

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Deakin, Tom

Title:
Leveraging Many-Core Technology for Deterministic Neutral Particle Transport at
Extreme Scale

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/376906295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Leveraging Many-Core Technology for
Deterministic Neutral Particle Transport

at Extreme Scale

Tom Deakin

A dissertation submitted to the University of Bristol in accordance with the
requirements for award of the degree of Doctor of Philosophy in the Faculty of

Engineering, Department of Computer Science.

January 2018

50,300 words.

ii

Abstract

With disruptive changes to supercomputing architecture at the node level, al-
gorithms are required to leverage the increased parallelism and high bandwidth
memory technologies from many-core devices. The deterministic discrete ordin-
ates transport equation is an important equation which models the movement
and interaction of neutral particles, such as neutrons, through materials. The
balance equation counts the loss and gain of the particles through changes in
direction, energy, and as a result of collisions with material nuclei. Solving this
equation cannot be performed analytically for all but the simplest problems and
so in practice the solution must be approximated using numerical methods.

The Discrete Ordinates (Sn) discretisation used in solving the equation nu-
merically imposes a wavefront dependency across the spatial domain, and as
such there is a corresponding limitation on the concurrency of the algorithm.
The sweep and finite difference discretisation of the spatial domain result in
complex data reuse patterns. The problem is of high dimensionality, with an-
gular, energy and spatial domains modelled over time. Therefore the solution
itself has a high memory footprint so that it often becomes bound by the avail-
able memory capacity of supercomputer nodes. All these factors mean that
exploiting many-core technology is a significant challenge.

This thesis will investigate solving the transport equation on many-core ar-
chitectures. Performance models will be developed in order to capture the be-
haviour of the memory accesses and communication patterns. A GPU imple-
mentation of a transport mini-app will be developed using a concurrent scheme
which demonstrates for the first time that such devices can be used to provide
speedups. The reduction in runtime is in line with the memory bandwidth
advantages GPUs have over CPU architectures. Mini-apps will be developed
to capture the critical computation to examine the solver on cache-based ar-
chitectures. Finally a high order discontinuous Galerkin finite element method
will be investigated in order to mitigate memory capacity constraints of high
bandwidth memories at an algorithmic level.

iii

Dedication

My thanks my first and foremost go to my supervisor, Prof Simon McIntosh-
Smith, for his continued support and guidance, and to Wayne Gaudin for all
his support and encouragement throughout the entire PhD process — I am
indebted to you both.

I’d like to thank my examiners, Revd Dr Jeremy Yates and Dr Wes Armour,
for their effort in reviewing my thesis and their kind and considered feedback
during the viva.

I would also like to thank Richard Smedley-Stevenson and Dave Barrett
for many stimulating discussions about deterministic transport throughout the
course of this PhD. And of course thanks must go to my colleagues in the HPC
group at Bristol University.

My thanks also go to the careful proof reading efforts of many people, in-
cluding Wayne, Mum, Richard and Justin. Many typos were fixed as a result
of their eagle eyes!

Finally, I would like to thank my family, including Nanny, for all they have
done to support me through my (long) education, and Hannah P for sticking
with me through the whole thing.

I could not have completed this thesis without all of your help.

v

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Access to Piz Daint is thanks to Maria Grazia Giuffreda of CSCS at the Swiss
National Supercomputing Centre. Access to the Cray XC40 supercomputer,
Swan, and the Cray CS cluster, Falcon, was kindly provided though the Cray
Inc. Marketing Partner Network. Access to the Sandia National Laboratories
Advanced Systems Technology Test Beds was kindly provided by Simon Ham-
mond. Access to the IBM Power 8 system, Saffron, was kindly provided by
Advanced Research Computing at Oxford University. This research used re-
sources thanks to the University of Bristol Intel Parallel Computing Center,
including access to Intel compilers and Intel Xeon Phi hardware. This work was
carried out using the computational facilities of the Advanced Computing Re-
search Centre, University of Bristol — http://www.bris.ac.uk/acrc/. Access
to the PGI compiler was thanks to Douglas Miles of PGI. Access to the Edison
supercomputer is thanks to Alice Koniges at the National Energy Research Sci-
entific Computing Center. This PhD has been financially supported by the UK
Atomic Weapons Establishment.

vii

http://www.bris.ac.uk/acrc/

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic
award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance
of, others, is indicated as such. Any views expressed in the dissertation are
those of the author.

Signed:

Date:

ix

Contents

Abstract iii

List of Figures xv

List of Tables xvii

List of Listings xix

Glossary xxi

Acronyms xxiii

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis overview . 4

2 High Performance Computing trends towards Exascale 7
2.1 Moore’s law . 8
2.2 Scaling . 9

2.2.1 Amdahl’s law . 9
2.2.2 Strong scaling . 10
2.2.3 Gustafson’s law . 10
2.2.4 Weak scaling . 10
2.2.5 Parallel efficiency . 11

2.3 Programming models . 11
2.3.1 Message Passing Interface 11
2.3.2 OpenMP . 12
2.3.3 OpenACC . 12
2.3.4 CUDA . 13
2.3.5 OpenCL . 14
2.3.6 Kokkos . 14
2.3.7 RAJA . 14
2.3.8 SYCL . 15

xi

xii CONTENTS

2.4 Vectorisation . 15
2.5 Non-uniform memory access . 16
2.6 Directed acyclic graphs . 16
2.7 Summary . 17

3 Measuring achievable memory bandwidth across diverse many-
core architectures 19
3.1 Memory hierarchy . 20

3.1.1 The Roofline model . 22
3.2 The STREAM benchmark . 24

3.2.1 Other memory bandwidth benchmarks 25
3.3 The first BabelStream benchmark 26

3.3.1 Initial results . 27
3.3.2 The effect of error correcting code memory 27

3.4 Expanding BabelStream . 29
3.5 BabelStream performance . 30

3.5.1 Triad performance . 31
3.5.2 Reduction performance 38

3.6 A survey of performance portability 40
3.7 Summary . 41

4 The computational nature of deterministic transport 43
4.1 The transport equation . 43
4.2 Discretisation of the transport equation 45

4.2.1 Spatial discretisation via finite difference 45
4.2.2 Angular discretisation . 46
4.2.3 Energy discretisation . 46

4.3 Numerical solution . 47
4.3.1 Iteration loop structure 48
4.3.2 The sweep . 49
4.3.3 Negative flux fix-up . 51
4.3.4 Boundary conditions . 52

4.4 Other solution approaches . 52
4.4.1 Monte Carlo transport . 53
4.4.2 Method of Characteristics 53

4.5 The SNAP mini-app . 54
4.6 Other transport and sweep based mini-apps, benchmarks and

applications . 55
4.6.1 Dynamic programming . 55
4.6.2 Lower-upper matrix factorisation 56
4.6.3 Sweep3D . 58
4.6.4 KRIPKE . 59
4.6.5 Denovo . 60
4.6.6 UMT2013 . 60
4.6.7 Tycho 2 . 61

4.7 Summary . 62

CONTENTS xiii

5 Accelerating transport on GPU architectures 63
5.1 Parallelism in the SNAP mini-app 64

5.1.1 Original scheme . 64
5.1.2 Concurrency for many-core 65
5.1.3 An OpenCL implementation 68

5.2 Performance results . 69
5.3 Modelling the memory bandwidth 73
5.4 Source code disruption . 74
5.5 Mitigating memory capacity constraints 75
5.6 Summary . 77

6 Transport on cache-based architectures 79
6.1 Distillation of the finite difference kernel 80
6.2 Optimisation of mega-stream . 81

6.2.1 Reducing cache pollution 83
6.2.2 Ensuring cache residency 83
6.2.3 Ensuring data is in cache in time 84
6.2.4 Results . 84

6.3 Porting mega-stream optimisations back into SNAP 87
6.4 Introducing extra complexity to mega-stream 88
6.5 Summary . 91

7 Scalability of transport 93
7.1 The Koch-Baker-Alcouffe decomposition 94
7.2 Other decomposition schemes . 97
7.3 Modelling sweep algorithms . 99

7.3.1 Parallel computational efficiency 99
7.3.2 LogGP based models . 100
7.3.3 A time aware model . 100
7.3.4 Parallel sweep efficiency 102

7.4 Accelerating transport at extreme scale 102
7.4.1 Weak scaling . 103
7.4.2 Strong scaling . 106

7.5 Summary . 107

8 High order finite element solution 109
8.1 Comparison to the finite difference discretisation 109
8.2 Implementation details . 110

8.2.1 Solving the linear systems 111
8.3 A practical comparison of the discretisation methods 114

8.3.1 Mesh convergence . 115
8.3.2 Modelling memory capacity 118
8.3.3 Runtime implications . 123

8.4 Summary . 124

9 Conclusion 127
9.1 Future work . 129

Appendices 131

xiv CONTENTS

A Applying the finite difference method to the transport equation133
A.1 Diamond difference relations . 133
A.2 A finite difference discretisation of the transport equation 134

B Applying the finite element method to the transport equation137
B.1 Test functions . 137
B.2 FEM discretisation of the transport equation 139

B.2.1 Mapping from the reference element 142
B.2.2 Calculation of the face normals 143

Bibliography 145

List of Figures

2.1 Example non-uniform memory access (NUMA) regions in a dual-
socket node . 16

2.2 An example DAG . 17

3.1 Memory access times for levels of the cache hierarchy for Skylake
according to Intel and De Gelas and Cutress [47, 35] 21

3.2 Memory latencies on Broadwell and Intel Xeon Phi (Knights
Landing) (KNL) as measured by lat_mem_rd 22

3.3 Illustration of the cache-aware Roofline model 23
3.4 BabelStream v1 Triad memory bandwidth across devices (from [23]) 28
3.5 Effect of ECC on achievable memory bandwidth on NVIDIA High

Performance Computing (HPC) GPUs (from [23]) 29
3.6 Fraction of theoretical peak memory bandwidth obtained by the

BabelStream Triad kernel (from [28]) 34
3.7 Sustained memory bandwidth achieved by the BabelStream Triad

kernel (from [28]) . 35
3.8 Sustained memory bandwidth achieved by the updated Babel-

Stream Triad kernel on Intel architectures 37
3.9 Fraction of theoretical peak memory bandwidth obtained by the

BabelStream Dot kernel (from [28]) 38
3.10 Sustained memory bandwidth achieved by the BabelStream Dot

kernel (from [28]) . 39

4.1 Division of spatial mesh into quadrants and octants 47
4.2 Transport equation iteration overview (from [24]) 49
4.3 Flow diagram of iteration structure of the solution of the trans-

port equation . 50
4.4 Upwind and downwind cell boundaries (from [24]) 51
4.5 LU chunking options adapted from Pennycook et al. [80] 57
4.6 Communication issues in the LU chunking option of Pennycook

et al. [80] . 58

xv

xvi LIST OF FIGURES

5.1 Serial sweep for two octants (from [24]) 65
5.2 Wavefront sweep across a 2D grid (from [24]) 66
5.3 Spatial parallel sweep for two octants (from [24]) 67
5.4 Speedup of improved concurrent sweeps on GPU (from [24, 26]) . 72
5.5 Sustained memory bandwidth of single node SNAP (from [24, 26]) 74

6.1 A standard 5-point stencil (from [22]) 80
6.2 An upwind 5-point stencil (from [22]) 81
6.3 Modelled memory bandwidth for mega-stream mini-app for de-

fault problem (from [22]) with labels showing percentage of meas-
ured Triad performance . 86

7.1 Illustration of KBA decomposition of a 2D mesh 94
7.2 Illustration of KBA decomposition of a 3D mesh (from [25]) . . . 95
7.3 A directed acyclic graph (DAG) for a KBA sweep adapted from [40] 96
7.4 Illustration of chunking in KBA (from [25]) 101
7.5 Weak scaling SNAP on Titan (from [25]) 104
7.6 Weak scaling SNAP on Piz Daint (from [25]) 105
7.7 Strong scaling SNAP on Titan 107

8.1 Illustration of solving a linear system for an upper triangular matrix113
8.2 Illustration of SNAP material options 115
8.3 YZ mid-plane of finite difference and finite element port of SNAP 117
8.4 Material layout 0 population and scalar flux error 119
8.5 Material layout 1 population and scalar flux error 120
8.6 Model of memory requirements of the angular flux for finite dif-

ference and finite element methods 121
8.7 Modelled minimum node count for storage of the angular flux . . 123

B.1 A 2D linear element with basis functions at associated vertices . 138
B.2 Illustration of distinct nodes in the discontinuous Galerkin finite

element method . 138
B.3 1D basis functions . 139
B.4 Faces of a reference hexahedral element centered at the origin . . 143

List of Tables

2.1 The Titan and Piz Daint supercomputers 8

3.1 Memory movement in the STREAM kernels 25
3.2 List of devices used in BabelStream experiments (from [28]) . . . 32
3.3 Compiler configurations for BabelStream experiments on GPUs

(from [28]) . 33
3.4 Compiler configurations for BabelStream experiments on CPUs

(from [28]) . 33

4.1 Transport equation notation . 44
4.2 Cell ordering for octant sweeps 51

5.1 Specifications of devices used for testing single node sweep per-
formance, with measured bandwidth recorded using BabelStream
(from [24]) . 70

6.1 Default mega-stream loop extents 82
6.2 List of devices used for the mega-stream experiment 85

8.1 FEM SNAP runtimes solving systems with MKL and Gaussian
elimination . 114

8.2 Hypothetical future multi- and many-core supercomputer nodes . 122
8.3 SNAP runtimes for FD and FEM codes running material layout 1 124

B.1 Columns of the Jacobian used in face normal calculation for a 3D
hexahedral element . 144

xvii

xviii LIST OF TABLES

List of Listings

6.1 The mega-stream kernel (from [22]) 82
6.2 The optimised mega-stream kernel (from [22]) 85
6.3 The mega-sweep kernel . 89

xix

xx LIST OF LISTINGS

Glossary

angular flux The solution of the transport equation describing the movement
of neutral particles in the angular, energy and spatial domains, denoted
ψ.

cross section Data representing the probability of neutral particles interacting
with a material, denoted σ.

discrete ordinates Angular domain discretisation used in the solution of the
transport equation, denoted Sn.

grind time The time taken to update one problem unknown in the angular
flux calculated as the total application time divided by the product of the
iteration count and the problem dimensions.

memory bandwidth Measure of the amount of data that can be moved in a
fixed period of time, usually measured in Gigabytes per second.

negative flux fix-up A non-linear routine to ensure non-negative solutions
occur, typically by setting negative fluxes to zero and resolving.

octant Group of discrete ordinate angles in 3D space.

pencil The long and thin shaped sub-domain formed via the KBA decomposi-
tion scheme.

population The integral of the scalar flux over the spatial domain resulting in
a particle count per energy group.

quadrant Group of discrete ordinate angles in 2D space.

quadrature set Angles and associated weights in the angular discretisation;
specifically the points used to approximate the integration of the angular
flux to form the scalar flux.

xxi

xxii Glossary

scalar flux The integral of the angular flux over the angular domain, denoted
φ.

streaming-collision operator Part of the transport equation which describes
the loss of particles due to streaming (leaving the domain) or by collisions
within the material, denoted Ω̂ · ~∇+ σ.

sweep Traversal through the spatial domain for an angle respecting the upwind
data dependency during solution of the transport equation.

Acronyms

Sn Discrete Ordinates.

API Application Programming Interface.

APU AMD Accelerated Processing Unit.

CPU Central Processing Unit.

CSCS Swiss National Supercomputing Centre.

DAG directed acyclic graph.

DDR double data rate dynamic random-access memory.

DG discontinuous Galerkin.

DRAM dynamic random-access memory.

DSPs digital signal processors.

ECC error correcting code.

FD finite difference.

FEM finite element method.

FLOP floating point operation.

FLOPS/s floating point operations per second.

FPGAs field-programmable gate arrays.

GB 109 bytes.

GiB 230 bytes.

xxiii

xxiv Acronyms

GPU Graphics Processing Unit.

HBM High Bandwidth Memory.

HPC High Performance Computing.

KBA Koch, Baker and Alcouffe.

KNC Intel Xeon Phi (Knights Corner).

KNL Intel Xeon Phi (Knights Landing).

LANL Los Alamos National Laboratory.

LAPACK Linear Algebra PACKage.

LLNL Lawrence Livermore National Laboratory.

LU lower upper.

MCDRAM Multi-Channel DRAM.

MiB 220 bytes.

MKL Intel Math Kernel Library.

MPI Message Passing Interface.

NERSC National Energy Research Scientific Computing Center.

NUMA non-uniform memory access.

ORNL Oak Ridge National Laboratory.

PCE Parallel Computational Efficiency.

PCIe Peripheral Component Interconnect Express.

PFLOPS/s 1015 floating point operations per second.

QPI Intel Quick Path Interconnect.

SIMD Single Instruction Multiple Data.

SM streaming multiprocessor.

SMT simultaneous multithreading.

SNL Sandia National Laboratory.

SPMD Single Program Multiple Data.

TFLOPS/s 1012 floating point operations per second.

UK-MAC United Kingdom Mini-App Consortium.

UVM Unified Virtual Memory.

CHAPTER 1

Introduction

Algorithms with high concurrency are required by many-core technologies at
the vector, node and interconnect level if the power of Exascale platforms are
to be effectively harnessed for scientific applications. Heterogeneous compute
environments, traditional supercomputing nodes enhanced with an accelerator
device, are demonstrating high performance per Watt (of required power) with
very high thread count compute units, and so therefore form part of a viable
roadmap to Exascale. Additionally, the traditional homogeneous compute envir-
onments consisting of CPU-style cores are changing, with much increased core
and thread counts on each socket. These changes in hardware are disruptive to
current algorithms and without research such as that presented in this thesis,
the suitability of current algorithms and their implementations may not allow
for exploitation of this technology. Such research into mapping them to new
architectures is vital for future scientific productivity.

One important scientific computing algorithm is that used to model the
movement and interaction of neutral particles, such as neutrons or photons,
through materials of varying properties. Example use cases for this model oc-
cur in both the fission and fusion nuclear reactor communities, for spectral ocean
wave modelling important for weather and climate science, and within the field
of bio-medical imaging for treatments such as proton beam therapy and ra-
diotherapy [60, 36, 56]. This behaviour is modelled as an integral-differential
Boltzmann balance equation where the solution is highly dimensional, consist-
ing of 3D space, 2D angular direction, 1D energy groups, along with time. Only
for simplistic problems can this equation be solved analytically, and therefore
the solution of the equation is approximated using numerical methods and per-
formed on large High Performance Computing (HPC) systems. It is estimated
that 50–80% of simulation time is devoted to such transport codes on United
States Department of Energy supercomputer systems [43]. Therefore a fast and
efficient code base to support the solution of this equation is critical.

The widely used implicit numerical schema for solving the transport equation
is known as Discrete Ordinates (Sn). It is a tried and tested deterministic

1

2 CHAPTER 1. INTRODUCTION

method pioneered in the early 1950s by Carlson [19], but the emergence of
many-core technology brings a significant challenge to ensure that sufficient
levels of concurrency are found so that this method may be efficient on the next
generation of architectures.

As with many applications utilising HPC to solve equations numerically, the
equation is discretised and the full problem domain split between many discrete
computational nodes. The discretisation according to the Sn algorithm imposes
data dependencies on the order in which the solution is calculated. Each cell
utilises data from upwind neighbouring cells, and calculates outgoing values for
consumption by downwind neighbouring cells. This results in a sweep through
the spatial domain for sets of directional components beginning at each corner of
the grid. As such each cell must be computed in a specified order and all cells
cannot be computed concurrently in any order unlike many other grid based
applications. This is very much in contrast to the typical halo exchange of
ghost cells to neighbouring processors seen in many other HPC applications
and as such imposes significant challenges. Note too that a solution is sought
for every angular direction and energy group, so multiple problem unknowns
exist and must be calculated in each cell. In the version of the equation studied
in this thesis the angular and energy domains are treated independently for each
solve after Baker [13], with appropriate coupling of these domains occurring in
the source terms which reside outside of the sweep routine.

The numerical schema results in a deep nesting of iterative loops, where for
each timestep a simple iterative scheme is used which is derived from solving
the left hand side of the transport equation given an estimate for the right hand
side. The solution of the left hand side is found by a matrix-free solve; it is this
part which forms the sweep across the spatial domain. This deeply nested loop
structure presents many unique challenges.

The high dimensionality of the solution also imposes severe memory foot-
print requirements on the computing resources. It is common practice to spread
the problem across many distributed nodes in order to be able to obtain suffi-
cient memory capacity (similar to strong scaling); this is essentially using the
largest possible domain per processor and increasing the processor count until
the desired problem size is reached (weak scaling). This decomposition over
the spatial domain occurs according to the Koch, Baker and Alcouffe (KBA)
algorithm [50]. Rather than decompose a 3D mesh to processors in a fashion to
minimise the surface area of the sub-domains in order to reduce the size of the
communication thus resulting from a 3D decomposition, a 2D decomposition
occurs so that each processor is given the full extent of one spatial dimension
in order to minimise the number of idle processors as the sweep progresses over
the mesh. The trend in the improvements to memory architectures, primarily
in the form of high bandwidth memory, are resulting in improved performance
characteristics at the expense of reduced memory capacity in comparison to the
traditional DDR memory technologies. Therefore investigating both the scalab-
ility of the algorithm as well as approaches to mitigate the capacity constraints
are crucial.

With simulation now being a crucial component of modern day science, it
is easy for study of a HPC application to become focused on solving particular
physics (input) problems. As a result there is often a large amount of legacy code
development which has resulted through organic growth into a large, unwieldy
code base. It becomes a challenge therefore to investigate the true nature of the

1.1. CONTRIBUTIONS 3

performance of the algorithm itself. Accordingly, proxy applications have been
developed within the community of both computational and computer scientists.
Such proxies are designed to capture the essential behaviour of an algorithm in a
small code base, without any of the extra associated components of a production
code such as complex mesh generation, I/O and error handling. Also known as
mini-apps, they focus on the loop structure, data movement and the appropriate
mixture of floating point operations (FLOPs) present in the algorithm, rather
than scientifically accurate input and output data, so that the computational
nature of the algorithm itself may be captured. This provides an agile vehicle
in which to explore the algorithm on modern computer architectures, and a
number of mini-apps will be both used and developed as part of this thesis.

Research into sweep algorithms on advanced architectures up until now has
focused on more simplistic algorithms, such as matrix factorisation where the
findings are not transferable to the sweep which is found in the solution of
deterministic transport. On transport solvers specifically, previous work (for
example [2, 9, 3]) focused primarily on the scalability of the KBA algorithm (see
Chapter 7) with new decomposition schemes designed for the IBM Blue Gene
range of supercomputers. Only the work of Villa et al. had examined transport
applications on GPUs, however they were unable to show that performance
improvements are possible [94]. This thesis shows that in fact GPUs can be
leveraged to provide performance improvements.

This thesis therefore takes a holistic approach in order to examine the solu-
tion of the transport equation on advanced multi- and many-core architectures.
The effects of the data dependency imposed by the sweep through the spatial
domain must be understood so that the benefits and characteristics of many-
core devices can be exploited successfully. In addition, the scaling challenges
presented by the sweep will be characterised, taking account the effects of the
interconnect; and in particular account for when the computation is accelerated
via the use of many-core technology. The memory requirements put pressure on
the entire memory hierarchy, from main memory through to the varying levels
of data cache, and these effects too will be explored.

1.1 Contributions
The contributions this thesis offers may be summarised as follows:

• The BabelStream benchmark is developed, which will allow a compar-
able, cross-platform, cross-vendor, memory bandwidth measurement. This
benchmark explores the portability, or lack thereof, of parallel program-
ming models for simple memory bandwidth bound kernels. This gives
computer scientists a ‘line in the sand’ (baseline) to compare memory
bandwidth bound kernels against; an approach used throughout this thesis
to compare the efficiency of attained memory bandwidth of transport ker-
nels.

• A new concurrency scheme for the transport sweep is both developed and
successfully implemented on GPU devices, showing that all parallelism in
the transport solve needs to be exploited in order to achieve good perform-
ance on GPU devices. This scheme achieves significant speedups for the
SNAP proxy application from Los Alamos National Laboratory (LANL),

4 CHAPTER 1. INTRODUCTION

the first time such speedups have been demonstrated. The runtime spee-
dups will be shown to be in line with the memory bandwidth advantages
of GPU architectures, as measured by BabelStream, and verify that the
new concurrency scheme successfully utilises the memory bandwidth for
performance.

• Two new transport mini-apps, mega-stream and mega-sweep, are designed
and implemented to capture important characteristics of the transport
kernels in larger applications such as SNAP. The mini-apps are used to
conduct a deep dive study into the cache behaviour of transport on CPU-
based processors, and to highlight the complex data reuse pattern in the
transport kernel. The work focuses on the restricted cache hierarchy of
the Intel Xeon Phi (Knights Landing) (KNL).

• A cross-platform performance model of the scalability of the transport
sweeps on multiple nodes of a supercomputer is presented. The model
leverages previous work by Bailey and Falgout [9] and extends it for mod-
elling both CPU and GPU architectures. The model was validated at
scale on the world’s two largest GPU-enabled supercomputers, Titan and
Piz Daint. This scaling study shows that the transport sweep becomes
network bound at scale, and emphasises the need for high performance
interconnects.

• A high order linear discontinuous Galerkin (DG) finite element method
(FEM) port of the SNAP mini-app is presented. Whilst unusual to use
this method on a structured grid code, it shows that such a high order
method may allow for a reduction in memory footprint of a structured grid
transport solve; a key challenge as the reduced capacity of High Bandwidth
Memory (HBM) and Multi-Channel DRAM (MCDRAM) technologies are
beginning to dominate architectural design. This implementation also
highlights that higher order methods may not necessarily require more
FLOPs overall due to increased memory movement resulting in a similar
computational intensity to the standard discretisation approaches. This
therefore questions the pursuit of high order methods in order to exploit
the ever increasing improvements in floating point operations per second
(FLOPS/s), which in and of itself does not necessarily yield good perform-
ance without careful thought about the movement of memory.

In summary, these contributions represent a holistic study into the solution
of Sn transport for structured grids on advanced architectures. The behaviour
of the key kernels are investigated at the node level, and the performance at
scale is tested and modelled. Further, issues formed by the memory footprint are
investigated at all levels of the memory hierarchy, from main memory through
cache.

1.2 Thesis overview
This chapter briefly introduced the motivation for the need to study the per-
formance of solving the transport equation on advanced computer architectures,
along with the contributions of this thesis to the field. The remainder of the
thesis is structured as follows:

1.2. THESIS OVERVIEW 5

Chapter 2 discusses the current trends in the field of HPC computer archi-
tecture. Terminology to describe the scaling of HPC codes on large supercom-
puters is summarised. Descriptions of various parallel programming models and
paradigms are introduced, primarily for use in Chapter 3.

Chapter 3 introduces the BabelStream benchmark and presents memory
bandwidth results on a wide variety of hardware. These results show that for
many parallel programming models, good performance may be obtained for
memory bandwidth bound kernels, rendering the choice of model largely down
to personal preference; a good state of affairs for application development in
this field. These results provide a baseline performance metric which will be
used to quantify the utilisation of effective memory bandwidth of key transport
kernels in subsequent chapters.

Chapter 4 gives a brief introduction to the transport equation. The focus
is on the computational aspects, specifically the data dependencies imposed
by the discretisation and the methods of numerical solution. Whilst there is
much interest in the derivation or physical ramifications of this equation, the
interested reader is referred to other texts on this matter as the focus of this
work is on the solution on advanced architectures. The SNAP proxy application
is introduced which will provide the vehicle for much of the work presented in
this thesis. Other transport proxy applications and their associated research are
surveyed, along with summaries of other relevant literature looking into solving
sweep based codes.

Chapter 5 describes the parallel scheme of the original SNAP proxy applic-
ation and introduces the concurrency scheme to enable good performance of
transport codes on GPU architectures. The performance of the scheme is tested
on a number of GPU devices, and is shown to leverage memory bandwidth ad-
vantages of GPU devices. The memory bandwidth of the transport kernel is
modelled and compared to results of the BabelStream benchmark in order to
present the sustained memory bandwidth of the transport kernel.

Chapter 6 introduces the need for new mini-apps to explore the complex
data access patterns in the transport kernel on more traditional CPU-based
architectures. The mega-stream and mega-sweep mini-apps are described and
baseline performance results are presented. Cache focused optimisations are
shown for mega-stream. The chapter pays particular attention to exploiting the
cache hierarchy in many-core CPUs, using KNL as its motivation as an exemplar
of a cache-based architecture with particular restrictive properties.

Chapter 7 explores the scalability of the transport sweep. A survey of pub-
lished performance models is presented. One model is enhanced to describe the
performance of the sweep in SNAP on both CPU and GPU architectures. This
model is verified at large scale on the two largest GPU enabled supercomputers.
These weak and strong scaling studies show that the transport sweep becomes
network bound at scale.

6 CHAPTER 1. INTRODUCTION

Chapter 8 includes a discussion of the computational nature of the DG FEM
method in comparison with the finite difference (FD) method. A parallel imple-
mentation of a FEM discretisation for the SNAP proxy application is described
and performance results are presented along with a discussion on memory ca-
pacity considerations.

Chapter 9 concludes the thesis with a summary of findings. Avenues for
future exploration in this field are presented focusing on extending this work to
unstructured domains.

Appendix A introduces the FD method and applies this discretisation ap-
proach to the spatial dimensions of the transport equation.

Appendix B introduces the FEM itself and applies the linear DG FEM in
order to discretise the spatial dimensions of the transport equation.

CHAPTER 2

High Performance Computing trends towards Exascale

Typical supercomputers of today are constructed from a collection of individual
compute nodes linked via a network interconnect. The nodes contain one or
more CPU processor sockets, and may also contain some heterogeneous hard-
ware in the form of an accelerator such as a GPU. The GPUs are typically
connected via PCIe, although recent advancements have introduced alternat-
ives such as NVLink which is only available for certain combinations of CPU
and GPU. The hardware itself although often being High Performance Comput-
ing (HPC) focused is made from commodity technology; this is in contrast to
specialist hardware such as Anton or early Cray systems. Zivanovic et al. sur-
veyed the memory capacities of the supercomputers in the Top 500 list and
found that most CPU based nodes are constructed with 2–3 GB of memory
per core [98]. For GPU based nodes the memory capacity of the GPU is set
by the GPU vendor and is not a choice during system construction; each GPU
however typically contains (up to an order of magnitude) less memory than the
CPU host node. The addition of heterogeneity into the computing node along
with increased core count in standard CPU architectures is causing significant
disruption for both system design and algorithms and applications.

The network interconnects however are typically designed for high perform-
ance rather than using standard technology such as Ethernet. All the inter-
connects focus on low latency and high bandwidth connections between nodes.
Examples include InfiniBand, Intel TrueScale and OmniPath, Cray Gemini and
Aries and custom interconnects such as those in Tianhe-2. The network connec-
tions are made to improve communication times between nodes, and the design
of this is known as the network topology. For example, the 3D torus topology
used in the Titan supercomputer connects nodes together in a 3D mesh. The
network allows neighbouring nodes to communicate efficiently, however long
range connections may require a high number of network hops. The Dragonfly
topology used in the Piz Daint supercomputer on the other hand connects is-
lands of nodes with all-to-all connections, with nodes inside the group connected
using another topology. Therefore long range communication aims to be min-

7

8 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

Titan Piz Daint (2012–16)

Machine Cray XK7 Cray XC30
Processor AMD Opteron 6274 Intel Xeon E5-2670

Cores/processor 16 8
GPUs NVIDIA K20X NVIDIA K20X

Processors/node 1 1
GPUs/node 1 1

Nodes 18,688 5,272
RAM/node 32 GB + 6 GB 32 GB + 6 GB
Interconnect Gemini (3D torus) Aries (Dragonfly)
RMAX [89] 17.6 PFLOPS/s 6.3 PFLOPS/s

Table 2.1: The Titan and Piz Daint supercomputers

imised as all islands can communicate directly, whilst neighbour communication
within the island is also efficient.

Information about Titan and Piz Daint, the two supercomputers used heavily
in this thesis are detailed in Table 2.1 as an example of modern supercomputer
construction.

This chapter will discuss some current trends in HPC architecture and in-
troduce some important concepts which will be used throughout the remainder
of the thesis. Formal definitions of scaling will be presented for use in analysing
the performance of transport applications on a large number of compute nodes.
The applications used and written for use in this thesis are written in a num-
ber of different parallel programming models, and summaries of them are to be
found in this chapter. Important concepts for modern multi-core CPUs such
as non-uniform memory access (NUMA) and vectorisation will also be defined
so that they can be used without further explanation in the remainder of the
thesis.

2.1 Moore’s law
In 1965, Moore predicted that the number of components in integrated circuits
would double every year [74]. Moore revised this estimate in 1975 to that of
doubling every two years [73]. These estimates have come to be known as
Moore’s law.

It is important to note that these laws are expressed in terms of complexity
of the circuit, and usually means the number of components. Improvements in
lithography are allowing a greater number of (smaller) transistors to be produced
in a single chip, thereby increasing their complexity under Moore’s law. Dennard
scaling refers to transistor energy being proportional to their size. It does not
however necessarily refer to the shrinking of transistor size which was the main
driver of Moore’s law until Dennard scaling drew to an end.

In more recent times, Moore’s law continues to hold however the number of
transistors has slowed to doubling every three years. The increase in transistor
count allows for an increased complexity of the chip. For example, each chip
boasts a number of independent compute cores, with each core consisting of
vector units.

2.2. SCALING 9

The Top 500 list records the historical trends in supercomputer design by
focusing on floating point performance [91], and McCalpin has also tracked the
historical trends by focusing on all aspects of the system including the compute
performance, network and memory [68]. The trends are showing that accel-
erated architectures such as GPUs are becoming more prevalent in the higher
echelons of Top 500 supercomputers as a means to continue to offer improved
performance over older systems, and therefore ensuring that applications can
exploit this hardware successfully will be key for future proofing code. Each as-
pect of computer architecture has developed at differing paces, and importantly
floating point performance has improved much faster than memory technology.
McCalpin defines a metric of system balance, the ratio of performance metrics,
and this highlights that over the last five years floating point performance has
increased twice as fast as memory bandwidth, and over the last three years twice
as fast as memory latency [68]. The latest computer architectures are providing
nearly 100 floating point operations (FLOPs) per word of memory accessed.
Unfortunately, many HPC applications including the solution of the transport
equation are in fact bound by the memory system of a processor rather than its
floating point operations per second (FLOPS/s). It is the novel and disruptive
technologies, such as GPUs, which are providing increased memory bandwidths
and exploiting this technology will be key to continued performance gains with
future systems.

2.2 Scaling

The relationships between the runtime of an application and the number of pro-
cessors used to execute the application can be captured by a number of metrics
which are known as forms of scaling. These metrics give a way to evaluate
the efficiency of the parallel program, and may guide appropriate maximum
processor counts for application runs.

2.2.1 Amdahl’s law

Amdahl observed that if a portion of an application is not able to utilise addi-
tional processors then the overall speedup that is possible is limited [6]. This can
be represented in the form of a numerical rule as presented by Gustafson [39]:

SA =
s+ p

s+ p
n

which describes the available speedup, SA, that is possible from n processors
for an application with a runtime of the sum of the serial, s, and parallelisable,
p, portions. As an example, for an application where 90% is run in parallel,
the maximum possible speedup of the entire code on 1000 processors is only
9.9X faster than totally serial execution; the serial portion of the code becomes
dominant in the overall runtime. If that application was improved so that 99.9%
was run in parallel, the maximum possible speedup of 1000 processors would
be 500X faster than serial execution. Therefore the fraction of serial code may
become dominant at a large number of processors.

10 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

2.2.2 Strong scaling

Strong scaling refers to the speedups that can be achieved from running an
application with a fixed problem size on multiple processors. With a fixed
problem size, as the problem is decomposed across the processors, each processor
will receive less work as more processors are added. The formula may be derived
from a simplification of Amdahl’s law:

Ss =
T1

Tn

where T1 is the serial execution time (T1 = s+ p) and Tn is the execution time
on n processors (Tn = s + p/n). For perfect strong scaling one would expect a
linear speedup of n times (nX) on n processors; for example if the number of
processors doubles the runtime should be halved resulting in a speedup of 2X.
However, serial portions of the code as a result of Amdahl’s law, along with any
overheads of running at large processor counts with diminishing local problem
sizes may be causes of imperfect strong scaling. Additionally the manner in
which work is shared between processors may be inherently unable to scale
linearly with processor count – it is such an application which is the subject of
this thesis.

2.2.3 Gustafson’s law

Whilst extra computational resource may be used to reduce the overall runtime
of an application through strong scaling, this extra processing power may be
used alternatively to increase the size of problem to be solved. Gustafson’s
law describes the available speedup where the problem size is scaled with the
number of processors [39]:

SG =
s+ p× n
s+ p

whereby unlike in Amdahl’s law, s + p represents the parallel execution time
on n processors. Therefore the numerator in this speedup metric would be the
time taken by a serial processor to execute the global problem; interestingly this
assumes that the parallel part of the problem is able to perfectly strong scale
out to n processors.

2.2.4 Weak scaling

Weak scaling refers to the speedups achieved from running an application with
a fixed problem size per processor. Therefore the global problem size is usually
the product of the number of processors and the size of the problem on each
processor. The formula can be derived from a simplification of Gustafson’s law:

Sw =
T1 × n
Tn

where T1 is the serial execution time of the global problem and Tn is the execu-
tion time on n processors. A perfect weak scaling would result in a speedup of 1,
whereby the runtime is constant. The addition of processors does not increase
the overall runtime thereby solving a larger problem in the same runtime.

2.3. PROGRAMMING MODELS 11

2.2.5 Parallel efficiency
One can use the strong and weak scaling models to construct a simple efficiency
metric:

PE =
S

n

where either of the strong (Ss) or weak (Sw) scaling speedup formulas can be
used to get strong or weak scaling efficiency respectively. For convenience this
fraction is often converted into a percentage.

Specifically therefore, strong scaling efficiency can be calculated as:

PEs =
T1

Tn × n

with weak scaling efficiency calculated as:

PEw =
T1

Tn

In both cases an efficiency of 100% would indicate perfect scaling.

2.3 Programming models
Parallel programming models are an enhancement to a standard programming
language to express parallel execution of code statements. They often come
with both a memory and execution model in order to determine synchronisa-
tion requirements, in particular formalising data sharing between parallel units.
They allow a programmer to write code which can run on multiple hardware
execution units, which may be present in a single hardware resource (such as
cores) and/or physically separated resources (such as compute nodes on a net-
work). They often take the form of compiler directives, language extensions or
an Application Programming Interface (API).

2.3.1 Message Passing Interface
Message Passing Interface (MPI) defines a standard way to communicate data
between processes via a network [71]. In principal, the computers are set up
in a communication group, and messages can be sent in a point-to-point or
broadcast manner between nodes in the group. Originally these consisted of
single processor nodes connected together on a network. The nodes do not share
memory, and the only way that data from one node can be read by another node
is by the first node sending a copy of that data over the network. This is known
as a distributed memory model.

With the advent of multi-core processors, and dual-socket nodes, more than
one Message Passing Interface (MPI) process may be run on any one physical
compute node; any memory allocated by each process is inaccessible by another
process. As such MPI can also be used to exploit the parallelism at the node
level. This leads to the term flat MPI, where MPI is used to describe the
parallelism at both the node and the interconnect level, with an instance of the
program running on every core of every node. Messages sent within a node
tend to exploit locality knowledge and use the shared memory space, rather

12 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

than communicating via a network interface; however this is a detail of the
implementation of the MPI runtime.

MPI can be combined with a shared memory parallel programming model
to explicitly describe the node level and interconnect level parallelism; all the
models listed in the upcoming sections are compatible. This is typically called a
hybrid model and denoted MPI+X, where X is the other ‘within node’ parallel
programming model. The correct balance of flat MPI or varying degrees of
hybrid MPI is difficult to predict in the general case due to communication
costs, memory footprint and NUMA effects of hardware cores within a shared
memory node.

2.3.2 OpenMP

The OpenMP API is a collection of compiler directives and standardised sub-
routines. The parallel paradigm is that of fork-join, where the starting serial
execution later splits into parallel threads (fork) which are then combined back
to serial execution after synchronisation (join). These parallel threads operate
redundantly in regions of code marked using the compiler directives, unless a
work-sharing construct is also specified. The work-sharing constructs are typ-
ically applied to loops where the iterations may be run in parallel, and by spe-
cifying the work-sharing construct the iterations of the loop are shared between
the available threads.

OpenMP utilises a shared memory model, where the memory is available to
all threads. As such it is the responsibility of the programmer to ensure data
races are not introduced and appropriate synchronisation takes place. To assist,
OpenMP includes support for specifying atomic operations or critical regions to
ensure only one thread modifies the data at a time.

Initially OpenMP was specified with multi-core CPU architectures in mind,
but the OpenMP 4 standard introduced the concept of offload to an attached
heterogeneous compute device with its own memory space. The memory model
is therefore expanded to support movement of memory between the host and
device memory spaces. Much of the memory movement is handled automatic-
ally by the OpenMP implementation, however arrays allocated on the heap in
particular must be moved manually between the two memory spaces using the
constructs in the OpenMP API. In a similar manner to the thread model, struc-
tured blocks of code are annotated with compiler directives to state that they
should be executed on the device. By default the offload occurs in a blocking
manner where the host waits until the offload is complete.

The OpenMP 4.5 refinement affords the programmer greater control of memory
movement by allowing them to move memory using compiler directives in an
unstructured manner, rather than enforcing a dependency on scope (through
structured code blocks). This allows for much more flexibility in the develop-
ment of applications and prevents invasive and disruptive code changes.

2.3.3 OpenACC

The OpenACC programming model began life as an investigatory project to
inform the OpenMP standard as to the best ways to augment the specifica-
tion with device offload support. Subsequently, OpenACC has been marketed

2.3. PROGRAMMING MODELS 13

strongly by its creators PGI and their parent company NVIDIA and today re-
tains enough momentum for it to be considered in its own right.

Compiler directives are added to simple loops to highlight to the compiler
that they may be parallelised. The compiler is then free to parallelise this
code as it sees fit through the use of the descriptive kernels directive, with
the specification describing this as creating ‘kernels’ for offload — a recursive
definition but taken to mean that the compiler can do whatever it thinks best
utilising auto-parallelisation research. The creators of OpenACC, PGI, advocate
using this mode of execution [72].

Some more control is given to the programmer through an additional parallel
directive. In this mode loops are annotated to say that the iterations are safe to
be computed in parallel and to be distributed to threads; in OpenACC a thread
refers to a vector lane.

The device memory space must also be explicitly managed by the program-
mer through additional compiler directives.

Full support of OpenACC is limited to a single compiler, owned by PGI, and
as such the target devices are limited to NVIDIA GPUs, Power 8 CPUs and x86
CPUs. The Cray and GCC compilers also provide some OpenACC support.

Unlike with OpenMP 4.5, the offloaded code is by default non-blocking, and
the host is free to continue working; the programmer is able to specify otherwise.

OpenACC allows memory to be cached in the scratchpad memory available
on GPUs, although the functionality is rather limited. Only slices of already
allocated arrays may be copied in, and there are many restrictions around this.
At the time of writing, we have confirmed after private communications with
PGI developers that the standard approaches for tiling matrix multiplication
operations are not able to be implemented correctly in the programming model
whilst also providing performance.

2.3.4 CUDA

The proprietary CUDA API provided by NVIDIA is designed for programming
their GPU devices using a C/C++ based language. The device code is written as
function calls in a single source code base. Much of the complexity of obtaining
a GPU device is removed through the use of default behaviour, however control
is provided for more complex situations. The functions to run on the device
are decorated with attributes and launched specifying launch parameters with
chevron notation. Logical threads are grouped together into thread blocks,
and the launch parameters determine the number of threads per block and the
number of blocks launched on the device; these parameters must be specified
for every kernel call. The physical GPU itself is constructed from a number of
streaming multiprocessors (SMs) each consisting of a number of CUDA cores.

The memory of the device is typically a separate memory space, although
in modern versions of CUDA the address space can be shared between the host
and the device, and the same pointers may be used everywhere, although the
programmer is responsible for synchronisation. CUDA can also take total con-
trol of memory movement, and therefore explicit movement need not necessarily
be written by the programmer. This is taken further in CUDA 8 along with
the Pascal GPU architecture which is able to page fault and migrate and cache
memory on the device on demand.

14 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

The kernel functions are typically written in a way that encapsulates the
loop body, with the launch parameters on kernel execution specifying the loop
iteration extent. As such the code can look different to the compiler direct-
ive based approaches used in some programming models such as OpenMP and
OpenACC where the loop itself is still written in the source code.

2.3.5 OpenCL

Khronos released OpenCL in 2009 as a royalty-free, open standard API. The
model is designed for programming an attached accelerator device which is con-
structed out of processing elements grouped into compute units. This is a
generic model and can be applied to a range of devices including CPUs, GPUs,
field-programmable gate arrays (FPGAs) and digital signal processors (DSPs).
On a CPU, a compute unit is typically seen as a core and a processing element
is a vector lane.

The device has its own memory space and memory movement must be ex-
plicitly managed by the host program (later versions of OpenCL introduced a
shared memory model whereby the movement of memory could be handled by
the framework itself).

Kernels are written in plain text in a subset of C99 and compiled at runtime
to allow execution on the device. A command queue is used to order the kernels,
memory transfers and synchronisation between the host and device.

Work-items characterise single instantiations of the kernels, and are logically
organised into work-groups, which can be one to three dimensional. On-device
synchronisation is allowed between work-items within a single work-group, but
not between different work-groups; this synchronisation occurs at the end of the
kernel execution.

2.3.6 Kokkos

Kokkos is a C++ abstraction layer, allowing programmers to write computa-
tional loop bodies as lambda functions, and execute them on a variety of ar-
chitectures through a number of frameworks, such as Pthreads, OpenMP and
CUDA. It is developed by Sandia National Laboratory (SNL) and is available as
open source. Data structures are encapsulated into Kokkos Views which handle
the allocation of memory in the correct way for each device. The Views differen-
tiate between host and device memory spaces in a consistent way. Execution of
the code on a different device therefore only requires changing the target device
and recompiling the application. The lambda functions are executed with a par-
allel dispatch function, which may be nested to express hierarchical parallelism.
The Kokkos implementation deals with the mapping of parallel execution onto
one of the backend models.

2.3.7 RAJA

RAJA is another C++ abstraction layer which can target CPUs via OpenMP
and NVIDIA GPUs via CUDA. It was released by Lawrence Livermore National
Laboratory (LLNL). Execution policies describe how the iteration space may be
executed in parallel. Memory allocations are also linked to a policy so that the
ordering of data in memory can match the appropriate execution order for good

2.4. VECTORISATION 15

performance. This allows the implementation of tiling schemes to be simplified,
as the correct data allocation is also taken care of by the abstraction layer. The
computational kernels are expressed as lambda functions and run via a parallel
dispatch function. The policies and target devices are typically described once
for each loop bound in a single source location so it is simple to update these
for execution on a different device.

2.3.8 SYCL

The SYCL C++ abstraction layer was developed by Khronos over OpenCL,
allowing for single-source codes entirely written in C++ unlike with OpenCL
which is C based and requires separate kernel source. Like OpenCL, SYCL
is an open standard. The kernels are written as lambda functions. SYCL is
designed to be close to C++14 so that a standard compiler may build it along
with a header and run on a CPU, with SYCL device compilers providing the
infrastructure for running on other devices which support OpenCL. The full
machinery of OpenCL is also exposed via the SYCL API if the programmer
requires it. The execution model is the same as OpenCL, consisting of work-
items and work-groups.

2.4 Vectorisation

Instructions generally operate on a single numerical value at a time, such as
adding two numbers together. Vector instructions increase the number of arith-
metic operations possible (of floating point, integer, etc. data types) by per-
forming a single operation (instruction) on more than one data item, but only
requiring a single instruction to be issued. As the number of instructions is
reduced this can also alleviate pressure on the fetch-decode units of the instruc-
tion pipeline. The vector width is often chosen to match the width of crucial
data paths, often those to the cache hierarchy. These instructions fall into the
Single Instruction Multiple Data (SIMD) classification of execution, where a
single instruction is issued which causes an operation to be performed on mul-
tiple data items. This is in contrast to Single Instruction Single Data execution
where an instruction only operates on a single data item. In x86 architectures,
vector registers are provided by the hardware which hold multiple data items.

Many optimising compilers are able to generate vector instructions in the
instruction stream. This is made possible through loop analysis which examines
data dependencies between memory accesses in the source code, and where no
dependencies occur vector instructions may be generated. Many heuristics are
used to balance the potential improvements to runtime that vector operations
provide with any overhead of performing the vector instructions. Writing source
code in order to take advantage of this compiler technology therefore requires
some care. Compilers may also provide programmers with a number of compiler
directives in order to direct the dependency analysis, and provide additional
details about loop trip counts, data alignment and dependencies. Some of these
directives are also available in OpenMP 4.5.

16 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

Socket 0 Socket 1

Memory Memory

NUMA 0 NUMA 1

Figure 2.1: Example NUMA regions in a dual-socket node

2.5 Non-uniform memory access
A typical two socket CPU node will usually provide two NUMA regions, each
assigned to a socket, with a shared address space. Memory access timing is
uniform within the region, but access to a different region takes much longer.

Two NUMA regions for an exemplar dual-socket CPU system are shown in
Figure 2.1. The sockets are connected via an interconnect such as the Intel
Quick Path Interconnect (QPI). Each socket is connected to some memory; this
memory is mapped as a single address space and is therefore accessible by cores
in each socket. However, the memory space is partitioned into NUMA regions,
so that access to the memory has different latencies depending on the path
taken. For example, it is fastest for a core in the socket to access only memory
associated with the same NUMA region; thus for Socket 0 it is fastest to access
memory directly connected to its own memory controllers, the memory residing
in NUMA region 0. This same address is accessible from Socket 1, however the
data must also travel through the socket-to-socket interconnect which increases
the latency of memory access.

Memory is typically allocated according to a first-touch policy. When a
memory address is first accessed by a particular core residing in a NUMA re-
gion, a page is allocated in the memory also associated with that same NUMA
region. Therefore for performant memory access in computational kernels,
memory should have been previously initialised in the same NUMA region that
the access takes place in.

2.6 Directed acyclic graphs
A directed acyclic graph (DAG) is a data structure which describes the con-
nectivity between a set of vertices (or nodes). This is typically notated G =
(V,E) where the graph G consists of a set of vertices V and edges E. The
vertices are connected together with edges, where an edge (i, j) specifies that
there is a connection from vertex vi to vertex vj . As the graph is directed, an
edge only describes a one-way relationship, and so does not also specify an edge
exists in the reverse direction, i.e. (j, i). The graph is also said to be acyclic is

2.7. SUMMARY 17

A

B

E

F

C

D

G

Figure 2.2: An example DAG

there are no cycles in any path through the graph; that is a path through the
graph following the edges does not go through the same vertex twice.

An example directed acyclic graph (DAG) is show in Figure 2.2. This graph
consists of seven nodes and ten directed edges. It is also an example of an acyclic
graph.

Although the study of graph properties is a field in its own right, their
relevance to this thesis is in their description of the scheduling of concurrent
work. In the mesh based approach of the deterministic transport application,
the graph vertices are cells in the mesh with the graph edges describing the
dependencies between the cells.

2.7 Summary

This chapter sets the scene of the current and near-future landscape of HPC.
The number of cores in a multi-core CPU are increasing, with NUMA effects
and vectorisation also becoming important to consider. More advanced com-
puter architectures such as GPUs are requiring increased levels of concurrency

18 CHAPTER 2. HPC TRENDS TOWARDS EXASCALE

in the algorithm but do provide memory bandwidth improvements. This trend
is set to continue on the path towards Exascale systems. Therefore it is import-
ant that all aspects of the HPC infrastructure, including programming models
and applications, are able to explore and exploit these different and disruptive
technologies.

CHAPTER 3

Measuring achievable memory bandwidth across diverse
many-core architectures

The work in this chapter also appears in the following publications:

• Tom Deakin and Simon McIntosh-Smith. GPU-STREAM: Bench-
marking the Achievable Memory Bandwidth of Graphics Processing
Units (poster). IEEE/ACM Supercomputing, 2015.

• Tom Deakin, James Price, Matt Martineau and Simon McIntosh-
Smith. GPU-STREAM: Now in 2D! (poster). IEEE/ACM Super-
computing, 2016.

• Tom Deakin, James Price, Matt Martineau and Simon McIntosh-
Smith. GPU-STREAM v2.0: Benchmarking the Achievable Memory
Bandwidth of Many-Core Processors Across Diverse Parallel Pro-
gramming Models. Performance Portable Programming Models Work-
shop at International Conference on High Performance Computing,
2016.

• Karthik Raman, Tom Deakin, James Price and Simon McIntosh-
Smith. Improving Achieved Memory Bandwidth from C++ Codes
on Intel Xeon Phi Processor (Knights Landing). The Intel Xeon Phi
Users Group Spring Meeting, 2017.

• Tom Deakin, James Price, Matt Martineau and Simon McIntosh-
Smith. Evaluating Attainable Memory Bandwidth of Parallel Pro-
gramming Models via BabelStream. International Journal of Compu-
tational Science and Engineering (special issue, in press), 2017.

A great many optimised High Performance Computing (HPC) applications
move a lot of memory in comparison to the number of floating point opera-
tions (FLOPs) and as such their performance becomes limited by the available
memory bandwidth of any particular hardware. The need to quantify what the

19

20 CHAPTER 3. MEASURING MEMORY BANDWIDTH

achievable performance of a memory bandwidth bound code could be has led
to the development of the gold standard of memory bandwidth benchmarks:
STREAM [66]. Indeed, the STREAM benchmark may be considered one of the
earliest mini-apps due to its development by McCalpin to consider the expected
performance of Earth Science codes on differing architectures [68].

The solution of the transport equation which is the focus of this thesis is an
example of a code which has relatively few FLOPs compared to the number of
memory accesses, and as such its performance should be bound by the memory
architecture. By first measuring the achievable memory bandwidth for a simple
routine it is then possible to quantify the percentage of bandwidth that a more
realistic kernel achieves. The STREAM benchmark, although prevalent in the
HPC community, has only been ported to very few programming models, and
for a limited range of computer architectures; in particular it does not run
on GPUs. Therefore the BabelStream benchmark (formally known as GPU-
STREAM) was written in order to quantify the memory bandwidth of a range of
devices in a portable, and importantly, fairly comparable manner. This chapter
addresses findings for BabelStream in its own right, but the results will become
the backbone of the comparative performance analysis of later chapters.

3.1 Memory hierarchy

In a well optimised high performance application, one would expect that a
particular feature of the computational hardware is being saturated such that
it becomes the limiting factor for performance. Traditionally this was typically
the floating point computation itself. The limit was how fast basic arithmetic
of real numbers could be calculated. As such the LINPACK benchmark was
developed to compare different supercomputers in terms of their computational
weight for arithmetic [30]. The benchmark produces a single number with units
of floating point operations per second (FLOPS/s). Therefore if a machine
with a higher FLOPS/s rate is developed you could therefore run your own
scientific application faster there. One could even make rough estimates at the
potential improvements, where a doubling of the FLOPS/s rate could mean
runtime halving. The LINPACK benchmark provides sets of historical data via
the Top 500 lists in order to track this improvement [90].

However over time the limiting factor for many applications is no longer the
arithmetic but rather data movement. Data caches are used to store portions of
data from main memory close to the execution units in the processor in order
to improve access times for frequently accessed data. Figure 3.1 shows the
approximate number of cycles to access each level of the cache hierarchy, using
data from Intel processors [47, 35]; this is based on the Skylake architecture. In
these Xeon processors, each core has its own L1 and L2 cache, with all cores
on a socket sharing a L3 cache. The L1 cache is closest to the functional units
and has the lowest latency, with latency increasing as memory is further away
from the core. Note that latency to main memory is presented in nanoseconds
rather than cycles as main memory typically operates on a different clock to
the cores; however a cycle time is shown relative to the core clock to give the
reader an idea of the number of core cycles which elapse during this time period.
With many floating point operations taking just a single cycle it is clear that
memory movement is a relatively expensive operation as it takes much longer

3.1. MEMORY HIERARCHY 21

L1 4 cycles

L2 12 cycles

L3 ∼ 44 cycles

DRAM ∼ 90 ns (∼ 200 cycles @ 2.2 GHz)

Figure 3.1: Memory access times for levels of the cache hierarchy for Skylake
according to Intel and De Gelas and Cutress [47, 35]

.

to move data into the floating point unit than it takes to do the arithmetic once
it has arrived. Therefore the cost of data movement should become the focus of
optimisation for codes with relatively few FLOPs.

The lat_mem_rd benchmark from LMbench can be used to quantify the
memory latency associated with memory accesses in the cache hierarchy levels [70].
The results from the benchmark for Broadwell and Intel Xeon Phi (Knights
Landing) (KNL) are shown in Figure 3.2; the benchmark was run with 256 MiB
arrays with a stride of 256, running 10 repetitions. The Broadwell processor
operated at 2.2 GHz and the KNL processor operated at 1.3 GHz. Each level of
the cache hierarchy can be seen as horizontal plateaus in the graph with their
position on the y-axis denoting the latency. For example, L3 access on Broad-
well takes around 17 ns, or around 38 cycles which corresponds to the data
shown in Figure 3.1; for this processor a cycle is 0.45 ns. On the KNL there
are only three horizontal regions corresponding to the L1 and L2 caches and
Multi-Channel DRAM (MCDRAM); note the lack of a L3 cache, and therefore
the penalty for missing in L2 is severe. Whilst the KNL latency in elapsed time
is generally longer than Broadwell recall that the clock speeds are somewhat
different and therefore the number of core cycles per memory access is similar
on both architectures. It is the realised latency in core cycles which is the im-
portant factor when considering the performance of the memory architecture
rather than the real latency in nanoseconds; for this gives an indication into
the balance of floating point operation (FLOP) and memory performance of an
architecture.

The sizes of the caches are also visible in Figure 3.2; both processors have
32 KiB L1 caches, Broadwell has 256 KiB L2 cache with KNL having 1 MiB
although this is shared between two cores on a tile (the benchmark is serial so
the full 1 MiB is available to the core), and finally Broadwell has 55 MiB L3
cache. The final plateau corresponds to main memory, which is double data
rate dynamic random-access memory (DDR) on Broadwell and MCDRAM on
KNL.

McCalpin has analysed the ratio of floating point operations to memory
latency (the time to access memory) and found that recent CPU systems can
perform around 100 FLOPs whilst waiting for a byte to arrive from the main
memory [68]. By examining the historical trends of this ratio McCalpin also

22 CHAPTER 3. MEASURING MEMORY BANDWIDTH

211 214 217 220 223 226

Array size (bytes)

100

101

La
te

nc
y

(n
s)

lat_mem_rd, size=256, stride=256
KNL
Broadwell

Figure 3.2: Memory latencies on Broadwell and KNL as measured by
lat_mem_rd

found that memory latency is increasing at around 4% per year, primarily
dominated by coherence rather than data transfer combined with decreasing
clock frequencies to maintaining strict power (and cooling) budgets. Whilst
the peak FLOPS/s rate can be increased through Single Instruction Multiple
Data (SIMD) instructions, clock speeds and core count, which are all ultimately
driven by improvements in transistor density according to Moore’s Law, im-
provements to the memory system are somewhat more challenging. In partic-
ular whilst improvements to memory bandwidth through memory technologies
such as MCDRAM and High Bandwidth Memory (HBM) have improved the
memory bandwidth, the ratio of FLOPS/s to peak memory bandwidth has still
increased at around 14% a year. As such the system imbalance is increasing
over time, and for applications with runtime dominated by properties of the
memory system each generation of technology provides less improvement than
for applications dominated by floating point operations.

3.1.1 The Roofline model
The Roofline model along with refinements such as the cache-aware Roofline
model gives a way of categorising what the limiting architectural factor is for
important routines, or kernels, in applications based on the ratio of floating
point operations to memory accesses [95, 46]. The cache-aware Roofline model
is rather more helpful in such discussions as it exposes the full cache hierarchy.

Each kernel is modelled by counting the number of floating point opera-
tions and memory load and stores in bytes; the memory operations are counted

3.1. MEMORY HIERARCHY 23

Computational intensity

F
LO

P
S/

s F (I)

AB

Figure 3.3: Illustration of the cache-aware Roofline model

from the perspective of the kernel so are actually cache-oblivious, as all memory
operations are counted the same no matter where they come from. The com-
putational intensity is therefore the ratio of FLOPs in the application kernel
to bytes moved by the kernel. A ratio of 1 implies one FLOP for each byte
moved, with ratios greater than 1 implying more FLOPs than memory move-
ment. Of more interest to this thesis is the case where the ratio is less than 1,
with fewer FLOPs than memory moved. One does not have to look particularly
hard for simple mathematical functions where this is the case, a simple addi-
tion operation requires two numbers for a single floating point operation; and
such numbers are typically each represented by 8 bytes in double precision —
the computational intensity of this addition is therefore 1/16 excluding writing
the result. Other operations require many more FLOPs such as trigonometric
functions and square root operations.

The Roofline model relates the computational intensity to peak floating point
performance of a particular architecture via the following function taken from
Ilic et al. [46]:

Fα(I) = min (B(β)× I, F (φ))

where I is the computational intensity, F (φ) is the peak FLOPS/s of the device
and B(β) is the peak memory bandwidth available from a particular level of
the cache hierarchy. This function can then be plotted on a chart such as
is sketched in Figure 3.3. Here the function represents a literal Roofline on
achievable performance for a given architecture.

The computational intensity of scientific application kernels can then be
modelled and plotted on the Roofline model in order to advise the programmer
as to the performance limiting factors. For example, kernel A on the sketch
is beneath the horizontal portion indicating that the limiting factor should be
floating point operations and even if the memory bandwidth of the architecture
could be improved the runtime of the kernel would change little. Whereas ker-
nel B is beneath the diagonal implying that memory bandwidth should be the
limiting factor, and increasing the floating point performance of the architec-
ture would not assist. Such guidance is given to the programmer as to which
optimisations will give the most beneficial effect. Neither of the kernels A and B
are lying on the Roofline itself and so therefore show need for optimisation. For
kernel A the focus should be on optimising FLOPs and optimisations to kernel
B should prioritise memory movement. A single Roofline plot such as this may
include multiple ‘roofs’, each corresponding to a level in the memory hierarchy.

24 CHAPTER 3. MEASURING MEMORY BANDWIDTH

3.2 The STREAM benchmark
Memory bandwidth is the amount of data that can be moved through the system
in a given period of time. The memory latency is the time it takes for a data
item (a single byte) to move through the system. As such the two quantities
are related, but the general approach for improving the speed at which memory
is available is to provide a wider interface, or more memory controllers, so that
more data can be moved concurrently and therefore more data moved in the
time period, increasing the memory bandwidth rather than reducing the latency.

The STREAM benchmark, similar in community adoption to LINPACK,
seeks to determine the available memory bandwidth on a particular compu-
tational node [66]. The benchmark is made up of simple routines where it
is straightforward to model the effective memory bandwidth. The effective
memory bandwidth is counted so that each data item is loaded or stored only
once in each kernel, and that the data set is large enough that it must be re-
loaded from main memory (and not cached) when used again in the proceeding
kernel. It is constructed from four simple routines utilising simple element-wise
arithmetic on large arrays:

1. Copy: c(i) = a(i)

2. Multiply: b(i) = αc(i)

3. Add: c(i) = a(i) + b(i)

4. Triad: a(i) = b(i) + αc(i)

In these routines α is a fixed scalar constant.
It is often convenient to speak of the routines in terms of vectors from the

field of linear algebra. The Copy operation duplicates the vector in memory.
The Multiply operation scales a vector by a fixed quantity. The Add operation
performs the element-wise sum of two vectors. The Triad kernel is a combination
of Multiply and Add, whereby a vector is scaled and added to a vector with
the result stored in a third. Note this is slightly different to the axpy routine
from Level-1 BLAS where the result is overwritten into one of the vectors:
b(i) = b(i) + αc(i).

These routines can be extended by a fifth, from the STREAM2 bench-
mark [67]:

5. Dot:
∑
i a(i)× b(i)

The Dot routine is a vector dot-product of two vectors and produces a single
scalar value.

The STREAM2 benchmark was written to test the different levels of the
cache hierarchy. It is a serial code with loops partially unrolled, a technique
which for vector machines was designed to assist vectorisation, however on mod-
ern SIMD architectures is not recommended as this may generate gather instruc-
tions. The number of iterations is different for each kernel in this benchmark,
and the control flow is fairly complex. As such this benchmark is not repres-
entative of how, for example, a dot-product would be conducted in a larger
code today. When comparing to a baseline dot-product performance therefore
a simple dot-product kernel in the STREAM regime of fixed iteration counts
has been implemented.

3.2. THE STREAM BENCHMARK 25

Kernel Load Store Total Computational Intensity

Copy N N 2N 0
Multiply N N 2N 1/16
Add 2N N 3N 1/24
Triad 2N N 3N 2/24
Dot 2N 0 2N 2/16

Table 3.1: Memory movement in the STREAM kernels

Table 3.1 shows the number of load and store operations required for each
routine (kernel) given the number of elements in the array N . It is assumed
that N is large enough that the scalar load of the α value is not important. It is
simple to calculate the effective memory bandwidth for each kernel by dividing
the total memory moved (in bytes) by its runtime. On most systems a double
precision floating point number is 8 bytes, so for the Triad kernel 24N bytes are
moved during its execution.

Table 3.1 also shows the balance of load and store operations in the kernels.
Both Copy and Multiply read and write an equal amount of data, whilst Add
and Triad loads twice as much as it stores. Dot on the other hand only reads
data and does not write to main memory at all. Therefore these kernels may
highlight asymmetry in an architecture’s memory system. The computational
intensity according to the cache-aware Roofline model of each of these kernels
is low and therefore they fall into the memory bandwidth bound section of the
‘roof’.

3.2.1 Other memory bandwidth benchmarks

The STREAM benchmark is not the only attempt to measure memory band-
width. A number of benchmark suites include metrics to measure this, and their
limitations are discussed in this section. Additionally many device vendors pro-
duce their own benchmarks which measure memory bandwidth. In particular
the CUDA samples from NVIDIA contain a memory bandwidth example, how-
ever this uses a memory copy Application Programming Interface (API) call
which does not contain any FLOPs rather than execution of a STREAM-esque
kernel.

The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite is a large
collection of small and large computational kernels used for testing the perform-
ance of heterogeneous systems [21]. The Triad kernel is included in this suite as
the deviceMemory benchmark, however the time to transfer the arrays to and
from the device are included in the achieved memory bandwidth calculation.
This therefore does not capture the performance of the kernel itself with respect
to the movement of memory between the execution units and device memory;
it is this characteristic that the original STREAM benchmark captures and the
upfront cost of memory allocation and initialisation is not included. Addition-
ally, the movement of data arrays to a device are typically considered a one off
initialisation cost and in an optimised application the data would be resident on
the device as much as possible. Therefore the assumed pattern in this bench-
mark of the data remaining resident on the host is unrepresentative, and so is

26 CHAPTER 3. MEASURING MEMORY BANDWIDTH

not comparable to STREAM in its measurement of memory bandwidth.
An OpenCL benchmark designed to measure memory bandwidth, clpeak,

uses the vector types to implement a reduction [16]. The use of vector types in
this way may result in non-contiguous memory access patterns. The OpenCL
API supports querying the device for the preferred vector width of kernel imple-
mentations; a value which is typically one for modern GPUs and as such using
the vector types inside the kernel is not the recommended approach any more.

The Standard Parallel Evaluation Corporation (SPEC) ACCEL benchmark
suite contains a number of memory bandwidth bound kernels derived from real-
world use cases [88]. The benchmark however does not include any of the
STREAM kernels.

In summary therefore, beyond the STREAM benchmark itself, there are
no other benchmarks which aim to measure the memory bandwidth under the
same ethos; namely what memory bandwidth is achievable for representative
computational kernels. BabelStream aims to fill this gap in a portable way.

3.3 The first BabelStream benchmark

The BabelStream benchmark is a new implementation of the STREAM ker-
nels focusing on performance portability and platform portability. The ori-
ginal STREAM benchmark is written in C and uses the OpenMP programming
model. As such it is only able to run on CPU style architectures and therefore
unable to run on many-core devices, in particular GPUs. BabelStream was ini-
tially therefore first implemented in GPU suitable programming models, which
also ran on CPUs too, in order to have a common benchmark for comparing
the relative memory bandwidths between the multi-core and many-core devices.
Much of the advantage of porting an application to run on a GPU was to take
advantage of the improved memory bandwidth available there. BabelStream
was then later extended to consider more programming models, as discussed in
Section 3.4.

Whilst the STREAM benchmark has been a stalwart of CPU performance
benchmarking, it is not possible to present results from other architectures as
the benchmark simply does not run there. BabelStream therefore allows results
to be generated across different architectures including CPUs, and so repres-
ents a fair test of achievable memory bandwidth. Because the kernels are also
identical to STREAM, we should expect the numbers to be comparable. In a
similar way to LINPACK providing a cross-platform, single unit of comparison,
the BabelStream benchmark also serves a similar function; the same code may
be run on many different systems in a fair way so that they may be directly
compared.

The allocation, initialisation and the transfer of memory to the GPUs are
not included in our timing measurements. The execution time of the kernel
itself is used in the memory bandwidth calculation. This allows us to calcu-
late the bandwidth of memory for the computational kernel alone. As such a
synchronisation is required at the end of each kernel in order to generate accur-
ate timings. The kernels therefore must behave as blocking calls with respect
to the host. In self-hosting situations such as on CPUs this results in a syn-
chronisation between threads, whereas on attached devices such as GPUs this
results in a synchronisation between the device and the host. In both cases this

3.3. THE FIRST BABELSTREAM BENCHMARK 27

ensures that from the perspective of the kernel driver (containing the timing
routines) the computation has completed. The original STREAM benchmark
also synchronises after each kernel and does not begin the next kernel without
synchronising.

3.3.1 Initial results

The first version of BabelStream was implemented in OpenCL and CUDA, and
consisted of the original four STREAM kernels. It was originally named GPU-
STREAM as its primary focus was a GPU capability for measuring memory
bandwidth. This allowed GPU results to be generated across NVIDIA and AMD
consumer and HPC GPUs. Additionally the Intel Xeon Phi (Knights Corner)
(KNC) co-processor and Intel CPUs are able to run both STREAM and the
OpenCL version of BabelStream and so direct comparisons can be made.

These initial results shown in Figure 3.4 allow a single graph such as this
to be produced for the first time, displaying the achieved memory bandwidth
along with the percentage of theoretical peak taken from the device technical
specifications. The achieved bandwidth (lighter colour) is overlaid on to the
theoretically achievable peak (darker colour), with the percentage of achieved
peak printed as labels. Of the devices tested at the time, the AMD Fury X
GPU achieves the highest memory bandwidth, thanks to its use of HBM. The
NVIDIA K40 offers the highest memory bandwidth of NVIDIA’s HPC focused
line; note that only one of the K80’s two GPUs was used in this experiment.
The AMD S9150 HPC GPU achieves a higher memory bandwidth than all of
NVIDIA HPC devices, and is close in performance to the NVIDIA consumer
GPUs. Such claims as these are made possible by having a single graphic which
measures the achievable memory bandwidth in a fair way.

What is clear to see in this figure is that the OpenCL implementation on
Intel’s CPU architectures is somewhat lacking, and this is improved in sub-
sequent versions of the benchmark. This lack of performance is primarily down
to the copying of OpenCL buffers between the host and device not being non-
uniform memory access (NUMA) aware. The performance measured for the
McCalpin STREAM on KNC is only 137 GB/s, representing 43% of theoretical
peak memory bandwidth, and so the OpenCL performance is similar on this
device; however neither are particularly high.

3.3.2 The effect of error correcting code memory

With this benchmark the effect of error correcting code (ECC) memory on
memory bandwidth on GPU architectures is also quantified. The GPUs that
support ECC allow it to be turned on and off, and so the benchmark was run
in both these configurations. Every byte in memory is checked for errors with a
single bit; alternatively every 8 bytes is checked with a single byte. As such an
extra byte must be read for every eight bytes read. This also has the side effect
that the memory capacity of the device is also reduced by this ratio. The GPUs
in this study do not provide any extra hardware resource within the memory
controller for the extra bytes. As such achievable memory bandwidth is lost,
resulting in 12.5% of the theoretical peak memory bandwidth being lost.

This behaviour is also replicated for the achieved memory bandwidth as
shown in Figure 3.5 (lighter colours in the figure). The BabelStream benchmark

28 CHAPTER 3. MEASURING MEMORY BANDWIDTH

K20c
K40

K80

GTX 780 TiGTX 980 Ti
S9150

S10000
Fury X

KNC

Sandy BridgeIvy Bridge
0

100

200

300

400

500
GB/s

83.7%

76.7%

85.4%

83.9%
79.9%

85.3%

85.8%

78.1%

34.4%

28.3%
44.4%

NVIDIA peak
NVIDIA achieved
AM

D peak
AM

D achieved
Intel peak
Intel achieved

F
igure

3.4:
B
abelStream

v1
T
riad

m
em

ory
bandw

idth
across

devices
(from

[23])

3.4. EXPANDING BABELSTREAM 29

K80 K40 K20c
0

50

100

150

200

250

300

GB
/s

86.7%

77.0%

83.5%

85.4%

76.7%

83.7%

Peak - ECC on
Achieved - ECC on
Peak - ECC off
Achieved - ECC off

Figure 3.5: Effect of ECC on achievable memory bandwidth on NVIDIA HPC
GPUs (from [23])

achieves similar percentages of peak memory bandwidth independent of the
ECC settings, and as such the effect of performing the ECC parity check is
not significantly impacting what the achievable bandwidth is. Rather the cost
of reading the extra memory reduces the available memory bandwidth for the
application itself. On CPUs it is not possible to turn ECC memory off in this
manner as it is determined via the memory controller. However, CPU memory
controllers use extra hardware resource, extra wires, to read the extra byte, and
so memory bandwidth would not be negatively effected by this.

3.4 Expanding BabelStream with multiple pro-
gramming models

When selecting a parallel programming model in which to write a high perform-
ance code, one would hope that the choice does not limit the ability to reach
the respective hardware limits of the device. Many of the programming models
also purport to allow a degree of performance portability, and at least func-
tional portability. As such the BabelStream benchmark was rewritten to survey
the current terrain of what memory bandwidth can be reasonably achieved for
the STREAM kernels, across a wide range of devices and programming models.
The simple kernels are written according to community best practices employed
in scientific codes; for example using signed loop iterator variables (to mitig-
ate index integer overflow concerns) and using restrict on pointers to prevent
aliasing. Ultimately, if simple STREAM kernels are unable to achieve close to
theoretical peak memory bandwidth limits, it is unrealistic to expect a large,
complex, scientific code with memory bandwidth bound kernels to also achieve
these limits.

As a side effect, this Open Source code can provide the HPC community
with a sort of Rosetta Stone for each of the programming models. Firstly as a
translation resource for understanding new programming models; as the kernels

30 CHAPTER 3. MEASURING MEMORY BANDWIDTH

implemented are the same, the code acts as a way to compare the syntax required
to write codes in a particular model. Secondly, it can serve as a place for
demonstrating such best practices for each of the programming models in order
to obtain an acceptable degree of performance portability.

The programming models used represent a range of abstractions and ma-
turity. OpenCL and CUDA are relatively low level abstractions. OpenMP and
OpenACC are compiler directive based approaches which allow existing codes
to be annotated. Kokkos, RAJA and SYCL are all C++ abstraction layers
describing the computational kernel as a lambda function executed under a
parallel policy, a high level abstraction. Each of these models are sufficient to
describe the parallelism for the STREAM kernels and there is nothing in any of
their memory models which would prevent them from achieving peak memory
bandwidth. As such this work represents a survey of the current capability of
the implementation of the models on a wide variety of hardware.

The initialisation of data on the device is done with an initialisation kernel
instead of a simple memory copy. This is to ensure that any NUMA effects
are mitigated, most often caused from the first-touch policy of memory alloca-
tion: the memory is allocated in the NUMA region where it is first used by a
core in that region. On GPUs this makes no difference, even for those devices
with multiple memory controllers such as the NVIDIA P100: the bandwidth
differed by an insignificant 0.01% between the CUDA implementation of Babel-
Stream using a memory copy API or a initialisation kernel; it is likely that the
latency tolerance of GPUs masks any measurable differences here. Note that
the memory bandwidth of the CPU to GPU interconnect (such as PCIe) has
much lower bandwidth than GPU main memory bandwidth and so therefore in
an application with a large memory footprint it may be best practice to initialise
the data on the device if possible for best performance. However on CPUs this is
important; a memory copy would initialise all the data in one NUMA region and
therefore a penalty would apply for access to this memory from other NUMA
regions. As such the implementation of the kernels in each model is allowed to
allocate and initialise the memory in a suitable manner; an approach consistent
with a large application utilising a single programming model.

3.5 BabelStream performance

The BabelStream benchmark was run on 14 different devices from 4 hardware
vendors: NVIDIA, AMD, Intel and IBM. The range of hardware covers both
HPC and consumer GPUs, CPUs and the KNL processor, and is listed in
Table 3.2. All the CPU systems are dual socket and hence the theoretical peak
bandwidth is multiplied by two as shown. The theoretical peak memory band-
width figure for KNL is not available and so the quoted value is based on the
claimed five times DDR bandwidth. The KNL was booted into Flat/Quadrant
mode and memory was allocated directly into MCDRAM via the numactl tool.

These devices were unfortunately not available in a single system and so a
variety of platforms were used. The University of Bristol experimental cluster,
named the ‘Zoo’ housed the consumer NVIDIA GPUs (GTX 980 Ti and Ti-
tan X), all of the AMD GPUs and the KNL. The K20X, Haswell and Broad-
well CPUs were situated in the Cray XC40 supercomputer ‘Swan’ and the K40
and K80 were in the Cray CS cluster ‘Falcon’. The P100 was available in the

3.5. BABELSTREAM PERFORMANCE 31

Cray XC50/XC40 supercomputer ‘Piz Daint’ at Swiss National Supercomput-
ing Centre (CSCS). The Power 8 CPUs were made available from an Advanced
Systems Technology Test Bed at Sandia National Laboratory (SNL). The Sandy
Bridge CPUs were from BlueCrystal Phase 3 from the Advanced Computing Re-
source Centre at the University of Bristol. The Ivy Bridge CPUs were part of
the Cray XC30 supercomputer ‘Edison’ at National Energy Research Scientific
Computing Center (NERSC).

Due to the plethora of devices, programming models and systems used to
gain the large coverage of combinations used for experimentation, a wide variety
of compilers was used in order to build the benchmark for each combination of
device and model. The exact combinations are shown in Table 3.3 and Table 3.4.
For the SYCL results on NVIDIA GPUs, the ComputeCpp compiler generates
SPIR, which the NVIDIA OpenCL driver did not support; therefore an exper-
imental NVIDIA back end to pocl1 was used for these cases. Whilst it may
have been preferable to use the PGI compiler for all OpenACC results, it was
unavailable on some of the systems. Note too that the highest x86 CPU archi-
tecture supported by the available version of the PGI compiler was Haswell, and
so this was set as the target architecture for the Broadwell and KNL processors.

3.5.1 Triad performance

Implementations of BabelStream benchmark in each of the programming models
were run on each of the devices listed previously. The arrays were of length 225

double precision elements, which means each of the arrays were 256 MiB and as
such are larger than any of the caches on the devices; therefore the data must
be read from main memory. The scalar data type was used in all cases (rather
than vector data types such as double4) as they are supported by all the tested
models (unlike the vector data types) and as discussed in Section 3.2.1 modern
devices prefer this approach. 100 iterations were run with the minimum runtime
used to calculate the memory bandwidth, excluding the first iteration. Some
implementations of the programming models themselves prevent running the
benchmark on some devices, and so results cannot be presented in these cases.
This is down to the implementation of the model rather than a fundamental
aspect of it which is incompatible with some devices. The results for the Triad
kernel are representative of the other STREAM kernels and so these results will
be discussed, and the observations and conclusions apply to the other kernels.
The Dot kernel will be discussed separately in Section 3.5.2. As before, the
percentage of peak memory bandwidth will be calculated for the kernel.

The results in this section will be presented using a heatmap so that a value
for each programming model executed on each device can be seen; darker colours
represent higher (better) values. Where no result is possible, primarily due to
unsupported combinations of programming model and device, it will be marked
as ‘N/A’. As an example, the original STREAM benchmark (labelled McCalpin)
is not able to run on GPUs and as such these results are marked ‘N/A’. There
are a surprisingly large number of unsupported combinations, however this is
down to vendor support rather than due to an incompatibility or issue with the
programming model. As such the missing results should be seen as a weakness
of the ecosystem surrounding each programming model. Note however that

1http://portablecl.org

http://portablecl.org

32 CHAPTER 3. MEASURING MEMORY BANDWIDTH

N
am

e
A
rchitecture

C
lass

V
endor

M
em

ory
type

M
em

ory
B
W

(G
B
/s)

K
20X

K
epler

G
P
U

N
V
ID

IA
G
D
D
R
5

250
K
40

K
epler

G
P
U

N
V
ID

IA
G
D
D
R
5

288
K
80

(1
G
P
U
)

K
epler

G
P
U

N
V
ID

IA
G
D
D
R
5

240
G
T
X

980
T
i

M
axw

ell
G
P
U

N
V
ID

IA
G
D
D
R
5

224
T
itan

X
P
ascal

G
P
U

N
V
ID

IA
G
D
D
R
5X

480
P
100

P
ascal

G
P
U

N
V
ID

IA
H
B
M
2

732
S9150

H
aw

aii
G
P
U

A
M
D

G
D
D
R
5

320
Fury

X
F
iji

G
P
U

A
M
D

H
B
M

512
E
5-2670

Sandy
B
ridge

C
P
U

Intel
D
D
R
3

2×
51.2=

102.4
E
5-2697

v2
Ivy

B
ridge

C
P
U

Intel
D
D
R
3

2×
59.7=

119.4
E
5-2698

v3
H
asw

ell
C
P
U

Intel
D
D
R
4

2×
68=

136
E
5-2699

v4
B
roadw

ell
C
P
U

Intel
D
D
R
4

2×
76.8=

153.6
X
eon

P
hi7210

K
nights

Landing
M
IC

Intel
M
C
D
R
A
M

∼
5×

102
=

510
P
ow

er
8
@

3.69
G
H
z,8

core
P
O
W

E
R

C
P
U

IB
M

D
D
R
4

2×
192=

384

T
able

3.2:
List

of
devices

used
in

B
abelStream

experim
ents

(from
[28])

3.5. BABELSTREAM PERFORMANCE 33

M
od

el
K
20
X

K
40

K
80

G
T
X

98
0
T
i

T
it
an

X
P
10
0

S9
15
0

Fu
ry

X

G
P
U

D
ri
ve
r

35
2.
68

36
1.
93
.0
2

36
1.
93
.0
2

37
0.
28

37
0.
28

37
5.
20

19
12
.5

19
12
.5

R
A
JA

G
N
U

5.
3

G
N
U

4.
9

G
N
U

4.
9

G
N
U

4.
9

G
N
U

4.
9

G
N
U

5.
3

N
/A

N
/A

K
ok

ko
s

G
N
U

5.
3

G
N
U

4.
9

G
N
U

4.
9

G
N
U

4.
9

G
N
U

4.
9

G
N
U

5.
3

N
/A

N
/A

O
pe

nM
P

C
C
E

8.
5.
5

C
C
E

8.
5.
5

C
C
E

8.
5.
5

cl
an

g-
yk

t
cl
an

g-
yk

t
C
C
E

8.
5.
5

N
/A

N
/A

O
pe

nA
C
C

P
G
I
16
.1
0

C
C
E

8.
5.
5

C
C
E

8.
5.
5

P
G
I
16
.7

P
G
I
16
.7

P
G
I
16
.9

P
G
I
16
.7

N
/A

C
U
D
A

7.
5

7.
5

7.
5

7.
5

8.
0

8.
0

N
/A

N
/A

O
pe

nC
L

-
-

-
-

-
-

-
-

SY
C
L

C
om

pu
te
C
pp

C
E
0.
1.
2

T
ab

le
3.
3:

C
om

pi
le
r
co
nfi

gu
ra
ti
on

s
fo
r
B
ab

el
St
re
am

ex
pe

ri
m
en
ts

on
G
P
U
s
(f
ro
m

[2
8]
)

M
od

el
Sa

nd
y
B
ri
dg

e
Iv
y
B
ri
dg

e
H
as
w
el
l

B
ro
ad

w
el
l

K
ni
gh

ts
La

nd
in
g

P
ow

er
8

M
cC

al
pi
n

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

7.
0

X
L
13
.1
.4

R
A
JA

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

7.
0

X
L
13
.1
.4

K
ok

ko
s

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

7.
0

X
L
13
.1
.4

O
pe

nM
P

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

6.
0

In
te
l1

7.
0

X
L
13
.1
.4

O
pe

nA
C
C

P
G
I
16
.1
0

P
G
I
16
.1
0

P
G
I
16
.1
0

P
G
I
16
.1
0

P
G
I
16
.1
0

X
L
13
.1
.4

O
pe

nC
L

In
te
l1

6.
1

In
te
l1

5.
1

In
te
l1

5.
1

In
te
l1

5.
1

In
te
l1

6.
1.
1

N
/A

SY
C
L

C
om

pu
te
C
pp

C
E
0.
1.
2

N
/A

T
ab

le
3.
4:

C
om

pi
le
r
co
nfi

gu
ra
ti
on

s
fo
r
B
ab

el
St
re
am

ex
pe

ri
m
en
ts

on
C
P
U
s
(f
ro
m

[2
8]
)

34 CHAPTER 3. MEASURING MEMORY BANDWIDTH

K2
0X K4

0
K8

0
GT

X
98

0
Ti

Tit
an

 X
P1

00
S9

15
0

Fu
ry

 X
Sa

nd
y

Br
id

ge
Ivy

 B
rid

ge
Ha

sw
ell

Br
oa

dw
ell KN
L

Po
we

r 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

73%

72%

70%

70%

73%

66%

70%

N/A

66%

66%

63%

63%

67%

60%

64%

N/A

76%

73%

71%

71%

74%

66%

70%

N/A

80%

80%

79%

73%

80%

76%

79%

N/A

75%

75%

75%

69%

72%

71%

73%

N/A

75%

75%

76%

71%

75%

73%

74%

N/A

84%

N/A

84%

N/A

N/A

N/A

85%

N/A

86%

N/A

N/A

N/A

N/A

N/A

85%

N/A

55%

N/A

27%

52%

53%

53%

55%

64%

47%

N/A

34%

63%

62%

62%

48%

85%

61%

N/A

40%

67%

65%

67%

61%

88%

44%

N/A

31%

64%

63%

65%

44%

83%

46%

N/A

51%

59%

58%

24%

43%

88%

N/A

N/A

N/A

78%

77%

77%

N/A

78%

10

20

30

40

50

60

70

80

%
 o

f t
he

or
et

ica
l p

ea
k

Figure 3.6: Fraction of theoretical peak memory bandwidth obtained by the
BabelStream Triad kernel (from [28])

any missing results does mean a lack of portability, until an implementation is
released. Support for NVIDIA GPUs is good and so these results are complete.
AMD GPUs however suffer as at the time of writing it is not possible to directly
compile and run CUDA, OpenMP, Kokkos or RAJA codes. The GPU support
for both Kokkos and RAJA has been implemented using CUDA. Support for
OpenACC on these devices has also been dropped, however older versions of
the compiler still support some of the other GPUs. OpenACC support in the
GNU compiler is only for APUs and not the discrete GPUs tested here. PGI
has also dropped CUDA-x86 support, and so there are no results for CUDA on
Intel devices; with old versions of this compiler significant source changes were
required in order to run the benchmark. At present there are few programming
models supported on the IBM Power 8 — only OpenMP, and therefore Kokkos
and RAJA with their OpenMP back end.

The achieved percentage of peak memory bandwidth for the Triad kernel
is shown in Figure 3.6 with the raw memory bandwidth achieved shown in
Figure 3.7. Results will be discussed by vendor as many of the comments apply
to multiple of their devices; see Table 3.2 for the list of devices by each vendor.

NVIDIA GPUs The P100 achieves the highest memory bandwidth of all the
devices tested due to its use of HBM2 technology. The achievable performance
is consistent both across generations of GPU and the choice of programming
model with all results within 60–80% of theoretical peak memory bandwidth.
Note too that CUDA is considered to give a baseline performance and each of

3.5. BABELSTREAM PERFORMANCE 35

K2
0X K4

0
K8

0
GT

X
98

0
Ti

Tit
an

 X
P1

00
S9

15
0

Fu
ry

 X
Sa

nd
y

Br
id

ge
Ivy

 B
rid

ge
Ha

sw
ell

Br
oa

dw
ell KN
L

Po
we

r 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

183

180

175

175

182

164

176

N/A

191

191

181

180

193

173

183

N/A

182

176

171

170

178

159

168

N/A

269

269

265

246

268

257

266

N/A

360

360

359

330

345

343

352

N/A

551

551

553

517

552

536

545

N/A

268

N/A

269

N/A

N/A

N/A

272

N/A

442

N/A

N/A

N/A

N/A

N/A

436

N/A

56

N/A

28

53

54

54

56

66

56

N/A

40

75

74

74

57

102

83

N/A

55

91

88

91

83

119

67

N/A

47

99

97

99

67

128

237

N/A

262

302

298

124

220

448

N/A

N/A

N/A

299

296

297

N/A

299

100

200

300

400

500

GB
/s

Figure 3.7: Sustained memory bandwidth achieved by the BabelStream Triad
kernel (from [28])

the other models does achieve close to the CUDA performance, indicating that
at least for this vendor all the programming models provide a way to exploit
the memory bandwidth of these devices. In some cases the CUDA performance
is exceeded; this will be down to CUDA requiring the programmer to make a
choice of the thread block size, which for BabelStream is set to 1024 [87]. This
number was chosen empirically to provide good performance across the different
architectures. The necessity for the programmer to specify a value such as this
may reduce the performance portability of a such a code. Selection of a value
limit the representativeness of the Triad kernel to an application, however it
is simple to adjust this parameter. Minor tuning of this parameter for specific
incarnations of the architecture may also be required, and is often recommended.
The models which do not require the programmer to set this value may make
such informed choices per device mitigating this issue.

AMD GPUs The main conclusion that can be drawn from the results of
BabelStream is that there is currently a widespread lack of support for AMD
GPUs. Therefore the only viable choice to the programmer is the low level
OpenCL, which for large scientific codes is unpalatable. It is hoped that in time
support for the other higher-level models will grow. Despite this however, the
SYCL abstraction over OpenCL shows little overhead above OpenCL directly.
For the data points that were able to be collected, they all achieved 84–86% of
the theoretical peak memory bandwidth which is the highest fraction of all the
devices tested.

36 CHAPTER 3. MEASURING MEMORY BANDWIDTH

Intel processors The McCalpin STREAM results are considered the gold
standard metric for memory bandwidth and so it is these results that are used as
a baseline for the BabelStream results on Intel processors. Where possible, one
thread was launched per physical core and this was set via specific environment
variables for each of the models. The theoretical peak memory bandwidths
from generations of Intel CPUs has improved as shown in Table 3.2 and these
also manifest into the achievable bandwidth as shown in Figure 3.7; from Sandy
Bridge to Broadwell the achievable bandwidth has almost doubled from 66 GB/s
to 128 GB/s.

However many of the programming models do not achieve close to the Mc-
Calpin value without some additional care [83]. The McCalpin STREAM bench-
mark sets the size of the arrays at compile time, and so the compiler is therefore
able to use this knowledge to inform the optimisation passes. Specifically, the
memory is allocated on the stack and so the compiler can ensure this is aligned,
and therefore issue aligned load and store instructions for the memory accesses.
Additionally, the reuse heuristics can be accurate as the trip count of the loops
are known, and combined with the knowledge of alignment, non-temporal stores
can be issued so that pollution of the cache with the output array of each kernel
does not occur. It is unrealistic for a real scientific code to embed the prob-
lem sizes in this way, and therefore knowledge of the problem size is generally
only available at runtime. In this way STREAM in unrepresentative of today’s
production codes.

The McCalpin STREAM benchmark can be modified accordingly and the
achieved memory bandwidth is indeed reduced; on KNL it is reduced to 270–
345 GB/s (there is now a large variance between runs due to unaligned memory).
This bandwidth is in line with the out-of-the-box performance of BabelStream.
On examining the compiler optimisation reports it can be found that unaligned
memory access instructions are issued and non-temporal stores are not issued.

Therefore some simple updates to the BabelStream benchmark were made
by Karthik et al. to improve the performance [83]. These changes are simple
enough that the lessons learnt should be considered best practice in line with
the ethos of the benchmark. With OpenMP and RAJA, the memory allocations
are aligned to 2 MiB pages using the C11 aligned_alloc call. With OpenMP
the simd aligned clause was used to state that the addresses were aligned;
a required step for generating aligned memory accesses due to the location
of the data on the heap. For OpenMP, RAJA and Kokkos, streaming stores
were generated using the necessary Intel compiler flag; note that a compiler
directive recognised by the Intel compiler could be used instead and it is this
latter approach that would be recommended in a real application as it allows
for more fine grained control of the generation of non-temporal stores. Extra
steps were required to build the Kokkos and RAJA libraries to enable memory
alignment and to prevent pointer aliasing to ensure vectorisation. Also due to
type mismatches in the Kokkos and RAJA libraries the use of the long data
type was required for the loop index variable instead of the usual int; this
ensured that typecasts did not occur.

Updated Intel results with these changes are shown in Figure 3.8 which
shows the improvement in comparison to Figure 3.7. Note now how the results
are much closer to the original McCalpin STREAM results, and these relatively
simple changes were required for this to be reached, but this does highlight the
important point that programming languages and models only go so far into

3.5. BABELSTREAM PERFORMANCE 37

Pr
ev

iou
s B

ro
ad

we
ll

Br
oa

dw
ell

Pr
ev

iou
s K

NL KN
L

OpenCL

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

67

47

99

97

99

67

128

67

47

130

129

129

67

128

237

262

302

298

124

220

448

237

262

438

436

436

220

448

50

100

150

200

250

300

350

400

GB
/s

Figure 3.8: Sustained memory bandwidth achieved by the updated BabelStream
Triad kernel on Intel architectures

describing what the programmer is trying to express.
The C++ abstraction layers Kokkos and RAJA again show good perform-

ance and little overhead over the performance of the model used in their back
end (in this case OpenMP). However, the OpenACC and OpenCL performance
is somewhat lacking. With OpenACC this is likely attributed to NUMA ef-
fects, as although the initialisation of the data is done as a kernel rather than
a memory copy so as to conform to the first-touch policy, the implementation
of OpenACC itself on the specific system still seems to first-touch the arrays
internally. Although use of the OpenACC API calls to allocate the memory
directly improves the CPU performance (and therefore strengthens the obser-
vation that the issues found are due to NUMA), these do not function correctly
on GPUs without further source changes.

The MCDRAM present on KNL shows a clear advantage over traditional
DDR memory technologies on CPUs, and also the GDDR of most of the GPUs
tested including the AMD Fury X which does utilise HBM. However the HBM2
in the NVIDIA P100 still offers more memory bandwidth.

Power 8 Running STREAM on the Power 8 was shown by Reguly et al. to
be sensitive to problem size [86], and with a much larger array size than used
with BabelStream a higher bandwidth can be recorded; however for consistency
the same problem size was used on all devices.

Compared to Intel CPUs (excluding KNL which uses MCDRAM), much
higher bandwidth can be obtained from DDR as a result of the increased num-

38 CHAPTER 3. MEASURING MEMORY BANDWIDTH

K2
0X K4

0
K8

0
GT

X
98

0
Ti

Tit
an

 X
P1

00
S9

15
0

Fu
ry

 X
Sa

nd
y

Br
id

ge
Ivy

 B
rid

ge
Ha

sw
ell

Br
oa

dw
ell KN
L

Po
we

r 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

70%

69%

63%

65%

65%

65%

69%

N/A

63%

63%

24%

60%

61%

62%

60%

N/A

73%

72%

28%

68%

70%

70%

68%

N/A

85%

85%

74%

69%

85%

85%

82%

N/A

75%

78%

71%

49%

71%

66%

72%

N/A

80%

78%

58%

58%

80%

75%

78%

N/A

84%

N/A

61%

N/A

N/A

N/A

84%

N/A

91%

N/A

N/A

N/A

N/A

N/A

88%

N/A

35%

N/A

31%

72%

72%

73%

22%

74%

25%

N/A

42%

89%

88%

86%

21%

88%

50%

N/A

40%

88%

85%

85%

35%

94%

38%

N/A

32%

82%

80%

82%

31%

91%

23%

N/A

58%

66%

64%

21%

14%

67%

N/A

N/A

N/A

64%

44%

2%

N/A

65%

20

40

60

80

%
 o

f t
he

or
et

ica
l p

ea
k

Figure 3.9: Fraction of theoretical peak memory bandwidth obtained by the
BabelStream Dot kernel (from [28])

ber of memory channels and Centaur chips. Note that while extra steps were
required for the BabelStream benchmark to match the McCalpin STREAM per-
formance on Intel architectures, this was not required here. This is because the
Power ISA v2.07 (as used for Power 8) does not have non-temporal store in-
structions, and as such the optimisations applied for Intel processors to generate
such instructions do not help.

3.5.2 Reduction performance
For the Dot kernel BabelStream requires the result is made available on the host,
and so the transfer of this single value result is included in the timing. The other
kernels transform data and so transfer to or from the host is not necessary as
such kernels in real scientific applications would not transfer these arrays before
and after each kernel execution. On the other hand, the result of a reduction
is often used on the host, for example in convergence checking. Additionally,
requiring this value on the host ensures that the reduction completes.

The results are presented in a similar way to the Triad kernel, with the
percentage of theoretical peak memory bandwidth shown in Figure 3.9 with the
raw memory bandwidth achieved shown in Figure 3.10.

NVIDIA GPUs The NVIDIA Kepler architecture shows slightly reduced
Dot performance compared to Triad, whilst the Pascal architecture shows in-
creased performance over Triad, however these differences are slight at around
5%. The Cray compiler was used for the OpenACC results on the K40 and

3.5. BABELSTREAM PERFORMANCE 39

K2
0X K4

0
K8

0
GT

X
98

0
Ti

Tit
an

 X
P1

00
S9

15
0

Fu
ry

 X
Sa

nd
y

Br
id

ge
Ivy

 B
rid

ge
Ha

sw
ell

Br
oa

dw
ell KN
L

Po
we

r 8

OpenCL

CUDA

OpenACC

OpenMP

Kokkos

RAJA

SYCL

McCalpin

176

173

156

163

163

161

173

N/A

182

182

68

171

176

180

174

N/A

175

172

66

163

169

169

164

N/A

285

286

247

233

284

284

276

N/A

362

373

340

236

343

316

348

N/A

586

574

427

426

589

546

567

N/A

269

N/A

195

N/A

N/A

N/A

270

N/A

467

N/A

N/A

N/A

N/A

N/A

449

N/A

36

N/A

32

74

74

75

23

76

30

N/A

50

106

105

103

25

105

69

N/A

55

119

115

116

47

127

59

N/A

50

126

123

126

47

140

119

N/A

297

335

328

107

70

340

N/A

N/A

N/A

248

168

6

N/A

249

100

200

300

400

500

GB
/s

Figure 3.10: Sustained memory bandwidth achieved by the BabelStream Dot
kernel (from [28])

K80, and whilst Triad performance was in line with the other results, there
is a performance issue with the reduction kernels on NVIDIA GPUs. This is
also somewhat present with the open-source LLVM OpenMP compiler targeting
these devices but is not present in the Cray compiler.

AMD GPUs OpenCL and SYCL required hand writing the reduction kernel,
and so this performs well. OpenACC automatically implements the reductions,
not the programmer, and Figure 3.9 shows that it does not perform well in
comparison, however it is in line with the percentage of theoretical peak of the
NVIDIA GPUs when using the PGI compiler.

Intel processors Unlike the Triad kernel, the Dot kernel initially performs
close to McCalpin STREAM; this is because only read memory operations are
required as there is no output array to pollute the cache. The OpenCL (and
SYCL) kernel is perhaps designed with GPUs in mind. With a more cache-
friendly memory access pattern the bandwidth can be improved, however this
reduces the performance on the GPUs. Therefore in a production applica-
tion utilising OpenCL where reductions are a large bottleneck, per-architecture
reduction implementations should be written. The BabelStream benchmark
should be single source; it does not re-specialise for particular architectures.
This highlights an issue in the performance portability of reduction kernels
across architectures and is a result of the low-level nature of OpenCL; higher
level programming models can hide the complexity of device specific reduction

40 CHAPTER 3. MEASURING MEMORY BANDWIDTH

operations, where as Figure 3.9 shows OpenMP reductions do similarly well
across all architectures. As with Triad, OpenACC performance using the PGI
compiler of the Dot kernel on CPUs is also poor.

The KNL processor does highlight an interesting point, where the Dot kernel
achieves a significantly lower 340 GB/s compared to Triad at 448 GB/s. Whilst
both Triad and Dot have two read operations, Triad writes to memory whereas
Dot does not. It has previously been observed that as MCDRAM has separate
read and write memory channels, streaming writes can be performed concur-
rently with reads, and so it is not possible to obtain the maximum memory
bandwidth with read operations alone [49].

Power 8 In general the performance of the Dot kernel is more variable than
the Triad kernel, and as with the KNL again achieves lower performance than
Triad, around 20 GB/s less. The 192 GB/s of Power 8 memory bandwidth
available to each socket is split into 128 GB/s read and 64 GB/s write [86] and
as there are no write operations in this kernel the theoretical peak bandwidth of
this dual-socket system should instead be close to 256 GB/s; indeed McCalpin
STREAM achieves close to this value. Only on this architecture does Kokkos
show any performance overhead over code written directly in OpenMP. The
RAJA performance is severely lacking indicating an issue with the reduction
implementation in the RAJA library itself.

3.6 A survey of performance portability

The BabelStream results provide a survey of a simple kernel executed across a
wide variety of devices from different vendors, and in a variety of programming
models. The previous analysis focused primarily on the performance of each
model on a particular (class of) device. However it is also possible to examine
how each programming model fares across devices without source changes. The
results of the Triad kernel from Figure 3.6 will be used in this section.

Pennycook et al. have used the results presented in this chapter (and else-
where [27]) in development of a metric for measuring performance portabil-
ity [81, 82]. The percentage of theoretical peak memory bandwidth of Babel-
Stream shown in Figure 3.6 and Figure 3.9 would be inputs into the metric. This
metric is the harmonic mean of the efficiency of performance across a (sub-)set
of platforms. Any unsupported architectures result in the metric reporting zero
portability, as functional portability is a minimum requirement. To this end,
the authors restrict their analysis to a minimum supported set of platforms by
all models (thus excluding IBM and AMD devices) so that non-zero numbers
can be generated.

Both OpenCL and SYCL ran across almost all of the devices tested, but
whilst they provided good performance on GPUs the CPU performance was
lower. This behaviour is also seen in the performance portability metric of
Pennycook et al. , which classified OpenCL with 46.2% application efficiency on
CPUs and 99.7% on GPUs [82].

OpenMP also fared well across CPUs and GPUs, however the current lack
of support for AMD GPUs reduces its portability at present. The offload and
native compiler directives are different, and therefore different directives are
required depending on which execution model is being used. Although this

3.7. SUMMARY 41

was a simple endeavour in BabelStream via preprocessor macros, in a larger
code base this may become cumbersome. Again, the performance portability
metric shows this, with an overall application efficiency of 82.1% [82]. This
was calculated without the optimisations for Intel architectures discussed in
3.5.1, and so this metric would likely increase if recalculated with these updated
results.

Although OpenACC only requires a single directive across all architectures,
the lack of performance on all CPUs is worrisome along with the lack of support
for all the vendors (at present OpenACC is driven mainly by PGI which is owned
by NVIDIA). The performance portability metric reflects this too: whilst it
achieves 95.6% on NVIDIA GPUs, on CPUs it is only 50.0% (with 63.5% taking
into account both types of device) [82]. Some of the performance issues on CPUs
may be down to the configuration of the specific systems chosen, however this is
often outside the application developers control; for this thesis other platforms
were not available with the appropriate software to verify this more robustly.

Although CUDA achieved among the best performance on NVIDIA GPUs,
it is not portable to CPUs or to GPUs from different vendors and therefore
cannot be considered performance portable. This is one such example where
the performance portability metric is reported as zero by Pennycook et al. due
to being unable to run on more than one class of processor [82].

Both RAJA and Kokkos show good performance portability between CPUs
and GPUs, however it should be noted that RAJA does not include memory ab-
stractions and so the programmer must perform this manually via another API
(malloc for CPUs or CUDA for NVIDIA GPUs). Kokkos allowed a single source
change to switch between CPUs and GPUs with no other changes required; the
movement of memory between the devices is built into the abstraction. Neither
model currently supports AMD GPUs. The performance portability metric
(which excludes AMD GPUs in its calculation) shows that much like OpenMP,
these models achieve around 85% of performance portability across both (Intel)
CPU and (NVIDIA) GPU architectures [82].

3.7 Summary

BabelStream provides a comprehensive benchmark which can measure the achiev-
able memory bandwidth on a range of devices in a range of programming models.
As such it allows for a historical record to begin which tracks the performance
of both programming models and hardware, and allows simple evaluations of
the support offered by vendors for specific combinations of device and model.
This record can be found online at http://uob-hpc.github.io/BabelStream/,
which contains a version controlled repository of the code and the results. The
results presented in this thesis were collected with v2.0 of the benchmark, with
the output of the benchmark also saved in the repository. This version of the
code has also been assigned a DOI of 10.5281/zenodo.1203607.

BabelStream has also allowed for further study into attainable memory band-
widths from additional levels of the cache hierarchy [29].

The benchmark shows that at the time of writing the choice of programming
model is largely a matter of preference, where close to peak performance is
achievable on a range of hardware in any particular model. Notable exceptions
are where the model does not support a particular device at present. The

http://uob-hpc.github.io/BabelStream/

42 CHAPTER 3. MEASURING MEMORY BANDWIDTH

performance portability metric of Pennycook et al. also quantified the degree of
performance portability, drawing similar conclusions [81, 82]. As such the results
generated by this benchmark provide the maximum achievable bandwidth which
may be used to calculate the relative sustained memory bandwidth of other
memory bandwidth bound kernels; such analysis will be used in later chapters.

The benchmark also allowed further exploration into the memory hierarchy
of Intel processors; for example, ensuring memory alignment and non-temporal
stores were generated for this benchmark which ensured the best performance.
This highlighted issues with treating the McCalpin STREAM benchmark as
representative of today’s applications, which unlike STREAM have data alloc-
ated on the heap and the problem size unknown at compile time. As such the
compiler receives less information, yet as programmers we expect a similar level
of optimisation. The optimisations presented show how to leverage the most of
the memory bandwidth.

CHAPTER 4

The computational nature of deterministic transport

The transport equation is a Boltzmann integral-differential equation which mod-
els the movement of neutral particles. In all but the simplest cases, the equation
cannot be solved analytically, and so an approximate solution is sought using nu-
merical methods. This chapter will first briefly introduce the transport equation
itself and describe the constituent terms which model the various interactions
of the particles with the material. The solution of this equation on a computer
is explained. The proxy application used as the basis for this work is introduced
and compared to alternative applications, and other non-transport applications
which on the surface have some similarities with a transport solver.

4.1 The transport equation

[
1

v

∂

∂t
+ Ω̂ · ~∇+ σ(~r,E)

]
ψ(~r, Ω̂, E, t) = (4.1a)

qex(~r, Ω̂, E, t) + (4.1b)∫
dE′

∫
dΩ′σs(~r,E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′, t) (4.1c)

The deterministic transport equation (4.1) (from [55]) describes the inter-
action of neutral particles with materials. The notation used in this equation
is listed in Table 4.1. The neutral particles may be neutrons or photons. The
particles are considered to travel in straight lines and there are no particle-to-
particle interactions (the particles react with the material and not each other).
The interaction with the material is described in terms of a cross section, which
describes the number of collisions each particle could make with the material
per unit length travelled. The transport equation describes the net balance of
the neutral particles in the material as they move through it. The particles
may simply leave the material boundary, known as streaming, or may be lost
to absorption.

43

44 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

Symbol Description

Ω̂ Direction vector — in 3 dimensions this is (µ, η, ξ). Only two
of these directions are required to define the vector uniquely as
cos2 µ+ cos2 η + cos2 ξ = 1

~∇ Directional derivative operator: êx ∂
∂x + êy

∂
∂y + êz

∂
∂z

ψ Angular flux
~r Position vector (x, y, z)
E Energy
qex External source
σs Scattering cross section
χ(E) Probability density function of fission neutron energy
v(E) Mean number of neutrons at energy E
σ Macroscopic cross section

Table 4.1: Transport equation notation

Cross sections, denoted σ, are usually made up of two parts which describe
absorption and scattering of the particles respectively. In the case of neutrons,
when the particle collides with a material nucleus, it may be absorbed and
become part of the nucleus itself, or bounce off changing direction of travel
and/or (kinetic) energy. The scattering cross section describes those particles
which change direction and energy.

The cross sections in the equation are more formally known as macroscopic
cross sections. They are derived from the microscopic cross sections, which
describe the probability of an interaction with a (single) material nuclide. The
total amount of material along with its density and the microscopic cross sections
are used to generate the macroscopic cross sections. These are stored in a simple
table for use during the transport solver and so the generation of this data is
not important to this thesis.

The equation is constructed in terms of cross sections and the angular flux.
The angular flux describes the expected number of particles in a volume trav-
elling in a particular direction with a particular energy. The angular flux is
denoted ψ. Seven dimensions are typically required to describe the angular
flux: ψ(~r, Ω̂, E, t) for 3D spatial position ~r, 2D angular direction Ω̂ and energy
E at time t.

The scalar flux is defined as the integration over the angular domain of the
angular flux:

φ(~r,E, t) =

∫
ψ(~r, Ω̂, E, t) dΩ (4.2)

The transport equation therefore describes the change in time of the particles.
The loss of particles due to streaming is given by the Ω̂ · ~∇ψ(~r, Ω̂, E) term. The
loss of particles due to collisions is given by the σ(~r,E)ψ(~r, Ω̂, E) term. Collect-
ively they are known as the streaming-collision operator. This completes the
left hand side of (4.1a), along with the change in time.

The right hand side of the equation is often presented as a single term known
as the source term q(~r, Ω̂, E). This is mainly for convenience during the solution
of the equation itself. The source term is made up of the sum of an external
source, a scattering source, and in some cases a fission source. We do not

4.2. DISCRETISATION OF THE TRANSPORT EQUATION 45

consider the fission source in this thesis. The gain of particles from some known
source is given by qex(~r, Ω̂, E). This term is provided from some measured data.
Particles may be gained into the particular angle and energy considered through
scattering; that is particles changing direction and/or energy. The scattering
source term is constructed to count particles scattering into the energy, space
and angle that the equation is defined in terms of. The material will determine
the properties of scattering and these are defined in terms of the scattering
cross section. The scattering source is given by

∫
dE′

∫
dΩ′σs(~r,E

′ → E, Ω̂′ ·
Ω̂)ψ(~r, Ω̂′, E′). The source term is the sum of the external and scattering source.

4.2 Discretisation of the transport equation
As with many balance equations, the transport equation is defined on continuous
domains. It must be discretised, itself an approximation, in order to be solved
computationally. This section describes the discretisation schemes employed in
each problem dimension.

4.2.1 Spatial discretisation via finite difference
Given a general function over a continuous spatial domain f(x) we wish to
discretise the domain. We divide the spatial domain into a series of contiguous
cells, with centres xi. Each cell occupies the range (xi−1/2, xi+1/2).

As with many discretisation schemes, the finite difference (FD) approxim-
ation proceeds by integrating the transport equation over the cell. The cell
centered value is used to approximate this integral for the collision and scat-
tering terms as the cross section data is also assumed to be piece-wise constant
across each cell; that is the value is constant (the same) across the cell and σ(x)
is the same for x ∈ (xi−1/2, xi+1/2). As such the integral over the cell domain
for these terms is assumed to be equal to its value at the midpoint.

Evaluating the integral for the streaming operator introduces angular flux
terms centred at the cell boundaries. We use the central FD equations to close
this relation. The central FD equation is:

ψ(xi) =
ψ(xi−1/2) + ψ(xi+1/2)

2
(4.3)

The equation states that the central cell value is equal to the average of the value
on the boundaries. These FD equations along with the transport equation form
a system of equations to solve.

This FD equation can be simply rearranged to specify the value at the bound-
ary in terms of the central value and the other boundary value. For example:

ψ(xi+1/2) = 2ψ(xi)− ψ(xi−1/2) (4.4)
ψ(xi−1/2) = 2ψ(xi)− ψ(xi+1/2) (4.5)

The orientation of this rearrangement is determined by the angular direction
cosine from the Discrete Ordinates (Sn) discretisation of the angular domain.
One rearrangement (4.4) or (4.5) is then substituted into the transport equation
so that the outgoing angular flux term for each cell is eliminated so that the
equation is defined only in terms of cell centred and incoming angular fluxes.

46 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

More details may be found in Appendix A, and a full treatment of the FD spatial
discretisation in multiple spatial dimensions is shown in Lewis and Miller [55].

4.2.2 Angular discretisation

A Discrete Ordinates (Sn) angular discretisation is typically used to discretise
the angular dimension. This is formed by approximating the integral in (4.2)
of the angular flux over the angular domain to form the scalar flux using a
quadrature rule:

φ ≈
∑
n

wnψn (4.6)

where the wn are known as the quadrature weights which each correspond to a
particular (discrete) angular direction in the domain.

We can therefore solve the transport equation for each of these angles, and
use the quadrature to integrate the angular flux to the scalar flux. The quad-
rature set is defined by the list of angle directions and their associated weights.
In general these form a simple look up table. The quadrature set is denoted Sn,
where n is the ‘order’ of the set.

The angles can be grouped into quadrants (2D) and octants (3D) which
describe their general direction with respect to the coordinate axis. In 3D, the
angles can be defined in terms of their directional cosines (µ, η, ξ), the cosine of
the angle between the direction and the reference axis. Angles with the same
sign ± on each of these cosines belong to the same octant. Alternatively in a
regular structured mesh, all angles which begin a sweep from the same corner
cell are said to belong to the same octant. In this case the directed acyclic
graph (DAG) which describes the sweep is identical for all angles in an octant
(see Section 2.6 for a brief introduction to DAGs).

There are 8 octants in 3D and 4 quadrants in 2D, as shown in Figure 4.1.
Angles for one of the quadrants are shown in Figure 4.1a. In this thesis, octants
will be used to describe this grouping interchangeably. For a simple Sn quad-
rature with angles spread equally throughout the octants, there are n(n+ 2)/8
angles per octant.

4.2.3 Energy discretisation

The energy domain is discretised by dividing the domain into a number of energy
groups. In doing so, limits are placed on the maximum and minimum energy
which is modelled by the solution, and so these bounds are normally chosen
to be suitably large to represent the significant portions of the domain. The
energy is considered to be constant within the energy group. Any number of
energy groups may be chosen, and they may be of differing sizes, although the
size of each group has no impact on the nature of compute itself as only a single
value is required per group. The number of groups does however contribute
to the storage requirements of the scattering cross section and may affect the
iteration count. An approximation is made such that the transport equation is
considered to hold for each discrete energy group; and the resulting equation is
known as the multi-group approximation.

The group-to-group scattering source term stipulates that contributions from
the different groups are required to calculate the scattering source for a set

4.3. NUMERICAL SOLUTION 47

(a) Quadrants (b) Octants

Figure 4.1: Division of spatial mesh into quadrants and octants

group. Therefore the groups can be solved in descending order (in a Gauss-
Seidel manner), or independently (in a Jacobi manner). Assuming the neutral
particles are predominately scattered to lower energies (down-scattered), solving
the groups under a Jacobi scheme means lower energy groups use the values
from higher energy groups from a previous iteration, whereas the Gauss-Seidel
scheme allows lower energy groups to use the values from higher groups for
the current iteration. As such, a Gauss-Seidel regime should have improved
convergence properties over Jacobi, and indeed this was shown to be the case
with Jacobi requiring up to 10% more iterations [14, 13]. However, a Jacobi
scheme does provide a source of additional concurrency. Both methods should
however produce the same answer within a given tolerance once convergence
has been reached.

4.3 Numerical solution

The solution to the transport equation is the angular flux ψ. It is also common to
only require the scalar flux φ instead and so the solution may also be determined
by this quantity. The scalar flux requires integration of the angular flux over
the angular dimension and so the angular flux itself must be obtained first.

The transport equation is typically solved by simple iterations on the scat-
tering source. The scattering source term (4.1c) depends on the angular flux;
although it is integrated over angle and so the scalar flux may be used instead
in the special case of isotropic scattering, where the outgoing direction is inde-
pendent of the incoming direction. However it is precisely the flux that is the
unknown in the equation for which the solution is sought. An initial estimate
is made for the flux (often zero is used) so that the scattering source may be
estimated, and as such the right hand side of the transport equation may be
evaluated.

Given this estimate of the flux, the source terms (4.1b) and (4.1c) on the right
hand side of the transport equation may be calculated and then the streaming-

48 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

collision operator may be directly inverted to calculate the angular flux on the
left hand side of the equation. Such a technique is known as an implicit solution
method (solve) applied to the streaming-collision operator, and the reader is
referred to a more thorough and general handling of solving linear systems
with simple iterations and iterative methods by Greenbaum [37]. This gives an
updated value for the flux which may then be used to recalculate the (scattering)
source term on the right hand side, thus forming an iterative scheme which
improves on the initial estimate of the flux and successively refines it. The
process continues until the flux ceases to change significantly, and therefore
the source terms would also cease to change with additional iterations and the
iterative scheme ends.

If other sources are present on the right hand side then this method is applied
to those terms also. For this thesis however, the source terms are as shown in
(4.1) with a fixed external source and the scattering source only. Calculation
of the sources themselves is in general simple as all points in the domain are
independent, thus making a parallel implementation straightforward.

Importantly, it is during the inversion of the streaming-collision operator that
a sweep across the spatial domain is required. The mathematics behind the de-
pendency are well explained by Lewis and Miller [55], but in short there is a data
dependency so that each cell requires boundary data from upwind neighbours,
with the ‘wind’ direction determined by the Sn angle (recall Section 4.2.1).
Therefore unlike many other solvers of (integro-)differential equations, in par-
ticular those in fields such as computational fluid dynamics, heat conduction
and Lattice Boltzmann methods, each cell cannot be solved simultaneously.

Issues such as accuracy, the convergence properties of the algorithm and
conserved quantities are relevant only to the physics aspects of the solution and
hence little reference will be made to them. The accuracy of the solution depends
on the properties of the discretisation used for each of the problem dimensions,
and in general refers to the difference between the obtained solution and the
‘true’ solution. The convergence properties of this scheme will produce a small
or large number of iterations required in order for the solution to be found. A
choice in the energy domain of a Jacobi or Gauss-Seidel scheme as explained
in Section 4.2.3 contributes to the iteration count. Lewis and Miller describe
the iterations on the scattering source as having a physical interpretation, in
that each iteration corresponds to a particle collision [55], and so the number of
iterations is also dependent on the specific data used. Additional approximations
may be made in order to accelerate the convergence, however these are not
considered as part of this thesis which focuses on the computational nature of
the sweep. The transport equation itself conserves the neutral particles (such as
neutrons or photons), and the multi-group formulation of the transport equation
ensures that energy is conserved [55].

4.3.1 Iteration loop structure

In a time dependent solve of the equation, a simple, explicit, finite difference
in timestep loop is the outermost loop. There are also loops over the other
dimensions in the problem: a loop over energy groups, a loop over octants and
a loop over angles within the octant, and a loop over space which respects
the data dependency of the sweep. Additionally there are the iteration loops:
the inner and outer iterations. The inner iterations are the iterations on the

4.3. NUMERICAL SOLUTION 49

for Time-steps do
for Outer iterations do

Update source: fission term
for Inner iterations do

Update source: external and scattering terms
Perform a sweep

. i.e. invert collision-streaming operator
Check inner convergence of ψ

end for
Check outer convergence ψ

end for
end for

Figure 4.2: Transport equation iteration overview (from [24])

source. The outer iterations form either another part of the iterations on the
group-to-group scattering source or some form of power iterations to work out
eigenvalues associated with a partitioning of the operators in the equation. The
iteration structure is summarised in Figure 4.2 with a flow diagram presented
in Figure 4.3.

In the case of SNAP, the proxy application used in this thesis which will be
introduced in Section 4.5, the inner iterations update the fixed source and the
within-group scattering — the part of the group-to-group cross section integral
where the groups are the same; i.e. σs(~r,E

′ → E′, Ω̂′ · Ω̂). The outer iterations
perform the group-to-group scattering between different groups; it is in this step
that the Jacobi or Gauss-Seidel iterations occur.

4.3.2 The sweep

For a given angle in the domain, neighbouring cells in the mesh can be categor-
ised into upwind and downwind depending on whether the solution on the cell
boundaries is already known. In a non-boundary cell and for a chosen angle
in the Sn discretisation, the cells downwind of a particular cell are those cells
which require the solution of this cell in order to determine their solution. The
upwind cells are those cells which must be solved previously in order for the cell
in question to be solved itself. This is shown pictorially in Figure 4.4.

The angular direction through the mesh determines the neighbouring upwind
cells, and hence defines the total data dependency across the mesh of cells. The
data dependency may be described for a structured Cartesian mesh as a DAG.
In an unstructured mesh the upwinding dependency may produce a cycle in
the dependency graph, which poses extra challenges to the solution which are
beyond the scope of this thesis.

In a structured mesh, the data dependency is the same for all angles in
the same quadrant/octant. The sign of the angular cosine is also equal to
the sign of the step in the spatial domain iteration. The steps are shown in
Table 4.2 which describes the loop index update in the serial loop over the
spatial domain in each dimension. For the first octant therefore, the first cell
solved is (nx, ny, nz), and hence the boundary solution must be known along
these external edges of the cell. The sweep then proceeds through the cells until

50 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

every timestep

outer iterations

update outer source

check convergence of fux

not converged

end timestep

converged

inner iterations

update inner source

check convergence of fux

converged

not converged

perform sweep over mesh for all groups and angles

Figure 4.3: Flow diagram of iteration structure of the solution of the transport
equation

4.3. NUMERICAL SOLUTION 51

ψ

Upwind

Downwind

Figure 4.4: Upwind and downwind cell boundaries (from [24])

Octant x step y step z step

1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Table 4.2: Cell ordering for octant sweeps

the first (1, 1, 1) cell is reached centred at the origin. For this octant, a general
cell (i, j, k) (with i < nx, j < ny, k < nz) has a dependency on the three cells
(i+ 1, j, k), (i, j + 1, k) and (i, j, k + 1).

4.3.3 Negative flux fix-up

In the solution of the transport equation, it may possible for the angular fluxes to
become negative and affect the stability and validity of the solution. Whilst this
is a valid solution in terms of the numerical scheme used to solve the transport
equation, it is nonphysical and therefore is usually addressed in the application.
Fluxes may go negative as a result of the mesh resolution being too coarse or
large in magnitude cross sections [55]. With a coarse spatial mesh the average
distance travelled by the neutral particles (the mean free path) may exceed the
size of the cells, and as such the movement of particles is not captured through
all cells resulting in the nonphysical behaviour in the angular flux.

In order to prevent this, simple fix-up routines are used; such a routine is
used in the SNAP proxy application. The routine is non-linear and may not
be run in all cells, therefore potentially creating some load imbalance. Also
because of the non-linear nature with the potential for early loop exit ensuring
the vectorisation of this routine is also noteworthy, although modern compilers

52 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

will do it.
The fix-up routine is designed so that if the central or outgoing angular flux

values become negative, they instead are set to zero. The transport equation
is then re-solved in the form without the substitution of the FD upwinding
dependency. That is the equation is solved for the centre with all the edge
fluxes known, from either the previous solution or by setting to zero as previously
described. By simply setting values to zero, information in the system is lost,
and the true movement is not being modelled.

In this thesis we assume that fix-up is always turned on to ensure it remains
as representative as possible to the performance of a production application.
However for a sufficiently refined problem fix-up should occur only rarely, if at
all.

Ray effects may also be seen with the Sn method, which although they do
not produce negative solutions themselves, may highlight negativities associated
with each beam of particles which would otherwise not be apparent in the scalar
flux.

4.3.4 Boundary conditions

The upwinding during spatial discretisation requires that cells which are posi-
tioned on the edge of the mesh are supplied with appropriate boundary condi-
tions for their incoming edge angular flux. Setting this incoming data always to
be zero is known as a vacuum boundary. It is also possible to specify a reflective
boundary, where outgoing particles are reflected back into the spatial domain, as
if there were a mirror at the boundary. Reflective boundaries are often used as
an optimisation for symmetrical domains to reduce the size of the mesh required
to simulate.

In order to begin the sweep across the mesh, boundary conditions for at
least two adjacent faces of the domain must be known. Reflective boundary
conditions impose an ordering on the octant sweeps, whereas with all vacuum
boundaries the octants may be swept in any order. For simplicity of implement-
ation, vacuum boundary conditions are always assumed throughout this thesis,
although no optimisations are made using this knowledge. This thesis focuses
primarily on techniques for sweeping a general octant in a pipelined manner,
and as such does not impose any ordering nor exploits this fact. Therefore the
work in this thesis can be applied independently of the boundary conditions.

4.4 Other solution approaches

Solution of the transport equation (4.1) by the deterministic method so far dis-
cussed in this chapter is only one such approach. In the Astrophysics and reactor
communities it is common to use a Monte Carlo or ray tracing method (Method
of Characteristics). The review paper of Bisbas et al. details 12 astrophysics
codes [18], of which the majority use a form of ray tracing, with the remainder
using a Monte Carlo approach. An example of using ray tracing in astrophysics
is the SMMOL code [84]. These alternative methods will be briefly discussed to
provide a wider context to the work on deterministic Sn transport presented in
this thesis.

4.4. OTHER SOLUTION APPROACHES 53

4.4.1 Monte Carlo transport

Rather than formally discretising (and therefore approximating) each of the
problem domains and employing an iterative scheme to approximate the solution
to the transport equation, a Monte Carlo approach can be used. A number of
particles are tracked as they move through the domain, with the cross sectional
data forming a probability distribution which can be randomly sampled in order
to model the interactions of the particle. The interested reader is referred to
Lewis and Miller for more theoretical details [55].

A Monte Carlo approach may allow for more accurate physical solutions than
the deterministic approach. The spatial domain is typically represented using
constructive solid geometry although it is also possible to discretise to form a
mesh. The energy domain often uses continuous data rather than discretised
into energy groups and so the discretisation approximation is not introduced.
Additionally, floating point inaccuracies can be attributed to statistical noise in
the sampling distribution, rather the directly causing round-off issues in a de-
terministic method. However, sufficient numbers of particles need to be present
across the domain in order to evaluate statistically robust results. Where ma-
terials designed to stop particles such as the shielding around fission or fusion
reactors are present in the problem domain it may be challenging to generate
sufficient particle histories outside the shielded region. Also, some form of vari-
ance reduction is required, which adjusts the probabilities to propagate particles
longer distances and compensating for this by varying the particle weights. Us-
ing a deterministic solution method does not carry such issues, as a solution will
be found in all regions of the domain; however other issues such as ray effects
may occur (see Section 4.3.3). The Monte Carlo method may be combined with
the deterministic approach in order to accelerate the convergence of the Monte
Carlo solution [17, 45].

The on-node parallelisation of the Monte Carlo method has been investigated
by Martineau and McIntosh-Smith [59], who found that following the full history
of each particle (before following the next particle) gave the best performance
in comparison to evaluating each possible interaction in turn. The authors also
found that it was the memory latency hiding properties of GPU architectures
which enabled the platforms to give the best performance out of those tested.

4.4.2 Method of Characteristics

The Method of Characteristics is a general method to solve partial differential
equations by transforming them into an ordinary differential equation along
a single spatial coordinate: the characteristic curve. In general, a point in the
spatial dimension may be found by traversing along a direction by some distance
from a defined point (such as the origin). A number of such points are chosen
and these characteristic lines (or tracks) are projected through the domain from
them. By differentiating the transport equation by offsets along a characteristic
line and using an integration factor, the angular flux at any point in the spatial
domain can be found based on the flux at the origin and a source term.

The discretisation of the angular domain using discrete ordinates and the
energy domains using the multi-group approximation for the Method of Charac-
teristics is similar to that employed with the deterministic approach explored in
this thesis. The interested reader is recommended the derivation in the Open-

54 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

MoC documentation [61, 62] and the treatment of integral transport methods
in Lewis and Miller [55].

The main kernel of the Method of Characteristics applied to the transport
equations is called a sweep, which evaluates the scalar flux along each of the
characteristic lines in a manner akin to ray tracing. It is different to the sweeps
employed in the deterministic Sn approach which involved sweeping through
the spatial domain along a single angle (recall Section 4.3.2). A sweep in the
Method of Characteristics follows each of the characteristic lines through the
domain [63], and as such each line only touches a subset of the spatial domain
(those which lie under the track); this is in contrast to the Sn sweep which
involves the entire spatial domain.

This method is commonly applied only for a 2D domain for stationary prob-
lems [38]. In this thesis, the focus will be on 3D spatial domains, under a
time-dependent regime. Additionally, codes such as OpenMoC use constructive
solid geometry to represent the domain rather than a mesh based approach [61],
as in the majority of Monte Carlo methods. The mini-app exploring this method
in three spatial dimensions, SimpleMoC, appears to be somewhat floating point
operation (FLOP) bound as the developers found that it achieved 60% of LIN-
PACK performance but only 5% of STREAM memory bandwidth [38]. Ko-
chunas and Downar have developed a performance model for the Method of
Characteristics, which shows that the kernels have low computational intensity,
and as such should be memory bandwidth bound under the Roofline model [51].
This is in contrast to the findings of Gunow et al. , which found that SimpleMoC
achieves a very low fraction of memory bandwidth [38] and therefore implies that
further optimisation and characterisation of the method is required. Kochunas
and Downar develop the model to consider distributed memories and conclude
that network latency is an important constraint on the performance at scale [51].
In Chapter 7 it will be shown that network latency is also an important archi-
tectural factor in the performance of deterministic Sn transport.

4.5 The SNAP mini-app

The SNAP mini-app from Los Alamos National Laboratory (LANL) was re-
leased as a performance proxy for transport applications [97]. The code is a
simplification of a ‘production code’, and as such SNAP deliberately solves no
real physical problems; the data is auto-generated from simple rules and has
no physical meaning. There is none of the complexity of a production code.
As such it is of no use for answering physical questions. However it contains a
similar computational load and communication pattern to the production code,
and therefore the performance at the node level and at scale can be usefully
investigated within this simplified code base.

Within SNAP there are inner and outer source updates and a sweep across
the mesh solving a simplified version of the transport equation.

SNAP has time dependent and stationary (steady state) solution modes,
however we consider mainly the time dependent solution as this provides addi-
tional challenges that this thesis seeks to address.

SNAP is written in around 4000 lines of Fortran and uses Message Passing
Interface (MPI) and OpenMP for parallelism. The MPI is used for spatial
decomposition, and OpenMP threads are used for parallelism across groups.

4.6. OTHER TRANSPORT AND SWEEP BASED MINI-APPS, BENCHMARKS AND APPLICATIONS55

Further details about the parallel scheme will be shown in Section 5.1.1.
The use of mini-apps for research into the performance of production codes

is an established practice. Many of the US national laboratories produce suites
of applications for this very purpose, and they are often used as benchmarks
for the procurement of their large systems, including the upcoming Alliance for
Application Performance at Extreme Scale (APEX) project which includes the
procurement of two large machines, Crossroads and NERSC-9, in 2020.

The United Kingdom Mini-App Consortium (UK-MAC) have released a
series of codes which have been used to help develop and understand the per-
formance of new and existing algorithms on multi- and many-core devices.
These algorithms include Hydrodynamics and Linear Solvers, and are released
as CloverLeaf, TeaLeaf and BookLeaf.

The Mantevo Benchmark Suite is an effort by Sandia National Laboratory
(SNL) to provide a suite of mini-apps for a similar purpose [42]. These applica-
tions have been used extensively as part of the United States ‘co-design’ effort
with a variety of hardware vendors.

4.6 Other transport and sweep based mini-apps,
benchmarks and applications

The sweep data dependency or wavefront pattern is not unique to the solution
of deterministic transport and this pattern appears in other guises.

4.6.1 Dynamic programming
Dynamic programming is one such example of an approach which often involves
a wavefront pattern. Dynamic programming relies on a recursive solution of
partitions of the original problem which can then be combined. This gener-
ates a DAG which can be solved satisfying the dependencies in parallel with a
wavefront.

A solution for accelerating dynamic programming algorithms using GPUs
has previously been proposed [58]. This method breaks the dependency between
wavefronts with a post-processing step to correct the solution; however, it relies
on a linear relationship between the wavefronts and as such this approach is not
applicable to transport sweeps.

The Needleman-Wunsch algorithm from the field of genetics is used for se-
quence alignment and it is typically solved using dynamic programming ap-
proaches. An accelerated solution, in particular using GPUs, has been tried by
Krommydos et al. although that study noted that the GPU provided no speedup
over the original CPU implementation [53]. The authors of the study suggest
no reasons as to why this is the case.

Edit-distance is another such algorithm which when solved with dynamic
programming utilises a wavefront. Parallel implementations of the Wagner-
Fischer algorithm for edit-distance use a blocking technique whereby diagonal
blocks can be solved concurrently, thus increasing the work to do between syn-
chronisations between levels in the wavefront [15]. This blocking approach could
be applied to a transport sweep however the solution of the transport equations
offers extra dimensionality beyond space (over the edit-distance data) which
is available for parallelism; notably angles and energy groups which may be

56 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

blocked in a similar manner to increase the computational load between syn-
chronisations of a wavefront.

Although dynamic programming on the surface exhibits a wavefront style
sweep, the complex nature of the nested iterative solution required to solve the
integral-differential transport equation makes the fields very different. As such
any proposed solutions to dynamic programming at large scale or on GPUs are
not applicable to the topic of this thesis.

4.6.2 Lower-upper matrix factorisation

A lower upper (LU) Gauss-Seidel solver is included in the NAS Benchmark
Suite [8]. Somewhat similar to true LU factorisation, the matrix is split into the
sum (rather than the product) of an upper and lower triangular matrix. The
Gauss-Seidel approach allows the linear system to be solved iteratively, rather
than directly, using forward substitution. The forward substitution results in a
wavefront style data dependency.

A GPU implementation of the NAS LU benchmark has been explored in
CUDA by Pennycook et al. [80]. CUDA threads are mapped to cells in each
hyperplane in the wavefront, with a new kernel launched between each hyper-
plane to satisfy the data dependency. This showed good performance improve-
ments over the CPU benchmark from the use of the GPU. Pennycook et al. also
highlighted issues with scaling this wavefront algorithm beyond a small number
of GPU accelerated nodes.

The LU solver is very simple compared to a transport sweep. Firstly, there
are only two sweeps, whereas a 3D transport code requires eight per iteration.
Secondly, it lacks the additional problem dimensions of transport (angle and
energy group) and as such only has the three spatial dimensions available for
parallelism. The hyperplane parallelism approach does however leave the GPU
underutilised for a proportion of the sweep; initially only one cell can be com-
puted. The GPU remains underutilised until the size of the wavefront is large
enough to saturate the many-core device with useful work from spatial parallel-
ism alone.

Pennycook et al. do however give a modification to the standard orthogonal
chunking of the work in a 2D domain decomposition (as will be described in
Chapter 7) when employing the local spatial wavefront parallelism. Rather than
divide each pencil (spatial subdomain, see Glossary and Chapter 7) into square
chunks for communication resulting in a start up and tear down cost for each
chunk, their suggestion is allow the full hyperplane width for as much of the
pencil as possible. This is shown in Figure 4.5 where communication occurs after
two planes, where the bold vertical lines indicate communication. The colours
(and numbers) show which cells are operated on for each stage of the sweep.
In Figure 4.5a the maximum spatial parallelism (3 cells) within the pencil is
never reached. Whereas in Figure 4.5b once the width of the pencil reaches 3 it
remains at 3 until the end of the pencil resulting in only a single start up and
tear down to this maximum width. Additionally, about half of the next chunk
is already computed.

Unfortunately this cannot be applied as a simple modification to the trans-
port algorithms used throughout this thesis. The issue surrounds the unavail-
ability of boundary data for subsequent chunks after the first chunk for sub-
domains with internal boundaries. Using the illustration in Figure 4.6, this first

4.6. OTHER SWEEP APPLICATIONS 57

1

2

2

3

3

4

(a) Square chunks

1

2

2

3

3

3

4

4

4

(b) Diagonal chunks

Figure 4.5: LU chunking options adapted from Pennycook et al. [80]

rank may communicate the two cells at the top edge of the first chunk to the
neighbouring rank, after completing four wavefronts. As this rank is on an ex-
ternal boundary, there is known boundary data for wavefronts 3 and 4 which
enter the second chunk and the wavefront may extend beyond the orthogonal
chunk size. The neighbouring rank however has not yet received the boundary
conditions for the second chunk and so is unable to compute all cells on the di-
agonal for wavefronts which go beyond the chunk boundary without stalling the
compute to check for this receipt of these values from a second communication;
such cells are notated ‘?’ in wavefront 7.

One solution would be to send data each time a boundary cell was computed,
however the number of messages would increase and the messages themselves
would be very small consisting of data for only a single cell. This is contrary to
original purpose of chunking as an optimisation strategy, which sought to better
utilise the network by sending fewer, larger messages.

This issue may become mitigated by specialising the compute of the first and
last chunks of each sub-domain on the rank where the sweep begins for wave-
fronts which do not include an internal boundary cell. Therefore the strategy of
using diagonal chunks has not been investigated further due to its complexity of
implementation within the SNAP proxy application. Additionally, small chunk
sizes were shown to provide the best performance [25], and so the diagonal
chunking approach provides little additional benefit in this case.

An optimisation study of the HPCG benchmark, which contains a Gauss-
Seidel sweep, suggests using a task dependency graph for the sparse matrix-
vector multiplication and synchronising between parent and child tasks rather

58 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

1

2

2

3

3

3

4

4

4

5

6

6

7

7

?

Figure 4.6: Communication issues in the LU chunking option of Pennycook et
al. [80]

than global barriers for multi-core execution, and multi-colouring for many-
core execution [77]. The construction of the DAG for transport and the local
synchronisation scheme may be attractive for unstructured transport but would
provide little benefit in the structured mesh case. However the colouring scheme
is not applicable to transport as there is no re-ordering to reduce the data de-
pendency in contrast to sparse matrix operations where this is a valid approach.

Another approach used blocking schemes for GPU acceleration of a dense
Gauss-Seidel solve to reduce the number of device global synchronisations [20].
This approach does not transfer to a transport sweep as the technique is designed
to work in a constraint solving environment on a dense matrix; the matrix for
transport, although never constructed due to its sheer size, is a band matrix
and so would be considered sparse with only the diagonal along with 2–3 off-
diagonals populated.

4.6.3 Sweep3D

The Sweep3D proxy application was developed at LANL. It solves a single en-
ergy group of the multi-group equation, with no support for computing multiple
groups. It utilises the Sn algorithm but does solve all the angles in the quad-
rate set. Sweep3D only uses MPI for parallelism in its implementation. This
benchmark is no longer available and is all but superseded by SNAP.

4.6. OTHER SWEEP APPLICATIONS 59

4.6.4 KRIPKE

The KRIPKE mini-app from Lawrence Livermore National Laboratory (LLNL)
is designed to be a proxy for ARDRA. It is written in C++ and simulates
the Sn transport algorithm on a structured grid, with multiple energy groups.
Its original focus was to investigate the data layout for the angular flux along
with the appropriate loop ordering which produced the most performant code.
This was done manually by implementing all the possible orderings as separate
kernels. Automatic compiler vectorisation was performed on the inner loop,
and OpenMP parallel threads were applied to the energy group loop. This
application of threads was always at this domain level and so may not have
always been appropriate. The MPI implementation is based on the Koch, Baker
and Alcouffe (KBA) algorithm [50], as is SNAP (more details on this will be
found in Section 7.1).

The original paper demonstrated the applicability of the benchmark in terms
of a performance proxy for ARDRA [54]. There has been later work on porting
and benchmarking the application to a variety of architectures including GPUs.

A port of KRIPKE to GPUs by Appelhans suggested that some spatial
tiling might be possible within the KBA sweep [7]. The sub-domain would be
further divided into pencil-shaped sections, computing each section in turn. As
such the synchronisation between wavefronts of cells need only be local (not
device wide or with the host) and some outgoing angular flux data need not
be written to device memory thus reducing the number of memory operations.
The investigation was limited to local cubic domains, which would correspond
to a single chunk of the sub-domain. However this approach would require a
large spatial sub-domain; something which is most unlikely given the standard
decomposition and memory capacities of GPUs. The investigation used a cube
with sides of 32 cells which is many more cells than a spatial sub-domain would
normally consist of under the KBA algorithm. Also the spatial decomposition
does not result in local cubic shaped sub-domains, and as such the spatial size
is much more limited, meaning that even using the smallest aggregation of
cells would result in very little parallel work. Whilst the over-decomposition
scheme of Adams et al. may result in multiple cubic domains on a node [2], the
footprint for multiple 32-cube sub-domains would be much too large. KRIPKE
lacks realism as a mini-app for transport applications by only considering a
cubic spatial domain run on a single node. For example it is more realistic to
consider a chunk of the sub-domain being a cube with sides consisting of 4 cells.
Therefore the scope for tiling in the manner proposed by Appelhans is severely
restricted, and results in the maximum number of independent units of work
expressed in the kernel being reduced in comparison to the scheme proposed as
part of this thesis in Chapter 5.

In practice KRIPKE could be considered an equivalent to the SNAP bench-
mark as they solve similar equations in a similar manner. KRIPKE is time
independent (stationary), yet does store both the angular and scalar flux; stor-
age of the angular flux is not necessary for a stationary calculation.

All of the conclusions in this thesis can be directly applied to KRIPKE.

60 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

4.6.5 Denovo

Denovo is a full application for reactor assembly calculations from Oak Ridge
National Laboratory (ORNL) [32]. The application is not publicly available. As
with SNAP and KRIPKE, it uses the KBA algorithm on a 3D Cartesian struc-
tured mesh. Rather than iteration of the scattering source, a Krylov (GMRES)
method is used instead. Denovo is not time-dependent and therefore does not
store the angular flux, only requiring storage for the scalar flux (and angular
moments for anisotropic scattering). The sweep routine consumes the majority
of the runtime, on the order of 80%. Denovo is a hybrid MPI and OpenMP
application, with OpenMP threads used for angles and energy groups. Oct-
ants are fully decoupled based on assuming vacuum boundary conditions on the
problem exterior and so all angles and octants are treated independently. As
previously stated, this thesis does not assume vacuum boundary conditions so
that the conclusions will be applicable to all settings.

The GPU port of Denovo uses CUDA, however the performance comparis-
ons by Baker et al. are made with respect to only utilising half of each Titan
node [10]. For the sweep routine they demonstrated a 4–6X speedup on Titan
over its CPUs, having previously shown a 3.5X speedup on Jaguar. The applic-
ation as a whole showed a 2X speedup on Titan utilising the GPUs. The energy
groups and octants are decomposed across MPI ranks artificially inflating the
node count, and thus involving additional all-to-all communications within pro-
cessor subsets. As such this CUDA port of Denovo shifts the balance of the
application away from the sweep to other parts of the application as a result
of the increased communication costs due to the choice of decoupling and de-
composing the octants and energy groups in the manner described. A nested
KBA sweep is implemented at the thread block level on the GPU. The work
is also partitioned at the warp level where scalar flux moments were computed
by each warp. As Denovo is time independent, and does not store the angular
flux, it does not become memory capacity constrained on the GPUs, which have
limited memory capacity compared to the host CPUs.

As Denovo is focused on a stationary solution it remains of limited interest
and applicability for this thesis. Additionally, as it is closed source it is not
available to work on directly.

4.6.6 UMT2013

The UMT2013 proxy application from LLNL is designed to be a proxy for a
3D unstructured Sn radiation transport calculation. The code is written in a
mixture of Fortran, C and C++, and uses a hybrid of MPI for spatial parallelism
and OpenMP for parallelism of angles. This is a rather large mini-app at around
50,000 lines of code and the documentation is also rather lacking. As such it is
an impractical research vehicle.

The benchmark is an update of the UMT and UMT2k benchmarks. It uses
an upstream corner-balance spatial discretisation in 3D and as such the solution
method itself is different to the FD (and later finite element method (FEM))
approaches and so it is not appropriate to the focus of this thesis.

4.6. OTHER SWEEP APPLICATIONS 61

4.6.7 Tycho 2

The Tycho 2 mini-app is a Sn sweep on tetrahedral unstructured meshes. It
uses linear discontinuous Galerkin (DG) finite elements. The sweep dependency
of each angle generates a DAG, and it is the traversal of this graph that the
application focuses on. This work continues that of Pautz [78]. It investigates
different ways to perform the sweep in parallel on a distributed machine.

There are three such methods currently implemented. Firstly, a standard
sweep routine somewhat similar to KBA but modified to work on unstructured
grids.

A parallel block Jacobi routine is also implemented, where each sub-domain
is iterated on in turn with out-of-date boundary information, with the sub-
domain still operating a local sweep routine. A standard halo exchange is per-
formed to update the boundary data. The application developers admit that
this takes longer to run than the standard sweep, presumably because of the
greatly increased iteration count. However they suggest that the halo exchange
routine scales better than the standard sweep scaling, which is clearly true given
the findings of Chapter 7, however they provide no results of the scaling of this
method. They also provide no information on time to solution compared to
the standard sweep, however this approach is pragmatic to the scheduling of an
unstructured mesh sweep. This approach should also remove the start up and
tear down costs of the sweep.

The final routine is based upon the Jacobi solve, however it uses a Krylov
solver to accelerate the lagging of the boundary data.

The application focuses on the parallel regime to solve the equation, rather
than the overall efficiency itself. Particularly, the construction and solve of
the small linear systems at the centre of the FEM are not the focus of this
application. This is also a topic of this thesis as explored in Chapter 8.

The application is written in C++, and comes with a variety of auxiliary
programs to generate and partition the mesh. These auxiliary programs either
implement a naive and simple partitioning, or else impose a dependency on an
external library. As such in their simplest, self contained form, it cannot be
a true proxy of a production app, which probably does not do a naive mesh
decomposition.

Initial results from Garrett suggested that Tycho 2 running on Intel Xeon
Phi (Knights Landing) (KNL) achieved around parity performance in terms
of runtime with a dual-socket Xeon processor [34]. The arguments presented
to justify that this is the expected performance are flawed; they suggest that
the KNL has twice as many cores at half the speed compared to Xeon, and
so should achieve around parity performance. Both total floating point opera-
tions per second (FLOPS/s) and total memory bandwidth from Multi-Channel
DRAM (MCDRAM) on the KNL are much larger than the theoretical peak per-
formance of a dual-socket Xeon — whatever headline metric is used the KNL
should in theory outperform Xeon. Therefore, if this benchmark achieves parity
performance there is a performance issue to be investigated by the authors.

Tycho 2 solves multiple energy groups in parallel, using OpenMP, however
there is no group to group coupling. The authors of the code also claim that
the code requires optimisation, in particular for memory accesses [34].

In summary, this benchmark is too immature to be used in this thesis. Fur-
thermore, the primary focus of work contained within this thesis is also on

62 CHAPTER 4. COMPUTATIONAL NATURE OF TRANSPORT

structured grids, and so as this benchmark operates on an unstructured grid
the assumptions inherent in the structured case are not exploited sufficiently to
obtain equivalent levels of performance.

4.7 Summary
The solution of the transport equation as detailed in this chapter presents a num-
ber of unique challenges compared to many other Boltzmann equation solvers
or codes which exhibit a wavefront pattern. It is a highly dimensional problem,
with different levels of concurrency available in each of the dimensions. Most
notably a sweep across the spatial domain is required, and it is not possible to
compute the solution for each spatial cell in parallel as in a typical concurrent
scheme.

The solution scheme is implicit, requiring that a number of iterations are
performed for each timestep; this is in contrast to an explicit time dependent
solver of fluid dynamics codes where the solution at the next timestep can be cal-
culated with a single update. Also there is a large memory footprint associated
with the solution itself as a result of the high number of dimensions. Finally,
the iteration structure of the solver requires deeply nested loops formed from
both convergence iterations as well as loops over the domain space. Although
not the only algorithm to exhibit a sweep dependency, the extra complexity of
the additional problem dimensions means that much of the previous work on
sweeps is not applicable to transport.

Mini-apps will be used as a research vehicle in order to practically investig-
ate the solution of the transport equation on different computational devices.
These applications remove much of the physical meaning of the solution by
using auto-generated and simplistic fictional data. As such they focus on the
algorithm itself rather than the complexities of production applications where
a large number of options and complex data initialisation routines occur. The
mini-app therefore focuses on the loop structure, communication and data ac-
cess patterns of the algorithm. The resulting code base is much smaller than a
production application and is therefore much more agile for research purposes.
The SNAP mini-app from LANL will be used extensively throughout this thesis.
The development of new mini-apps as part of this thesis will allow for more fo-
cused investigation into specific aspects of the algorithm, and will complement
SNAP. Chapter 6 describes the author’s work on a mini-app designed specifically
to understand performance issues observed on cache based architectures.

CHAPTER 5

Accelerating transport on GPU architectures

The work in this chapter also appears in the following publications:

• Tom Deakin, Simon McIntosh-Smith and Wayne Gaudin. Express-
ing Parallelism on Many-Core for Deterministic Discrete Ordinates
Transport. Workshop on Representative Applications at IEEE
CLUSTER, 2016.

• Tom Deakin, Simon McIntosh-Smith, Matt Martineau and Wayne
Gaudin. An Improved Parallelism Scheme for Deterministic Dis-
crete Ordinates Transport. International Journal of High Perform-
ance Computing Applications (special issue), 2016.

The SNAP proxy application from Los Alamos National Laboratory (LANL)
is a parallel code and as such has a specific mapping of the algorithm to the
various parts of hardware such as vectors and programming model abstractions
such as threads. The mapping of the algorithm to hardware is important to
ensure good performance is achieved. The parallel scheme of SNAP will be
introduced in this chapter. A concurrent scheme will then be presented to
enable good performance of the proxy application on GPUs by leveraging as
much of the available concurrency in the algorithm as possible and mapping
appropriately to the programming model abstractions used for programming
such devices. This scheme will then be tested and shown to provide significant
speedups on GPUs for the first time for the SNAP application, despite previous
efforts to port SNAP to GPUs. The memory bandwidth of the kernel will also be
modelled to show that these speedups are in line with the expected performance
gains for a memory bandwidth bound kernel.

The domain decomposition of the SNAP mini-app will be discussed in detail
in Chapter 7, however it is sufficient to consider for now that each process will
receive a spatial sub-domain of the full problem. The performance of solving
the local sub-domain is investigated in this chapter.

63

64 CHAPTER 5. TRANSPORT ON GPUS

5.1 Parallelism in the SNAP mini-app

5.1.1 Original scheme

The SNAP mini-app uses a hybrid programming model of Message Passing
Interface (MPI) and OpenMP in which to express the parallel work. The original
SNAP code is CPU only and does not support GPUs. MPI is used for spatial
decomposition according to the Koch, Baker and Alcouffe (KBA) algorithm [50],
although the details of this are deferred until Section 7.1.

The full angular domain is grouped into octants, and due to the regular,
structured Cartesian grid all angles within one octant are independent of each
other. A sweep over the spatial mesh in SNAP is for a batch of all angles
within the octant, rather than a sweep for a single angle at a time (as originally
conceived with the KBA schedule). SNAP uses compiler auto-vectorisation to
compute the solution for angles in one octant in the cell in parallel. The compiler
generates Single Instruction Multiple Data (SIMD) vector instructions based on
the underlying instruction set of the CPU architecture.

The boundary conditions in SNAP are always vacuum; that is the incoming
fluxes across the boundary to the mesh are always zero. This therefore means
that there is no dependence between angles in different octants. However, SNAP
does not utilise this parallelism to compute all angles concurrently; and therefore
this is not considered further as a potential source of concurrency. In part, this is
a design decision made to ensure that SNAP remains representative of PARTISN
for which it is a performance proxy. Additionally, not exploiting this parallelism
ensures that results will be applicable to a wider array of transport codes and
problems which may have more complex boundary conditions such as reflective
boundaries. The octants are therefore treated as a serial iteration, performing
a sweep for each one in turn. Note that reflective boundaries do not entirely
preclude this as a source of parallelism in general, although it would become
a problem dependent source of parallelism depending on the specific choices of
boundary properties.

SNAP considers energy groups in the energy domain to be independent as
a result of using a Jacobi iteration scheme in this domain, with the group-to-
group coupling taken into account in the definition of the source terms [13].
Recall from Section 4.2.3 that such a scheme uses energy group data from a
previous iteration in order to expose concurrency, but as the method converges
to a tolerance the method is of equivalent accuracy to serial schemes. Therefore
during each sweep the angular flux for each energy group can be computed in
parallel. To express this SNAP uses OpenMP threads; however the worksharing
of energy groups to threads is expressed explicitly in a Single Program Multiple
Data (SPMD) style rather than utilising the worksharing constructions in the
OpenMP programming model to ensure correct MPI communication avoiding
deadlock. The energy groups are divided into a number of bins, with each thread
assigned one bin containing one or more energy groups. In this way the sweeps
for each energy group are performed independently by each thread within each
MPI process. This results in MPI communications being called from within the
OpenMP parallel region thus requiring high levels of thread support from the
MPI library (at least MPI_THREAD_SERIALIZED). The original approach means
that when considering a version of the code which supports GPUs, much of the
MPI needed refactoring in order to work with the offload model used for GPU

5.1. PARALLELISM IN THE SNAP MINI-APP 65

Octant 2

Octant 1

Figure 5.1: Serial sweep for two octants (from [24])

applications. This approach may perhaps be viewed as distributing the energy
groups across different processors in a manner similar to the Denovo code (see
Section 4.6.5) [32]; the first core assigned to each MPI process computes the first
energy group. However the decomposition is via OpenMP which means group-
to-group communication in the source term is local to each process rather than
across the network as in Denovo.

The sweep itself is performed serially in the spatial domain, as shown in
Figure 5.1 (note that only one octant is computed at any time). By iterating
serially over space the data dependency of the sweep is maintained ensuring
correctness.

Note that CPU hardware resources are fully allocated with this scheme des-
pite a serial loop in space; something contrary to many other High Performance
Computing (HPC) applications where the parallelism comes entirely from the
spatial domain (for example Lattice Boltzmann codes [69]). A thread is launched
for an energy group, with this thread then iterating over each cell in the sub-
domain sequentially using vector instructions to compute all the angles within
each cell. Therefore threads and SIMD instructions fully utilise the available
levels of parallelism on CPU architectures (instruction level parallelism is not
explicitly programmed and comes from either the compiler rearranging instruc-
tion streams or an out-of-order execution pipeline in the architecture).

5.1.2 Concurrency for many-core
The original parallel scheme of Section 5.1.1, whilst providing sufficient con-
currency for multi-core CPUs does not provide enough concurrent work for
many-core architectures, in particular a GPU. Therefore additional parallelism

66 CHAPTER 5. TRANSPORT ON GPUS

Octant sweep direction

0

1

2

3

4

01234

Figure 5.2: Wavefront sweep across a 2D grid (from [24])

must be found and expressed so that many-core technology may be exploited.
The concurrency in the angular and energy group domain is already fully

exploited by the original scheme. Again we are restricted to running a single
octant at once so that dimension is not considered as a source of concurrency.
The spatial dimension however exhibits a natural parallelism between cells on
each wavefront. This is shown pictorially in Figure 5.2, where cells are coloured
along each wavefront.

All cells within a wavefront (those of one colour) only depend on incoming
flux values from cells in the previous wavefront; there is no dependence on cells
in subsequent wavefronts. Therefore cells along each wavefront can be computed
in parallel, ensuring synchronisation between wavefronts so that the upwinded
data dependency is respected. This synchronisation is shown as dashed lines in
Figure 5.3.

The concurrency available from cells on a wavefront can be combined with
the parallelism within each cell in the angular and energy domain. However
note that there is no further additional parallelism available from the Discrete
Ordinates (Sn) algorithm and this scheme fully uses the potential concurrency.
It is important to consider this here as there may be physical problems specified
by choice of mesh, quadrature and material data, which reduce the available
parallelism; examining the best attainable performance on many-core for the
general algorithm is important.

A unit of work is defined to be the calculation of the angular flux for one
octant sweep o in a given cell (i, j, k) for angle a and energy group g. In this
new parallel scheme each cell therefore has

Nangles ×Ngroups (5.1)

5.1. PARALLELISM IN THE SNAP MINI-APP 67

Octant 2

Octant 1

Figure 5.3: Spatial parallel sweep for two octants (from [24])

concurrent units of work. There are at most

O

(
NxNyNz

max{Nx, Ny, Nz}

)
(5.2)

concurrent cells in each wavefront. This is determined by the product of the
two smallest spatial dimensions in a three dimensional grid. The total available
parallelism is then the product of (5.1) and (5.2).

Note that during the sweep the maximum number of cells as expressed
in (5.2) will not always be available. Specifically there will only be one cell
at the start of each wavefront. This is clear from Figure 5.3.

As an example we consider a sample problem with 50 energy groups and the
S32 angular quadrature which has 136 angles per octant. Therefore there are
6,800 units of work per cell (according to (5.1)). In comparison to an NVIDIA
P100 GPU with 3,584 processing elements (CUDA cores), this is almost enough
work from a single cell to saturate the device, assuming the rule of thumb
of requiring 4 times the number of processing elements for good occupancy.
As the sweep progresses, the cells on the wavefront multiply this parallelism
(according to the product of (5.1) and (5.2)) and therefore there is sufficient
work to schedule on many-core devices. Note too that the spatial parallelism
will become more valuable in smaller problems.

Previous NVIDIA HPC GPUs such as the K40 had 2,880 processing ele-
ments; although the number of processing elements in the P100 is more than in
the K40, the increase in the number of processing elements is not currently show-
ing an exponential growth in the available parallelism from the hardware. In-
deed, the latest NVIDIA GPU, the V100, has 5,120 processing elements. There-

68 CHAPTER 5. TRANSPORT ON GPUS

fore this scheme should provide sufficient parallelism for future GPU devices
along the current trend.

It is possible to express the spatial parallelism via dependencies in the form
of a directed acyclic graph (DAG). This method of programming is supported
in both OpenCL and CUDA. Each node in the graph is a cell in the grid with
dependencies assigned to upwind neighbouring cells. Therefore the programmer
does not have to worry about optimal scheduling of work, nor be concerned if a
unit of work becomes delayed due to negative flux fix-up. In this way, a kernel
could specify the work in a single cell. However, when this was implemented
in OpenCL using the Events Application Programming Interface (API) and an
out-of-order Command Queue, there was too much expectation on the OpenCL
runtime and device driver to (close to optimally) satisfy the dependencies and
schedule the small size kernels on the device concurrently. Alternative API calls
are available in CUDA however they provide identical functionality to OpenCL
and so were not tested explicitly; note that OpenCL and CUDA performance
are generally identical (for example the results in Chapter 3). The performance
available with this method was not compelling enough to consider it in greater
detail, and manually scheduling entire wavefront sweeps as a single kernel (the
approach discussed in Section 5.1.3) gave much better performance [26].

Once the angular flux has been calculated for all angles in a cell a reduction
must occur for computation of the scalar flux. This is a reduction local to each
cell for each energy group and therefore does not require grid-wide synchronisa-
tion as is typical in other Boltzmann equation solvers. This is initially performed
as a separate kernel once all sweeps have completed, where the angular flux in
each cell was written back to memory. The original SNAP code performs the
reduction in line with the computation of the angular flux, however merging the
reduction in this GPU approach would require stipulating restrictions on the
work-group size as well as work-group level synchronisations. The work-group
size must be a power of two in order to correctly implement the reduction. Mer-
ging the kernels actually results in a longer runtime than running the sweep
kernel and then a separate reduction kernel, on the order of around 35%. The
ability to perform within work-group reductions efficiently while still allowing
sufficient concurrent work-groups on each compute unit will be vital for future
GPUs; the number of concurrent work-groups is usually limited by the size of
local memory which is used for the reduction process.

5.1.3 An OpenCL implementation

As part of this thesis, this parallel scheme was implemented using OpenCL into
SNAP in order to experimentally test the scheme on many-core GPUs. OpenCL
was chosen as it could express all elements of the concurrency, including testing
the DAG approach, in a platform agnostic manner so that GPUs from a variety
of vendors could be tested. A downside of using OpenCL is that the API is
C based, with kernels written in a variant of C99 whereas SNAP is a Fortran
application. Therefore introducing OpenCL into SNAP required some rewriting
of the kernels and iteration loops of SNAP, with a focus on ensuring that the
data was resident on the GPU to avoid the large overhead of memory transfers
between the host CPU and the device memory spaces.

The data layout of the angular flux was also changed to match the concur-
rency in the new scheme. The original data layout in SNAP was (angle, space,

5.2. PERFORMANCE RESULTS 69

octant, energy); with the leftmost dimension having unit stride and the right-
most dimension having the largest stride according to the Fortran convention.
This layout would result in poor memory access patterns on the GPU due to
adjacent work-items in the work-group computing all angles and groups for a
single cell. Therefore a new data layout was used of (angle, energy, space, oct-
ant), resulting in unit stride access for adjacent work-items in the work group
for all the work in each cell. It is important that data access patterns are correct
for good performance on GPU architectures.

An OpenCL work-item is assigned to a unit of work (the calculation of one
entry in the angular flux array). A 2D kernel is enqueued for each wavefront
of cells, with the dimensions of the kernel specifying the total number of work-
items to launch. The first dimension is set to be equal to the product of angles
and energy groups as in (5.1). The second dimension is set to be equal to the
number of cells on the wavefront as in (5.2). The number of work-groups is
not specified as the OpenCL runtime is able to make appropriate device specific
choices. By launching a separate kernel for each wavefront of cells the global
synchronisation between kernel calls ensures that the upwind data dependency
between cells is maintained.

The scalar flux reduction is performed as a separate kernel for simplicity
once all the sweeps have occurred for each inner iteration. By calculating the
scalar flux in this way there are no dependencies between any cells and they
may be computed concurrently. Note that the reduction only occurs within
each cell. A work-group is launched per cell and energy group. The number
of work-items is chosen to be the closest power of two to the number of angles
so that a commutative tree-based reduction in local memory can be employed,
such as those recommended by AMD [5]. The work-items within the work-group
therefore reduce the angles over all octants into the scalar flux associated with
a cell and energy group.

OpenCL is a cross-platform programming model, and therefore it is possible
to run the same code on the CPU as well, however the focus of this approach is
on many-core GPU architectures. The reduction as described above performs
poorly on the CPU due to the memory access pattern and so a simpler reduction
was implemented for use on a CPU which launches a work-item per cell (instead
of a work-group per cell) thus performing the reduction in each cell in serial.
Work-items are typically associated with threads on CPU architectures and
therefore this is a more appropriate parallel strategy for this architecture than
the GPU style tree-based reduction.

5.2 Performance results

In order to test the effectiveness of the improved parallel scheme on GPU ar-
chitectures, the runtime of the sweeps is tested on a GPU and compared to the
performance of the original SNAP application running on a dual-socket Intel
Xeon (Haswell) node. The devices tested are listed in Table 5.1.

Details of the problem size are specified as:

• Grid side: 16× 16× 16

• 50 energy groups

70 CHAPTER 5. TRANSPORT ON GPUS

P
latform

R
A
M

(G
B
)

T
heoreticalpeak

m
em

ory
B
W

(G
B
/s)

M
easured

m
em

ory
B
W

(G
B
/s)

D
.P.T

F
LO

P
S/s

IntelX
eon

E
5-2670

×
2

64
52.2

×
2
=

104.4
60

0.33
IntelX

eon
E
5-2698

v3
×

2
128

68
×

2
=

136
118

1.18
A
M
D

O
pteron

P
rocessor

6274
32

51.2
13

0.14
N
V
ID

IA
T
esla

K
40

12.288
288

194
1.43

N
V
ID

IA
T
esla

K
20c

5.12
208

152
1.17

A
M
D

F
ireP

ro
S9150

16
320

273
2.53

T
able

5.1:
Specifications

ofdevices
used

for
testing

single
node

sw
eep

perform
ance,w

ith
m
easured

bandw
idth

recorded
using

B
abelStream

(from
[24])

5.2. PERFORMANCE RESULTS 71

• 136 angles per octant (S32)

• 2 orders of anisotropic moment expansion

The memory requirement of this problem totals 3.6 GB which is within the
capacity of all the devices tested. The runtime is measured as the time taken to
complete the eight octant sweeps of the mesh including the scalar flux reduction,
which comprise one inner iteration.

Although this is a cubic problem and hence has an abundance of spatial
parallelism with a maximum of 256 cells on the largest wavefront, the number
of cells need only be a small constant factor to saturate a GPU as shown in
Section 5.1.2. With other shaped domains, such as the pencils which occur with
a KBA decomposition, this small constant factor should also be adequate, and
the effectiveness of the concurrent scheme discussed in the present chapter will
be explored in Chapter 7 in this distributed regime.

Figure 5.4 shows the performance on GPUs stated in terms of speedup com-
pared to the Haswell baseline. The relative memory bandwidths of the GPUs
compared to the Haswell baseline performance can be obtained from Table 5.1
or be referring back to Chapter 3. For a simple Triad kernel, the AMD S9150
should be 2.3X faster than the Haswell baseline according to the BabelStream
benchmark. A similar improvement is seen on this device for SNAP using the
improved parallel scheme here as shown be a 2.44X speedup in Figure 5.4. The
ratios of attainable memory bandwidth on the NVIDIA GPUs again match the
speedups obtained with the parallel scheme. Therefore the scheme does leverage
the improvement in memory bandwidth on the GPU devices over the CPU to
deliver the speedups in line with this advantage.

These results are also compared to those obtained by Wang et al. from their
CUDA port of SNAP [94]. Their port is a mechanical reimplementation of
SNAP using CUDA and does not expose any additional parallelism, utilising
a similar concurrent scheme to original SNAP. A kernel is launched for each
energy group with threads assigned to angles and grouped so that there is one
thread block per cell. The number of concurrent thread blocks over cells on
a wavefront is limited to one per streaming multiprocessor (SM) unit so that
synchronisation between thread blocks can occur on the device according to
the trick of Xiao and Feng [96]. This severely limits the potential concurrency
and reduces the ability for memory access latencies to be hidden by running
multiple thread blocks per SM. Note that the memory access is still coalesced
for this scheme within each thread block as the original memory layout is not
altered from the original and is appropriately matched to the parallel scheme in
this case. Multiple kernels may be launched using multiple streams to leverage
the energy domain concurrency, but this relied on the ability of the driver to
schedule concurrent independent kernels on the hardware successfully; the DAG
based implementation discussed in Section 5.1.2 similarly relies on the driver and
was found not to provide compelling performance [26]. As such in the port by
Wang et al. there are very few cells which are computed in parallel in practice.
As Figure 5.4 shows, their approach does not successfully leverage the memory
bandwidth advantages of GPUs.

Running the OpenCL implementation with the improved parallel scheme of
Section 5.1.2 on the baseline CPU does result in a large slowdown. This is likely
due to non-uniform memory access (NUMA) effects on the dual-socket node
within the Intel OpenCL runtime. Indeed profiler output stated that there were

72 CHAPTER 5. TRANSPORT ON GPUS

E5
-26

98
 v3

E5
-26

70

Opte
ron

 62
74 K4

0
K2

0c K4
0

K2
0c

S9
15

0

E5
-26

70

Devices

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

1.00x

0.74x

0.30x

1.14x

0.83x

1.54x

1.25x

2.44x

0.54x

Original
P. Wang et al.
OpenCL

Figure 5.4: Speedup of improved concurrent sweeps on GPU (from [24, 26])

5.3. MODELLING THE MEMORY BANDWIDTH 73

many cache misses as a result of data being in the wrong NUMA region. It
may be possible to improve the NUMA behaviour by not using the OpenCL
memory copy API calls and initialising the data via a kernel (as has been shown
in BabelStream in Section 3.5.1), however this is not practical for the purposes
of the SNAP benchmark. The Intel OpenCL runtime does not allow the user to
control the number of threads launched, and so whilst running on a single-socket
node would prevent NUMA issues from occurring, the common CPU-based su-
percomputer nodes are dual-socket and so it is the latter which provides the
baseline performance here. Additionally, the memory access pattern resulting
from running cells concurrently will be less optimal than the original approach
implemented in standard SNAP on a cache-based architecture where the data
is accessed there in a very regular fashion, with stride one access through the
whole problem domain for each thread. Further study of this behaviour will be
shown in Chapter 6.

5.3 Modelling the memory bandwidth
It is useful to model the memory movement of the sweep kernel so that the
sustained memory bandwidth can be estimated. This then allows comparison
with the gold standard Triad bandwidth so that a measure of efficiency can
be derived as the ratio of these two bandwidths. The BabelStream benchmark
of Chapter 3 was used to measure the achievable Triad bandwidth. This ratio
is pertinent when kernels are memory bandwidth bound; both the uplift in
performance from using devices with improved memory bandwidth and the low
number of FLOPs imply that the sweep kernel should be memory bandwidth
bound. Indeed the computational intensity of the kernel is 0.22 FLOPs per byte
of memory accessed: well within the memory bound portion of the Roofline
models for most GPUs.

A perfect cache model is assumed, so that once a data point has been read
it is available without further cost. There will be no data reuse between kernel
invocations however, and so the model considers the movement for a single
kernel. The number of reads and writes in a kernel, which corresponds to a
particular wavefront, can be modelled as:

aNcells + b (5.3)

where a is the number of memory accesses which depend on the cell index and
b is all other memory accesses. The number of cells in the wavefront is denoted
Ncells. The values of a and b can be obtained by manually counting the read
and write operations in the kernel source code and the specific problem sizes
run (as listed in Section 5.2), for which the values a = 61, 400 and b = 866
are obtained. For all kernels (wavefronts) the model predicts a total of about
15 GB of memory movement for the sweeps for a single iteration. The AMD
CodeXL profiler for a run on the AMD S9150 GPU verifies that our model is
fairly accurate, as it reported that 13.03 GB was moved for these kernels.

The sustained memory bandwidth may be calculated by dividing the mod-
elled bandwidth by the runtime. For simplicity and consistency this same model
is used for the original SNAP code running on the CPU. The sustained memory
bandwidth is plotted as a ratio of Triad bandwidth in Figure 5.5. Note that
the improved concurrent scheme achieves a similar percentage of peak memory

74 CHAPTER 5. TRANSPORT ON GPUS

E5
-26

98
 v3

E5
-26

70

Opte
ron

 62
74 K4

0
K2

0c K4
0

K2
0c

S9
15

0

E5
-26

70

Devices

0

20

40

60

80
Su

st
ai

ne
d

pe
rc

en
ta

ge
 o

f T
ria

d
m

em
or

y
ba

nd
wi

dt
h

34.4%

50.5%

93.1%

23.8% 22.2%

51.9% 54.5% 56.6%

45.3%

Original
P. Wang et al.
OpenCL

Figure 5.5: Sustained memory bandwidth of single node SNAP (from [24, 26])

bandwidth on GPUs to the original code on the Intel CPUs. This demonstrates
that the advantage of more memory bandwidth on the GPUs is being leveraged
successfully and therefore the speedups of Figure 5.4 are indeed in line with the
memory bandwidth and the extra concurrency was required in order to provide
the GPU with enough work so that the bandwidth may be leveraged. This
is in contrast to the work of Wang et al. where the low percentages of Triad
bandwidth in Figure 5.5 clearly indicate that memory bandwidth is not being
leveraged efficiently. The AMD Opteron CPU achieves a very good percent-
age of achievable peak bandwidth, however notice from Table 5.1 that Triad is
only capable of achieving 25% of theoretical peak memory bandwidth on these
CPUs. Even the simple Triad operation does not leverage high levels of memory
bandwidth on this platform.

5.4 Source code disruption

It should be noted that the improved concurrent scheme did require a number
of source code changes. The memory layout of the main arrays needed to be
changed so that the parallel scheme could use unit stride memory accesses.
Therefore the arrays must be allocated and initialised in the new layout to
avoid wasteful memory transpositions. As such this is a rather repetitive but

5.5. MITIGATING MEMORY CAPACITY CONSTRAINTS 75

straightforward update to the source as every location where the array is used
must be changed. This results in a large number of simple changes. There is
as yet no programming model which could assist with such changes (although
RAJA may improve some aspects in this regard for C++).

The source update routines were simple to port to the GPU as every cell
is independent and therefore more traditional HPC techniques were employed.
However it was important that all the computation occurred on the GPU so
that data transfer between the host and device was minimised.

The additional parallelism was required for the GPU in order to saturate it
with sufficient work, something the original scheme is unable to provide. In-
tegrating this within SNAP was somewhat troublesome due to way the parallel
scheme has been expressed via manual work sharing between OpenMP threads.
However the need for different parallel schemes informs us that a portable trans-
port code should be designed with this flexibility in mind.

5.5 Mitigating memory capacity constraints

Standard CPU compute nodes may be constructed with large dynamic random-
access memory (DRAM) capacity, however for accelerators the memory capacity
is restricted. High bandwidth memory capacity on devices such as the NVIDIA
P100 and Intel Xeon Phi (Knights Landing) (KNL) is currently only 16 GB.
Future generations are likely to increase this to 32 GB but the rate of future
growth is likely to be slow. The memory footprint of transport is very large
and dominated by the angular flux solution. One option to mitigate the smaller
memory capacity of accelerators is to strong scale the simulation to utilise a
larger number of them. However, as will be discussed in Chapter 7, this is not
an ideal solution. Storing more of the grid on each device reduces the number
of MPI ranks which in turn should improve the scalability.

The use of the CPU host DRAM for capacity storage with device memory
used for temporary working set storage is a commonplace solution in HPC,
allowing access to the entire heterogeneous memory hierarchy [65, 31, 52]. Typ-
ically, the data is split into tiles which are then transferred to GPU memory
by treating it as a programmer controlled scratch pad memory. For all the
cited studies the order in which the tiles are computed does not matter, and
the concurrency scheme treats each cell independently, and so these approaches
cannot be applied directly to transport. Additionally, the methods hide the
transfer of data between the host and device memory spaces by increasing the
size of the halo region so that each tile may be resident on the device for a
greater number of iterations. Again, this approach does not apply to a trans-
port solver which does not utilise the standard halo exchange communication
pattern. Kochurov and Golovashkin investigate applying similar techniques to
a Gauss-Seidel solver which shares some characteristics with a transport sweep
(see Section 4.6.2). They use a red-black parallel scheme whereby neighbouring
cells are coloured differently and cells of the same colour may then be computed
concurrently. Such a scheme breaks the upwind dependency of the transport
sweep.

The NVIDIA CUDA programming model supports Unified Virtual Memory,
allowing the device to use the host memory at its full capacity. However, there is
no caching or prefetching of this data resulting in memory bandwidth limitations

76 CHAPTER 5. TRANSPORT ON GPUS

associated with the host to device interconnect (typically PCIe). This reduction
in memory bandwidth is severe compared to what would be available by being
resident in device memory.

The transport solver allows each octant to be solved in turn, and each octant
sweep does not require any (cell centered) angular flux data from other octants.
Therefore the working set of data is much less (an eighth of) than the total
footprint. It is possible to manually program the transfer of angular flux data
for each octant between the host and device in order to reduce the footprint
on the device itself. As with the approaches to standard HPC codes discussed
above, one hopes to overlap such transfers with compute. In order to achieve
this, two octants may be stored on the device instead of all eight, with master
copies of all eight stored in host memory. Therefore one octant may be computed
simultaneously as the data for the previous octant sweep may be copied back
and replaced with the next octant.

The PCIe interface supports duplex transfer so the interconnect indeed has
support for such a scheme. However, when running on multiple nodes commu-
nications must occur and therefore data required by neighbouring ranks must
be copied from the device. These transfers must occur at the same time as
both the next portion of computation and the switch of octant data. The bulk
transfers of the octant data therefore need interrupting to send the smaller
neighbour messages. It was found that these transfers were only interrupted by
both manually splitting the large transfer into multiple transfers and setting the
stream priorities for the neighbour message copies to be higher than the bulk
transfer stream. This resulted in some overlap, however there was still suffi-
cient non-overlapped time to increase the runtime compared to a fully resident
solution. GPU hardware and driver support for this will be crucial for large
heterogeneous systems to be effectively leveraged.

An automatic page-faulting mechanism was introduced in CUDA 8 for Pas-
cal and newer GPUs which would greatly simplify the implementation of this
scheme. Indeed, one would only need to allocate the memory on the host and
put faith in the memory manager to copy data as required. This is similar to
the Unified Virtual Memory (UVM) available within the CUDA programming
model, but with the addition of allowing data to be cached. However at the
time of writing there was not support to test this.

A time dependent transport solve stores two copies of the angular flux, one
for the current and previous timestep respectively. The values from the previous
timestep are used to update the current timestep, yet it is the scalar flux for
which convergence is checked in SNAP. The source updates do not depend on the
angular flux either. Therefore it is possible to store a single copy of the angular
flux array and perform an extra sweep once convergence has been achieved to
overwrite the angular flux solution. This results in a 55% memory footprint
saving and has been introduced into the official SNAP benchmark as an update
after feedback to the developers. Note that this requires the scalar flux reduction
operation to occur during the sweep itself which resulted in overheads on the
GPU (see end of Section 5.1.2).

Using a discretisation method with higher orders of accuracy than second
order diamond difference/finite difference (FD), such as a finite element method
(FEM) approach, may also afford memory capacity savings. The higher order
methods allow for using a reduced spatial resolution, consisting of fewer but
physically larger cells. As such the memory footprint might be reduced as a

5.6. SUMMARY 77

result. This is the subject of Chapter 8.

5.6 Summary
The concurrent scheme presented in this chapter shows that the SNAP proxy
application can be successfully run on a GPU to leverage the improvements
in memory bandwidth that such devices provide over standard CPU architec-
tures. Due to the low computational intensity of the sweep kernel where there
are few FLOPs per byte of memory used, the kernel should be memory band-
width bound. GPU devices offer an increased memory bandwidth capability
but require large amounts of parallelism to be exposed in the algorithm in order
to exploit it. Along with the concurrency exposed in the angular and energy
domains as in the original SNAP scheme, spatial parallelism between cells was
required to generate enough work to saturate all of the processing elements of a
GPU. This scheme was tested experimentally and was the first time that spee-
dups of SNAP were obtained on many-core architectures. The BabelStream
benchmark of Chapter 3 was used to measure the maximum possible memory
bandwidth, and along with a model of the memory movement in the kernel the
attained memory bandwidth of the sweeps can be estimated. This verified that
the speedups were in line with the improvements in memory bandwidth that
GPUs offer over more traditional processors.

78 CHAPTER 5. TRANSPORT ON GPUS

CHAPTER 6

Transport on cache-based architectures

The work in this chapter also appears in the following publications:

• Tom Deakin, John Pennycook, Andrew Mallinson, Wayne Gaudin
and Simon McIntosh-Smith. The MEGA-STREAM Benchmark on
Intel Xeon Phi Processors (Knights Landing). The Intel Xeon Phi
Users Group Spring Meeting, 2017.

• Tom Deakin, Simon McIntosh-Smith and Wayne Gaudin. On the
Mitigation of Cache Hostile Memory Access Patterns on Many-core
CPU Architectures. The Intel Xeon Phi Users Group Workshop at
International Conference on High Performance Computing, 2017.

After the release of the Intel Xeon Phi (Knights Landing) (KNL) there
was much effort in the High Performance Computing (HPC) community to
benchmark and port codes to this architecture. The device promised improved
memory bandwidths over traditional x86 CPUs due to incorporating Multi-
Channel DRAM (MCDRAM) into the package. For memory bandwidth bound
applications therefore one would expect their performance to improve in line
with this technology, and for some applications this was true [48]. However,
and perhaps surprisingly, SNAP showed little improvement, achieving close to
parity performance with standard Xeon processors [48]. SNAP however should
be memory bandwidth bound based on the computational intensity as defined
by the Roofline model (recall Section 5.3), and therefore on modern processors
the limiting factor in the architecture should be the memory bandwidth. Recall
too that the improvements shown in Chapter 5 were proportional to the memory
bandwidth advantages of GPUs. It was unclear why the measured performance
of SNAP was at odds with the expectations of improved performance from the
KNL architecture. The focus of this chapter is therefore to understand why the
improvements in memory bandwidth were not being exploited on cache-based
architectures, of which the KNL processor is one such example, for a code with
low computational intensity. Other cache-based architectures such as Intel Xeon

79

80 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

Figure 6.1: A standard 5-point stencil (from [22])

and IBM Power 8 processors are also used so that the findings may be described
to this class of architectures and not just a single processor.

The mega-stream collection of mini-apps was therefore written based on ex-
tracting key sections of the sweep kernel in SNAP so that they may be optimised
and their performance analysed in isolation. Although SNAP is a proxy applic-
ation and therefore should allow for this style of research, it is unfortunately
less agile than many of the other mini-apps (such as those found in the Mantevo
suite [42]). This effort of distilling down the key components of the routine al-
lows one to gain an insight into how the hardware may be limiting performance
of the computational patterns in the code.

Critical to their development was the inclusion of a performance model which
captured the useful memory bandwidth the application obtained.

6.1 Distillation of the finite difference kernel

The main computation involved in solving the transport equation results in a
few lines of computational code organised in a deeply nested loop structure over
the high-dimensionality of the problem space. This itself is then nested inside
the iterative scheme of Figure 4.2, running the sweeps many times until con-
vergence is reached. The new mega-stream mini-app seeks to take these few
lines of code inside the loops over the problem space and optimise for memory
bandwidth. This represents the core computation of each (SNAP) kernel invoc-
ation. Importantly, the memory access patterns and computational intensity
are in line with those typical of a transport solve.

The kernel may also be described as a modification of a standard 5-point
stencil operation in 2D (7-point in 3D). For a cell (i, j), this stencil relies on
values from cells (i± 1, j ± 1) as shown in Figure 6.1.

For transport however edge values are used from neighbouring cells, rather
than cell centred values. Also due to the upwind dependency, the origin of the
sweep, only half the neighbour values are used for computation, with the others
as output values to be consumed by neighbouring cells downwind of the sweep.
For one particular sweep direction therefore, cell (i, j) requires edge values from
cells (i− 1, j) and (i, j − 1) for computation, and then provides edge values for
cells (i+ 1, j) and (i, j + 1). This is shown in Figure 6.2.

In addition to this, for transport there are multiple values per cell from
the angular (and energy) domains. It is in this angular dimension that com-
piler auto-vectorisation is applied (recall Section 5.1.1), and the mega-stream

6.2. OPTIMISATION OF MEGA-STREAM 81

Figure 6.2: An upwind 5-point stencil (from [22])

mini-app also employs this strategy. Therefore the stencil operations occur on
multiple data points per cell. This is in contrast to standard applications of the
stencil as in Figure 6.1 where all of the parallelism is employed in the spatial
dimension; vectorisation, threading (if used) and distributed domain decompos-
ition all occur in space.

The mega-stream kernel (in Fortran) is shown in Listing 6.1. The calculation
of the cell centred value on line 6 shares many characteristics of the STREAM
Triad kernel; namely it consists of a number of multiplications and additions
(which will hopefully result in fused multiply-add instructions being generated)
and there is no reuse on the main input and output arrays. The ratio of floating
point operations to memory accesses is close to 1 (resulting in a computational
intensity of 0.125 with double precision). Calculation of the edge based values
on lines 7–9 is again of low intensity and is just a simple finite difference (FD)
relationship; a two point average (mean). Finally a reduction over all the cell
centred data is performed as on line 10. The memory layout of each multi-
dimensional array also mimics the sweep kernel in SNAP. There is stride one
access to values in each cell corresponding to the multiple (angle) values in each
cell, while the edge angular flux arrays are allocated on planes in the grid. This
captures the majority of the essential elements present in the transport sweep
kernel.

As the mega-stream kernel itself is representative of the work in a single
chunk in SNAP, the parallelism is similar so as to be representative. An OpenMP
work-sharing construct is added above the outer-most m loop shown in List-
ing 6.1, as if for running SNAP with a single Message Passing Interface (MPI)
rank on a socket and using threads over the energy domain. The inner-most i
loop is auto-vectorised by the compiler; this behaviour is ensured with OpenMP
Single Instruction Multiple Data (SIMD) clauses. The extent of each loop may
be set at runtime, with default values and the equivalent SNAP dimensions are
shown in Table 6.1.

6.2 Optimisation of mega-stream

The mega-stream kernel shall be optimised focusing on maximising the (effect-
ive) use of memory bandwidth, as this should be the limiting factor for this
kernel. The amount of memory moved by the kernel is modelled using similar
assumptions to those of BabelStream in Chapter 3 and SNAP in Section 5.3.

82 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

1 DO m = 1, Nm
2 DO l = 1, Nl
3 DO k = 1, Nk
4 DO j = 1, Nj
5 DO i = 1, Ni
6 r(i,j,k,l,m) = q(i,j,k,l,m) + a(i)*x(i,j,k,m) +

b(i)*y(i,j,l,m) + c(i)*z(i,k,l,m)↪→

7 x(i,j,k,m) = 0.2*r(i,j,k,l,m) - x(i,j,k,m)
8 y(i,j,l,m) = 0.2*r(i,j,k,l,m) - y(i,j,l,m)
9 z(i,k,l,m) = 0.2*r(i,j,k,l,m) - z(i,k,l,m)

10 total(j,k,l,m) = total(j,k,l,m) + r(i,j,k,l,m)
11 END DO
12 END DO
13 END DO
14 END DO
15 END DO

Listing 6.1: The mega-stream kernel (from [22])

Loop SNAP equivalent Range

Ni nang 128
Nj nx 16
Nk ny 16
Nl nz 16
Nm ng 64

Table 6.1: Default mega-stream loop extents

Specifically, memory movement is counted by examining the kernel source by
hand and assuming that once a data value is read it remains in cache and does
not need to be read (and therefore counted again) from main memory. The
model therefore captures the read of the read-only arrays (q, a, b and c), the
write of the write-only array (r) and the update consisting of a read and a write
of the remaining arrays (x, y, z and total). By dividing the amount of memory
moved by the runtime of the benchmark, the estimated memory bandwidth can
be known. It is this bandwidth that captures the useful and necessary memory
movement; any other movement of data is wasteful from an algorithmic per-
spective. By optimising for the improvement of this modelled bandwidth the
runtime must decrease.

The optimisations employed focus on cache effects and behaviour, and not-
ably ensure that:

• data which is not re-used is not in cache

• data which is re-used remains in cache

• data is in cache in time for use

These factors reduce cache pollution and ensure the temporal locality of data
in cache, thereby reducing the latency for data to arrive from high levels of

6.2. OPTIMISATION OF MEGA-STREAM 83

the memory hierarchy. Note that the memory access pattern is not especially
changed with these optimisations for it is already vectorised code with a predict-
able, stride one access pattern; factors which constitute a ‘good’ access pattern.
However, these optimisations do bring about significant performance improve-
ments.

6.2.1 Reducing cache pollution

The q and r arrays representing the cell-centred angular flux arrays, are read-
and write-only respectively. There is also no re-use of the data in these arrays
for the entire kernel; behaviour such as this is known as streaming. Therefore
there will be little benefit from the data being in the cache, unless the arrays
are small enough to remain resident for the entire duration of the application.
However these are large arrays and their footprint exceeds the capacity of even
the last level cache. For the write-only r array specifically it is therefore better
that it is not in cache at all.

On Intel architectures, the caches are write back, and therefore for a standard
memory store the data must first be read into (L1) cache before it can be
updated, a policy known as “read for ownership”. For r however this data is
write-only and therefore first reading the data is wasteful. Through the use of
compiler directives it can be ensured that a non-temporal store instruction is
issued so that the data may be written directly to main memory thus removing
the redundant read. As a result the data is no longer expected to be in cache
leaving more capacity for other arrays.

6.2.2 Ensuring cache residency

The x, y and z arrays representing the edge based angular flux arrays have an
interesting reuse pattern. They are allocated on planes of the spatial mesh and
so therefore each have one spatial dimension missing. This means that in the
loops over space (j, k and l) the data in these arrays is reused. For example
the same entry of z is used for all values of the j loop, although the value in this
entry is updated for each iteration of j in turn. Therefore, it would be hoped
that this data remains in cache for the duration of the loops taking advantage
of temporal locality. A similar pattern can be observed for the x and y arrays.

Although these arrays do not contain the full spatial domain and individually
may be resident in cache, their combined footprint often renders them too large
to fit in low levels of the cache hierarchy. For example the size of each of these
arrays for the default input sizes as shown in Table 6.1 is 16 MiB. If this problem
was run on a KNL processor using 64 OpenMP threads, each thread would own
256 KiB of each array, with a total of 768 KiB for all three arrays per thread.
Each tile in the processor has 1 MB of L2 cache shared between two cores, and
so assuming there are no collisions each core has 512 KB of L2 cache available,
which is smaller than the size of the arrays. On this processor, due to the lack of
an L3 cache, when these arrays fall out of L2 cache they must be read from main
MCDRAM memory, imposing a significant latency penalty (recall Figure 3.2 on
page 22).

There are no compiler directives, intrinsics or other ways to explicitly con-
trol what data should remain in cache. Therefore a cache blocking, or tiling,
approach in order to reduce the size of the working set is one of the limited

84 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

options that are available to indirectly control cache residency. The inner-most
(i) loop is therefore blocked in groups of eight entries; each cache line is 64 B
and so blocking by eight corresponds to a single cache line. This does how-
ever introduce a requirement that Ni is a multiple of eight. Note that tiling is
generally employed in the spatial dimensions to increase the spatial locality of
data in the cache, but for mega-stream tiling is used to improve the temporal
locality and is not performed in the spatial dimension. For the example problem
by tiling on a cache line only 16 KiB of each of the edge flux arrays is needed
in cache at any point in time, reducing the total working set of these arrays to
only 48 KiB which is well within the capacity of the L2 cache on KNL.

Implementing tiling however is a rather intrusive modification. An extra
loop is inserted into the already deeply nested loop structure, which is deeper
still in SNAP due to the iterations on the source. Also the data allocation and
all accesses of the array must be modified to match the new data layout, and
therefore this change must be propagated throughout the entire code base.

6.2.3 Ensuring data is in cache in time

Most modern HPC processors contain hardware and software prefetchers, allow-
ing data to be moved from main memory and stored in cache before this data
is requested by a load instruction. The hardware prefetchers operate without
user intervention and try to predict the memory access pattern for each stream
of data. If user intervention occurs for a stream of data through the use of soft-
ware prefetch instructions the hardware prefetcher ceases to operate for that
particular stream. The compiler may try to insert prefetch instructions if the
appropriate optimisation flags are enabled, and the user may insert intrinsic in-
structions manually specifying the prefetch distance. Selecting an appropriate
prefetch distance may involve much trial and error.

By profiling the mega-stream mini-app with the tiling and non-temporal
store optimisations applied it was found that there were a high number of L2
cache misses for the q array when running on the KNL. By adding in software
prefetch intrinsic functions with a distance of 32 vector instructions, the next
part of the array can be moved into cache ahead of when it is needed, resulting
in it being in cache in time for use thus reducing the number of cache misses.

The optimised kernel is shown in Listing 6.2.

6.2.4 Results

The effect these optimisations have on the runtime, and therefore the modelled
memory bandwidth is investigated on different cache-based processors. The
KNL processor has two levels of cache, with L2 shared between pairs of cores
situated on a tile. Main memory consists of high bandwidth MCDRAM, as well
as double data rate dynamic random-access memory (DDR) which is unused
here. Two generations of Intel Xeon processors, Broadwell and Skylake, are
also tested. Both Xeon processors have three levels of cache, with only L3
shared between cores. The L3 cache in Broadwell is inclusive and so contains
a copy of all L2 data, whereas on Skylake L3 cache is exclusive. Recall from
Figure 3.7 that the KNL should provide the most memory bandwidth overall,
with a Triad result of 448 GB/s, with dual-socket Xeon processors Skylake
achieving 191 GB/s and Broadwell 130 GB/s.

6.2. OPTIMISATION OF MEGA-STREAM 85

1 DO m = 1, Nm
2 DO n = 1, Ni/8
3 DO l = 1, Nl
4 DO k = 1, Nk
5 DO j = 1, Nj
6 CALL MM_PREFETCH(q(1+32*8,j,k,l,n,m), 1)
7 !DIR$ VECTOR NONTEMPORAL(r)
8 DO i = 1, 8
9 r(i,j,k,l,n,m) = q(i,j,k,l,n,m) + a(i,h)*x(i,j,k,n,m)

+ b(i,n)*y(i,j,l,n,m) + c(i,n)*z(i,k,l,n,m)↪→

10 x(i,j,k,n,m) = 0.2*r(i,j,k,l,n,m) - x(i,j,k,n,m)
11 y(i,j,l,n,m) = 0.2*r(i,j,k,l,n,m) - y(i,j,l,n,m)
12 z(i,k,l,n,m) = 0.2*r(i,j,k,l,n,m) - z(i,k,l,n,m)
13 total(j,k,l,m) = total(j,k,l,m) + r(i,j,k,l,n,m)
14 END DO
15 END DO
16 END DO
17 END DO
18 END DO
19 END DO

Listing 6.2: The optimised mega-stream kernel (from [22])

Processor Architecture

Xeon Phi 7210 Knights Landing
Xeon E5-2699 v4 (22 core) Broadwell
Xeon Gold 6152 (22 core) Skylake

Power 8 (10 core) POWER

Table 6.2: List of devices used for the mega-stream experiment

The modelled memory bandwidth achieved by mega-stream on each archi-
tecture is shown in Figure 6.3, with optimisations implied inclusively. Details
of the hardware are shown in Table 6.2. The default problem size was run,
with one OpenMP thread per physical core. On the Xeon processors therefore
some threads may have more work than others to do, resulting in an imbalance.
However for a fair test a single problem size was used across architectures.

The baseline performance of mega-stream on these architectures is poor.
It is particularly striking that the Xeon Phi has similar performance to Xeon
despite having much more memory bandwidth available, a key motivator for
this work, thus showing that mega-stream is somewhat representative of SNAP
in this regard. The mega-stream kernel has a low computational intensity and
should be memory bandwidth bound, but these results suggest otherwise.

The issuance of non-temporal store instructions makes a marked difference
on the KNL architecture, with the performance improving by 3X. Note however
that the memory bandwidth is still low compared to a Triad kernel. A smaller
improvement of 1.3–1.5X is seen on Xeon architectures. The effect of the cache

86 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

Baseline Non-temporal
stores

Cache
blocking

Software
prefetch

0

50

100

150

200

250

300

350

M
od

el
le

d
ba

nd
wi

dt
h

(G
B/

s)

16
%

54
%

71
%

78
%

64
% 82

% 90
%

84
%

56
%

83
%

81
%

79
%

48
% 58

%

Knights Landing
Broadwell
Skylake
Power 8

Figure 6.3: Modelled memory bandwidth for mega-stream mini-app for default
problem (from [22]) with labels showing percentage of measured Triad perform-
ance

pollution caused by the r array is therefore most significant on KNL, which has
limited cache capacity.

Ensuring cache residency by tiling all the arrays again improves the perform-
ance. As before this is most noticeable on KNL which improves by a further
1.3X. This optimisation reduces the size of the working set, and therefore in-
creases the number of cache hits in all levels of the cache hierarchy. For KNL,
if data is not available in L2 cache, the memory latency to read from the next
level of the memory hierarchy is huge as it is MCDRAM. On Xeon, falling out
of L2 results in reading from the large L3 cache, where the latency is still much
better than main memory, however still occurs a penalty.

Adding software prefetching instructions to ensure the q array is in L2 cache
in time for use helps the KNL architecture only by 10%. For the default problem
size on both Xeon processors this step actually reduces the performance. The
hardware prefetchers on Xeon architectures are more sophisticated than on Xeon
Phi, and so when an imbalanced workload is run on this architecture they do
a better job than a fixed programmer controlled prefetch value; indeed they
may alter the prefetch distance as the algorithm progresses and as cores with
less work become idle. Note on KNL the default problem tested resulted in a
balanced workload per thread. For problem sizes where each thread has the
same amount of work on the Xeon CPUs a small improvement in performance
is found.

Overall therefore these optimisations improve the performance of the mega-
stream kernel so that it achieves over 80% of Triad bandwidth on KNL, resulting
in a 4X speedup from the original baseline performance. On Xeon processors
the speedup is approximately 1.5X, again an improvement of note although
not as significant as on KNL. The deeper and larger cache hierarchy of Xeon
therefore mitigates the need for these optimisations, as well as masking the
necessity for optimisation as the baseline was not performing poorly enough

6.3. PORTING MEGA-STREAM OPTIMISATIONS BACK INTO SNAP 87

to cause concern on Xeon; only on Xeon Phi was this noticeable, however the
optimisations helped both architectures.

The Power 8 is a cache-based processor from IBM which unlike the Intel pro-
cessors does not use the x86 instruction set. The mega-stream mini-app was run
on this processor too, with one thread per physical core, with the baseline per-
formance measured at 145 GB/s. Whilst this is greater than even the optimised
version of the code on Intel Xeon architectures, the Power 8 achieves 299 GB/s
memory bandwidth on the BabelStream/STREAM Triad kernel (which is also
quite low compared to the theoretical peak of 384 GB/s — this may be down to
the simultaneous multithreading (SMT) modes in this processor restricting the
functional units available to each thread). Therefore even higher performance
should be expected. Unfortunately, the Power instruction set does not contain
a non-temporal store instruction, so it is not possible to prevent cache pollution
with this technique [44]. Note that as seen in Figure 6.3, the majority of the
performance improvements from the three optimisations came from the use of
non-temporal store instructions. The cache blocking optimisation does improve
the result to 173 GB/s, however this is still far short of Triad performance.

6.3 Porting mega-stream optimisations back into
SNAP

There was much scope for optimisation of the mega-stream mini-app despite
already having well vectorised code with stride one memory access patterns;
the key criteria for exploiting memory bandwidth. The optimisations presented
allow the memory bandwidth of cache-based architectures to be leveraged more
successfully and result in improvements to the runtime. Reimplementing these
suggested optimisations back into SNAP itself however poses a challenge.

Firstly, SNAP utilises Fortran 90 array operations meaning there is not a
single loop over the angular dimension. Although the arrays do all iterate over
the same bounds, the compiler is unable to merge them due to the branching
caused by global options. Despite rewriting the kernel to use an explicit loop
rather than array notation, it remained these branches which prevented the
generation of the streaming store instructions — this is thought to be due to
the number of different combinations of branch directions to multiversion. These
branches are global in the sense that they determine options based on the input
settings, and importantly all lanes in the vector will go the same way. It is likely
the number of options which prevents the compiler multi-versioning the routine
as there would be a large number of combinations of options.

Additionally, the write for which a streaming store would be beneficial does
not occur every iteration as is modelled in mega-stream. As a memory footprint
saving optimisation, the angular flux is not updated until the source terms have
converged, and then a final sweep occurs overwriting the angular flux in place,
thereby removing the need to retain two copies of the angular flux array (as
described in Section 5.5). However, this means that the write does not occur
as frequently and the benefits from streaming stores will not be as great a
benefit; note that it was the streaming stores which provided the most benefit
overall. It is of note that although the compiler report confirmed that with the
appropriate compiler directives and branch and loop refactoring a streaming

88 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

store was generated, the runtime of the application did not change significantly,
as it had with mega-stream.

Implementing the tiling approach into SNAP would require a significant re-
write of the majority of the code base. Array slices are used to pass sections of
the arrays corresponding to different energy groups through a number of sub-
routines. Combined with the Single Program Multiple Data (SPMD) approach
to OpenMP parallelism used in SNAP, it would be very invasive to tile the
arrays in its current form. If a new transport application was to be written
however, it would be advised not to use array notation and not to pass slices
through subroutine interfaces as well as adopting a more conventional approach
to OpenMP parallelism so that these optimisations may be applied in a more
straightforward manner.

As such, the optimisations of mega-stream were unable to be applied to the
parent proxy application, SNAP. It is important to consider that as a mini-app,
mega-stream removes some complexities of SNAP in order to focus on specific
issues. Therefore further work is required to include more complexity into mega-
stream in order to capture more of the behaviour of SNAP itself, so that it is
possible to determine to precise aspects of the hardware which are inhibiting
improved performance. This motivates the proceeding section of this chapter
on the development of the mega-sweep mini-app.

The mega-stream mini-app does not model the compute in a way that is com-
parable to the GPU scheme presented in Chapter 5. This benchmark considers
the computation of a single chunk of the spatial domain and is parallelised in
the same way as the original SNAP benchmark as described in Section 5.1.1. As
such a GPU implementation of mega-stream would not be representative of the
GPU port of SNAP. However the GPU port of SNAP is limited by the memory
bandwidth as shown by the model in Section 5.3, as expected for such a code
with low computational intensity, and the potential for further optimisations
may not be as significant as it was for the KNL architecture.

6.4 Introducing extra complexity to mega-stream

The mega-stream mini-app captures the loop structure and computation re-
quired in the very centre of a transport solver. In order to better capture the
behaviour of SNAP (as the mega-stream optimisations did not significantly be-
nefit the parent application as detailed in Section 6.3) more complexity was
added to mega-stream to form the new mega-sweep mini-app.

The central solve of mega-sweep contains the same elements as mega-stream,
with the addition of the denominator term which introduces a divide operation.
Also, as sweeps occur from all corners of the mesh, the concept of octants was
introduced so that the data is accessed according to the forward and backward
iterations; this tends to have little effect on performance but was introduced
for completeness. Importantly this allows both for different communication
patterns for each octant sweep and ensures the memory footprint of the angular
flux array is representative.

The spatial decomposition using the Koch, Baker and Alcouffe (KBA) scheme
was also added and implemented using MPI routines so as to capture the
communication patterns (details of the KBA algorithm are introduced in Sec-
tion 7.1); specifically after each invocation of the most central (mega-stream

6.4. INTRODUCING EXTRA COMPLEXITY TO MEGA-STREAM 89

style) kernel, messages must be sent.
Thread based parallelism via OpenMP was still included over the energy

domain as in mega-stream.
With these inclusions, the only major component of the SNAP sweep ker-

nel that is not included is anisotropic scattering. However even without this
feature the mega-sweep mini-app is already showing a performance degradation
compared to mega-stream.

The similarity between the mega-stream and mega-sweep kernels can be seen
by comparing Listing 6.1 with Listing 6.3. The calculation of the loop bounds
has been suppressed in Listing 6.3 for clarity. For example, the computation of
the angular flux psi has a similar numerator to the mega-stream calculation of
r. Also the outgoing edge flux calculations psii and psij are identical to the
updates to x, y and z, in particular with respect to the looping structure and
data reuse.

1 DO sweep = 1, nsweeps
2 DO c = cmin, cmax, jstep
3 CALL recv(psii)
4 DO g = 1, ng
5 DO cj = ymin, ymax, jstep
6 j = (c-1)*chunk + cj
7 DO i = xmin, xmax, istep
8 DO a = 1, nang
9 psi = (mu(a)*psii(a,cj,g) + eta(a)*psij(a,i,g) +

v*aflux0(a,i,j,sweep,g)) / (0.07 + 2.0*mu(a)/dx +
2.0*eta(a)/dy + v)

↪→

↪→

10

11 psii(a,cj,g) = 2.0*psi - psii(a,cj,g)
12 psij(a,i,g) = 2.0*psi - psij(a,i,g)
13 aflux1(a,i,j,sweep,g) = 2.0*psi -

aflux0(a,i,j,sweep,g)↪→

14

15 sflux(i,j,g) = sflux(i,j,g) + psi*w(a)
16 END DO
17 END DO
18 END DO
19 END DO
20 CALL send(psii)
21 END DO
22 END DO

Listing 6.3: The mega-sweep kernel

The mega-sweep mini-app again demonstrates the philosophy of distilling
just the key components of an algorithm into a small application so that per-
formance issues may be captured. The resulting kernel is simple enough that
a performance model may be constructed, an essential part of this methodo-
logy. The performance model counts the number of read and writes to main
memory in a cache oblivious manner, as per mega-stream, and by dividing this

90 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

by the runtime of the program a model of main memory bandwidth utilisation
is formed.

The mega-stream mini-app, on which mega-sweep is based, was able to
achieve high levels of memory bandwidth as shown in Section 6.2.4, yet the
mega-sweep mini-app is unable to achieve the same. The use of non-temporal
store compiler directives to ensure correct generation of non-temporal writes
to the angular flux array was implemented as per the optimisations to mega-
sweep. For the mega-stream mini-app, this optimisation provided the majority
of the improvements (as in Figure 6.3); on Skylake (Xeon Gold 6152, 22 cores),
adding non-temporal stores improved the mega-stream bandwidth from 56% to
83% utilisation, a change of 27 percentage points. Although this optimisation
does also improve the performance of the mega-sweep mini-app when the num-
ber of angles (the inner most loop) is a multiple of the vector width, the memory
bandwidth is unable to be leveraged to the same extent. For mega-sweep, non-
temporal stores improved the modelled bandwidth from 48% (91.7 GB/s) to
65% (123.3 GB/s) of main memory bandwidth utilisation, a change of 17 per-
centage points. Note too that the utilisation is much lower for mega-sweep than
for mega-stream even with this optimisation in place. For a number of angles
which is not a multiple of the vector width, as for common choices of Discrete
Ordinates (Sn) quadrature set, the performance is much worse due to the in-
ability to use non-temporal stores due to lack of memory address alignment. A
noticeable lack of effect of using non-temporal stores is observed with the SNAP
proxy application too where the quadrature set is not necessarily a multiple of
the vector width.

The communication also contributes to much of the runtime, even for calcu-
lations running just on a single node. On the Skylake processors, running with
one MPI rank per core (totalling 44 MPI ranks) 27.5% of the runtime was in
communication, as measured on just the master rank. As such this does include
the start up and tear down time associated with the different sweep directions.
This is a necessary part of the algorithm however, and therefore it is important
to capture the cost of this.

When running on a single node, the total amount of work is constant ir-
respective of whether flat MPI is used for parallelism or OpenMP threads are
used to parallelise over the energy groups. Using OpenMP alone should also
remove the start up and tear down costs associated with the sweep, with the
other communication costs associated with running just a single MPI rank being
negligible. However, this is much slower than using MPI alone; a symptom also
noticed in the SNAP benchmark. Compared to the 123.3 GB/s (with a runtime
of 35 s) for flat MPI, using OpenMP threads alone only achieved 105 GB/s (with
a runtime of 41 s). As the communication costs are negligible in the later case,
the computation time is the total runtime, whereas in the flat MPI case, the
compute time was 25.6 s excluding communications. Therefore, although the
total work performed in both cases is the same, choosing to apply the hardware
resource to different problem dimensions (group or space) results in different
performance profiles.

Importantly, the shape of the outgoing neighbour flux arrays (psii and
psij) is different depending on the decomposition which itself is a consequence
of the application of the parallelism. Due to the reuse of the data in these arrays,
the best performance should be attained when these arrays are resident in cache.
For example, when parallelising over energy groups (flat OpenMP), each core has

6.5. SUMMARY 91

a slice of the arrays that are of the size of the full spatial mesh times the number
of angles. Whereas, when parallelising over space (flat MPI), each core has a
slice of the array that is a portion of the spatial mesh times the number of angles;
the number of energy groups is ignored as they are operated on serially in turn
and appropriate hardware prefetching such ensure cache residency. Therefore,
the footprint of these arrays per core is likely larger when running flat OpenMP
than flat MPI and therefore may indeed generate additional cache pressure.

As such, the current working hypothesis for the performance limiting factor
of the mega-sweep mini-app, and therefore the SNAP benchmark due to the
similarity in performance profiles, is in fact due to cache memory accesses, rather
than main memory bandwidth. This is unintuitive due to the requirement to
stream a very large array, the angular flux, which has no reuse within the kernel
and is far too large to fit in any level of the cache. Typically such requirements
lead the kernel to become bound by the memory bandwidth. Further work is
required to investigate how the properties of the cache hierarchy may effect the
performance of mega-sweep. This might include the use of hardware counters to
measure cache miss rates which could provide evidence for determining which
arrays are sensitive to cache level. A preliminary study into how the problem
size effects the performance shows the typical cliff edge drops in performance
as array sizes are increased, although it has not yet been possible to associate
these with the cache level or particular arrays.

6.5 Summary

Two new mini-apps were developed and presented in this chapter. Their aim was
to capture the important performance characteristics of the main solve kernel
in a deterministic Sn transport application. Firstly, the mega-stream mini-app
captured the main computation in the kernel. Optimisations focussing on en-
suring cache residency of the appropriate arrays demonstrated a 4X speedup
over the baseline implementation on KNL, with smaller improvements on Xeon
processors. The issuance of non-temporal store instructions for the store of
the angular flux array gave the most marked improvements. However, on ap-
plying the mega-stream optimisations to the SNAP proxy application similar
improvements were not found. The mega-sweep mini-app was therefore written
to investigate these disparities. Early results from this show that whilst non-
temporal stores do improve the performance of mega-sweep, they do not result
in so large a speedup as with mega-stream. Further work is required using the
mega-sweep mini-app in order to confirm that the performance limiting factor
of a transport code is the caches rather than main memory bandwidth.

The mini-apps have been made available online at https://github.com/
uk-mac/mega-stream. The benchmarks have been written without the need
for an input file, with all problem dimensions set on the command line. The
majority of the results in the chapter have been generated using the default
problem size. Version 0.3 of mega-stream was used, marked with a DOI of
10.5281/zenodo.1203611. Formal versioning of mega-sweep has yet to be em-
ployed due to its current active development; the git commit used through-
out this chapter is marked 758047b. This has been marked with a DOI of
10.5281/zenodo.1203614.

Both mini-apps leverage performance models which describe the memory

https://github.com/uk-mac/mega-stream
https://github.com/uk-mac/mega-stream

92 CHAPTER 6. TRANSPORT ON CACHE-BASED ARCHITECTURES

bandwidth. These models are built into the mini-apps and therefore useful
metrics about the performance can be calculated directly from the runtime of
the application. Such models are important in investigating the performance of
an application as runtime alone is not sufficient to determine the efficiency to
which hardware is utilised.

CHAPTER 7

Scalability of transport

The work in this chapter also appears in the following publications:

• Tom Deakin, Simon McIntosh-Smith and Wayne Gaudin. Many-Core
Acceleration of a Discrete Ordinates Transport Mini-App at Extreme
Scale. International Conference on High Performance Computing,
2016.

Spatial decomposition involves taking a mesh of cells and allocating parts of
the mesh to different processing elements. These processing elements are usually
represented as Message Passing Interface (MPI) processes. As such each process
performs the computation on a portion of the mesh, known as a sub-domain.
There are a variety of ways in which this decomposition can occur and each has
an effect on the scalability of the computation. However all must orchestrate
the computation so that the data dependency of the upwind sweep is adhered
to whilst allowing each process to work in parallel as much as possible.

Additionally, due to the large memory footprint of the angular flux itself due
to its high dimensionality, no one computational node is able to fit the entire
solution in memory. Therefore decomposing is essential just to fit the problem in
memory. Although large problems in most High Performance Computing (HPC)
applications rarely fit on single node, the issue of being memory capacity bound
is more acute for transport.

This chapter will show that although scaling the problem over many com-
putational nodes is required in order to provide sufficient memory capacity, the
scaling properties of the transport solver are far from ideal. The concurrency
scheme for GPUs will also be tested at scale and it will be shown that despite
limited capacity and scalability of the decomposition scheme, the concurrent
scheme of Chapter 5 is still a viable approach for the current and future scale
of supercomputing systems.

93

94 CHAPTER 7. SCALABILITY OF TRANSPORT

Figure 7.1: Illustration of KBA decomposition of a 2D mesh

7.1 The Koch-Baker-Alcouffe decomposition

The Koch, Baker and Alcouffe (KBA) algorithm or decomposition is a spatial
domain decomposition and associated sweep schedule that is prevalent in trans-
port codes [50, 12, 11]. The decomposition of the spatial domain is performed
in one less than the dimensionality of the problem; for a 2D problem the domain
is split across a 1D list of processors, and for a 3D problem the domain is split
across a 2D grid of processors. As such each sub-domain consists of the full ex-
tent of one of the spatial dimensions, along with the angular and energy group
domains. Due to their long, thin shape the sub-domains are typically called
pencils. An example KBA decomposition for a 2D mesh is shown in Figure 7.1
and for a 3D mesh in Figure 7.2; in both figures each sub-domain is represented
by a colour.

The intuition behind the decomposition is that the initial processor, starting
with the corner starting cell of the sweep can continue work after completing
enough work for the neighbouring processor to begin work. Additionally, work
should continue for as long as possible to reduce the time that the processor lies
idle. Traditionally, the cells are swept on the first processor until a boundary
is reached, at which point the outgoing angular flux is sent to the neighbouring
processor which requires this boundary as part of the upwind dependency. This
second processor can then begin work on its sub-domain whilst the first processor
continues along the pencil. The time taken between the first processor starting
work and for the final processor to begin work is the start up time. Processors
lie idle during this start up time and so the parallel efficiency is reduced. As
such one can never expect perfect scaling.

Note that this communication pattern is different to the prevalent halo-
exchange found in many common HPC codes, where all the processors can

7.1. THE KOCH-BAKER-ALCOUFFE DECOMPOSITION 95

Figure 7.2: Illustration of KBA decomposition of a 3D mesh (from [25])

begin the computation and the boundary cells on the sub-domains are swapped
simultaneously. In a transport code the processors can only begin once their
boundary dependency is met via upwinding, and the communication follows a
‘push’ pattern. The processors wait in a blocking MPI_Recv call until the neigh-
bour data is sent. This is an unavoidable effect of the spatial sweep dependence.
The synchronisation between nearest neighbours using a blocking receive call
gives sufficient coordination between processors to ensure the sweep dependency
is correct whilst minimising wider reaching synchronisations.

It is common to describe the sweep dependency across the spatial mesh in
terms of a directed acyclic graph (DAG) such as that in Figure 7.3 adapted
from [40]. Here a 4 × 4 2D structured spatial mesh is decomposed between
2 processors, with the upwind dependency for one quadrant (equivalent to an
octant in 3D) shown as arrows between cells. The figure also highlights the start
up time of Rank 2, which cannot begin until Cell 2 has been computed and its
outgoing value communicated. As Rank 2 begins computing Cell 3, Rank 1 can
continue computing starting with Cells 9 and 6, with the latter’s outgoing value
again needed by Rank 2.

Once the sweep for a particular angle has been completed, the data depend-
ency for all other angles in the same octant have this same dependency graph,
and so the processors can begin the next angle in the octant and the processors
do not remain idle. This is only true in the structured grid case; in an unstruc-
tured grid each angle has its own (possibly unique) dependency graph (DAG).
This is because as the Discrete Ordinates (Sn) angle is cast through the spatial
mesh, following the neighbour dependencies to produce the graph, the cells in
the unstructured mesh may be traversed in a different order depending on the
chosen angle. Once all the angles in the octant have completed however, the

96 CHAPTER 7. SCALABILITY OF TRANSPORT

Rank 1

Rank 2

1

5 2

9 6

13 10

14

3

7

11

15

4

8

12

16

Figure 7.3: A DAG for a KBA sweep adapted from [40]

7.2. OTHER DECOMPOSITION SCHEMES 97

processor has finished its work and must wait until the next sweep direction
from a new octant is started. This propagates across the grid, the processors
becoming idle in symmetry to them becoming active at the start up of the sweep.
This could be said to be a tear down time. A new DAG must begin for the new
sweep in the next octant.

The choice of octant determines whether the initialising processor must wait
or can continue useful work preventing it from becoming idle. If the decompos-
ition is in the YZ plane, then the sub-domains have the complete extent of X. If
the next octant chosen represents the opposite x stride to that coming before,
then the processor can begin work immediately, beginning the sweep from the
other boundary corner in the sub-domain. After completion of the first sweep,
the boundary conditions will be met for this new starting cell, either from the
vacuum boundary conditions or the new completed solution of the reflective
boundary condition. As such two octants are said to be pipelined, and com-
pleted in order and this removes a start up and tear down cost for each octant
pair. At the end of each octant pair there must still be a period of tear down.

There is a sweep for every angle and energy group and the KBA algorithm
has been extended by Baker to consider more modern CPU architectures where
each core has vector units [13], where all angles in an octant are computed
simultaneously using the vector units, and thus outgoing fluxes for all angles
are communicated to neighbouring ranks in a single message. Note that al-
though the messages are larger than a single double precision floating point
number, they are still small enough to not be limited by the network band-
width and as such may be more affected by the network latency given current
interconnect performance. The energy domain was also treated independently
via the Jacobi scheme (recall Section 4.2.3) so that threads could be launched
to enable sweeping each group concurrently. Baker showed that this had little
difference at small node counts, but at higher node counts it was a much more
scalable approach. It is this approach that is also utilised in SNAP, whereby all
angles within an octant for a single energy group are computed using the vector
units. This approach was originally noted by the authors of KBA who found
that higher performance was achieved by at least computing all angles within a
single octant [11].

A modification of the KBA algorithm, known as hybrid-KBA was proposed
by Adams et al. [2]. In this scheme each process has half of the spatial domain
which is usually complete in standard KBA. For a 2D grid therefore, the mesh
is decomposed across a mesh of p × 2 processors. This further improves the
scalability, again only with regard to the maximum number of processors which
the problem may be run on. However, where reflective boundary conditions
occur this extra decomposition cannot occur and the hybrid scheme reduces to
the standard KBA algorithm.

7.2 Other decomposition schemes

The KBA schedule is the de facto standard decomposition for transport codes,
with all other decomposition schemes comparing their performance to KBA.
However it is relevant to survey some of these other schemes, and in particular
focus on their suitability when running on many-core architectures.

Many schemes were written with the IBM Blue Gene/Q supercomputer in

98 CHAPTER 7. SCALABILITY OF TRANSPORT

mind, primarily the Sequoia machine installed at Lawrence Livermore National
Laboratory (LLNL). The Blue Gene architecture consisted of a very large num-
ber of nodes with good nearest-neighbour communication properties including
low cost synchronisation. Additionally the cores were low power embedded cores
with around 1 GB of dynamic random-access memory (DRAM) per core, much
less than other large machines available at the time. This is in comparison to
the more usual 2–3 GB per core (or higher) found in other systems [98].

Applications on Blue Gene were therefore required to scale to high num-
bers of cores. For transport applications utilising the KBA decomposition, this
posed a challenge due to limits of spatial decomposition. For example, what
would seem a very large 2D mesh of 4000 × 4000 cells would be able to run
on a maximum of 4,000 cores; Sequoia has 1.5 million cores, and so 4,000 is
a very small fraction of this machine. Therefore other decomposition schemes
were investigated in order to improve the scalability of transport. Note that
‘scalability’ in this context primarily refers to the ability to scale further, rather
than having close to perfect scaling (as defined in Section 2.2).

A common focus of the alternative schemes is over-decomposition of the spa-
tial domain so that more than one block of cells is allocated to each process.
The KBA algorithm already contains over-decomposition of the spatial domain
from decomposing in fewer dimensions than the spatial dimensionality. Specific-
ally the first processor continues processing cells along the pencil domain after
the first communication so that this process has more than one block of cells in
which to compute. This would not be the case if a standard decomposition was
performed typical in halo-exchange codes where the processors would sit idle
after computing their sub-domain as the sweep continued.

For the alternative schemes in general, the sweep schedule for the total work
is broken up and aggregated into smaller blocks or tiles in a task based manner.
Therefore (in this more general scheme) as the sweep progresses a process may
have to make a choice as to which block of cells to compute before another, as-
suming both have their boundary conditions satisfied. An initial study by Bailey
and Falgout describe the point at which a choice must be made as ‘collisions’
in the sweep schedule [9]. They used three different schemes to prioritise the
computation of tiles when collisions occur and showed that over-decomposing
did improve the scalability of transport sweeps using their algorithm. In addi-
tion they showed that KBA does weak scale well up to 10,000 processors, as did
Hoisie et al. who predicted that the KBA algorithm would be dominated by the
computation rather than the communication; Section 7.4.1 will show otherwise.
however the latter authors’ analysis was on a theoretical 100 TFLOP/s system
consisting of 20,000 processors [43].

Adams et al. proposed a scheme which was optimal in the sense that the
sweep occurs in the minimum number of stages given the decomposition and
aggregation of work [2]. In their scheme the sweep schedule consisted of angular
sets, group sets and cell sets, and the scheduler was designed to compute these
in an order so as to minimise the number of stages required. They also presented
a performance model for their optimal sweep schedule that was able to predict
the runtime given the aggregation factors (such as the number of angles in the
angle set), along with an optimisation routine to select these parameters to
ensure good scalability. Optimality was also proved for the KBA schedule along
with their 3D over-decomposition scheme, however their performance results
where restricted to hybrid-KBA decompositions.

7.3. MODELLING SWEEP ALGORITHMS 99

The work on porting SNAP to GPUs from Chapter 5 of this thesis shows
that good performance was obtained by computing all angles and groups con-
currently; therefore there is one angle set and one group set. The scalability
properties of the schedules proposed by Adams et al. rely on there being mul-
tiple angle and group sets, and indeed the proofs of optimality use a single angle
per angle set. This is not feasible when considering good GPU performance of
the solve itself where all angles and groups were used in a single set. Therefore
the length of the task pipeline becomes significantly reduced, which hampers the
scalability of the scheme. Therefore there is a tension when selecting the aggreg-
ation factors between the scaling properties of the schedule and the appropriate
parameters for different architectures.

An improvement to the overloaded scheme of Adams et al. was proposed
which uses non-contiguous domain overloading [3]. Unlike the other schemes
discussed the spatial domain assigned to each process need not be contigu-
ous. The schedule was presented as a modification of the previous schedule via
overloading and demonstrated improved scalability given the right aggregation
factors. However the scalability in particular relies on having a large number
of angle sets. On modern CPU architectures vectorising the angular dimension
was shown to give good performance [13], which will again result in a single
angle set. By not exploiting this vectorisation scheme, it is again unlikely that
this new scheme will actually give good performance in practice.

Overall these alternative schedules do not take a holistic approach where
the time taken to solve each chunk of work may not be linear in the size of
that chunk. For example, on a GPU starved of sufficient work, the computation
may take just as long as a situation where sufficient work is available. Again
the models also assume that switching between different chunks of work has
low overhead; an approach which does not necessarily guarantee good memory
access patterns either.

7.3 Modelling sweep algorithms

There have been a number of attempts to model the performance of sweep
schedules in order to assess the efficacy of the various approaches. These models
attempt to capture how effective a schedule is for a given problem size running
on some number of parallel processors. The focus has been primarily on CPUs,
however as a contribution to this thesis Section 7.3.3 will extend one such model
to be valid across both CPU and GPU devices.

7.3.1 Parallel computational efficiency

The Parallel Computational Efficiency (PCE) is a simple ratio of the amount of
useful work required compared to the amount of work performed in total [50,
11, 13]. The amount of useful work required is simply the number of angular
flux calculations — the product of all problem dimensions. The amount of work
performed is defined as the product of the number of stages in the schedule
and the maximum amount of work per schedule. The number of stages in each
sweep is the minimum number of levels in the DAG required to traverse it. For
the DAG in Figure 7.3 for the 4 × 4 grid the number of stages in the sweep

100 CHAPTER 7. SCALABILITY OF TRANSPORT

is seven, and corresponds to the horizontal levels in the DAG. The number of
stages is also the number of wavefronts across the mesh.

Note that this ratio does not consider any overheads or communication costs
and as such the PCE gives a crude metric as to how the sweep schedule performs.
The original definition also did not include in the model the number of parallel
processors. Koch et al. noticed that in the KBA schedule which swept one angle
at a time the PCE was >75% for a variety of grid sizes yet performed slower
in practice than the alternative KBA schedule which swept all angles within
the octant which has a PCE of 30–60% [50]. The second method has lower
communication latency costs due to fewer messages but this is not captured by
the model.

Adams et al. provide a formula for the PCE which includes terms for the
processor counts [2], and was used in Baker’s later work [13]. This update cap-
tures the relationship between the size of the mesh as well as the communication
pattern, for it is the processor array that determines the communication pattern
whereas the mesh size determines the computational load per processor between
the messages.

7.3.2 LogGP based models

There have been a number of models exploring the communication costs of
wavefront sweeps [75, 92] based on the LogGP modelling framework [4]. Pen-
nycook et al. modify one such model to take into account computation costs on
a GPU [79]. However, these models are overly complex compared to the other
models presented in the chapter, consisting of a great many parameters. As
such they are not sufficiently flexible to be transferable to general schedules as
they are specific to particular incarnations of schedules.

7.3.3 A time aware model

A model for the time taken for the sweep algorithm by Bailey and Falgout
has been proposed [9] based on a similar model proposed earlier by Mathis
et al. [64]. The model is defined simply as the number of stages in the sweep
algorithm multiplied by the time taken for each stage. The time for each stage is
the sum of the computation and communication time, which includes the latency
which depends on the number of messages. This model therefore provides an
improvement upon PCE by including communication costs, but does not contain
any measurement on whether the number of stages is efficient. However the PCE
gives sufficient measure of this.

The model was originally expressed with CPU parameters. As part of this
thesis the model has been enhanced so that it may also be applied to GPU
architectures [25]. The model predicts the runtime of the sweeps T for a 3D
spatial problem according to the following rules:

T = S(C +B + L) (7.1)
B = βmΓ (7.2)
L = αK (7.3)

S = 4

(
Px + Py − 2 +

2Nz
η

)
(7.4)

7.3. MODELLING SWEEP ALGORITHMS 101

1

2

2

3

3

3

4

4

4

5

5

6

Chunk 1 Chunk 2

Figure 7.4: Illustration of chunking in KBA (from [25])

The interconnect latency L is modelled in (7.3) simply as the number of
messages K times the time to send a message α. The interconnect bandwidth
B is again modelled in (7.2) simply as the product of inverse network bandwidth
β (the time to send a byte) and the size of the message. For ease the message
size is expressed as the number of cells in the message Γ times the number of
bytes per cell m. The machine dependent parameters α and β may be obtained
via standard interconnect benchmarking tools.

The number of stages (7.4) is derived from the KBA schedule forming a 2D
processor grid of Px by Py processors. Each stage corresponds to the compu-
tation of a chunk of η XY-planes on the sub-domain before each communica-
tion; the communication therefore occurs every chunk rather than as soon as a
boundary is reached, an optimisation employed in SNAP to increase the size of
messages and reduce the message count.

An example chunk of size η = 4 is illustrated in Figure 7.4 for a 2D grid.
Communication to neighbouring processors occurs once the entirety of Chunk
1 has completed, whence boundary conditions for Chunk 2 are received and
computation for it may begin.

Note that when using the wavefront parallel scheme in Section 5.1.2, the
number of wavefronts utilising the maximum width of the pencil is reduced due
to a start up and tear down for each chunk. Using a larger chunk size means more
cells may be computed concurrently with this scheme, however communication
is delayed and the start up cost between MPI ranks may increase. For the
original parallelisation scheme described in Section 5.1.1 a larger chunk size
results in serialisation between MPI ranks.

The number of stages described by (7.4) is equivalent to the number of levels
in the DAG if the graph nodes are chunks of cells rather than individual cells.

The computational time C was originally modelled by Bailey and Falgout
for CPUs as:

CCPU = γNmNgη
Nx
Px

Ny
Py

(7.5)

This is constructed as a ‘grind time’ γ to compute one entry of the angular flux
multiplied by the number of updates in each stage: the product of the number
of cells in the chunk and the angle and energy dimensions. The grind time γ
gives a regression factor to allow tuning of the model.

102 CHAPTER 7. SCALABILITY OF TRANSPORT

As a contribution of this thesis a GPU computation time is added to the
model. The intuition is that a kernel under-utilising the GPU, which occurs
at the start and end of the sweeps, will have a similar runtime to running
a kernel with sufficient work to saturate the GPU; this is as a result of the
inherent overheads for offloading a kernel. The work per stage is therefore
defined in terms of the number of wavefronts (corresponding to the number of
kernel enqueues) rather than the size of the work per cell as in the CPU model.

CGPU = γ

(
Nx
Px

+
Nx
Px

+ η − 2

)
(7.6)

Again γ is included as a regression parameter and is used to estimate the com-
pute cost of each kernel.

The sum of these quantities C + B + L gives the computational time per
stage, and so the total runtime is simply this quantity multiplied by the number
of stages as shown in (7.1).

This model has been validated at scale, as shown in [25] and Section 7.4.

7.3.4 Parallel sweep efficiency
The PCE and original time aware models were combined by Adams et al. to
produce the parallel sweep efficiency model [2]. This was defined as:

ε =
Ttask ×Ntasks

Nstages × (Ttask + Tcomm)
(7.7)

where T represents time and N represents the number (or count) as further
denoted by the subscript. As the number of stages in the sweep algorithm is
the number of tasks plus the number of idle stages, (7.7) may be rearranged as:

ε =
1(

1 + Nidle
Ntasks

)(
1 + Tcomm

Ttask

) (7.8)

The inclusion of timings in (7.8) allows machine dependent values to be
included so that how a sweep algorithm might perform on different hardware
can be directly estimated. These timings may be obtained by simple benchmark
applications as is usual for standard communication times, or else derived from
existing runs of transport codes based on the measured grind time for a single
angular flux update. The grind time is the time taken by a transport code to
update an angular flux value (see Glossary).

7.4 Accelerating transport at extreme scale
The computation of solving the transport equation has been accelerated through
the effective use of GPUs as discussed in Chapter 5. This work continues by
investigating how scalable this approach is combined with the standard KBA
schedule on large supercomputers. The GPU accelerated port of the SNAP
mini-app is therefore run on the two largest GPU-enabled supercomputers, Piz
Daint and Titan. At the time of experimentation, both these machines con-
tained NVIDIA K20X GPUs, but differed primarily in the interconnect and
CPU technologies (see Table 2.1 on page 8).

7.4. ACCELERATING TRANSPORT AT EXTREME SCALE 103

7.4.1 Weak scaling

The weak scalability of the application is tested by running a pencil shaped
sub-domain on each GPU. Note that each sub-domain would be pencil shaped
if a large problem was decomposed, and therefore weak scaling in this way is
representative. Therefore the total amount of work per GPU remains constant
as the number of nodes is increased. The following problem was used:

• 4× 4× 400 cells per MPI rank

• 136 angles per octant

• 32 energy groups

• 1 timestep of 0.01s

• Convergence criteria of 1.0E-5

• 2 orders of anisotropic moment scattering

• Communication chunk size of 4

This problem required 3.6 GB of storage for the large angular flux array, and
therefore is within the 6 GB capacity of the K20X GPU.

One GPU is assigned to each MPI rank, and the scaling study will begin at
four MPI ranks. As a comparison, the original SNAP code is run on the CPUs
with the same problem size per MPI rank. On CPUs the code was run with
2 MPI ranks per non-uniform memory access (NUMA) region and sufficient
OpenMP threads to ensure all cores were utilised; a configuration which was
found to perform well on both system’s CPU architectures.

From Figure 7.5 showing the runtime on Titan, the GPU implementation
with the improved parallel scheme is leveraging a 4X speedup over the CPUs
on this machine, both at small and large scale. It should be noted that perfect
scaling, which would appear as a horizontal line on this graph, should not be
expected; the performance model itself does not suggest that perfect scaling is
possible. However the application does scale up to many thousands of ranks.
The CPU runtime does degrade at large scale but this is likely due to known
issues with network performance when running at large scale on the Gemini
interconnect on Titan [33].

Similar good scaling can be seen in Figure 7.6 on Piz Daint. Here the
improved GPU scheme achieves 2X over the original code running on the CPUs.
The CPUs on Piz Daint are expected to be more performant than those in Titan,
with the CPUs alone delivering around a 2X speedup for this code and problem.
Therefore the GPU is delivering the other 2X performance improvement. Again
this improvement is maintained at scale.

It it noticeable that the Aries interconnect on Piz Daint does provide better
scalability than the Gemini interconnect on Titan at higher node counts, which
can be deduced from the fact that the measured runtimes are much closer to
what the model predicts. Additionally the runtimes on Piz Daint are faster than
those on Titan, even though both machines contain the same GPU accelerators.
Therefore the Aries interconnect is showing a clear advantage over the Gemini
interconnect for this application, irrespective of the computational hardware.

104 CHAPTER 7. SCALABILITY OF TRANSPORT

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Nodes

50

100

150

200

250

Ti
m

e
(s

) l
ow

er
 is

 b
et

te
r

CPU result
CPU model
GPU result
GPU model

Figure 7.5: Weak scaling SNAP on Titan (from [25])

The results from the b_eff benchmark1 on Titan and Piz Daint highlight the
practical differences between the interconnects beyond the differing topologies.
The Aries interconnect demonstrates improved bandwidth of 6354 MB/s/node
and latency of 1.735 µs over the Gemini interconnect with bandwidth of
575 MB/s/node and 3.327 µs [25]; Aries is showing an 11X improvement in
bandwidth and a 2X improvement in latency. As these experimental results
were taken during the day-to-day operation of the machine, they represent the
realistic performance of the interconnect on production systems running a usual
load. The Gemini network also has different network performance properties
depending on the direction travelled through the torus, and so the non-smooth
performance of the GPU runs in Figure 7.5 may be as a result of rank placement
on the machine. Therefore the improved routing and topology of Aries to avoid
the congestion noticed by (for example) Freed et al. on the Gemini network
will also contribute to the measured performance of these metrics beyond the
improvements at the hardware level [33].

On both machines however the time spent in communication increases as the
number of nodes increase. This trend is common in many HPC applications and
is usually the cause of degradations in scalability. In this case for the GPU code
running on 2,048 nodes, 80% of the runtime on Titan and 60% on Piz Daint
is in communication alone; with the remainder in compute which in fact takes
a constant runtime regardless of scale, as expected due to a fixed problem size
per MPI rank under the weak scaling experiment. This contradicts the balance

1https://fs.hlrs.de/projects/par/mpi/b_eff/

https://fs.hlrs.de/projects/par/mpi/b_eff/

7.4. ACCELERATING TRANSPORT AT EXTREME SCALE 105

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Nodes

10

15

20

25

30

35

40

Ti
m

e
(s

) l
ow

er
 is

 b
et

te
r

CPU result
CPU model
GPU result
GPU model

Figure 7.6: Weak scaling SNAP on Piz Daint (from [25])

106 CHAPTER 7. SCALABILITY OF TRANSPORT

of communication and computation predicted by Hoisie et al. [43] where it was
predicted that computation would dominate at this scale. The trends observed
by McCalpin also suggest system balances different to those predicted by Hoisie
et al. (recall Section 2.1).

The network performance therefore is hugely critical to the performance of
this algorithm at scale. Reducing the runtime of the computation through the
use of GPU accelerators has highlighted a key requirement for improved network
performance. Note that the messages will not be fully utilising (and therefore
will not be limited by) the available interconnect bandwidth as they are not
very large in size, and it is therefore the latency, along with the ability to fully
asynchronously send messages, that is important.

This scaling study does show that KBA does indeed scale well enough for
GPU accelerated codes, even up to large node counts. Near-future supercom-
puters which contain GPU accelerators are unlikely to reach the node count of
Titan, with machines such as Summit and Sierra looking at around 5,000 nodes;
this is similar in size to Piz Daint. Indeed, Piz Daint was recently upgraded to
use newer NVIDIA P100 GPUs and has overtaken Titan in the Top 500 listing,
achieving ranking 3 [91]. Therefore the KBA schedule remains a viable solution
for solving the transport equation on these pre-Exascale accelerated machines.

7.4.2 Strong scaling

It is also important to consider the ability to decrease the time taken for an ap-
plication to run by increasing the compute resources. By using more processors
one hopes that the runtime of the particular input problem decreases. Ideally
one hopes too for perfect strong scaling, with the runtime reducing linearly with
the number of processors. Transport however does not weak scale perfectly and
so therefore it is unlikely to strong scale perfectly either, as will be shown.

Strong scaling a deterministic transport application is a challenging endeav-
our. Strong scaling studies begin with a large enough problem so that it can
be sufficiently decomposed to a large number of processors. Such a large prob-
lem will demand a large memory footprint and therefore finding a sufficiently
large problem to decompose on a large number of processors yet fit within the
memory capacity of just a few nodes is challenging. There are few strong scale
results presented in the transport literature for this reason.

It is the spatial dimension which is decomposed primarily across processors
(MPI ranks) and therefore a large mesh size is chosen. The angular and energy
domains are chosen so that the memory footprint is not prohibitively large.
Therefore the following problem was run for which the angular flux solution has
a memory footprint of 690 GB:

• 256× 256× 256 cells

• 10 angles per octant (S8)

• 32 energy groups

The other choices of input which determine the iteration count are the same as
for the weak scaling study of Section 7.4.1.

Both CPU and GPU runs of SNAP were performed on Titan and are shown
in Figure 7.7. The CPU runs were flat MPI and did not utilise OpenMP threads

7.5. SUMMARY 107

32 64 128 256 512 1024 2048 4096 8192
Nodes

101

102

Ti
m

e
(s

) l
ow

er
 is

 b
et

te
r

CPU result
CPU model
GPU result
GPU model
Perfect linear scaling

Figure 7.7: Strong scaling SNAP on Titan

due to segmentation faults occurring; a problem inherent in the current version
of the SNAP proxy application. The model for predicting the runtime of the
application as described in Section 7.3.3 was also applied here and shown in
Figure 7.7. Of note is that perfect scaling is not predicted by the model; indeed
the scaling is quite different but nevertheless the model and obtained runtimes
match well.

Due to the limited memory capacity of GPUs it was not possible to run this
problem on fewer than 256 GPUs on Titan; the additional memory capacity
of GPUs newer than those on Titan will aid significantly in running transport
applications. In particular the strong scaling of the KBA algorithm is modelled
to be close to linear at the start, and therefore much can be gained by running
on slightly more resource than is strictly necessary, but less improvement will
be observed at significantly greater scales.

7.5 Summary

The KBA schedule is a stalwart of many transport solvers, including the SNAP
proxy application used throughout this thesis. The schedule describes the de-
composition of the spatial domain across distributed processors along with the
sweep schedule, to ensure the wavefront dependency is respected whilst reducing
both the synchronisation between processors and processor idle time.

Other more recent schedules have been surveyed and it is found that their
properties for good scalability are incongruent with the GPU concurrency scheme
of Chapter 5. Additionally these schedules are always compared to KBA and

108 CHAPTER 7. SCALABILITY OF TRANSPORT

many do not provide an advantage over Baker’s most recent descriptions of
KBA [13].

The GPU implementation of the SNAP proxy application utilising the im-
proved concurrent scheme was run at scale on the two largest GPU enabled su-
percomputers. The concurrent scheme was shown to still perform well at scale,
for both weak and strong scaling situations, even on small sub-domain sizes. As
such the scheme does allow GPU accelerators to be leveraged to provide runtime
improvements for the solution of deterministic transport.

Such scaling was verified using a performance model which captures both the
computation and communication properties of the transport sweep. Through
extending the simple time aware model of Bailey and Falgout to allow for mod-
elling the computation in SNAP on both CPU and GPU architectures, the
runtime of the proxy application running at scale on both architectures can be
verified. The model also confirms that perfect linear scaling of a transport sweep
should not be expected, and indeed the experimental results also demonstrate
this behaviour. In addition this shows that the KBA scheme is still good enough
to provide sufficient scaling on supercomputers designed around advanced com-
puter architectures.

The source code for the GPU implementation of SNAP used in the chapter,
along with the problem input files used to run on the Titan and Piz Daint
supercomputers, are available online at https://github.com/UoB-HPC/SNAP_
MPI_OpenCL, with a DOI of 10.5281/zenodo.1203633.

https://github.com/UoB-HPC/SNAP_MPI_OpenCL
https://github.com/UoB-HPC/SNAP_MPI_OpenCL

CHAPTER 8

High order finite element solution

The order of accuracy for a particular discretisation method is given in terms
of the cell width h. An nth-order accurate method has error O(hn). The finite
difference (FD) discretisation used so far in this thesis is second-order accurate
and so has error O(h2). A higher order method generally allows for a larger cell
width to maintain a similar error to a lower order method.

Transport applications are often memory capacity bound and so the low
memory capacity of high bandwidth memories such as Multi-Channel DRAM
(MCDRAM) and High Bandwidth Memory (HBM) pose a problem. This chapter
will explore the linear discontinuous Galerkin (DG) finite element method (FEM)
with an aim to show that sufficiently coarse cells may be used to allow for a
memory footprint saving.

The FEM is more often associated with unstructured meshes as it allows
generation of a mesh with different cell sizes, shapes and orientation. However
the focus in this chapter will be on using it on a structured mesh, although
the mathematics will be identical to an unstructured mesh; it is just the mesh
connectivity which is different. As such, the work in this chapter provides some
exploratory findings which could form the basis of future study as detailed in
Section 9.1.

The SNAP proxy application from Los Alamos National Laboratory (LANL)
will be extended in order to compare the original FD implementation and the
FEM implementation practically.

The reader is referred to Appendix B for the important concepts of the
DG-FEM method and their application to the transport equation itself.

8.1 Comparison to the finite difference discret-
isation

As can be seen from the descriptions of the FD discretisation in Section 4.2.1, the
FD method is relatively simple. In contrast, the FEM is rather more complex

109

110 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

(as shown in Appendix B). Both methods involve inversion of the streaming-
collision operator, although the inversion is more explicit with the FD method;
the FEM approach does invert the operator but it is done during the solve of the
small linear system in each element. The FD method uses the simple diamond
difference relations of (4.3) to calculate outgoing fluxes at cell faces. The FEM
does not generate outgoing fluxes explicitly; rather nodes from neighbouring
elements are used directly.

The number of floating point operations to evaluate each of the diamond
difference relations in the FD method is just a single multiply-add operation;
one for each spatial dimension. On the other hand, the FEM requires many
more floating point operations, in particular for the solve of the small linear
system. The dgesv routine from Linear Algebra PACKage (LAPACK) requires
0.67N3 operations for N nodes; in 3D where N = 8 this is over 300 FLOPs just
for the solve of one of the linear systems. The assembly of the linear system
for each of the dimensions in the angular flux requires additional floating point
operations. Therefore much more work is required to solve the equation using
FEM compared to FD for each point in the domain.

The computational intensity of both methods is important in terms of as-
sessing how they perform relative to each other. In Section 5.3 it was stated
that the FD solution in SNAP has a computational intensity of 0.22 FLOPs
per byte. For the FEM implementation with linear elements described in Sec-
tion 8.2, where the element and boundary integrals of pairs of basis functions
are precomputed, the computational intensity of the FEM kernel is 0.25 FLOPs
per byte. The amount of memory moved during matrix construction biases the
solution to again be bound by memory movement rather than FLOPs despite
the much more numerically intensive solve. With higher order elements (linear
were used to obtain the quoted values) the matrix solve may begin to dominate.

The FEM stores a solution of each unknown in the angular flux at each node
(for linear elements this is on each vertex); recall that the unknown dimensions
are space, angular direction and energy group. For FD only a single value is
stored per unknown, with neighbour fluxes stored in temporary arrays which are
not significant to the memory footprint. The memory overhead for a 3D linear
FEM mesh is therefore eight times that of a FD mesh, for a fixed mesh size.
However the FEM offers a higher-order accuracy solution than a FD approach.
The linear DG elements are third-order accurate, whereas the FD approach
is second-order accurate. Therefore in practice (for a given error) the FEM
allows the use of physically larger cells, and thus coarser grids consisting of
fewer cells may be used to provide a suitable solution. As such the increase in
memory footprint resulting from storing multiple nodes for each unknown might
be mitigated through the use of a coarser grid. This relationship is modelled in
Section 8.3.2.

8.2 Implementation details

The SNAP benchmark used throughout this thesis uses the FD method for
spatial discretisation, and is used as a baseline for comparisons with a new
FEM port. In order to test the viability of the FEM, the SNAP benchmark
is converted to use the method. In this way, parallel implementations of both
methods are made available in order to practically evaluate them at scale.

8.2. IMPLEMENTATION DETAILS 111

Unlike many other approaches utilising the FEM, the spatial grid used is
regular and structured, rather than unstructured. This is so that the addi-
tional challenges of an unstructured transport sweep are not introduced (see
Section 9.1) and a direct comparison between the methods can be made avail-
able. Although the indirect memory accesses of an unstructured mesh are not
present in this implementation, the method has been applied assuming the cells
may be arbitrary hexahedra; in particular the Jacobian is calculated for each
cell as it would be in an unstructured grid, even though this may be simplified
for a structured mesh. This will allow for further expansion to an unstructured
grid as part of a future study.

Recall from Section 5.1.1 that the original SNAP benchmark implements the
FD method using Message Passing Interface (MPI) to decompose the spatial
domain according to a Koch, Baker and Alcouffe (KBA) schedule (as described
in Section 7.1), and uses OpenMP threads to parallelise energy groups and
Single Instruction Multiple Data (SIMD) instructions to parallelise over angles
within the octant.

The new FEM port of SNAP also uses the KBA schedule for spatial de-
composition. The assembly and solution of the small linear system in each cell
introduces an additional level of potential concurrency. For the implementation
this step uses SIMD instructions auto-generated by the compiler. As with ori-
ginal SNAP, OpenMP threads are used to parallelise computation over energy
groups. The iteration over the angles within the octant is conducted serially,
taking each angle in turn, with the octants pipelined as governed by the KBA
schedule. The angle loop could be collapsed with the energy group loop so that
OpenMP threads may be used for both domains, but this has not been tested,
because if an extended version to an unstructured mesh was implemented extra
angular dependencies are introduced negating the concurrency in this domain.

The FD scheme calculates and subsequently communicates the outgoing an-
gular flux data. The FEM scheme instead directly communicates the angular
flux data for the appropriate face nodes.

Note that a limitation of the original version of SNAP is that it does not
allow for uneven mesh decompositions. The FEM port on the other hand does
allow the mesh to be divided across any number of MPI ranks for convenience.

8.2.1 Solving the linear systems

The linear hexahedral elements in this implementation corresponds to the con-
struction of an 8-by-8 matrix with an 8-wide vector for the right hand side of
the linear system Aψ = b. This small system then needs to be solved to find
the unknown ψ.

Two schemes were tested for solving this system; firstly using the Intel Math
Kernel Library (MKL) implementation of the LAPACK dgesv routine to solve
the system, and secondly a hand-written direct Gaussian elimination and back-
wards substitution routine. The matrix would be classed as a ‘small matrix’,
however small matrix libraries such as LIBXSMM only contain matrix-matrix
multiplication routines (dgemm) so cannot be used [41].

As the sweep progresses across the mesh, a matrix is assembled in each cell,
for each angle and energy group. Due to the parallel scheme used, a matrix is
created for each cell and angle in turn, with multiple matrices existing in parallel
depending on the number of OpenMP threads used to parallelise the energy

112 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

domain. It may be possible to use batched matrix routines, generating and
storing multiple matrices and passing to the Application Programming Interface
(API) for parallel processing. To maximise the parallelism, matrices for all
angles and groups in a single cell could be assembled, stored and solved in this
way. This may allow for more reuse of the integrated test functions which would
be shared by all matrices in the cell batch. The on-node parallelism could then
be organised by the math library itself, rather than dictated by the programmer.
Note that many routines in math libraries are not optimised for small matrices,
and optimisations for small matrices usually occur for batched routines [1, 93].
For linear elements using S32 and 32 energy groups, where for a structured grid
they may all be solved in parallel, storage of 2.2 MiB per cell (for the matrices)
and solving a batch of 4,352 systems. On a GPU with parallelism exposed on
cells on each wavefront, the memory footprint will be more significant due to
the need to exploit spatial concurrency. As this study forms a precursor to
unstructured mesh sweeps, it may not be possible to use a batched routine on
an unstructured mesh as the concurrency in the angular domain is reduced.

The MKL routine dgesv uses lower upper (LU) factorisation to split the
matrix A = L × U where L and U are lower and upper triangular matrices
respectively. Triangular matrices are simple to invert, so that it is easy to
calculate the solution ψ using forward and backward substitution:

Aψ = b (8.1)
A = L× U (8.2)

c = L−1b (8.3)

ψ = U−1c (8.4)

However the process is inherently sequential, processing one row at a time.
The ease of inverting an upper triangular matrix is illustrated in Figure 8.1

for a 4-by-4 matrix, and the process is similar for a lower triangular matrix.
This forms a series of simultaneous equations:

u1,1ψ1 + u2,1ψ2 + u3,1ψ3 + u4,1ψ4 = b1 (8.5)
u2,2ψ2 + u3,2ψ3 + u4,2ψ4 = b2 (8.6)

u3,3ψ3 + u4,3ψ4 = b3 (8.7)
u4,4ψ4 = b4 (8.8)

It is simple therefore to find ψ4 = b4/u4,4. This result may then be propagated
through the higher rows of the matrix and the right hand side vector (8.5)–(8.7),
producing zeros in the right most column of the matrix. The process continues
to next find ψ3 and the remaining unknowns in a similar manner.

As an alternative to using the LU approach, a direct Gaussian elimination
routine was written to solve the system by hand. Gaussian elimination subtracts
multiples of rows from lower rows in the matrix in turn to form an upper trian-
gular matrix. The same operation is also applied to the right hand side vector
b. The system can then be solved using backwards substitution as detailed in
Figure 8.1. This approach avoids a full LU factorisation. It is well known that
there are issues with the numerical stability of using Gaussian elimination for
the solution of linear systems. The issues arise from floating point round off
after division by a small number, a phenomenon which may occur as multiples

8.2. IMPLEMENTATION DETAILS 113

u4,4

u3,3 u4,3

u2,2 u3,2 u4,2

u1,1 u2,1 u3,1 u4,1

×

ψ4

ψ3

ψ2

ψ1

=

b4

b3

b2

b1

Figure 8.1: Illustration of solving a linear system for an upper triangular matrix

of rows of the matrix are subtracted from subsequent rows in order to generate
leading zeros. However for this implementation, no issues have been noticed for
the matrices assembled for the different inputs in SNAP, with both this method
and the library alternative producing the same numerical answers. Note that
this does not guarantee that issues may not occur for all problem inputs.

Vectorisation of the Gaussian elimination has been ensured via the use of an
OpenMP simd compiler directive over the inner-most loop over matrix elements
in each row, so that the multiply-subtract of rows may be executed in parallel
as SIMD instructions. The vectorisation of the backwards substitution step
is again performed automatically by the compiler, and occurs on the inner-
most loop zeroing columns and updating the right hand side vector. For the
first of such iterations only one vector lane may be used due to the backwards
substitution algorithm updating only the last element of the vector; subsequent
iterations increase the number of update positions by one each time. As the
matrix is only 8-by-8 this does limit the possible effectiveness of vectorisation
depending on the vector width. This is particularly acute on GPUs, where
on NVIDIA architectures the vector width is 32 (according to a warp), and
launching only enough work for 8 threads per warp will result in poor utilisation
of the available resources. Solving multiple matrices per thread block increases
the utilisation however causes decreased occupancy and fewer thread blocks
running concurrently due to limited shared memory capacity for matrix storage.
The issue of assembling and solving these small matrices on GPU architectures
requires future work (Section 9.1).

The performance of both methods was tested on a single node consisting of
a dual-socket Intel Xeon Gold 6152 (Skylake) CPU, with 22 cores per socket.
The following problem size was run, and tested with the dgesv routine from
MKL 2018 along with an implementation of the Gaussian elimination:

• Mesh size of 323 with sides of physical length of 0.1

• 32 energy groups, and 136 angles per octant

• 4 orders of anisotropic moment scattering

• 1 timestep of 0.001s

• Material option 1

• A single inner and outer was run for brevity

114 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

Runtime (s) dgesv Gaussian elimination

Assembly and solve 43.03 14.01
Total 55.49 17.34

Grind time (ns) 47.76 15.20

Table 8.1: FEM SNAP runtimes solving systems with MKL and Gaussian elim-
ination

The code was run with 44 MPI ranks (one per core) and no threading enabled
inside MKL itself.

The runtimes for the application using both solution methods are shown in
Table 8.1. The timings include the assembly and solution time of the matrix,
as recording just the solve time alone was found to have a significant overhead.
The grind time represents the average (mean) time for solution of one point in
the angular flux: the time to calculate the solution in a single cell, for one angle
and energy group. The grind time is calculated by dividing the total runtime by
the product of the problem dimensions and the number of iterations resulting
in an average time for calculation of each problem unknown. The grind time
is often used as a figure of merit for the runtime performance of a transport
benchmark for procurement (such as APEX, see Section 4.5). It is clear to
see that the handwritten Gaussian elimination routine for this 8 × 8 matrix is
much faster than using MKL, on the order of 3X faster despite the potential
issues surrounding vectorisation of this method discussed previously. Dense
linear algebra libraries are usually optimised for large matrices, certainly larger
than 8 × 8, and the results corroborate that they are not optimised for small
matrices. Although batched routines may prove more optimal for small matrices,
in the flat MPI regime tested here, the library routine would be used in a non-
threaded manner and so the matrices would be solved in turn. Additionally,
looking forward to unstructured meshes, it may not be possible to generate a
large batch of matrices to solve.

8.3 A practical comparison of the discretisation
methods

With an implementation of a FEM port of SNAP, these two methods for dis-
cretisation can be compared practically. The comparison will first determine
whether the FEM allows the use of a coarser mesh for an equivalent FD solu-
tion error; we attempt to identify the corresponding mesh resolutions which
lead to a similar quality of solution for both methods. This may be more valid
in a real application rather than the proxy application with fictional data, but
it is a well known property of higher order methods that coarser cells may be
used. The reduction in the number of cells used by the FEM will then determine
whether or not the memory footprint of the application may be reduced com-
pared to the FD method. Finally, the FEM requires more steps to produce the
solution as it inverts a matrix rather than evaluating simple diamond difference
relations, and therefore a brief comparison of the runtime of the applications
will be shown.

8.3. A PRACTICAL COMPARISON OF THE METHODS 115

(a) Layout 0 (b) Layout 1 (c) Layout 2

Figure 8.2: Illustration of SNAP material options

8.3.1 Mesh convergence

In order to determine the number of cells required by the FEM to represent a
solution with similar error to FD, the relative error of different mesh resolutions
must be compared. As the SNAP benchmark works on fictional data, there is no
known solution to compare to. As an alternative, the original SNAP application
was run with a fine mesh resolution and the scalar flux and population outputs
were used as the baseline solutions against which we can calculate the error.

The SNAP benchmark contains two fictional cross sections and they are
auto-generated according to a simple formula based on the input parameters.
The SNAP benchmark comes with three different material inputs, with their
layouts in 2D shown in Figure 8.2. The first material is shown with lines and
has a fixed isotropic source of unity. The second material is shown with dots
and has no associated source. Both materials have up, down and within group
scattering contributions defined. The first layout uses the first material across
the entire domain. The second layout places a cube of the first material in the
centre of the domain, with the rest of the domain as the second material. The
third layout is similar to the second layout, except the cube of the first material
is placed in the corner instead of the centre. All the boundaries are vacuum.

A sample problem was run using both the original FD SNAP as well as the
FEM port:

• Cubic domain with sides of physical length 10

• 36 angles per octant (S16)

• 16 energy groups

• 4 orders of anisotropic moment scattering

• Convergence criteria of 1.0E-12

• All three material layouts were tested in turn

The population count is a measure output by the SNAP benchmark, and is
a weighted reduction of the scalar flux over the whole spatial domain, producing
a numerical value for each energy group. The population count alone was not

116 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

sufficient to determine the difference in errors and it was found to hide inac-
curacies in the scalar flux solution at both the boundary and at the centre of
the problem domain, although this was dependent on the choice of layout and
fictional cross sections in the benchmark. In particular, this issue occurs for
material layouts 0 and 2, but not for material option 1 (recall Figure 8.2) where
it was found that the population count is representative enough of the solution
error. Visual inspection of the scalar flux solution for some options available in
the SNAP benchmark show that even where the population count changes little
with the mesh refinement, noticeable differences in the scalar flux are visible.

To supplement this single error measure, a plane of the scalar flux from
the centre of the domain is also used to verify the correct solution. The scalar
flux solution for the YZ mid-plane for both the FD and FEM implementations
running material layout 1 are shown in Figure 8.3. At a 43 mesh, there are 4 cells
along this plane; and the vacuum boundary conditions require that the solution
is zero on the boundary. The gradient of this zero boundary value in the FD
approach forces the scalar flux in the centre of the mesh to be over-estimated.
Both methods however tend towards the same scalar flux solution as the mesh
is continually refined.

Material layout 0 shows similar behaviour to that of material 1, with both
methods converging on the same solution. For material layout 2 however, both
methods failed to converge on a solution even at 2563 cells. This is down to the
fictional nature of the data, as common tricks such as also increasing the angular
discretisation as suggested by Lewis and Miller did not aid convergence [55].
Therefore material layout 2 shows a limitation of the SNAP mini-app for the
purposes of comparing numerical methods, and is excluded from further study.

The baseline ‘true’ solution is taken as the output from the original (FD)
SNAP benchmarking running with a 5123 mesh. At this resolution the scalar
flux solution and therefore the population count changes little with further re-
finements. The errors in output from the FEM port and coarser FD meshes
are compared to this 5123 solution. The highest energy group is used, along
with the YZ mid-plane of the scalar flux, with linear interpolation on the fine
solution to compare scalar flux values at the same x-axis points as the coarse
solution.

The error for different mesh sizes for material layout 0 are shown in Fig-
ure 8.4. The population count (Figure 8.4a) seems to converge for the FD at
coarser meshes than the FEM, contrary to the intuition about higher order
methods. However plotting the relative mean squared error of the scalar flux
mid-plane in Figure 8.4b reveals that this error is lower in the FEM than for the
FD method for a given number of cells. Inspection of the scalar flux solution
show that the two solutions differ most greatly at the boundaries. Therefore the
population count, as a reduction over the entire spatial domain, is smoothing
any errors in this boundary region of the scalar flux solution, causing the small
numerical values at the boundary (close to zero according to the vacuum condi-
tions) to contribute little to the total population count. It is fair to assume that
the scalar flux solution is required in addition to the population count, so for a
solution error less than some given value, a FD mesh is required with at least
twice as many cells in each axis compared to the FEM mesh. This results in at
least an eight times larger grid, meaning that the number of degrees of freedom
for both methods for a similar error is equal for this material option in SNAP.
This means that both methods have equivalent memory footprints for material

8.3. A PRACTICAL COMPARISON OF THE METHODS 117

0 2 4 6 8 10
x position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
43

83

163

323

643

1283

2563

5123

(a) Finite difference

0 2 4 6 8 10
x position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
43

83

163

323

643

1283

(b) Finite element

Figure 8.3: YZ mid-plane of finite difference and finite element port of SNAP

118 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

layout 0.
The error for different mesh sizes for material layout 1 are shown in Fig-

ure 8.5. The error in population count (in Figure 8.5a) shows that the FEM
is converging faster than the FD method. Therefore this material option in
SNAP shows the properties one would expect of higher order methods. For a
population solution less than a given error, the gradients of these lines show
that the FD approach requires at least four times as many cells in each spatial
dimension compared to the FEM approach; this is 64 times more cells in three
spatial dimensions. The FEM solution, despite storing eight degrees of freedom
per cell compared to one for the FD solution, could result in an eight times
memory footprint saving for this problem.

The trade-offs for solution error and mesh resolution for one method over
the other depend on what solution is required; the scalar flux solution to the
transport equation or the population count, an integrated value based on the
scalar flux (see Glossary and Section 8.3.2). The input data will also influence
the behaviour, and for the fictional data in the SNAP benchmark this poses
a challenge to a more robust investigation. However, the higher order method
should require fewer cells, and this was demonstrated for one of the SNAP input
options.

8.3.2 Modelling memory capacity

The storage of angular flux dominates the memory footprint of both the FD and
FEM implementations. This array is a double precision floating point number
for each degree of freedom in the problem; with the linear FEM having eight
times the degrees of freedom per cell than the FD discretisation. For material
layout 1, it was shown in Section 8.3.1 that the cells may be four times smaller
in each dimension for an equivalent solution error. For example a FD mesh of
10243 cells may be replaced with a FEM mesh of 2563 cells. It is therefore simple
to model the memory requirement of the angular flux for running a calculation
with similar error, which is an allegory of the total memory footprint of the
application.

As an example, take a model problem of using S32 (136 angles per oct-
ant) and 32 energy groups, along with a variety of spatial discretisations. The
memory capacity required for different mesh sizes is shown in Figure 8.6, organ-
ised in pairs of mesh sizes with similar solution error. Note that the footprint
of the FEM mesh is equal to the previous FD mesh shown; for example a 323

FEM mesh has the same footprint as a 643 FD mesh. The first FD mesh though
is 68 GiB in size; and so even though this is a very coarse mesh the footprint is
still large; the final FD mesh shown is approximately an exabyte.

Whilst Figure 8.6 shows the total memory capacity required, and the num-
bers grow large, it does not highlight the issues surrounding the number of nodes
in a supercomputer required just to fit the solution into memory. Two model
supercomputers are defined in Table 8.2. The multi-core system is typical of
those already found today, with dual-socket nodes with a high number of cores
per socket. Typical memory capacity would render 2 GB of standard dynamic
random-access memory (DRAM) memory per core. The many-core system on
the other hand utilises HBM, which has a limited capacity per socket; and the
nodes are single socket. For example, a large portion of the Trinity machine
at LANL is made from single-socket Intel Xeon Phi (Knights Landing) (KNL)

8.3. A PRACTICAL COMPARISON OF THE METHODS 119

4 8 16 32 64 128 256 512
Cells on axis

10 6

10 5

10 4

10 3

10 2

Re
la

tiv
e

er
ro

r i
n

En
er

gy
 G

ro
up

 1
 a

ga
in

st
 5

12
3 F

D
so

lu
tio

n

FD
FEM

(a) Population error

4 8 16 32 64 128 256
Cells on axis

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
sq

ua
re

 e
rro

r a
ga

in
st

 5
12

3 F
D

so
lu

tio
n

FD
FEM

(b) Scalar flux error

Figure 8.4: Material layout 0 population and scalar flux error

120 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

8 16 32 64 128 256 512
Cells on axis

10 6

10 5

10 4

10 3

Re
la

tiv
e

er
ro

r i
n

En
er

gy
 G

ro
up

 1
 a

ga
in

st
 5

12
3 F

D
so

lu
tio

n
FD
FEM

(a) Population error

4 8 16 32 64 128 256
Cells on axis

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
sq

ua
re

 e
rro

r a
ga

in
st

 5
12

3 F
D

so
lu

tio
n

FD
FEM

(b) Scalar flux error

Figure 8.5: Material layout 1 population and scalar flux error

8.3. A PRACTICAL COMPARISON OF THE METHODS 121

64
3 / 1

63

12
83 / 3

23

25
63 / 6

43

51
23 / 1

28
3

10
24

3 / 2
56

3

20
48

3 / 5
12

3

40
96

3 / 1
02

43

81
92

3 / 2
04

83

16
38

43 / 4
09

63

Spatial mesh resolution (FD/FEM)

100

102

104

106

108

An
gu

la
r f

lu
x

fo
ot

pr
in

t (
Gi

B)

 6
.8

×
10

1

 5
.4

×
10

2

 4
.4

×
10

3

 3
.5

×
10

4

 2
.8

×
10

5

 2
.2

×
10

6

 1
.8

×
10

7

 1
.4

×
10

8

 1
.1

×
10

9

 8
.5

×
10

0

 6
.8

×
10

1

 5
.4

×
10

2

 4
.4

×
10

3

 3
.5

×
10

4

 2
.8

×
10

5

 2
.2

×
10

6

 1
.8

×
10

7

 1
.4

×
10

8

Finite difference
Finite element

Figure 8.6: Model of memory requirements of the angular flux for finite differ-
ence and finite element methods

122 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

Multi-core system Many-core system

Sockets/node 2 1
Cores/socket 32 >64
Cores/node 64 64+

Memory technology DRAM HBM
Memory/node 128 GB 32 GB
Memory/core 2 GB <0.5 GB

Table 8.2: Hypothetical future multi- and many-core supercomputer nodes

nodes, or else the GPU machine Piz Daint at Swiss National Supercomputing
Centre (CSCS) with one GPU per node. Even if multiple GPUs per node are
installed, as with the future Sierra (at Lawrence Livermore National Laboratory
(LLNL)) and Summit (at Oak Ridge National Laboratory (ORNL)) machines
or NVIDIA DGX-1 boxes, the current usage model will be one MPI rank per
GPU, and so the memory available to each rank will be determined by the ca-
pacity of the HBM on each GPU. The many-core node of Table 8.2 would be
logically equivalent from the programmers perspective of MPI ranks and so the
model is applicable to such multi-GPU nodes. Note that all current devices
utilising HBM offer only 16 GB capacity, and so using 32 GB here represents a
future system.

The minimum number of nodes for each system for the model problem used
is shown in Figure 8.7. The node requirements for both mesh types are shown
overlaid on the same bar. Although this represents just a simple scaling of
Figure 8.6, it is the relation between footprint and number of nodes which is
of note. For both systems, as using the FEM allows an eight times capacity
saving, the minimum number of nodes is eight times less. The number of nodes
themselves are however more pertinent. Consider the point on this graph with
a 20483 FD mesh and 5123 FEM mesh. This requires 69,632 and 8,704 nodes
on the many-core machine respectively. Other than requiring nearly an order of
magnitude fewer GPUs to run, the FEM method would allow this computation
to fit on near-future machines.

The current fastest GPU machine in the world, Piz Daint at CSCS, consists
of 4,256 nodes each containing 1 GPU [91]. The trend for future systems is
to decrease the node count and install multiple GPUs per node; the Summit
(ORNL) and Sierra (LLNL) machines will contain around 6,400 nodes with
multiple GPUs per node. Summit will have 6 GPUs per node [76] with 16 GB
of HBM2. Therefore this FEM mesh with a minimum node requirement of 8,704
nodes will indeed fit within the memory capacity of a supercomputer such as
Summit where 17,408 GPUs would be required (as the GPUs are 16 GB as
compared to the modelled 32 GB capacity); 63% of the machine. The FD mesh
would require running on the entirety of Summit in order to fit this problem in
GPU memory.

The FEM therefore allows a much more realistic resource to be used for
such a computation, possibly even enabling the computation to be performed
in the first place. And for more modest mesh sizes, the FEM would allow a user
to strong scale the problem using more resource in order to decrease time to
solution, something which would not be possible if their maximum allocation is

8.3. A PRACTICAL COMPARISON OF THE METHODS 123

64
3 / 1

63

12
83 / 3

23

25
63 / 6

43

51
23 / 1

28
3

10
24

3 / 2
56

3

20
48

3 / 5
12

3

40
96

3 / 1
02

43

81
92

3 / 2
04

83

16
38

43 / 4
09

63

Spatial mesh resolution (FD/FEM)

100

101

102

103

104

105

106

107

M
in

im
um

 n
um

be
r o

f n
od

es

Finite difference on multi-core
Finite element on multi-core
Finite difference on many-core
Finite element on many-core

Figure 8.7: Modelled minimum node count for storage of the angular flux

used just to provide sufficient memory capacity.

8.3.3 Runtime implications

In order to assess the time to solution for both methods, an initial study in
the runtime of each implementation was conducted. Both codes were run on
Swan, a Cray XC40 supercomputer, where each node contains a dual-socket
E5-2699 v4 (Broadwell) CPU with 22-cores per socket with 128 GB of memory
per node. Both codes were run using flat MPI, with one MPI rank per physical
core. Different mesh sizes where chosen, with 36 angles per octant, 16 energy
groups and 4 orders of anisotropic moment scattering. The material layout
was chosen as in Figure 8.2b. Such modest problem dimensions, particularly
with respect to the number of angles and energy groups, was chosen in order to
ensure reasonable memory capacity requirements. Both implementations were
run until the solutions converged within the specified tolerance. Convergence
properties may change as a result of interactions with the angular discretisation
and the spatial cell size as discussed in Section 4.3.3, but as with Section 8.3.1
the nature of the fictional data in the mini-app prevents more rigorous treatment
of any such issues.

The runtime of a variety of mesh sizes are shown in Table 8.3. A limitation of
the original SNAP (FD) application is that it is not able to run on an arbitrary

124 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

Mesh size FD FEM
Cores Time (s) Cores Time (s)

43 16 0.1 16 5.0
83 32 0.3 22 22.2
163 32 1.7 22 139.6
323 32 13.7 22 1010.7
643 32 102.9 704 229.8
1283 64 382.6 704 1616.9
2563 256 789.5 - -
5123 1024 1583.6 - -

Table 8.3: SNAP runtimes for FD and FEM codes running material layout 1

number of cores, and so different cores counts were required; one may also have
generated mesh sizes which are multiples of core counts however this is not
representative of mesh generation. Core counts were also chosen in order to
keep the runtime a reasonable length and are not representative of running on
the fewest nodes required to give sufficient memory capacity.

For a fixed mesh size, it is clear that the FEM implementation is much more
expensive in terms of runtime than the FD method. The amount of work per
grid point is much increased and so this is expected, and for small mesh sizes
the runtime disparity is large. However as seen in Section 8.3.1, a coarser mesh
resolution may be chosen. For example, a 5123 FD mesh and a 1283 FEM mesh
both achieved a solution with similar error in a similar runtime of approximately
30 minutes on around 1000 cores. As such, the FEM is competitive with the
FD implementation in terms of runtime for a desired solution accuracy. Addi-
tionally, this also results in a memory footprint saving due to the coarser mesh
as shown in Section 8.3.2.

8.4 Summary
The FEM as a spatial discretisation strategy for the solution of the transport
equation was implemented within the SNAP proxy application. This allowed
direct comparisons between the original FD and the FEM discretisations in
terms of memory footprint and runtime. Although the FEM requires storage
for more degrees of freedom per problem unknown, it can still demonstrate
memory footprint savings for an equivalent error in solution for some of the
artificial problems within the SNAP application. As such it goes some way
towards mitigating the memory capacity limitations of advanced architectures
which leverage lower capacity, high bandwidth memory technology.

The FEM too allows for an additional source of concurrency in the solution
of the transport equation, through the construction and solution of the local
matrix in each mesh element. Vector instructions were used to exploit this
parallelism in the FEM SNAP implementation. As a precursory study to trans-
port on unstructured meshes, where parallelism in other problem dimensions
may be reduced, this may be a vital source of concurrency in order to leverage
performance on many-core architectures.

Although there is little motivation from a physical perspective to choose

8.4. SUMMARY 125

to use FEM over the simpler FD approach on a structured mesh, this chapter
shows that such an algorithmic change may be motivated by the architecture of
the computational hardware itself. In particular, the FEM gives the application
the ability to use a coarser grid which may result in a lower memory footprint
and so enable problems to be run in the high bandwidth memory, which have
limited capacity in comparison to more traditional memory architectures.

126 CHAPTER 8. HIGH ORDER FINITE ELEMENT SOLUTION

CHAPTER 9

Conclusion

The solution of the deterministic transport equation requires a large amount of
computational resource, and so it is therefore imperative that the solver is able
to perform well on current and future supercomputers. Disruptive changes to
computer architectures are requiring increased levels of parallelism to be found
within algorithms and memory bandwidth improvements of the hardware must
be exploited for best performance.

This thesis examined the solution of deterministic transport on both multi-
core and many-core architectures including GPUs. Computational models were
developed in order to both quantify and understand the achieved performance
on these devices. This included a memory bandwidth model of the main kernel
and a scaling model which also included the communication costs.

State of the art High Performance Computing (HPC) processors are complic-
ated architectures, and whilst a deep understand of their properties is sometimes
required to guide optimisations, their function may be simplified when con-
structing quantitative performance models. In particular the important charac-
teristics for many codes is the relationship between the performance of memory
movement and floating point operations. It is precisely this that is captured by
the Roofline model [95] (see Section 3.1.1) and also by McCalpin’s idea of system
balance [68] (see Section 2.1). The Roofline model characterises the hardware,
but does not directly assess the performance of an application. For this, quantit-
ative models describing the achieved memory bandwidth of an application code
must be derived in the manner shown in this thesis (for example in Section 5.3
and Chapter 6). In most cases, they are treated in a cache oblivious manner,
with all reads assumed to come from a single level memory. Whilst in practice
this may not occur due to a cache hierarchy for applications with large data
footprints (exceeds the size of caches) this is a valid assumption and allows for
a much simpler model to be constructed.

Achievable memory bandwidth is typically measured by the gold-standard
STREAM benchmark [66], or with codes provided by vendors which do not
necessarily measure the same thing in the same way. The STREAM benchmark

127

128 CHAPTER 9. CONCLUSION

is really just a proxy application for memory bandwidth bound scientific kernels.
This spirit is captured in a portable way in the BabelStream benchmark, which
investigates what memory bandwidth is achievable from a range of multi- and
many-core devices for the STREAM kernels written in a range of programming
models. BabelStream allows quantification of the achievable memory bandwidth
from different devices. These results provide scientific application developers
with a measure of the maximum attainable memory bandwidth and a baseline
comparison with which to compare the performance of the memory bandwidth
bound kernels of scientific applications. Such a comparison requires a model of
the memory bandwidth of the kernel, and this thesis developed a model for the
memory bandwidth of the SNAP sweep kernel. This allowed the efficiency of
memory bandwidth utilisation to be quantified.

BabelStream was extended to examine if programming models have any
influence on attainable memory bandwidth limits, and the current implement-
ations of all programming models demonstrated a good level of performance
portability across a range of devices from a variety of vendors.

The SNAP code from Los Alamos National Laboratory (LANL) is an open-
source proxy application used to investigate the solution of the transport equa-
tion on modern multi- and many-core architectures [97]. Previous work by Wang
et al. on porting this application to GPUs did not result in speedups [94]. In
order to leverage the memory bandwidth improvements of GPUs, extra concur-
rency in the algorithm was sought. By increasing the node-level spatial par-
allelism within the transport sweep, many-core technologies (and the memory
bandwidth advantages that GPUs bring) were demonstrated to be successfully
exploited for the first time. The OpenCL implementation of SNAP using an
improved concurrent scheme achieved speedups in line with the memory band-
width improvements GPU devices offer over more traditional multi-core CPU
architectures.

This concurrent scheme performed well for a single node, and was again
shown to perform well at large scale with scaling experiments conducted on
the two largest GPU-enabled supercomputers available: Titan at Oak Ridge
National Laboratory (ORNL) and Piz Daint at Swiss National Supercomputing
Centre (CSCS).

A performance model to capture the communication and computation time
for CPUs and GPUs for the Koch, Baker and Alcouffe (KBA) algorithm was
developed. This allowed the scaling performance to be verified, and the runtime
improvements were again found to be in line with the memory bandwidth im-
provements of GPU architectures. When running at scale the KBA schedule
does become network bound, however it scales sufficiently well for both multi-
and many-core architectures and so continues to provide a viable approach.

Although the high bandwidth memories of GPUs were able to be leveraged
for the SNAP proxy application, this was found not to be the case when run-
ning on the Intel Xeon Phi (Knights Landing) (KNL) utilising the on package
Multi-Channel DRAM (MCDRAM). This is despite having stride one access,
effective vectorised code and predictable memory access patterns. The mega-
stream mini-app was therefore developed to distil the transport kernel into its
most basic form so that memory bandwidth issues were captured on cache-based
architectures, along with a performance model of the useful memory bandwidth
used by the kernel. The solution of a single chunk under the KBA algorithm
highlighted that the memory hierarchy was not being usefully used, and there-

9.1. FUTURE WORK 129

fore optimisations focusing on ensuring data reuse by controlling which data
was being cached together with prefetch instructions allowed performance im-
provements for this mini-app. These improvements did not leverage the same
reductions in runtime for the SNAP proxy application itself, and therefore mega-
stream, as a mini-app, does not capture the total picture. This is by design, as
a mini-app (by its very nature) excludes detail from the ‘parent’ application.

To address this the mega-sweep mini-app was designed to capture additional
details of the SNAP proxy application. This benchmark took the mega-stream
kernel and added the communication and the denominator term. The perform-
ance of mega-stream was not optimised to the same degree with the mega-stream
optimisations such as non-temporal stores, despite the loop body being almost
identical to mega-stream. Preliminary investigations imply that the perform-
ance of this application is determined by the cache behaviour rather than main
memory bandwidth; this in contrary to the expected limiting factor due to the
streaming nature of updating the large angular flux array.

The construction of mini-apps in order to capture the essential behaviour of
a larger application has been an important tool to understand the performance
profile of the transport algorithm. An important aspect of this is the ability to
include a performance model so that a measure of the useful work may be cap-
tured. Within the context of transport, this metric was the memory bandwidth.
This methodology can clearly be extended to many other codes, where complex-
ity is methodically added to simple loop structures until the performance begins
to suffer.

The memory footprint of a transport application is large, filling main memory
so as to become memory capacity bound and so the reduced capacity of the
high bandwidth memory technologies leveraged by many-core devices provides
a limitation. Whilst staging portions of the solution data is natural for the
algorithm, this approach shows issues surrounding staging data on the GPUs
whilst maintaining good computational performance and low latency commu-
nications. The discontinuous Galerkin (DG) finite element method (FEM),
a higher order method, provided an algorithmic alternative to reducing the
memory footprint of the transport solution. This method also introduces much
needed additional concurrency and so may form a viable long term solution if
the trend for increased thread count to enable good performance continues.

The performance advantages of advanced many-core architectures can be
successfully utilised to improve the performance of the solution of the determin-
istic Discrete Ordinates (Sn) transport equation. This algorithm does however
highlight the complexities of exploiting these improvements, both in terms of
expressing concurrency as well as the behaviour of the memory hierarchy.

9.1 Future work

The focus of this thesis has been on solving the transport equation on many-
core hardware. A structured, regular, Cartesian mesh was used throughout,
resulting in predictable and regular memory access patterns.

There is potential for further investigation into the cache behaviour of the
mega-sweep mini-app. This could focus on using hardware counters to help
determine which arrays are important to retain in cache for good performance.
Additionally, this mini-app could be extended to investigate different communic-

130 CHAPTER 9. CONCLUSION

ation patterns, including one-sided Message Passing Interface (MPI) style com-
munication patterns which may lower the overheads of communication. Such
an implementation would be greatly simplified with some of the new functional-
ity of remote memory access (RMA) notifications due to appear in future MPI
versions.

The use of an unstructured mesh greatly increases the challenges for effi-
ciently running an application on many-core architectures. Firstly, the directed
graph for a sweep across the mesh may well be unique for each angle; in the
3D structured case all angles within an octant share the same schedule. This
graph therefore must be (pre-)calculated efficiently and the parallelism extrac-
ted both within and between graphs so that sufficient work can be found to run
concurrently.

There are transport solvers and associated research that utilise an unstruc-
tured spatial mesh, such as the Tycho 2 mini-app of Section 4.6.7. The focus is
generally on how to efficiently schedule the sweep, and does not investigate the
solve of each cell, nor does it take a holistic approach to how the solution and
the schedule interact depending on the architecture.

The work in Chapter 8 is somewhat a precursor to future study as the
DG FEM on hexahedral meshes is a method which may be used to solve the
transport equation on an unstructured mesh. Parallelism is available in the
construction and solution of the small matrix systems, and therefore it is hoped
that the restriction in angular concurrency may be mitigated by this. The
viability of using batched BLAS routines could be studied first in the structured
case in order to determine if there are any performance benefits before reducing
the number of matrices available for parallel computation in a fully unstructured
regime.

As an additional complication, a general unstructured mesh may cause a
cycle within the graph/sweep schedule. These cycles may exist across process
boundaries and/or may be localised to a single processor. Therefore an efficient
way to break cycles in parallel should be sought, while maintaining stability of
the iterations and a small iteration count (in terms of the numerical method),
but also ensure spatial parallelism and minimal global communication to break
such cycles. The mesh may move for each timestep and so whatever approach
is taken to remove cycles must be applied regularly.

It would be important to again consider a range of many-core devices, in-
cluding CPUs and GPUs, from multiple vendors so that a portable solution may
be sought. This could firstly be to see if the memory bandwidth improvements
such devices offer might be leveraged for unstructured mesh transport. Addi-
tionally devices are becoming available with dedicated hardware resources for
small matrix operations, designed to target machine learning applications. It
would be of great interest to see if their reduced precision but potentially in-
creased throughput may be a viable compute accelerator for HPC applications
of this nature.

Some future network interconnects promise integration with the processor
package resulting in reduced latency. The work in Chapter 7 showed that even
at modest scale much of the runtime is a result of MPI communications. In-
vestigating how the properties of these new interconnects benefit (or otherwise)
transport is also important.

Appendices

131

APPENDIX A

Applying the finite difference method to the transport
equation

In this appendix, a brief introduction to the finite difference (FD) method will
be given. The method will then be applied to discretise the spatial dimension of
the Discrete Ordinates (Sn) transport equation. The application of the sweep
dependency via upwinding will also be shown. Although much of this material
can be found in the textbook of Lewis and Miller [55], it is convenient to include
within this thesis especially for the comparison with the finite element method
(FEM) in Section 8.1.

A.1 Diamond difference relations
As discussed in Section 4.2.1, the continuous spatial domain may be divided
into discrete regular regions called cells. In two dimensions these regions will be
squares (or rectangles) and in three dimensions they will be cubes (or cuboids).
Note that this thesis only considers regular Cartesian grids. The equation of
interest (in this thesis this is the Sn transport equation) may then be calculated
at discrete locations: the centre of each cell and the centre of each face (or edge
in two dimensions).

The central diamond difference equation relates the solution in the centre
of the cell with the solution at the centre of the cell faces. In three spatial
dimensions, an equation is introduced for each face pair:

ψ(xi,j,k) =
ψ(xi−1/2,j,k) + ψ(xi+1/2,j,k)

2
(A.1a)

ψ(xi,j,k) =
ψ(xi,j−1/2,k) + ψ(xi,j+1/2,k)

2
(A.1b)

ψ(xi,j,k) =
ψ(xi,j,k−1/2) + ψ(xi,j,k+1/2)

2
(A.1c)

When appropriate rearrangements according to the angular directions of the

133

134 APPENDIX A. APPLYING THE FD METHOD

Sn quadrature set, these equations describe the outgoing face flux in terms of the
incoming and cell centred flux solutions. This is also pertinent to the boundary
conditions, where only edge values (those marked with a ±1/2) are given.

A.2 A finite difference discretisation of the trans-
port equation

The discretisation of the transport equation using the central finite difference
(FD) equations of (A.1) requires rearranging these FD equations depending on
the octant that each particular Sn angular direction belongs. For simplicity, the
stationary transport equation will be discretised in this section in one spatial
dimension, although it is readily extended to higher dimensions and a time
dependent representation.

The transport equation in one dimension may be written as follows, where
the right hand side of the equation is simplified:

Ω̂∇ψ(x) + σ(x)ψ(x) = S(x) (A.2)

In this case, the angular direction Ω̂ = µ, and so therefore the streaming operator
may be written explicitly as a differential:

µ
d

dx
ψ(x) + σ(x)ψ(x) = S(x) (A.3)

The continuous angular domain may then be discretised by integrating this
over the spatial domain of a single cell [xi−1/2, xi+1/2]. Some approximations
are made during this step; notably the cross section is assumed to be piece-wise
constant across the cells and so∫ xi+1/2

xi−1/2

σ(x)ψ(x)dx ≈ σ(xi)∆iψ(xi) (A.4)

where ∆i = xi+1/2 − xi−1/2, the width of the cell. A similar approximation is
made to the right hand side S.

Integrating (A.3) over the spatial cell therefore yields:

µ
(
ψ(xi+1/2)− ψ(xi−1/2)

)
+ σ(xi)∆iψ(xi) = ∆iS(xi) (A.5)

where the usual evaluation of a definite integral has been followed for the stream-
ing operator and the approximation (A.4) used for the collision term.

In one dimension, (A.1a) might be rearranged in the following two ways (as
was shown in (4.4)–(4.5)):

ψ(xi+1/2) = 2ψ(xi)− ψ(xi−1/2) (A.6)
ψ(xi−1/2) = 2ψ(xi)− ψ(xi+1/2) (A.7)

Let µ > 0, whence the leftmost cell boundary ψ(xi−1/2) is known. The
following may symmetrically followed in the case of µ < 0. As such, (A.6) may
be substituted into the transport equation (A.5) so as to eliminate the outgoing
flux on the cell ψ(xi+1/2):

2µ
(
ψ(xi)− ψ(xi−1/2)

)
+ σ(xi)∆iψ(xi) = ∆iS(xi) (A.8)

A.2. A FINITE DIFFERENCE DISCRETISATION OF THE TRANSPORT EQUATION135

This process created the upwind dependency which results in the need for the
wavefront sweep across the spatial domain according to the angular direction.

Finally, the cell centred value ψ(xi) may be found by rearranging this equa-
tion, and the outgoing flux calculated using (A.6):

ψ(xi) =
∆i

2µ
S(xi) + ψ(xi−1/2)− ∆i

2µ
σ(xi)ψ(xi) (A.9)

This is usually further rearranged so that the ∆i

2µ term may be a constant
factor:

ψ(xi) =
∆i

2µ

(
S(xi)− σ(xi)ψ(xi) +

2µ

∆i
ψ(xi−1/2)

)
(A.10a)

ψ(xi+1/2) = 2ψ(xi)− ψ(xi−1/2) (A.10b)

This final equation (A.10) shows that an update to the angular flux ψ for a
single angle and energy group in a cell may be calculated as a simple addition
of the terms, with the outgoing flux for the neighbouring cells subsequently
calculated with a simple diamond difference relation. This forms the heart of
the computational kernel which sits in the loop structure of the full solver as
shown in Section 4.3.

136 APPENDIX A. APPLYING THE FD METHOD

APPENDIX B

Applying the finite element method to the transport
equation

In this appendix, a brief introduction to the FEM will be given. The method will
then be applied to discretise the spatial dimension of the Sn transport equation.
The application of the sweep dependancy via upwinding will also be shown.

B.1 Test functions

The FEM was first described by Reed and Hill in order to solve the transport
equation on triangular meshes [85]. They intuitively wanted to express the
angular flux solution in each cell as a polynomial instead of a single value like
the FD method. The method has been more rigorously defined subsequently.

In order to construct the element, a set of basis functions are chosen, and
the solution is represented as a linear combination of these functions; here we
focus on a polynomial representation of the solution in the cell. These functions
are known as trial or test functions in the formal discretisation method; it is
often convenient to use the same functions for both the trial and test bases.

For our particular choice of finite element space, each function is associated
with a node, which is a point in the cell. By definition the functions are chosen
so that they evaluate to 1 only at the associated node and 0 at all other nodes.
Note they may take non-zero values at other points in the element. For a linear
basis (the lowest order), the nodes are positioned on each vertex of the cell. The
2D linear element in Figure B.1 has four functions, with each associated to a
corner.

As discontinuous Galerkin (DG) finite elements are used to discretise the
spatial domain, nodes are not shared between elements. For nodes which appear
on element boundaries or vertices, the neighbouring element also contains a node
at the same physical location. For example, consider a regular structured mesh
of elements such as that shown previously in Figure B.1. Four such elements
are shown in Figure B.2. Note that the point at which all four cells meet

137

138 APPENDIX B. APPLYING THE FEM

ψAij ψBij

ψDij ψCij

Figure B.1: A 2D linear element with basis functions at associated vertices

ψCi−1,j ψDi,j

ψBi−1,j+1 ψAi,j+1

Figure B.2: Illustration of distinct nodes in the discontinuous Galerkin finite
element method

occurs at some physical position in space and there are four values representing
the flux at this point given by a node positioned on a vertex in each element.
With sufficient mesh resolution and convergence of the numerical method, all
nodes at the physical location should be equal. However the method allows
discontinuities between element boundaries.

We begin by describing the method in one spatial dimension. Simple 1D
linear test functions are chosen for a reference element, a line defined on the
range [−1, 1]:

v+1(x) =
1 + x

2
(B.1)

v−1(x) =
1− x

2
(B.2)

The nodes here are at the end points of the line, x = −1 and x = 1. Note that
v+1 is equal to 1 when x = 1 and equal to zero at the other node point x = −1.

These 1D linear basis functions v are shown in Figure B.3 as dashed lines
for the reference element. For the finite element approximation the value in this
1D cell is then represented as a linear combination of these basis functions:

ψ(x) ≈ ψ1u1(x) + ψ2u2(x) (B.3)

This is shown in Figure B.3 as a solid line, where the coefficients have been

B.2. FEM DISCRETISATION OF THE TRANSPORT EQUATION 139

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

v1
v2

1 = 0.3, 2 = 0.6

Figure B.3: 1D basis functions

chosen to be 0.3 and 0.6. The FD discretisation gives a single value at the
centre of the cell x = 0; in this example it would be 0.45. The FEM discretisation
instead describes the gradient through the cell.

These 1D functions may be combined in a simple way to generate a basis of
test (and trial) functions for 2 and 3 dimensional elements by taking products
of the 1D functions. For example, a 3D function associated with the vertex
(−1, 1,−1) on the reference element cube may be chosen as:

v−1,+1,−1(x, y, z) = v−1(x)v+1(y)v−1(z) (B.4)

Higher order basis than linear may also be chosen, which gives rise to more
node points in each element. A quadratic basis for the 1D element adds an
additional point in the centre of the line. This gives rise to 9 nodes in a 2D
element and 27 in a 3D element. This allows for a more complex gradient to
be described throughout the cell, and therefore potentially gives a higher order
accuracy solution for problems with smooth spatial variations.

B.2 A finite element discretisation of the trans-
port equation

Although much has been written about the FEM, and in particular the DG
variant, it is usually discussed in the general sense. We now need to specialise
the method to the equation that one wishes to solve and the application to the
transport equation additionally involves an upwind dependency (as with the

140 APPENDIX B. APPLYING THE FEM

standard FD discretisation) which arises from the treatment of the streaming
operator.

Recall that the transport equation (4.1) from Chapter 4 was expressed in
a time dependent form. For simplicity the 2D stationary variant (B.5) will be
used in this chapter, and the source term simplified. It may be extended to 3D,
and indeed the implementation will use the 3D version.

Ω̂∇ψ(x, y) + σ(x, y)ψ(x, y) = S(x, y) (B.5)

The DG FEM method may be applied to this equation as follows. The
angular and energy domains are discretised as usual (see Section 4.2.2 and Sec-
tion 4.2.3). The spatial domain is split into a number of elements Ω. Note
that Ω is the common representation for an element and differs from the angle
Ω̂. Firstly, multiply by the test function v and integrate over the area of an
element: ∫

Ω

Ω̂∇ψ(x, y)v +

∫
Ω

σ(x, y)ψ(x, y)v =

∫
Ω

S(x, y)v (B.6)

This may be further evaluated by integration by parts, using n for the outward
facing normal vectors:

−
∫

Ω

Ω̂∇vψ(x, y) +

∫
∂Ω

Ω̂ · nψ(x, y)v+

∫
Ω

σ(x, y)ψ(x, y)v =

∫
Ω

S(x, y)v (B.7)

It is convenient at this stage to expand the Sn term Ω̂∇:

−
∫

Ω

µ
∂v

∂x
ψ(x, y)−

∫
Ω

η
∂v

∂y
ψ(x, y)+∫

∂Ω

Ω̂ · nψ(x, y)v +

∫
Ω

σ(x, y)ψ(x, y)v =

∫
Ω

S(x, y)v

(B.8)

The angular flux ψ is approximated by a linear combination of trial functions
u:

ψ(x, y) ≈
K∑
i=1

ψ̃iui(x, y) (B.9)

Each ψ̃ is a single coefficient which corresponds to a node point in the element
(cell). For a linear discretisation all node points occur on the vertex (corners)
of the element, and in 2D K = 4.

In order to evaluate the integral over the boundary term
∫
∂Ω

, the upwind
dependency must be introduced in order to maximise the numerical stability
of the method. Only values on incoming face boundaries are known during
the sweep, and therefore downwind faces must be treated as unknowns in the
equation. The incoming surfaces are denoted as ∂Ω− and the outgoing surfaces
∂Ω+. The specific faces on the element to which these surfaces relate depends
on the sweep direction. Incoming surfaces occur when Ω̂ · n < 0, and outgoing
when Ω̂ · n > 0. On incoming surfaces the upwind values correspond to known
values from neighbouring elements and so these are placed (as a constant term)
on the right hand side of the equation:

−
∫

Ω

µ
∂v

∂x
ψ(x, y)−

∫
Ω

η
∂v

∂y
ψ(x, y) +

∫
∂Ω+

Ω̂ · nψ(x, y)v +

∫
Ω

σ(x, y)ψ(x, y)v =∫
Ω

S(x, y)v −
∫
∂Ω−

Ω̂ · nψ(x−, y−)v

(B.10)

B.2. FEM DISCRETISATION OF THE TRANSPORT EQUATION 141

Note that the ψ on the right hand side is taken from the neighbouring element
(x−, y−).

The equation (B.10) is expressed using integrals, however these cannot in
general be known exactly. These integrals are therefore calculated with an ap-
proximation, for example a Gaussian quadrature rule is used. Note that this
is a different quadrature to the Sn quadrature set chosen to approximate the
scalar flux (defined as the integral over the angular dimension of the angular
flux). When using the test functions as described in Section B.1 it is possible to
evaluate the integrals exactly using sufficient points in the Gaussian quadrat-
ure rule. In general the Gaussian quadrature rule allows approximation of an
integral using Q points xq with associated weights wq:∫

Ω

f(x) =

Q∑
q=1

wqf(xq) (B.11)

The Gaussian quadrature of (B.11) and the angular flux approximation (B.9)
are applied to (B.10) to give the computable form of the transport equation
under the FEM. This substitution results in an equation for each vj . Although
not shown here, note that the source term S contains a contribution from the
angular flux as part of the scattering term and therefore the approximation for
ψ must also be applied there.

The result is a system of K equations with K unknowns (the ψ̃), with K
equal to the number of nodes in the element. The equation for a single element
(B.10) can be expressed as a small K×K linear system Aψ̃ = b, after evaluation
of all the integrals. The matrix is constructed by looping over the nodes and
faces in the element and adding contributions to the appropriate position. A
standard Linear Algebra PACKage (LAPACK) dgesv may be used to solve
this system; the routine typically consists of first performing a lower upper
(LU) factorisation of A and then solving the resulting triangular system using
forward-backward substitution. Alternatively, it may be inverted directly via
Gaussian elimination.

Although the FEM approximation derivation consists of many steps, a com-
putational code deals with the construction and solution of the small matrix
in each element, for each angle and energy group. The matrix construction re-
quires access to quadrature and element data in order to evaluate the integrals,
and choices should be made as to whether to calculate them on the fly or read
them from a precomputed lookup table. The construction must also read neigh-
bouring angular flux data when including the contribution from the boundary
integral. Once the matrix is finally constructed, it must be inverted to produce
the updated angular flux.

Note that this scheme, as with the FD approximation, sits within the simple
iterations on the scattering source, as described previously in Section 4.3. It
is not possible to simply replace the FD kernel with a FEM kernel due to the
additional angular flux dimension of element nodes. Therefore additional data
must be stored per cell, which results in changing a key data structure which
must be propagated throughout the code base, including the update of the
sources at each node rather than just at each element centre.

Many off-the-shelf FEM solver software libraries then assemble each of these
(local) matrices into a large (global) matrix, and use standard linear solvers to
invert it. This approach is unsuitable for solving the transport equation because

142 APPENDIX B. APPLYING THE FEM

the global matrix would be too large when the full equation is considered. For
the streaming-collision operator alone it may not be too onerous as the global
matrix may only be 5–7 times the footprint of the angular flux array; however
this becomes infeasible to do efficiently with the inclusion of the scattering
operator. A (global) matrix-free approach is taken so that only the local matrix
is constructed and solved in turn. This also ensures that the outgoing angular
flux data for downwind neighbouring elements is also available.

B.2.1 Mapping from the reference element
The preceding FEM discretisation of the transport equation did not include the
additional issue of integrating (by Gaussian quadrature) over a general element,
and rather assumed that all elements were similar to the reference element.

The basis functions ui and vj are defined on the reference element, and must
be mapped to a general element. A general element may be formed from the
reference element via an isoparametric transform [57]. Such a transform moves
the vertices in the element so as to simply move the cell from centring on the
origin like the reference element, as well as possibly deforming it, so that it
is no longer a regular shape. In 2D, it is convenient to say that the reference
element is defined in (x′, y′) space, and a general element in (x, y) space. In the
literature (η, ξ) is often used for this purpose however these symbols are used for
the angular cosines in the context of transport and so are avoided here. Recall
that the element space was Ω, and so denote the reference element space as Ω′.

Each integral over the general element space can then be rewritten using the
Jacobian of the transform of the reference element into a general element:∫

Ω

v =

∫
Ω′
v′ det J (B.12)

for general element basis functions v and reference element basis functions v′.
Simple functions are used to map nodes in the reference element (x′, y′) ∈ Ω′

to nodes (xi, yi) ∈ Ω the general element:

x(x′, y′) =
∑
i

xivi(x
′, y′) (B.13)

y(x′, y′) =
∑
i

yivi(x
′, y′) (B.14)

Such functions describe the movement of the element verticies into arbitrary
positions.

The Jacobian J is therefore the matrix formed of the partial derivatives of
the mapping functions:

J =

[
∂x
∂x′

∂x
∂y′

∂y
∂x′

∂y
∂y′

]
(B.15)

The FEM discretised transport equation (B.10) requires partial derivatives
of the general element functions over the general element space Ω, e.g. ∂v

∂x .
These values are not known directly, and so must be calculated based on the
partial derivatives of the reference element. The chain rule is used, utilising
terms from the inverse Jacobian; for example:

∂v

∂x
=
∂v′

∂x′
∂x′

∂x
+
∂v′

∂y′
∂y′

∂x
(B.16)

B.2. FEM DISCRETISATION OF THE TRANSPORT EQUATION 143

1

2

x
y

4
z

3
56

Figure B.4: Faces of a reference hexahedral element centered at the origin

This mapping must be addressed in the matrix construction to ensure that
the values are correct for each general cell. In a regular structured mesh, this
step may be simplified by dividing by the cell volume. However it is import-
ant for future work that the method implemented for this thesis assumes an
unstructured mesh and the kernel contains all such operations in the matrix
construction.

B.2.2 Calculation of the face normals
The integral over the boundary terms in (B.10) (

∫
Ω+ and

∫
Ω−

) requires the dot
product between the Sn angle and the normal vectors of the element. These
normal vectors are perpendicular to the face of the element. Whilst this is
simple to calculate for a regular shape based on the coordinates of the vertices,
in general the faces may be non-flat. As such, the normals are calculated using
cross products of the partial derivatives of the coordinate transformation. For
a 3D hexahedral element such as that in Figure B.4, the normal for the top face
(face 1 in the figure) would be

∂v

∂x′
× ∂v

∂y′
(B.17)

The normals are calculated as the cross product of columns of the Jacobian
(B.15). The columns chosen are determined by which dimension is fixed across
each face of the reference element, and are listed in Table B.1 for the 3D element
in Figure B.4. The ordering of the columns in the cross product operation
is important to ensure that the normals are oriented to point away from the
element rather than pointing into the element; although it is just the sign of the
resulting normal that determines this direction.

The normal vector is of length det J as described above rather than of unit
length as expressed in the formal notation, and so therefore mapping from the
reference element as in Section B.2.1 for terms which include the normal is
unnecessary.

Any precomputation of the element integrals of the basis functions cannot
be reused in the calculation of the normal vectors as the integrals for terms
requiring the normal are over the element boundary. They can be precomputed
separately.

It is a convenient approximation to use the normal from the centre of each
face to determine whether the contributions from the face during the matrix as-
sembly contribute as an incoming or outgoing face under the upwinding scheme.

144 APPENDIX B. APPLYING THE FEM

Face Fixed plane Cross product of columns

1 z = +1 1 and 2
2 z = −1 2 and 1
3 y = −1 1 and 3
4 y = +1 3 and 1
5 x = +1 2 and 3
6 x = −1 3 and 2

Table B.1: Columns of the Jacobian used in face normal calculation for a 3D
hexahedral element

A more rigorous approach would be to evaluate the normal at the quadrature
points used to evaluate the integrals over the face, but for curved faces this
potentially leads to faces which have both upwind and downwind contributions
which has implications for the sweep ordering.

Bibliography

[1] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Performance,
Design, and Autotuning of Batched GEMM for GPUs. volume 9945, pages
21–38. 2016.

[2] M. P. Adams, M. L. Adams, W. D. Hawkins, T. Smith, L. Rauchwerger,
N. M. Amato, T. S. Bailey, and R. D. Falgout. Provably optimal parallel
transport sweeps on regular grids. International Conference on Mathemat-
ics, Computational Methods & Reactor Physics, pages 2535–2553, 2013.

[3] M. P. Adams, M. L. Adams, C. N. Mcgraw, A. T. Till, and T. S. Bailey.
Provably Optimal Parallel Transport Sweeps with Non-contiguous Parti-
tions. In Joint International Conference on Mathematics and Computation
(M&C), Supercomputing in Nuclear Applications (SNA) and the Monte
Carlo (MC) Method, pages 1–19, Nashville, Tennessee, 2015. American
Nuclear Society.

[4] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:
Incorporating long messages into the LogP model. Proceedings of the sev-
enth annual ACM symposium on Parallel algorithms and architectures -
SPAA ’95, 79(44):95–105, 1995.

[5] AMD. OpenCL Optimization Case Study - Simple Reductions.
http://developer.amd.com/resources/documentation-articles/articles-
whitepapers/opencl-optimization-case-study-simple-reductions/.

[6] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference — AFIPS ’67 (Spring), volume 30, page
483, New York, New York, USA, 1967. ACM Press.

[7] D. Appelhans, S. Rennich, A. Kunen, and L. Grinberg. GPU Optimization
of the Kripke Neutron-Particle Transport Mini-App. In GPU Technology
Conference, April 2016.

[8] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. F.
Ohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,

145

146 BIBLIOGRAPHY

V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.
Technical report, NASA, RNR-94-007, 1994.

[9] T. S. Bailey and R. D. Falgout. Analysis of Massively Parallel Discrete-
Ordinates Transport Sweep Algorithms with Collisions. In International
Conference on Mathematics, Computational Methods, and Reactor Physics,
pages 1–15, New York, New York, USA, 2009. American Nuclear Society.

[10] C. Baker, G. Davidson, T. M. Evans, S. Hamilton, J. Jarrell, and
W. Joubert. High performance radiation transport simulations: Preparing
for TITAN. 2012 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–10, 2012.

[11] R. Baker and K. Koch. An Sn Algorithm for the Massively Parallel CM-200
Computer. Nuclear Science and Engineering, 128(3):312–320, March 1998.

[12] R. Baker, J. McGhee, K. Koch, and J. Morel. Two Sn Algorithms for the
Massively Prallel CM-200 Computer. Submitted to Nuclear Science and
Engineering, 1996.

[13] R. S. Baker. An Sn Algorithm for Modern Architectures. In Joint Inter-
national Conference on Mathematics and Computation (M&C), Supercom-
puting in Nuclear Applications (SNA) and the Monte Carlo (MC) Method,
Nashville, Tennessee, 2015. American Nuclear Society.

[14] R. S. Baker, C. R. Ferenbaugh, R. Lally, and J. A. Dahl. Solution of the
first-order form of the multi-dimensional discrete ordinates equations on a
two level heterogeneous processing system. In American Nuclear Society
Winter Meeting, volume 105, Washington, DC, 2011.

[15] D. Bednarek, M. Brabec, and M. Krulis. On Parallel Evaluation of Matrix-
Based Dynamic Programming Algorithms.

[16] K. Bhat. clpeak. https://github.com/krrishnarraj/clpeak, 2015.

[17] E. Biondo, A. M. Ibrahim, S. W. Mosher, and R. E. Grove. Accelerating
Fusion Reactor Neutronics Modeling By Automatic Coupling of Hybrid
Monte Carlo / Deterministic Transport on Cad Geometry. In Joint Inter-
national Conference on Mathematics and Computation (M&C), Supercom-
puting in Nuclear Applications (SNA), and the Monte Carlo (MC) Method,
Nashville, Tennessee, 2015. American Nuclear Society.

[18] T. G. Bisbas, T. J. Haworth, R. J. R. Williams, J. Mackey, P. Tremblin,
A. C. Raga, S. J. Arthur, C. Baczynski, J. E. Dale, T. Frostholm, S. Geen,
T. Haugbølle, D. Hubber, I. T. Iliev, R. Kuiper, J. Rosdahl, D. Sullivan,
S. Walch, and R. Wünsch. STARBENCH: The D-type expansion of an H
II region. Monthly Notices of the Royal Astronomical Society, 453(2):1324–
1343, 2015.

[19] B. G. Carlson. Solution of the transport equation by Sn approximations,
page 28. LA (Series) (Los Alamos, N.M.)1891. Los Alamos Scientific Labor-
atory of the University of California, Los Alamos, N.M., 1955.

BIBLIOGRAPHY 147

[20] H. Courtecuisse and J. Allard. Parallel dense gauss-seidel algorithm on
many-core processors. 2009 11th IEEE International Conference on High
Performance Computing and Communications, HPCC 2009, (1):139–147,
2009.

[21] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter. The Scalable Heterogeneous Computing
(SHOC) Benchmark Suite. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU-3, pages 63–
74, New York, NY, USA, 2010. ACM.

[22] T. Deakin, W. Gaudin, and S. McIntosh-Smith. On the Mitigation of Cache
Hostile Memory Access Patterns on Many-Core CPU Architectures. pages
348–362. Springer International Publishing, Frankfurt, 2017.

[23] T. Deakin and S. McIntosh-Smith. GPU-STREAM: Benchmarking the
Achievable Memory Bandwidth of Graphics Processing Units (poster). In
Supercomputing, Austin, Texas, 2015.

[24] T. Deakin, S. McIntosh-Smith, and W. Gaudin. Expressing Parallelism on
Many-Core for Deterministic Discrete Ordinates Transport. In 2015 IEEE
International Conference on Cluster Computing, pages 729–737, Chicago,
September 2015. IEEE.

[25] T. Deakin, S. McIntosh-Smith, and W. Gaudin. Many-Core Acceleration of
a Discrete Ordinates Transport Mini-App at Extreme Scale, pages 429–448.
Springer International Publishing, Cham, 2016.

[26] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin. An
improved parallelism scheme for deterministic discrete ordinates trans-
port. International Journal of High Performance Computing Applications,
September 2016.

[27] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. GPU-STREAM
v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core Pro-
cessors Across Diverse Parallel Programming Models. pages 489–507. 2016.

[28] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. Evaluating
attainable memory bandwidth of parallel programming models via Babel-
Stream. International Journal of Computational Science and Engineering,
Special issue (in press), 2017.

[29] T. Deakin, J. Price, and S. McIntosh-Smith. Portable Methods for Meas-
uring Cache Hierarchy Performance (poster). In Supercomputing, Denver,
Colorado, 2017.

[30] J. J. Dongarra, P. Luszczek, and A. Petite. The LINPACK benchmark:
Past, present and future. Concurrency Computation Practice and Experi-
ence, 15(9):803–820, 2003.

[31] T. Endo and G. Jin. Software technologies coping with memory hier-
archy of GPGPU clusters for stencil computations. In Cluster Comput-
ing (CLUSTER), 2014 IEEE International Conference on, pages 132–139,
September 2014.

148 BIBLIOGRAPHY

[32] T. M. Evans, A. S. Stafford, R. N. Slaybaugh, and K. T. Clarno. Denovo:
A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE.
Nuclear Technology, 171:171–200, 2010.

[33] J. Freed, S. Gupta, and D. Tiwari. An Analysis of Network Congestion in
the Titan Supercomputer’s Interconnect (poster). In Supercomuting, pages
1–2, 2015.

[34] K. Garrett. A First Look at Performance on the Xeon Phi KNL — Tim-
ings from a new mini-app: Tycho 2. In Department of Energy Center of
Excellence Performance Portability Meeting, April 2016.

[35] J. D. Gelas and I. Cutress. Sizing Up Servers: Intel’s Skylake-SP Xeon
versus AMD’s EPYC 7000 — The Server CPU Battle of the Decade?,
2017.

[36] A. Green, H. Owen, A. Dotti, M. Asai, and A. Aitkenhead. Monte Carlo
Validation of Proton Treatment Plans Using Geant4 on Xeon Phi. In Joint
International Conference on Mathematics and Computation (M&C), Su-
percomputing in Nuclear Applications (SNA), and the Monte Carlo (MC)
Method, pages 1–9, Nashville, Tennessee, 2015. American Nuclear Society.

[37] A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for
Industrial and Applied Mathematics, 1997.

[38] G. Gunow, J. Tramm, B. Forget, K. Smith, and T. He. SimpleMOC — A
PERFORMANCE ABSTRACTION FOR 3D MOC. In Joint International
Conference on Mathematics and Computation (M&C), Supercomputing in
Nuclear Applications (SNA), and the Monte Carlo (MC) Method, Nashville,
Tennessee, 2015. American Nuclear Society.

[39] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533, May 1988.

[40] W. D. Hawkins, T. Smith, and M. Adams. Efficient Massively Parallel
Transport Sweeps. Transactions of the American Nuclear Society, 107,
2012.

[41] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst. LIBXSMM: Ac-
celerating Small Matrix Multiplications by Runtime Code Generation. In
SC16: International Conference for High Performance Computing, Net-
working, Storage and Analysis, number November, pages 981–991. IEEE,
November 2016.

[42] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving Performance via Mini-applications. Technical
Report SAND2009-5574, Sandia National Laboratories, 2009.

[43] A. Hoisie, O. Lubeck, and H. Wasserman. Performance and Scalability
Analysis of Teraflop-Scale Parallel Architectures Using Multidimensional
Wavefront Applications, 2000.

[44] IBM. Power ISA Version 2.07, 2013.

BIBLIOGRAPHY 149

[45] A. M. Ibrahim, D. E. Peplow, and R. E. Grove. Acceleration of Shutdown
Dose Rate Monte Carlo Calculations Using the Multi-Step Cadis Hybrid
Method. In Joint International Conference on Mathematics and Compu-
tation (M&C), Supercomputing in Nuclear Applications (SNA), and the
Monte Carlo (MC) Method, Nashville, Tennessee, 2015. American Nuclear
Society.

[46] A. Ilic, F. Pratas, and L. Sousa. Cache-aware Roofline model: Upgrading
the loft. IEEE Computer Architecture Letters, 13(1):21–24, January 2014.

[47] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference
Manual, 2016.

[48] J. Jeffers, J. Reinders, and A. Sodani. Chapter 25 — Trinity workloads.
In Intel Xeon Phi Processor High Performance Programming (Second Edi-
tion), pages 549–579. Morgan Kaufmann, Boston, 2016.

[49] J. Jeffers, J. Reinders, and A. Sodani. Chapter 26 — Quantum chromo-
dynamics. In Intel Xeon Phi Processor High Performance Programming
(Second Edition), pages 581–598. Morgan Kaufmann, Boston, 2016.

[50] K. Koch, R. Baker, and R. Alcouffe. Solution of the first-order form of three-
dimensional discrete ordinates equations on a massively parallel machine.
Transactions of the American Nuclear Society, 65:198–199, 1992.

[51] B. Kochunas and T. Downar. Performace Model Development and Analysis
for the 3-D Method of Characteristics. In Joint International Conference
on Mathematics and Computation (M&C), Supercomputing in Nuclear Ap-
plications (SNA) and the Monte Carlo (MC) Method, Nashville, Tennessee,
2015. American Nuclear Society.

[52] A. Kochurov and D. Golovashkin. GPU implementation of Jacobi Method
and Gauss-Seidel Method for Data Arrays that Exceed GPU-dedicated
Memory Size. Journal of Mathematical Modelling and Algorithms in Oper-
ations Research, 2015.

[53] K. Krommydas, M. Owaida, C. D. Antonopoulos, N. Bellas, and W. C.
Feng. On the portability of the OpenCL Dwarfs on fixed and reconfigurable
parallel platforms. Proceedings of the International Conference on Parallel
and Distributed Systems (ICPADS), pages 432–433, 2013.

[54] A. J. Kunen, T. S. Bailey, and P. N. Brown. KRIPKE - A Massively Parallel
Transport Mini-app. In Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications (SNA)
and the Monte Carlo (MC) Method, pages 1–13, Nashville, Tennessee, 2015.
American Nuclear Society.

[55] E. Lewis and W. J. Miller. Computational methods of neutron transport.
American Nuclear Society, 1993.

[56] H. Liu, Z. Chen, and X. G. Xu. Monte Carlo calculations of secondary
neutron doses in adult male patients during carbon ion radiotherapy. In
Joint International Conference on Mathematics and Computation (M&C),
Supercomputing in Nuclear Applications (SNA), and the Monte Carlo (MC)
Method, pages 1–14, Nashville, Tennessee, 2015. American Nuclear Society.

150 BIBLIOGRAPHY

[57] A. Logg, K.-A. Mardal, and G. Wells, editors. Automated Solution of Dif-
ferential Equations by the Finite Element Method, volume 84 of Lecture
Notes in Computational Science and Engineering. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[58] S. Maleki, M. Musuvathi, and T. Mytkowicz. Parallelizing dynamic pro-
gramming through rank convergence. Proceedings of the 19th ACM SIG-
PLAN symposium on Principles and practice of parallel programming -
PPoPP ’14, 1:219–232, 2014.

[59] M. Martineau and S. McIntosh-Smith. Exploring On-Node Parallelism
with Neutral, a Monte Carlo Neutral Particle Transport Mini-App. In
2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 498–508. IEEE, September 2017.

[60] A. Maslowski, M. Sun, A. Wang, I. Davis, T. Wareing, J. Mcghee, G. Failla,
and A. Barnett. Acuroscts: a Scatter Prediction Algorithm for Cone-beam
Tomography. In Joint International Conference on Mathematics and Com-
putation (M&C), Supercomputing in Nuclear Applications (SNA), and the
Monte Carlo (MC) Method, pages 1–15, Nashville, Tennessee, 2015. Amer-
ican Nuclear Society.

[61] Massachusetts Institute of Technology. OpenMoC. https://mit-
crpg.github.io/OpenMOC/index.html, 2014.

[62] Massachusetts Institute of Technology. Open-
MoC — 2. Method of Characteristics. https://mit-
crpg.github.io/OpenMOC/methods/method_of_characteristics.html#,
2014.

[63] Massachusetts Institute of Technology. OpenMoC
— 3.3. Transport Sweep Algorithm. https://mit-
crpg.github.io/OpenMOC/methods/eigenvalue_calculations.html#transport-
sweep-algorithm, 2014.

[64] M. M. Mathis, N. M. Amato, and M. L. Adams. A General Perform-
ance Model for Parallel Sweeps on Orthogonal Grids for Particle Transport
Calculations. In 14th ACM International Conference on Supercomputing,
Santa Fe, New Mexico, 2000.

[65] L. Mattes and S. Kofuji. Overcoming the GPUmemory limitation on FDTD
through the use of overlapping subgrids. 2010 International Conference on
Microwave and Millimeter Wave Technology, ICMMT 2010, pages 1536–
1539, 2010.

[66] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages 19–25, December 1995.

[67] J. D. McCalpin. STREAM2. ht-
tps://www.cs.virginia.edu/stream/stream2/, 1999.

[68] J. D. McCalpin. Memory Bandwidth and System Balance in HPC Systems.
SC’16 Invited Talk, 2016.

BIBLIOGRAPHY 151

[69] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price. On the Per-
formance Portability of Structured Grid Codes on Many-Core Computer
Architectures. Supercomputing, 8488:53–75, 2014.

[70] L. McVoy and C. Staelin. LMbench3.
http://www.bitmover.com/lmbench/.

[71] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3.0, 2012.

[72] D. Miles. When will OpenACC and OpenMP merge. Supercomputing,
2016.

[73] G. Moore. Progress In Digital Integrated Electronics. In International
Electron Devices Meeting, pages 11–13, September 1975.

[74] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8):114, September 1965.

[75] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A plug-and-play model for
evaluating wavefront computations on parallel architectures. In Proceed-
ings of the 22nd IEEE International Parallel and Distributed Processing
Symposium, pages 1–14. IEEE, April 2008.

[76] Oak Ridge Leadership Computing Facility. Summit. ht-
tps://www.olcf.ornl.gov/summit/, 2017.

[77] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D. Kalamkar,
M. M. a. Patwary, V. Pirogov, P. Dubey, X. Liu, C. Rosales, C. Mazauric,
and C. Daley. Optimizations in a high-performance conjugate gradient
benchmark for IA-based multi- and many-core processors. International
Journal of High Performance Computing Applications, 2015.

[78] S. D. Pautz. An algorithm for parallel Sn Sweeps on Unstructured Meshes.
Nuclear Science and Engineering. and Eng, 140:111–136, 2002.

[79] S. J. Pennycook, S. D. Hammond, and G. R. Mudalige. Experiences with
porting and modelling wavefront algorithms on many-core architectures.
2010.

[80] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and S. A.
Jarvis. On the acceleration of wavefront applications using distributed
many-core architectures. Computer Journal, 55(2):138–153, July 2012.

[81] S. J. Pennycook, J. D. Sewall, and V. W. Lee. A Metric for Perform-
ance Portability. In Programming Models, Benchmarking and Simulation
(PMBS) workshop at SC, pages 1–7, 2016.

[82] S. J. Pennycook, J. D. Sewall, and V. W. Lee. Implications of a metric
for performance portability. Future Generation Computer Systems, pages
1–12, 2017.

[83] K. Raman, T. Deakin, J. Price, and S. McIntosh-Smith. Improving
Achieved Memory Bandwidth from C++ Codes on Intel Xeon Phi Pro-
cessor (Knights Landing). Presentation at International Xeon Phi User
Group Spring Meeting, April 2017.

152 BIBLIOGRAPHY

[84] J. Rawlings and J. Yates. Modelling line profiles in infalling cores. Monthly
Notices of the Royal Astronomical Society, 326(4):1423–1430, 2001.

[85] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron
transport equation. Triangular mesh methods for the neutron transport
equation, Technical(LA-UR-73-479):1–23, 1973.

[86] I. Z. Reguly, A.-K. Keita, and M. B. Giles. Benchmarking the IBM Power8
processor. In Proceedings of the 25th Annual International Conference on
Computer Science and Software Engineering, pages 61–69, Riverton, NJ,
USA, 2015. IBM Corp.

[87] K. Rupp. GPU Memory Bandwidth vs. Thread Blocks (CUDA) / Work-
groups (OpenCL), 2016.

[88] Standard Performance Evaluation Corporation. SPEC Accel. ht-
tps://www.spec.org/accel/, 2016.

[89] E. Strohmaier, H. Simon, J. Dongarra, and M. Meuer. Top 500 - June
2016. http://www.top500.org, 2016.

[90] E. Strohmaier, H. Simon, J. Dongarra, and M. Meuer. Top 500 - November
2016. http://www.top500.org, 2016.

[91] E. Strohmaier, H. Simon, J. Dongarra, and M. Meuer. Top 500 - June
2017. http://www.top500.org, 2017.

[92] D. Sundaram-Stukel and M. K. Vernon. Predictive analysis of a wavefront
application using LogGP. ACM SIGPLAN Notices, 34:141–150, 1999.

[93] O. Villa, M. Fatica, N. Gawande, and A. Tumeo. Power/performance trade-
offs of small batched LU based solvers on GPUs. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8097 LNCS:813–825, 2013.

[94] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, and
W. J. Dally. Scaling the power wall: a path to exascale. In Supercomputing,
2014.

[95] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the
ACM, 52:65–76, 2009.

[96] S. Xiao and W. C. Feng. Inter-block GPU communication via fast barrier
synchronization. In Proceedings of the 2010 IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2010, 2010.

[97] R. J. Zerr and R. S. Baker. SNAP: SN (Discrete Ordinates) Application
Proxy - Proxy Description. Technical report, LA-UR-13-21070, Los Alamos
National Labratory, 2013.

[98] D. Zivanovic, M. Pavlovic, M. Radulovic, H. Shin, J. Son, S. A. Mckee,
P. M. Carpenter, P. Radojković, and E. Ayguadé. Main Memory in HPC.
ACM Transactions on Architecture and Code Optimization, 14(1):1–26,
March 2017.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Acronyms
	Introduction
	Contributions
	Thesis overview

	High Performance Computing trends towards Exascale
	Moore's law
	Scaling
	Amdahl's law
	Strong scaling
	Gustafson's law
	Weak scaling
	Parallel efficiency

	Programming models
	Message Passing Interface
	OpenMP
	OpenACC
	CUDA
	OpenCL
	Kokkos
	RAJA
	SYCL

	Vectorisation
	Non-uniform memory access
	Directed acyclic graphs
	Summary

	Measuring achievable memory bandwidth across diverse many-core architectures
	Memory hierarchy
	The Roofline model

	The STREAM benchmark
	Other memory bandwidth benchmarks

	The first BabelStream benchmark
	Initial results
	The effect of error correcting code memory

	Expanding BabelStream
	BabelStream performance
	Triad performance
	Reduction performance

	A survey of performance portability
	Summary

	The computational nature of deterministic transport
	The transport equation
	Discretisation of the transport equation
	Spatial discretisation via finite difference
	Angular discretisation
	Energy discretisation

	Numerical solution
	Iteration loop structure
	The sweep
	Negative flux fix-up
	Boundary conditions

	Other solution approaches
	Monte Carlo transport
	Method of Characteristics

	The SNAP mini-app
	Other transport and sweep based mini-apps, benchmarks and applications
	Dynamic programming
	Lower-upper matrix factorisation
	Sweep3D
	KRIPKE
	Denovo
	UMT2013
	Tycho 2

	Summary

	Accelerating transport on GPU architectures
	Parallelism in the SNAP mini-app
	Original scheme
	Concurrency for many-core
	An OpenCL implementation

	Performance results
	Modelling the memory bandwidth
	Source code disruption
	Mitigating memory capacity constraints
	Summary

	Transport on cache-based architectures
	Distillation of the finite difference kernel
	Optimisation of mega-stream
	Reducing cache pollution
	Ensuring cache residency
	Ensuring data is in cache in time
	Results

	Porting mega-stream optimisations back into SNAP
	Introducing extra complexity to mega-stream
	Summary

	Scalability of transport
	The Koch-Baker-Alcouffe decomposition
	Other decomposition schemes
	Modelling sweep algorithms
	Parallel computational efficiency
	LogGP based models
	A time aware model
	Parallel sweep efficiency

	Accelerating transport at extreme scale
	Weak scaling
	Strong scaling

	Summary

	High order finite element solution
	Comparison to the finite difference discretisation
	Implementation details
	Solving the linear systems

	A practical comparison of the discretisation methods
	Mesh convergence
	Modelling memory capacity
	Runtime implications

	Summary

	Conclusion
	Future work

	Appendices
	Applying the finite difference method to the transport equation
	Diamond difference relations
	A finite difference discretisation of the transport equation

	Applying the finite element method to the transport equation
	Test functions
	FEM discretisation of the transport equation
	Mapping from the reference element
	Calculation of the face normals

	Bibliography

