moon known to possess a strong intrinsic magnetic field. The interaction between the Jovian plasma and Ganymede's magnetic field creates a mini-magnetosphere with periodically varying upstream conditions, which creates a perfect laboratory in nature for studying magnetic reconnection and magnetospheric physics. Using the latest version of Space Weather Modeling Framework (SWMF), we study the upstream plasma interactions and dynamics in this subsonic, sub-Alfvénic system. We have developed a coupled fluid-kinetic Hall Magnetohydrodynamics with embedded Particle-in-Cell (MHD-EPIC) model for Ganymede's magnetosphere, with a self-consistently coupled resistive body representing the electrical properties of the moon's interior, improved inner boundary conditions, and high resolution charge and energy conserved PIC scheme. I reimplemented the boundary condition setup in SWMF for more versatile control and functionalities, and developed a new user module for Ganymede's simulation. Results from the models are validated with Galileo magnetometer data of all close encounters and compared with Plasma Subsystem (PLS) data. The energy fluxes associated with the upstream reconnection in the model is estimated to be about 10^-7 W/cm^2, which accounts for about 40% to the total peak auroral emissions observed by the Hubble Space Telescope. We find that under steady upstream conditions, magnetopause reconnection in our fluid-kinetic simulations occurs in a non-steady manner. Flux ropes with length of Ganymede's radius form on the magnetopause at a rate about 3/minute and create spatiotemporal variations in plasma and field properties. Upon reaching proper grid resolutions, the MHD-EPIC model can resolve both electron and ion kinetics at the magnetopause and show localized crescent shape distribution in both ion and electron phase space, non-gyrotropic and non-isotropic behavior inside the diffusion regions. The estimated global reconnection rate from the models is about 80 kV with 60% efficiency. There is weak evidence of sim1sim 1 minute periodicity in the temporal variations of the reconnection rate due to the dynamic reconnection process. The requirement of high fidelity results promotes the development of hybrid parallelized numerical model strategy and faster data processing techniques. The state-of-the-art finite volume/difference MHD code Block Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) was originally designed with pure MPI parallelization. The maximum problem size achievable was limited by the storage requirements of the block tree structure. To mitigate this limitation, we have added multithreaded OpenMP parallelization to the previous pure MPI implementation. We opt to use a coarse-grained approach by making the loops over grid blocks multithreaded and have succeeded in making BATS-R-US an efficient hybrid parallel code with modest changes in the source code while preserving the performance. Good weak scalings up to 50,0000 and 25,0000 of cores are achieved for the explicit and implicit time stepping schemes, respectively. This parallelization strategy greatly extends the possible simulation scale by an order of magnitude, and paves the way for future GPU-portable code development. To improve visualization and data processing, I have developed a whole new data processing workflow with the Julia programming language for efficient data analysis and visualization. As a summary, 1. I build a single fluid Hall MHD-EPIC model of Ganymede's magnetosphere; 2. I did detailed analysis of the upstream reconnection; 3. I developed a MPI+OpenMP parallel MHD model with BATSRUS; 4. I wrote a package for data analysis and visualization.PHDClimate and Space Sciences and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163032/1/hyzhou_1.pd

    The Inertial Range of Turbulence in the Inner Heliosheath and in the Local Interstellar Medium

    Get PDF
    The governing mechanisms of magnetic field annihilation in the outer heliosphere is an intriguing topic. It is currently believed that the turbulent fluctuations pervade the inner heliosheath (IHS) and the Local Interstellar Medium (LISM). Turbulence, magnetic reconnection, or their reciprocal link may be responsible for magnetic energy conversion in the IHS.   As 1-day averaged data are typically used, the present literature mainly concerns large-scale analysis and does not describe inertial-cascade dynamics of turbulence in the IHS. Moreover, lack of spectral analysis make IHS dynamics remain critically understudied. Our group showed that 48-s MAG data from the Voyager mission are appropriate for a power spectral analysis over a frequency range of five decades, from 5e-8 Hz to 1e-2 Hz [Gallana et al., JGR 121 (2016)]. Special spectral estimation techniques are used to deal with the large amount of missing data (70%). We provide the first clear evidence of an inertial-cascade range of turbulence (spectral index is between -2 and -1.5). A spectral break at about 1e-5 Hz is found to separate the inertial range from the enegy-injection range (1/f energy decay). Instrumental noise bounds our investigation to frequencies lower than 5e-4 Hz. By considering several consecutive periods after 2009 at both V1 and V2, we show that the extension and the spectral energy decay of these two regimes may be indicators of IHS regions governed by different physical processes. We describe fluctuations’ regimes in terms of spectral energy density, anisotropy, compressibility, and statistical analysis of intermittency.   In the LISM, it was theorized that pristine interstellar turbulence may coexist with waves from the IHS, however this is still a debated topic. We observe that the fluctuating magnetic energy cascades as a power law with spectral index in the range [-1.35, -1.65] in the whole range of frequencies unaffected by noise. No spectral break is observed, nor decaying turbulence

    The readying of applications for heterogeneous computing

    Get PDF
    High performance computing is approaching a potentially significant change in architectural design. With pressures on the cost and sheer amount of power, additional architectural features are emerging which require a re-think to the programming models deployed over the last two decades. Today's emerging high performance computing (HPC) systems are maximising performance per unit of power consumed resulting in the constituent parts of the system to be made up of a range of different specialised building blocks, each with their own purpose. This heterogeneity is not just limited to the hardware components but also in the mechanisms that exploit the hardware components. These multiple levels of parallelism, instruction sets and memory hierarchies, result in truly heterogeneous computing in all aspects of the global system. These emerging architectural solutions will require the software to exploit tremendous amounts of on-node parallelism and indeed programming models to address this are emerging. In theory, the application developer can design new software using these models to exploit emerging low power architectures. However, in practice, real industrial scale applications last the lifetimes of many architectural generations and therefore require a migration path to these next generation supercomputing platforms. Identifying that migration path is non-trivial: With applications spanning many decades, consisting of many millions of lines of code and multiple scientific algorithms, any changes to the programming model will be extensive and invasive and may turn out to be the incorrect model for the application in question. This makes exploration of these emerging architectures and programming models using the applications themselves problematic. Additionally, the source code of many industrial applications is not available either due to commercial or security sensitivity constraints. This thesis highlights this problem by assessing current and emerging hard- ware with an industrial strength code, and demonstrating those issues described. In turn it looks at the methodology of using proxy applications in place of real industry applications, to assess their suitability on the next generation of low power HPC offerings. It shows there are significant benefits to be realised in using proxy applications, in that fundamental issues inhibiting exploration of a particular architecture are easier to identify and hence address. Evaluations of the maturity and performance portability are explored for a number of alternative programming methodologies, on a number of architectures and highlighting the broader adoption of these proxy applications, both within the authors own organisation, and across the industry as a whole
    corecore