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Abstract

Modern science is increasingly reliant on computer simulations to model natural systems, and is

limited by the available computational power. Modern supercomputers are regularly increasing

in parallelism to meet the scientific throughput demands, while limited by power budgets and

architectural restrictions such as heat emissions.

Those supercomputers now contain heterogeneous processors that range from CPUs that are

latency optimised, and provide large complex cache hierarchies and DRAM, to GPUs that are

latency hiding with many low power cores, and relatively simple caches and high bandwidth

main memory. There is also a middle-ground offered by the Intel Xeon Phi, which is latency

optimised and offers a modest number of low power cores with four hardware threads, a large

but simplified cache hierarchy, and high bandwidth main memory. This thesis will consider

the performance of all of these highly parallel processors, and the implications of the growing

complexity of targeting modern processors.

Production physics simuations, of the kinds that simulate nuclear reactions, for instance, can

often be monolithic, with millions of lines of code that can lack documentation and consistent

coding style. Porting and optimising those applications to target modern supercomputers is

a process of many choices, some with clearly defined options, and others requiring extensive

investigation and research. Those choices are investigated in great depth in this thesis using a

newly developed suite of exemplar applications that characterise important classes of physics

applications: hydrodynamics, heat diffusion, and Monte Carlo neutral particle transport.

An informed choice of parallel programming model is essential to avoid inadvertently limiting

future performance and portability. This thesis will consider some popular parallel program-

ming models, and demonstrate their effectiveness and limitations in the context of the exemplar

applications. The range of cutting edge algorithms for Monte Carlo neutral particle transport

will be explored, and a novel approach to vectorising the application will be presented. With the

search space of choices explored, a discussion is presented of those features of production appli-

cations often ignored in research codes, acknowledging the significant risks that are introduced

with the complexity of real physics applications.

i



Dedication

I want to thank my supervisor, Professor Simon McIntosh-Smith, for his continued support

and guidance throughout the entire post-graduate process. I would also like to thank Wayne

Gaudin for his expert supervision, and enthusiasm for the craft. I have learnt a lot from both

of them. Thank you to both of my examiners, Professor Stephen Jarvis, and Professor David

May, for taking the time to read and critique my thesis, and providing insightful feedback. I am

also grateful to the supervisors who mentored me on my internships: Carlo Bertolli with IBM

Research at the T.J. Watson Resarch Center, and David Beckingsale and Richard Hornung at

Lawrence Livermore National Laboratories. Thank you to the team at Intel, John Pennycook,

Douglas Jacobsen, Jason Sewall, and Andy Mallinson for their continued collaboration on the

neutral project. Finally, thanks to my wife, Sarah, who supported me in every way possible,

making every step infinitely more enjoyable than if tackled alone.

ii



Acknowledgements

Results presented in this research have been collected on the Swan XC50 supercomputer, where

access was kindly granted by Cray Inc., as part of the Cray Marketing Partner Network. Results

have also been collected on the Isambard test cluster, a GW4 collaboration, hosted by the Met

Office. Extensive analysis was performed on the University of Bristol High Performance Group’s

Zoo testbed. Oxford University’s Advanced Research Computing provided access to the IBM

POWER8 system, Saffron. Simon Hammond at Sandia National Laboratories kindly arranged

access to the Advanced Systems Technology Test Beds. Christopher Woods kindly setup and

hosted the NVIDIA V100 GPU used in this thesis in the BlueGem compute cluster at the

University of Bristol. Access to the Lawrence Livermore National Laboratories test clusters

was provided by Richard Hornung. Alice Koniges arranged access to the Cori and Edison

supercomputers at the National Energy Research Scientific Computing Center. This PhD was

sponsored as part of a CASE converted DTP funded by EPSRC and the UK Atomic Weapons

Establishment.

iii



Author’s Declaration

I declare that the work in this dissertation was carried out in accordance with the requirements

of the Universitys Regulations and Code of Practice for Research Degree Programmes and that

it has not been submitted for any other academic award. Except where indicated by specific

reference in the text, the work is the candidates own work. Work done in collaboration with, or

with the assistance of, others, is indicated as such. Any views expressed in the dissertation are

those of the author.

Signed:

Date:

iv



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The arch Project: Physics Proxy Applications . . . . . . . . . . . . . . . 3

1.1.2 Analysis of Performance Portability for Physics Applications . . . . . . . 3

1.1.3 Benchmarking of HPC Architecture Performance . . . . . . . . . . . . . . 3

1.1.4 Optimisation of Monte Carlo Neutral Particle Transport . . . . . . . . . . 4

1.1.5 Analysis of Complex Production Concerns . . . . . . . . . . . . . . . . . . 4

1.2 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Reasoning for arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Parallel Computing Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Instruction Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1.1 Superscalar Processing . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Vector Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Multi-core Computer Architecture . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3.1 Cache coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3.2 Multi-socketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3.3 Non-Uniform Memory Access . . . . . . . . . . . . . . . . . . . . 10

2.1.3.4 Simultaneous Multithreading . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Distributed Computer Architecture . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Many-core Computer Architecture . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5.1 Graphics Processing Units . . . . . . . . . . . . . . . . . . . . . 12

2.1.5.2 Intel Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Parallel Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Fundamental Approaches to Parallel Programming . . . . . . . . . . . . . 13

2.2.1.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.3 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Parallel Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Amdahl’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Limiting Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3.1 Vector and Thread Scaling . . . . . . . . . . . . . . . . . . . . . 16

2.3.3.2 Inter-processor Scaling . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



CONTENTS vi

2.4.1 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Numerical Accuracy and Reproducibility . . . . . . . . . . . . . . . . . . 20

2.4.5 Structured Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.6 Unstructured Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.7 Explicit Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.8 Implicit Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.9 Stencil Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Heat Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Eulerian Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Lagrangian Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Programming Models and Performance Portability 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Non Performance Portable Programming Models . . . . . . . . . . . . . . . . . . 28

3.2.1 OpenMP 3 and Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2.2 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2.3 Compilation and PTX . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Exception to the Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Directive-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Models and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2.2 Parallel Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2.3 Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Abstraction Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 RAJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1.2 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Domain Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Performance, Portability and Productivity . . . . . . . . . . . . . . . . . . . . . . 39

3.7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7.2 Functional Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.4 Performance Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.4.2 Inter-compiler Performance Portability . . . . . . . . . . . . . . 43

3.7.4.3 Performance Portability for Programming Models . . . . . . . . 43

3.7.4.4 Algorithmic Performance Portability . . . . . . . . . . . . . . . . 44



CONTENTS vii

3.7.4.5 Achieving Performance Portability . . . . . . . . . . . . . . . . . 44

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 HPC Architectures 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Processor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Intel CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 NVIDIA GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Intel CPU Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 NVIDIA GPU Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.0.1 Scheduling in Streaming Multiprocessors . . . . . . . . . . . . . 49

4.4.0.2 Kernel Launch Overhead . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Memory Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 In Flight Memory Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Random Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8.1 Random Memory Access Benchmark . . . . . . . . . . . . . . . . . . . . . 55

4.8.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.3.1 Unvectorised Results . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.3.2 Vectorised and GPU Results . . . . . . . . . . . . . . . . . . . . 58

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Monte Carlo Neutral Particle Transport 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Problems in Monte Carlo Neutral Particle Transport . . . . . . . . . . . . . . . . 61

5.3 Monte Carlo Particle Transport Applications . . . . . . . . . . . . . . . . . . . . 62

5.3.1 MCNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 OpenMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Quicksilver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.4 Branson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 neutral: Monte Carlo Neutral Particle Transport . . . . . . . . . . . . . . . . . 63

5.4.1 Particle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Tallying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2.1 Random Number Generation . . . . . . . . . . . . . . . . . . . . 66

5.4.3 Nuclear Cross-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.4 Core Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.4.1 Over Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.4.2 Over Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.4.3 Sort-free Over Events . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.5.1 Particle Population . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.5.2 Particle Sourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS viii

5.4.5.3 Timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.5.4 Mesh Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.6.1 The streaming problem . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.6.2 The scattering problem . . . . . . . . . . . . . . . . . . . . . . 75

5.4.6.3 The csp problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Implementation on CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1 Over Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.2 Performance Analysis of Over Histories . . . . . . . . . . . . . . . . . . . 77

5.5.2.1 Profiling the scattering Problem . . . . . . . . . . . . . . . . . 77

5.5.2.2 Memory Bandwidth of the scattering Problem . . . . . . . . . 78

5.5.2.3 Computational Throughput of scattering Problem . . . . . . . 79

5.5.3 Profiling the streaming Problem . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.3.1 Memory Bandwidth of the streaming Problem . . . . . . . . . . 79

5.5.4 Profiling the csp Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.5 Incidental Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.6 Thread Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.7 Hyperthreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.8 Over Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.9 Sort-free Over Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Implementation on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Over Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6.1.1 Sort-free Over Events . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Enabling Vectorisation via Blocked Over Events . . . . . . . . . . . . . . . . . . . 87

5.7.1 Vectorising the Collision Event Routine . . . . . . . . . . . . . . . . . . . 88

5.7.1.1 Restructuring of the Binary Search . . . . . . . . . . . . . . . . 88

5.7.1.2 Intrinsic Atomic Call . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.2 Tunable Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.3 Particle Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Increasing the Lookup Table Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Performance Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9.1 Best Cases Across Architectures . . . . . . . . . . . . . . . . . . . . . . . 93

5.9.2 Programming Model Performance . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Heat Diffusion via a Conjugate Gradient Solver 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Associated Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 The Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 The Conjugate Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . . 99

6.2.3 The hot Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Default Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS ix

6.3.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.3 Performance on CPU and KNL . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.4 Vectorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Performance on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Distributed Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Performance Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.1 Preliminary Performance for Default Test Case . . . . . . . . . . . . . . . 106

6.7.1.1 CPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.1.2 KNL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7.1.3 GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7.2 Performance for Small Problems . . . . . . . . . . . . . . . . . . . . . . . 108

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Hydrodynamics 112

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Structured Eulerian Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1.1 Default Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1.3 Vectorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1.4 GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 Performance Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.3 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3.1 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3.2 OpenACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.3.3 RAJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Unstructured Lagrangian Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 120

7.3.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.1.1 Default Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1.2 CPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1.3 Preliminary GPU Performance . . . . . . . . . . . . . . . . . . . 122

7.3.1.4 Implications of Supporting Unstructured Meshes . . . . . . . . . 123

7.3.1.5 Implications of Supporting Subcell Forces . . . . . . . . . . . . . 123

7.3.1.6 GPU Data Structure Transposition . . . . . . . . . . . . . . . . 124

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Production Challenges 126

8.1 Infrastructural Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1 The arch project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1.2 Meshes and Mesh Data . . . . . . . . . . . . . . . . . . . . . . . 127

8.1.1.3 Performance and Portability . . . . . . . . . . . . . . . . . . . . 128

8.1.2 Note on Programming Language Choice . . . . . . . . . . . . . . . . . . . 129

8.2 Features Sometimes Ignored in Proxy Applications . . . . . . . . . . . . . . . . . 130

8.2.1 Multiple Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



CONTENTS x

8.2.1.1 Eulerian Flow Field . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2.2 Large Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.3 Load Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.4 Internal Error Handling and Diagnostics . . . . . . . . . . . . . . . . . . . 134

8.2.5 Dynamic Connectivity in Unstructured Meshes . . . . . . . . . . . . . . . 134

8.2.6 Mesh Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Problems for Proxy Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.3.0.1 Applications in the arch Suite . . . . . . . . . . . . . . . . . . . 135

8.3.0.2 Validation of Proxy Applications . . . . . . . . . . . . . . . . . . 136

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 Conclusions and Future Work 137

A Instruction Latency 141

B Cache Bandwidth 142

B.0.1 Skylake and KNL Cache Bandwidth . . . . . . . . . . . . . . . . . . . . . 142

B.0.2 NVIDIA GPU Cache Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 143



List of Figures

2.1 Instructions issued with (bottom), and without (top) instruction pipelining. The

colours represent stages required to issue full instruction, e.g. fetch, decode,

execute, write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A cache layout for a hypothetical CPU architecture. . . . . . . . . . . . . . . . . 10

2.3 Hypothetical scaling graphs for strong scaling (left) and weak scaling (right). . . 17

2.4 Two approaches to decomposing a two dimensional space: 1D decomposition

(left), and 2D decomposition (right) where the orange cells containing ‘H’ are

halo cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Three-dimensional structured meshes: a Cartesian mesh with congruent cells

(left); a rectilinear mesh with non-congruent cells (right). . . . . . . . . . . . . . 20

2.6 An example of a unstructured mesh in lags (Chapter 7). . . . . . . . . . . . . . 21

2.7 A Cartesian mesh with two five point stencil computations depicted. . . . . . . . 23

2.8 Example output of the flow hydro proxy application. . . . . . . . . . . . . . . . 24

2.9 An example of a Lagrangian mesh deforming after a single timestep. . . . . . . . 25

2.10 Monte Carlo calculation of π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The parallel hierarchy exposed by the CUDA programming model. . . . . . . . . 31

3.2 The models of parallel hierarchies provided by OpenMP and OpenACC. . . . . . 35

3.3 Inter-compiler performance portability of arch applications on a Skylake CPU. . 43

4.1 The layout of streaming multiprocessors in the P100 and V100 GPUs. . . . . . . 50

4.2 Overhead of individual kernel launch per generation. . . . . . . . . . . . . . . . . 50

4.3 Memory bandwidth of four streaming kernels on parallel processors (see Section

4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Memory latency in cycles for all considered HPC processors. . . . . . . . . . . . . 53

4.5 Memory latency in nanoseconds for all considered HPC processors. . . . . . . . . 54

4.6 Block layout for the initialisation (left) and block shuffling (right) of memory

in the random memory access benchmark. Each numbered square represents a

unique cache line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Frequency of cache lines accesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Unvectorised results for the pchase benchmark, by unroll factor. . . . . . . . . . 58

5.1 The particle tracking concept of Monte Carlo neutral particle transport, depicting

the three events, and the determination of the first encountered event. . . . . . . 65

5.2 The nuclear cross section of U-235 in log-log scale. . . . . . . . . . . . . . . . . . 67

5.3 Matrix depicting the organisation of events and particles throughout time. . . . . 68

xi



LIST OF FIGURES xii

5.4 Tuning the number of particles towards convergence, 1e6 particles (left) and 1e7

particles (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Example plot of energy deposition for the streaming problem. . . . . . . . . . . 74

5.6 Example plot of energy deposition for the scattering problem. . . . . . . . . . . 75

5.7 Example plot of energy deposition for the csp problem. . . . . . . . . . . . . . . 76

5.8 Performance of the over histories approach for the Skylake and KNL. . . . . . . 77

5.9 The energy profile of a particle throughout the scattering problem. . . . . . . . 78

5.10 Scaling the streaming problem and plotting cache misses. . . . . . . . . . . . . . 80

5.11 The balance of events in the csp problem. . . . . . . . . . . . . . . . . . . . . . . 81

5.12 The incidental locality of a random particle trajectory in neutral. . . . . . . . . 81

5.13 Adjusting the OpenMP thread scheduling for the csp problem. . . . . . . . . . . 82

5.14 Adjusting the number of hardware threads for the problems in neutral. The

results are for Skylake (left) and KNL (right). . . . . . . . . . . . . . . . . . . . . 83

5.15 The performance of the over events approach with respect to the over histories

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.16 Performance of the V100 compared to the Skylake for the over histories approach. 85

5.17 Performance of the predicated over events approach on a V100 GPU. . . . . . . . 87

5.18 Tuning the block size for the blocked over events algorithm, for the Skylake (left)

and KNL (right) CPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19 Altering the data structure for the blocked over events approach on the Skylake

CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.20 Altering the data structure for the blocked over events approach on the KNL. . . 91

5.21 The speedup of the over blocks approach compared to the over histories approach

for the Skylake and KNL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.22 The performance of the best performing versions of neutral on the 3 parallel

processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.23 The performance on neutral executed on a Skylake CPU with varying program-

ming models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.24 The performance on neutral executed on a KNL with varying programming

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.25 The performance on neutral executed on an NVIDIA P100 GPU with varying

programming models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Solution of a heat diffusion problem solved by the hot application. . . . . . . . . 101

6.2 The memory bandwidth achieved by hot relative to STREAM kernels on a single

socket of Skylake CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Performance of hot executing on NVIDIA GPUs, bandwidth (left) and runtime

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Varying mesh dimensions for hot with modeled and observed runtime results. . . 105

6.5 The performance of hot on a Skylake CPU. . . . . . . . . . . . . . . . . . . . . 106

6.6 The performance of hot on a KNL. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 The performance of hot on a P100 GPU. . . . . . . . . . . . . . . . . . . . . . . 108

6.8 The performance of hot for a small test problem on a Skylake CPU. . . . . . . . 109

6.9 The performance of hot for a small test problem on a KNL. . . . . . . . . . . . 110

6.10 The performance of hot for a small test problem on a P100 GPU. . . . . . . . . 110



LIST OF FIGURES xiii

7.1 Default test problem (left), and the same problem after 1000 timesteps (right). . 114

7.2 The memory bandwidth achieved by ports of flow executing on a Skylake CPU. 116

7.3 The memory bandwidth achieved by ports of flow executing on a KNL. . . . . . 117

7.4 The memory bandwidth achieved by ports of flow executing on a P100 GPU. . . 117

7.5 Problem solved by lags, note that the grid is structured but the algorithms

assume an unstructured mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1 The arch infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Multi-material layout for a structured mesh, showing material interfaces [49]. . . 131

8.3 Performance of multi-material data structures ported to two CPUs, where P8

refers to the IBM POWER8 [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4 Performance of multi-material data structures ported to the KNL and P100

GPU [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.5 A mesh where compression will lead to a reduced timestep. . . . . . . . . . . . . 134

B.1 Cache bandwidth measured for the Intel Xeon Skylake. . . . . . . . . . . . . . . 142

B.2 Cache bandwidth measured for the Intel Xeon Phi Knights Landing. . . . . . . . 143

B.3 Bandwidth targeting L1 cache for P100 and V100 GPUs. . . . . . . . . . . . . . 143

B.4 Bandwidth targeting L2 cache for P100 and V100 GPUs. . . . . . . . . . . . . . 144



List of Tables

2.1 Number of simultaneous threads per core. . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Figures for the newest Department of Energy (DoE) supercomputers, for Lawrence

Livermore National Laboratories (LLNL), Oak Ridge National Laboratory (ORNL),

and Los Alomos National Laboratories (LANL). . . . . . . . . . . . . . . . . . . 12

4.1 Details of the key Intel processors used in this thesis. . . . . . . . . . . . . . . . . 47

4.2 Details of the key NVIDIA GPUs used in this thesis, including streaming multi-

processor (SM) count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Details of the key Intel CPUs used in this thesis. Note that a tile refers to a pair

of cores on a KNL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Details of the key NVIDIA GPUs used in this thesis. . . . . . . . . . . . . . . . . 49

4.5 Best observed random memory access performance (Skylake results are for a single

socket). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Bandwidth results collected with nvprof on a V100 GPU. . . . . . . . . . . . . . 86

5.2 The memory bandwidth achieved by the different processors when executing the

scattering problem for 300 nuclides. . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Performance by kernel for hot on a Skylake CPU. . . . . . . . . . . . . . . . . . 101

6.2 Statically analysed arithmetic intensities for routines in hot. . . . . . . . . . . . . 104

6.3 Empirical derived calculation of the arithmetic intensity for routines in hot for

KNL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Performance of key routines in hot for small test problem on Skylake CPU. . . . 109

6.5 Performance of key routines in hot measured by nvprof on P100 GPU. . . . . . 110

7.1 Performance by kernel for flow on Skylake CPU. . . . . . . . . . . . . . . . . . . 115

7.2 Performance by kernel for flow on V100 GPU. . . . . . . . . . . . . . . . . . . . 115

7.3 Performance by kernel for the Lagrangian solve in lags on a Skylake CPU. . . . 121

7.4 Memory bandwidth by kernel for the Lagrangian solve in lags on a Skylake CPU.122

7.5 Memory bandwidth by kernel for the Lagrangian solve in lags on a NVIDIA

V100 GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6 Memory bandwidth by kernel for the Lagrangian solve in lags on a NVIDIA

V100 GPU, with transposed data structures. . . . . . . . . . . . . . . . . . . . . 124

A.1 Latencies observed when executing different instructions on NVIDIA GPUs; the

‘FM’ label indicates that the latency benchmark was compiled with the ’--use fast math’

flag passed to nvcc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xiv



Listings

2.1 Example of vectorisable loop in C. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Scalar loop in the x86 instruction set. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Vector instruction in AVX2 instruction set. . . . . . . . . . . . . . . . . . . . . . 9

2.4 Example of a simple parallel loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Simple CUDA example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Parallel offload directives OpenMP / OpenACC. . . . . . . . . . . . . . . . . . . 34

3.3 Parallel offload directives in OpenMP. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Parallel offload directives in OpenACC. . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Unstructured data movement directives. . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 RAJA simple loop example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The over histories algorithm for neutral. . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The over events algorithm based on Brown et al. . . . . . . . . . . . . . . . . . . 70

5.3 The over events algorithm for neutral using predication. . . . . . . . . . . . . . 71

5.4 The blocked over events algorithm for neutral. . . . . . . . . . . . . . . . . . . . 88

5.5 Access to particle data within the SIMD region for AoS. . . . . . . . . . . . . . . 90

6.1 The local CG algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Example kernel ported with OpenMP. . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Example kernel ported with OpenACC. . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Example kernel ported with RAJA. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Kernel with RAJA outer loop and inner for loop. . . . . . . . . . . . . . . . . . 119

7.5 Energy correction routine in lags. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1 Cache bandwidth benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xv



Acronyms

ALE Arbitrary Lagrangian Eulerian.

AMR Adaptive Mesh Refinement.

AoS Array of Structures.

AoSoA Array of Structures of Arrays.

API Application Programming Interface.

ARB Architecture Review Board.

ASC Advanced Simulation and Computing.

AVX Advanced Vector Extensions.

BIOS Basic Input/Output System.

CBRNG Counter-Based Random Number Generation.

CFL Courant-Friedrichs-Lewy condition.

CG Conjugate Gradient.

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

DOE Department of Energy.

DP Double Precision.

DRAM Dynamic Random Access Memory.

DSL Domain Specific Language.

ENDF Evaluated Nuclear Data File.

EOS Equation of State.

FLOP Floating Point Operation.

FMA Fused Multiply Addition.

xvi



Acronyms xvii

FP Floating Point.

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

HBM High Bandwidth Memory.

HPC High Performance Computing.

ISA Instruction Set Architecture.

KNL Intel Xeon Phi Knights Landing.

LANL Los Alomos National Laboratories.

LCG Linear Congruential Generator.

LLNL Lawrence Livermore National Laboratories.

LOC Lines of Code.

MCDRAM Multi-Channel Dynamic Random-Access Memory.

MCNP Monte Carlo N-Particle Tranport Code.

MPI Message Passing Interface.

NUMA Non-Uniform Memory Access.

ORNL Oak Ridge National Laboratories.

PCI Peripheral Component Interface.

PDE Partial Differential Equation.

POSIX Portable Operating System Interface.

PTX Parallel Thread Execution.

SASS Streaming Assembler.

SDE Intel Software Development Emulator.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SM Streaming Multiprocessor.

SMT Simultaneous Multi-Threading.

SoA Structure of Arrays.

TLB Translation Lookaside Buffer.

TRT Thermal Radiative Transfer.

WOC Words of Code.



Chapter 1

Introduction

Supercomputing is an essential component of modern scientific progress. Many areas of science

reached the limits of analytical and numerical analysis on paper decades ago, and this pushed

computer-assisted simulation to the forefront. The use of computers to solve complex mathe-

matical problems spans the last century, and the prevalence of computational simulations in the

sciences has lead to many scientists being directly involved in or responsible for the development

of software projects.

The scale of the challenge from a computational perspective is astounding, and the continual

increase in parallelism and architectural nuances increase the complexity greatly. To use any

modern supercomputer, scientists are required to develop their code for parallel computation,

notoriously one of the most challenging and error prone branches of software development. It

is essential that the task is made as accessible as possible so that the majority of focus can be

directed towards solving scientific problems. Over the last century, computing for science has

grown from individual calculations on high speed single core processors, to computations span-

ning tens of thousands of nodes containing heterogeneous processors. The scientific applications

can potentially span millions of lines of code, and can be expected to port to modern parallel

processors and scale across millions of cores. A typical scientific workload might even involve

multiple distinct packages co-operating in the solution of a system of equations.

Given a single persistent supercomputing architecture, it would be possible to develop scien-

tific simulations while focusing purely on the computational concerns, optimising to the greatest

possible extent for that particular platform. In reality, modern supercomputing resources are

being constantly updated and replaced, to the extent that applications written for previous

generations of CPU likely might not perform optimally on modern generations of CPU without

tuning. The rapid rate of growth of computing in the sciences, and unpredictable technological

changes, has introduced a multitude of problems for long standing scientific software applica-

tions.

With the repurposing of GPUs for general computing, compute architectures began to di-

versify even further, and targeting the new processors has become a highly challenging problem

in of itself. Many supercomputers are now comprised of heterogeneous parallel processors, such

as the 26000 NVIDIA V100 GPUs and 9000 POWER9 CPUs present in the world’s fastest su-

percomputer, Summit, at Oak Ridge National Laboratory [154]. The Trinity supercomputer at

Los Alomos National Laboratory will contain thousands of Intel Xeon and Intel Xeon Knights

Landing CPUs. There is an expectation that the Department of Energy (DoE) simulations

will be ported to both platforms; however, maintaining code bases for individual architectures

1



CHAPTER 1. INTRODUCTION 2

represents an unacceptable overhead, and so performance portable approaches are needed.

Many production scientific applications have been written to target clusters using the Mes-

sage Passing Interface (MPI), which enables distributed computing and parallel execution on

multi-core CPUs. The legacy codes written with MPI must be ported to enable threaded paral-

lelism, which is in the best case an exercise in adding parallelisation to each computational loop,

and in the worst case might require total redevelopment of the code and internal algorithms.

Not only is the portability an important concern with porting legacy applications, but it is

also imperative for scientific progress that the applications are not unduly inefficient. Enabling

performance in large scientific software applications targeting modern parallel processors is a

challenging area that requires an intimate understanding of the architecture, relevant algorithms,

and the nuances of efficient parallel programming.

The size and structure of legacy applications makes it essentially impossible to perform agile

experiments threading or optimising algorithms, without a large dedicated code team. The use

of proxy applications has become the popular vehicle for such investigations, enabling research

to quickly determine ideal algorithms, data structures, and parallel descriptions [63]. This thesis

will concentrate on four new exemplar proxy applications that represent important classes of ap-

plications simulating physical processes: Eulerian and Lagrangian hydrodynamics, heat diffusion

via conjugate gradient (CG) solve, and Monte Carlo neutral particle transport. Hydrodynamics

and heat diffusion are quite general methods that can represent fluid motion and diffusive pro-

cesses for a number of scientific areas. Monte Carlo neutral particle transport is more specific,

and is particularly used in medical imaging and dosimetry, and reactor simulation [5] [133].

Although the principal focus of this thesis is the simulation of physical processes, it is ex-

pected that the techniques and concepts generalise to many areas of science, as the principles are

relatively consistent. Most processes in science measure the phenomenon of change, requiring

the numerical solution of partial differential equations, which is fundamentally the focus of the

subsequent discussions. The expectation is that the work in this thesis will present important

information about the state of existing parallel processors, optimisation techniques, and the

performance portability of parallel programming models, in relation to applications that cover a

sufficiently broad range of techniques for numerical solution of such PDEs. Several of the com-

putational dwarves proposed by Asanovic et al. are represented within the thesis: Structured

Grids, Unstructured Grids, Monte Carlo methods, and Sparse Linear Algebra [6].

The Structured Grid and Sparse Linear Algebra applications, Eulerian hydrodynamics and

heat diffusion via CG solve, are well understood and have previously been shown to achieve good

performance on modern parallel processors [61] [42] [112]. In this thesis it has been possible to

use those exemplar applications to evaluate a number of modern parallel programming models,

considering the impact from the perspective of performance, portability and productivity. The

Monte Carlo neutral particle transport problem was first published about in 1954, and the

performance of the application on modern parallel architectures is an important and challenging

topic [76]. During this thesis it has been possible to discover optimal approaches to parallelising

Monte Carlo neutral particle transport applications on CPUs, GPUs, and KNLs. This required

extensive experimentation at the algorithmic and data structure level, and the development of a

novel sort-free algorithm to enable vectorisation on modern parallel architectures. Unstructured

grids have been well considered in the literature, but the particular application considered in

this thesis is Lagrangian hydrodynamics using a subcell discretisation for arbitrary polyhedra,

which includes some interesting subtleties that will be discussed.

An challenge with all of the applications, but particularly Monte Carlo neutral particle
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transport, is problem dependence. It is shown throughout that the results determined with proxy

applications are greatly affected by changes in the target problem, and each of the applications

is considered for a range of different parameters to account for this. There is also the challenge

of faithful representation of the production application features, as missing important features

in a proxy application could potentially lead to optimisations and parallel descriptions that do

not scale into real applications. Where possible, the potential features of each of the exemplar

applications are considered.

1.1 Contributions

The following contributions are complementary towards the core aim of presenting a thorough

treatise of concerns related to the porting of production scientific applications.

1.1.1 The arch Project: Physics Proxy Applications

To support this thesis, a suite of physics proxy applications have been developed under a common

architectural framework and permissive MIT license named the arch project1. Each of the

proxy applications represents a reduced feature-set proxy for production applications solving a

multitude of scientific problems, and analysis of those applications is presented in Chapters 5 to 7.

The supporting infrastructural project, arch, provides cross-cutting concerns, such as MPI

communications, memory management, and support for structured and unstructured meshes.

Although the suite was intended to support and motivate the discussions in this thesis, it is

becoming adopted as a tool for performance optimisation and algorithmic studies by the wider

community [150].

1.1.2 Analysis of Performance Portability for Physics Applications

Performance portability has been shown to be a major challenge facing the future of large-

scale scientific simulation, and achieving performance portability has been described as the gold

standard for programming environments [82]. For scientific developers, performance portability

starts with the choice of parallel programming model. Choosing an appropriate parallel pro-

gramming model will have vast implications for the success of a large scientific applications.

There are many models available, each presenting different characteristics and trade-offs, mak-

ing the decision-making process highly challenging for scientific application developers. This

thesis considers some of the most successful parallel programming models, OpenMP, CUDA,

OpenACC, and RAJA, and their impact on performance, portability and productivity. The

thesis contains recommendations for best practices when using performance portable parallel

programming models, based on experiences porting the arch applications (Chapters 5 to 7).

1.1.3 Benchmarking of HPC Architecture Performance

In some cases there are publicly available details regarding the low level performance of particular

processors, but it is not always possible to find this information for specific SKUs. Further,

in some cases the vendors do not publicly expose such information or provide benchmarking

tools. In order to reason about the performance of the applications, particularly the Monte

Carlo neutral particle transport application (Chapter 5), it was necessary to benchmark the fine

1https://github.com/uob-hpc/arch
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details of the architectures. This benchmarking process considers details like memory latency,

memory bandwidth at all cache levels, and random memory access performance (Chapter 4).

The results supported later reasoning and modeling of the performance of the arch applications.

1.1.4 Optimisation of Monte Carlo Neutral Particle Transport

This thesis considers a subset of proposed parallel computational patterns, their performance

patterns, and the techniques required to optimise them on the most modern supercomputing

resources. In particular, the best algorithms are found for the Monte Carlo neutral particle

transport problem targeting NVIDIA GPUs, demonstrating impressive performance in spite of

the divergent code (Chapter 5). Poor performance due to lack of vectorisation and challenging

issues of latency on the CPU and KNL are improved through the development and optimisation

of a novel sort-free algorithm for vectorising the particle tracking loop. The extent of problem

dependence is demonstrated using a number of different case study problems, and results are

presented in such a manner that they should be relevant to the transport of any neutral particle.

1.1.5 Analysis of Complex Production Concerns

Porting and optimising scientific software applications requires a rigorous consideration of key

algorithms, often requiring the use of proxy applications to reduce the computational complexity

to a minimal level so that a computer scientist can investigate optimisations. The success of those

proxy apps is measured on their ability to translate optimisations back into their production

counterparts, demanding careful consideration of the included features chosen as a subset.

Proxy apps tend to exclude complex features of production applications, and this thesis

posits that this can inhibit the generalisation of results in many cases. For instance, there are few

scientific simulations that handle only individual materials, with most instead requiring complex

interfaces, which is something rarely included in proxy applications. The treatment of multi-

material interfaces is a significant burden to the computer scientist but has major implications

for the portability and performance on modern architectures. This issue is explored alongside

the arch applications in Chapter 8.

1.2 Structure of Thesis

In this chapter the motivation for this thesis has been presented, and the subsequent chapters

in this thesis address the following problems:

• Background (Chapter 2): This chapter includes the fundamental concepts of parallel

and distributed computing, as well as some basic details regarding computational solution

of partial differential equations necessary to follow the subsequent sections.

• Programming Models and Performance Portability (Chapter 3): Parallel pro-

gramming models are an important aspect of porting applications to use modern hardware.

This chapter provides a light background to the parallel programming models OpenMP

(3.0 and 4.5), OpenACC, RAJA, and CUDA. A discussion about the current understanding

and literature relating to the state of the art in performance portability is then presented.

• HPC Architecture Performance (Chapter 4): In order to optimise for the considered

parallel processors, it is important to understand the performance characteristics of the
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processors themselves. In this chapter, empirical results are presented for many aspects of

the processors. This was either because accurate data was not available from the hardware

vendor for the particular processor variant, or the results are markedly different between

the marketed data.

• Monte Carlo Neutral Particle Transport (Chapter 5): This is the first application

optimisation chapter, and focuses on the Monte Carlo neutral particle transport applica-

tion neutral, which is part of the arch project. A thorough performance investigation is

undertaken at the algorithmic, data structure and parallel programming level. An optimal

GPU implementation is developed that greatly improves upon the performance of the tra-

ditional methods on the CPU. A novel algorithm is developed that enables vectorisation of

the particle tracking loop without requiring sorting of particles. The problem dependence

of the application is also considered, and a discussion is presented about those features

not considered that could result in different performance characteristics.

• Heat Diffusion via a Conjugate Gradient Solver (Chapter 6): This chapter con-

siders the performance of the conjugate gradient solver, through the arch application hot.

In particular, the performance portability of the application with respect to modern par-

allel programming models is explored. The issue of solving problems with cache-resident

meshes is explored with respect to the parallel programming models, to show that there

are significant overheads present in the models that might show up in other application

domains.

• Hydrodynamics (Chapter 7): Hydrodynamics is a particularly important application

class that is used in the majority of areas of science and engineering. This chapter will

explore two hydrodynamics proxy applications from arch, the 2D structured Eulerian

hydrodynamics application flow, and the 3D unstructured Lagrangian hydrodynamics

application lags. The flow application will be considered in terms of parallel programming

models, and the capability of each to provide performance portability for the application.

The lags application is used to explore the space of unstructured meshes and subcell

computations, and the implications on parallel performance.

• Production Challenges (Chapter 8): This chapter presents some critical analysis of

the work in the preceding chapters, by considering the impact of those features that might

be present in production applications but that were not directly optimised for. Results

are presented for a set of benchmarks directly targeting the complex production problem

of multi-material data structures, and a consideration for how those features are extended

into the dynamic structures of Eulerian flow fields. Through this discussion it is possible to

consider the potential impact on the final efficacy of results from using proxy application

in performance studies.

1.3 Reasoning for arch

The principal focus of this thesis will be directed towards a number of exemplar applications

that have been chosen due to their relevance to the wider area of simulating physical processes.

Each of the exemplar applications has been developed from scratch specifically for the project

described in this thesis. There are a number of reasons that made it essential to use new
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applications rather than rely upon existing applications, some specific to the application and

others more generally.

• An open source Monte Carlo proxy application was not available with the particular char-

acteristics required for the performance studies performed. Towards the end of the thesis

project, the Quicksilver proxy application was released by Lawrence Livermore National

Laboratories, which might have been a suitable candidate but the neutral application

was already developed, and the majority of the research was already published.

• Many different hydrodynamical simulations were developed, including Eulerian, Lagrangian,

and ALE. In order to maintain a fair comparison it was essential that they were all consis-

tently developed and this cannot be offered by existing proxy applications. The proxy ap-

plications CloverLeaf and PENNANT offer similar features to the Eulerian and Lagrangian

applications in the arch project, but are written in different programming languages and

are many times larger than flow and hot. One important characteristic that was explored

with lags was the concept of subcell computations, which had a significant impact on the

performance and was not available in the alternative applications.

• Developing the applications to rely upon a single common infrastructural layer means that

it is possible to make commentary about the issues of hosting multiple physics packages

within a single framework. This will be shown to have important consequences in terms

of portability in Chapter 8.

• The common infrastructural layer meant that the core computational code of each appli-

cation was generally limited to 1000 lines of code, except for the ALE application hal3d,

which was purposefully developed to consider the issue of large applications. This means

that experiments could be performed in much less time than would be required to port

larger applications such as the hydrocode PENNANT (5000 LOC) and the Monte Carlo

application Quicksilver (13000 LOC).

It can be noted that the proxy applications CloverLeaf, TeaLeaf, and PENNANT were

all used as part of this project and many of the relevant publications are relative to those

applications. Although the arch applications have been developed from scratch using open

source methods, the individual applications were optimised using already published techniques

to avoid duplication of efforts.



Chapter 2

Background

2.1 Parallel Computing Architecture

Moore’s law states that the number of transistors per chip grows at an exponential rate with a

constant cost, doubling roughly every 18 months [118]. Dennard et al. observed that reducing

the size of transistors meant that voltages could be decreased, thereby maintaining a constant

power based on area rather than density [38]. More recently, since around 2006, transistors have

become so small that leakage and threshold voltage restrictions have ended Dennard scaling,

limiting the potential for single core performance.

There are a number of architectural adjustments that can aid in reducing the impact of

heat while allowing an increase in performance. This section includes a succinct foundation in

parallel computing to form a basis for the subsequent discussions in the thesis.

2.1.1 Instruction Pipelining

Instruction pipelining exploits inherent parallelism in the architectural processing of machine

instructions.

Figure 2.1: Instructions issued with (bottom), and without (top) instruction pipelining. The

colours represent stages required to issue full instruction, e.g. fetch, decode, execute, write.

In modern processors, machine instructions are broken into micro-operations, which are

the dependent stages in an instruction [60]. The top of Figure 2.1 depicts the scenario that

7
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4 instructions are issued, requiring 16 micro-operations. Each stage, the coloured squares, of

each instruction takes one cycle to complete before the next stage can occur, a throughput of 1

instruction per 4 cycles.

The benefits of pipelining can be realised from the observation that this approach under-

utilises the available pipeline stages, as when decoding, for instance, the fetch and other units

will sit idle. To improve the throughput, each micro-operation can be added to a pipeline, allow-

ing overlapped processing of those micro-operations of independent instructions. The bottom

of Figure 2.1 depicts 4 machine instructions issued to a processor that supports pipelining.

It can be seen that following an initial latency of 3 cycles, the 4 deep pipeline can keep all four

pipeline stages active during a single cycle. Given an increasingly long stream of instructions

the 4 deep pipeline can asymptote to a throughput of 1 instruction per cycle.

2.1.1.1 Superscalar Processing

Superscalar processing is an architectural feature of many processors, where multiple instructions

can be issued within a single clock cycle [74]. Of course this requires that pipeline stages

are duplicated, but it allows several instructions to be passed into the pipeline on each cycle,

increasing instruction throughput. This is another important feature of modern processors that

must be accounted for when modelling and analysing performance.

2.1.2 Vector Processing

Vector processing is an architectural design where vector registers can be filled with multiple

operands, and arithmetic units operate on the set of operands with a single instruction, proven

in early vector processors like the Cray-1 [142]. The benefit to this approach is that algorithms

often apply the same instructions to multiple operands, and if those instructions are independent

there is an inherent parallelism that vector processing exploits.

In modern CPUs, most core designs include vector registers and support SIMD instructions

that can perform, for instance, a fused multiplication and addition on 16 words in a single cycle.

For algorithms that are sensitive to computational performance this is a significant increase in

throughput.

Code Sample 2.1: Example of vectorisable loop in C.

// C loop

for(int i = 0; i < 8; ++i) {

a[i] = b[i] * c[i];

}

The C loop in Code Sample 2.1 is a canonical loop with a small constant trip count. On a

scalar processor the loop iterations would need to be handled sequentially.

Code Sample 2.2 shows the C loop’s x86 assembly code, where each individual element of

the set of arrays is multiplied and stored in turn. Due to the small, constant trip count, the loop

could be fully unrolled by an optimising compiler at high optimisation levels, removing the loop

control instructions. This could potentially allow multiple instructions to be pipelined, taking

advantage of the superscalar nature of the target processor. Considering that ‘a’, ‘b’ and ‘c’

are 8 floats in length, the arrays would be situated in L1 cache on current CPUs, and so the

number of instructions is theoretically important to the performance of this loop.
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Code Sample 2.2: Scalar loop in the x86 instruction set.

// Compiles to x86 scalar loop

..loop:

movss (%rdx,%rax,4), %xmm0 // Move b[i] to register xmm0

mulss (%rcx,%rax,4), %xmm0 // b[i] * c[i] (result in xmm0)

movss %xmm0, (%rsi,%rax,4) // Store result in a[i]

incq %rax // Increment counter ‘i’

cmpq 8, %rax // Compare counter ‘i’ with 8

jl ..loop // Loop back if ‘i < 8’

Code Sample 2.3 depicts the same code but compiled with the Advanced Vector Exten-

sions 2 (AVX2), an extension to the x86 instruction set for SIMD parallelism. There is no

longer a loop, as the AVX2 instruction set includes 256-bit instructions capable of processing 8

floats with a single instruction. Given a possible instruction latency of 1 cycle for the multipli-

cation, the vector processing approach is highly effective in algorithms where the operands are

readily available.

Code Sample 2.3: Vector instruction in AVX2 instruction set.

vmovups (%rsi), %ymm0 // Move b[] to register ymm0

vmulps (%rdx), %ymm0, %ymm1 // b[] * c[] (result in ymm1)

vmovups %ymm1, (%rdi) // Move result to a[]

It is only correct to vectorise loops where there are no loop carried dependencies, or the

loops can be transformed to have independent work for vector processing. Modern optimising

compilers use a range of transformations to ensure that the majority of sane code is vectorised

automatically, but there are many situations where programmer intervention is required. En-

abling vectorisation or encouraging auto-vectorisation is discussed in the chapter discussing Pro-

gramming Models (Chapter 3), and throughout the subsequent chapters dealing with individual

scientific applications (Chapters 5 to 7).

2.1.3 Multi-core Computer Architecture

Once the practical limits of single core designs had been reached, the next source of processing

power growth came from increasing core counts. In 2001, IBM designed the first dual-core

processor, demonstrating the feasibility of placing multiple cores on a single die [156].

Increasing the number of cores in a CPU allows the processing power to be increased while

maintaining consistent clock speeds and staying within a reasonable power envelope. There

have been many different approaches to architecting multi-core processors: varying core counts,

speeds, memory locations, and other factors. Once an additional core is added to a processor,

the complexity of the architecture and programming approach is significantly increased, and

modern CPUs can contain hundreds of cores.

2.1.3.1 Cache coherency

The introduction of multiple cores means that cache coherency mechanisms need to be added

to ensure that the cores do not read or write incorrect data [60]. In Figure 2.2, a hypothetical

multi-core architecture is presented, depicting the cores and cache hierarchy. Each core is directly

connected to a private L1 cache, and it is possible for data to be duplicated from DRAM into

both L1 caches at the same time.
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Figure 2.2: A cache layout for a hypothetical

CPU architecture.

In the event that there is duplicate data

and one thread wants to write while the other

wants to read from the same address, then

there is a data race, but one which cannot

be predicted as a programmer. The hardware

has to include some mechanism for updating

all caches when one of the cores attempts to

change a value in an individual cache, which

is known as write propagation.

If both caches contain a duplicate mem-

ory entry and subsequently write back to that

memory address there is a data race. The

hardware is only responsible to ensure that

those writes are fulfilled in cache in the origi-

nal order requested. As such, if Core 0 writes a value to cache and Core 1 subsequently writes

to the same location, the value residing within cache after the operations are complete must be

the value output by Core 1. It is the province of the programmer to ensure that such output

dependencies are avoided.

2.1.3.2 Multi-socketing

Many modern high performance computing platforms include two or more sockets within a single

node, which is known as multi-socketing. The most common configuration in the largest super-

computers on the Top500 list1 is two CPUs per socket, known as dual-socketing. This doubles

the computational power available within one shared memory space, although Section 2.1.3.3

will discuss issues that arise from this partitioning. The two sockets can be programmed using

the same techniques that are available for multi-core programming, as both sockets share main

memory, and the operating system manages the attribution of threads to cores.

Multi-socketing introduces additional complexity in terms of selecting affinities on a super-

computer, as it is important to ensure that computational work is correctly balanced. If the

programming environment provides control over the affinity then it is often best if the work can

be evenly distributed across the cores of the pair of CPUs with a one-to-one correspondence

between threads and cores. The ordering of threads on cores might have application-specific or

problem-specific implications on the performance of a process.

2.1.3.3 Non-Uniform Memory Access

Depending upon the configuration of the architecture, levels of the memory hierarchy might

exist at different distances between physical cores. The practice of dual-socketing CPUs means

that pages of data can be allocated in the DRAM of a socket but accessed by cores on another

socket. There will be a significant increase in the latency of accessing data from another socket.

Taking care to bring data as close as possible to the cores that will be using it during a pro-

gram’s execution is an important optimisation techniques available for parallel programming,

and careful allocation of data to account for NUMA might be necessary [174] [84].

Although Figure 2.2 depicts two separated caches, it is important to note that the cores

would not access each other’s L1 cache, rather the data would be duplicated as required. If a

1https://www.top500.org/
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shared last-level cache were added to Figure 2.2, the most usual approach would be to layout

the cores so that they are equidistant from that cache. In spite of this, there are processors that

are architected with variable distances between cores and levels of the memory hierarchy, even

within a single socket, for instance the AMD Ryzen ThreadRipper 1950X maintains two NUMA

nodes on the same chip [33].

2.1.3.4 Simultaneous Multithreading

Simultaneous multithreading (SMT), also known by the Intel-specific term hyperthreading, is

another architectural design technique that can improve performance without altering the clock

speed [162]. Conceptually, SMT allows each core of a CPU to be considered as multiple logical

cores, with shared execution resources, such as arithmetic units, but individual state, such as

registers.

The consequence of this partitioning is that whenever the core stalls to wait for operands, the

other logical cores can fill the pipeline with requests to utilise the unused execution resources.

Essentially, the additional logical processors are there to fill bubbles in the pipeline, potentially

increasing the overall efficiency of an application.

Architecture Cores SMT

Intel Xeon Skylake (Platinum 8176) 28 2

Intel Xeon Phi Knights Landing (7210) 64 4

IBM POWER9 12 or 24 4 or 8

Table 2.1: Number of simultaneous threads per core.

Table 2.1 shows some examples of SMT counts in different multicore processors available

today. The logical cores are made available to the operating system and can be programmed in

the same manner as multiple physical cores. Enabling SMT in software is relatively straightfor-

ward, but the determination of the optimal choice of SMT utilisation has to be performed on a

per-application basis. One of the main challenges with correctly leveraging SMT is expressing

the affinity between threads and cores, but modern advances in standards such as OpenMP are

greatly improving the situation. Throughout this thesis there will be results of using SMT across

a range of architectures and application types, and a case where hyperthreading is particularly

advantageous in Chapter 5.

2.1.4 Distributed Computer Architecture

Another important form of parallel processing comes from connecting multiple independent

nodes together, scaling out to form a network of processors. The nodes can be comprised

of multiple heterogeneous parallel processors, for instance, the Summit supercomputer nodes

contain 6 NVIDIA V100 GPUs and 2 POWER9 CPUs. If software can be designed to take

advantage of those processors in parallel, it is possible to greatly increase scientific throughput

by the connection of large clusters. In terms of cluster size, it is possible to scale to the limits of

financial budgets and power consumption commitments, as seen with the current drive towards

exascale computing [8] [114].

Programming distributed computer architectures generally involves the use of a message

passing library, the most well known being the Message Passing Interface (MPI), which will be
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discussed in Section 2.2.1.3. There are major challenges introduced by distributing data across

different nodes of a supercomputer, and the current drive towards exascale computing means

that the problems observed at scale will become more prevalent in the future.

Supercomputer Nodes

Sierra (LLNL) 4320 nodes (2 x POWER9 CPU and 4 x Volta GPU)

Summit (ORNL) 4600 nodes (2 x POWER9 CPU and 6 x Volta GPU)

Trinity (LANL) 9436 nodes (Haswell CPU), and 9984 nodes (KNL)

Table 2.2: Figures for the newest Department of Energy (DoE) supercomputers, for Lawrence

Livermore National Laboratories (LLNL), Oak Ridge National Laboratory (ORNL), and Los

Alomos National Laboratories (LANL).

Table 2.2 shows the node counts and processors in the newest Department of Energy (DoE)

supercomputers [12] [64] [166]. There is an expectation that codes written for one supercomputer

should execute and scale adequately on each of the supercomputers with minimal changes, which

is a major challenge given the volume of resources in each machine.

2.1.5 Many-core Computer Architecture

Many-core architectures, while essentially an extension to the multi-core processor approach,

are treated separately as they introduce new programming paradigms and performance charac-

teristics.

2.1.5.1 Graphics Processing Units

Graphics Processing Units (GPUs) were developed for the graphics processing market and sup-

port a 3D rendering pipeline, manipulating images and outputting them to a display adapter.

The key to the success of those architectures was that they were fast enough to support real time

rendering, and this was achieved by using many simplified low power cores that can perform the

same task on many pieces of data.

With some alterations, and the development of appropriate APIs, it was possible to leverage

the GPU processing power to handle general purpose computation. This introduced many-

core processing as an alternative approach to traditional CPU-based supercomputing, for those

applications that could take advantage of the particular style of parallel processing. Today,

GPUs have been shown to be highly capable processors for handling scientific simulation and

machine learning, which is the reason that they feature in two of the main DoE pre-exascale

supercomputers, as shown in Table 2.2.

NVIDIA currently leads the market in compute on GPU, offering processors specifically

tuned for computational workloads, with high bandwidth memory and double precision com-

pute throughput. GPUs are considered one solution to the performance problems of exascale

computing, as they support high FLOP-per-watt, allowing greater performance for a particular

power budget. In the June 2018 Green500 list, 7 of the top 10 supercomputers were comprised

of NVIDIA GPUs [154].

The most recent NVIDIA GPU, the NVIDIA V100, is comprised of 80 streaming multi-

processors. A V100 streaming multiprocessor includes 4 warp schedulers, each containing 16

FP32 units, for a total of 5120 FMAs per cycle. GPUs were designed as separate processing
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components that are connected to the CPU via a PCI connection, or more recently, a high

speed connection called NVLink [50]. As such, programming GPUs falls into the realm of co-

processing, where the CPU is used as a host device that offloads commands to the GPU for

processing.

The CUDA programming API supports this with the CUDA C/C++ extensions, which

results in a kernel oriented language with similarities to programming shaders. Many new

issues arise when attempting to port existing applications to take advantage of GPUs, including

finding large parallel data streams in existing algorithms, minimising data movement, and direct

programming of shared caches. The introduction of GPUs and other accelerators has also

introduced many problems for performance portability, which will be explored in Chapters 5 to 7.

2.1.5.2 Intel Xeon Phi

Since the rise of popularity of GPUs for computational processing, Intel has attempted to

replicate the approach with their Xeon Phi line of processors. The Xeon Phi CPUs are closer to

GPUs in that they use a higher count of lower clocked cores than their server grade Xeon CPUs;

however, they are still similar to the Xeon CPUs in that they have SIMD units and many other

features not present in NVIDIA GPUs.

The newest Xeon Phi, the Knights Landing (KNL), has 64-72 cores with 4 hyperthreads and

two AVX-512 SIMD units per core. As such, a 72 core KNL can process 2304 FMAs per cycle.

One of the major benefits of the Xeon Phi over CPUs is the inclusion of high bandwidth memory

called MCDRAM. At the time of writing this is not a feature of the Xeon CPUs, and offers a

significant performance improvement for some applications. When programming a KNL, it is

generally possible to compile code that is written for a Xeon CPU and expect it work on the KNL

without changes. In practice, this is not necessarily the case, and this thesis will demonstrate

that there are implications on the performance of the resulting application that mean it is often

necessary to perform extensive optimisation to fully exploit the KNL.

2.2 Parallel Software

Transforming sequential programs into robust, correct, portable and performant parallel appli-

cations is a complex discipline with many pitfalls.

2.2.1 Fundamental Approaches to Parallel Programming

As discussed in the preceding sections, there are many different architectures and there have been

a number of different approaches developed to target them. There are three broad subcategories

that can be used as umbrella terms to distinguish different approaches to embedding parallelism

into an application: threads, tasks, and message passing. Although each of the terms describe

different approaches to parallel computation, they have a number of similarities.

2.2.1.1 Threads

The term ‘thread’ can be used at varying granularities, the definition in this thesis will be:

“Threads are independently executable subsets of a process that share memory but

maintain some private state.”
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As such, threads are a software concept that encapsulate instruction streams that can be

interleaved on a single processor core, or performed in parallel on multiple cores [105]. Consid-

ering the simplest case of threading on a multi-core CPU, an individual thread can be bound

to each of the available cores, and each thread can concurrently perform independent work.

Section 2.1.3.4 showed that threads can also be pinned to the logical cores of a CPU when the

hardware provides SMT.

Threads are managed by the programmer using some API, for instance, POSIX threads

(pthreads), OpenMP, etc. It is necessary for the programmer to consider the correctness of

an application based on the non-deterministic nature of the thread execution, and their use of

shared memory.

Code Sample 2.4: Example of a simple parallel loop.

parallel_for(int i = 0; i < n; ++i) {

a[i] = b[i];

}

Code Sample 2.4 demonstrates the use of a hypothetical loop parallelism construct called

‘parallel for’ to execute a copy loop in parallel. The implementation would need to divide up

the iteration space of the loop, the set of iterations from 0 to n - 1, so that each thread could

operate independently on a subset.

In many cases it is not possible to parallelise every line of a program, with traditional par-

allel programming focusing upon loop-level parallelism. In early implementations of OpenMP,

threads would be spawned and de-spawned after each structured block executed in parallel.

Modern implementations typically use thread pools to remove those overheads.

2.2.1.2 Tasks

As with threads, tasks can be considered at different granularities. Coarse grained tasks might

encapsulate whole sections of a parallel program, for instance, loops, algorithms or even entire

physics packages can be wrapped into tasks. Alternatively, tasks can be used for fine-grained

parallelism, where the iterations of a loop can be converted into tasks with data dependency

and ordering constraints, or tasks can be used to construct complex graphs for applications with

tree-based structures.

Tasks can offer increased productivity by mapping more directly to the natural description

of an algorithm, especially in the case of tree-based applications [7]. Asynchronous tasking also

might offer some benefit for load balancing and resilience across large exascale platforms [28].

The challenge with tasks is that they require the use of a scheduler that dequeues tasks in an

optimal order. Of course, this introduces some overhead on a single node, and even more when

considering node-to-node scheduling. The Exascale Compute Project (ECP) includes the sub-

project ‘PARSEC: Distributed tasking for exascale’, which aims to investigate the development

of an exascale tasking execution model [41].

2.2.1.3 Message Passing

Distributed architectures cannot share memory in the traditional sense, which means that other

mechanisms are required to either emulate shared memory across the network, or use message

passing to communicate data. Fundamentally, applications can use message passing as a means

to send data from one shared memory space to a separate shared memory space. The most



CHAPTER 2. BACKGROUND 15

common message passing API is the Message Passing Interface (MPI), which is a mature open

standard adopted by the majority of scientific applications for inter-node communication [43].

It is also possible to abandon the concepts of threads and tasks in favour of using message

passing within a shared memory environment, for instance, using MPI to communicate between

the cores of a multi-core CPU. In fact, many scientific applications have been written using MPI

only, and limits on the scaling of message passing in particular applications has fueled the desire

to exploit shared memory.

2.3 Parallel Performance

A core focus of this thesis is on the performance of parallel applications. The subsequent chapters

will demonstrate that it is a multi-faceted issue with a number of contradictory practices and

theories between different application types, based on their performance characteristics. This

section will introduce some of the key performance optimisation concepts and nomenclature.

2.3.1 Amdahl’s Law

Amdahl’s law succinctly states that the scalability of an application when given additional

resources is limited by the part of the system that does not benefit from those resources [3].

S =
1

(1− p) + p
s

(2.1)

Equation 2.1 gives an expectation of the speedup possible if the proportion p of the applica-

tion speeds up by s. The most important implication for optimising parallel applications is that

it motivates the parallelisation of the most expensive parts of an application. In many scientific

simulations, parallelisation efforts will focus on the core solvers, or computational kernels.

2.3.2 Limiting Bounds

One of the most important factors in performance optimisation for parallel applications is recog-

nising and improving upon the limiting factor of an application. For each of the applications

discussed in this thesis, significant time is devoted to understanding the bounds of an application

or algorithm, taking into account the fact that the bounds might be dynamic in some cases,

changing as the algorithms or problems are tuned. Some of the key examples of limiting bounds

that will be discussed are:

• Compute bound: Algorithms that have a large number of computations compared to

memory operations might be limited by the computational performance of the hardware.

The application performance will be restricted by the maximum number of floating point

instructions per second (FLOP/s) achievable on a particular system.

• Memory bound: The performance of computation has been improved dramatically over

the past decade, and memory bandwidth has not improved to the same extent [108].

Many scientific applications are memory bandwidth bound, as they process large sets of

data that cannot be maintained within fast caches. Applications can also be memory

latency bound, where the time it takes to perform individual memory accesses limits the

performance of the application. Some applications can be memory footprint bound, where
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the memory capacity required to solve problems at the desired accuracy is beyond the

available resources.

• Communication bound: If an application spends the majority of its time waiting for

memory to be communicated between different memory spaces, then the application can

be considered communication bound.

This list is not exhaustive and there are many strategies that can be adopted for each

of the different computational bounds. One route to improving performance is purchasing

new hardware that offers improved performance for the limiting characteristic; for example,

choosing processors with the highest achievable FLOP/s for compute bound applications. It is

also sometimes possible that algorithms can be adapted or replaced within an application to

change the computational bound, potentially improving throughput. There has been speculation

that computational methods for the sciences will need to focus on compute-bound approaches

in order to compensate for the lack of progress in memory performance relative to the compute

performance [10].

A useful formal tool for the analysis of performance is the roofline model, which can accept

machine and application parameters and predict what aspect of the target architecture is the

limiting factor [173]. Later work by Ilic et al. extended the roofline model to be cache-aware,

greatly improving its efficacy on modern cache-based architectures [68].

The interoperation between diverse processor architectures, and algorithms in applications,

means that it can be challenging to determine a bound at all. Many low-level details of modern

architectures are not well documented beyond marketing, and algorithms can be long and com-

plex, making performance modelling of their behaviour cumbersome and inaccurate. Throughout

this thesis, performance analysis will be supported by the empirical results of benchmarks to

better understand observed performance characteristics.

2.3.3 Scaling

One of the figures of merit of parallel applications is their ability to scale. This term could refer

to a vector loop’s propensity to take advantage of increasing vector widths, or an applications’

ability to scale up to thousands of CPU cores. This section briefly discusses varying perspectives

of application scaling.

2.3.3.1 Vector and Thread Scaling

Parallel programs targeting modern processors can scale at the thread and vector level. For

compute bound problems it might be expected that a roughly linear increase in performance is

seen when introducing additional cores or widening SIMD units. For memory bandwidth bound

problems, it is not unusual for sub-linear scaling when increasing cores and SIMD widths, as

vectorisation benefits are obscured by the large overheads for fetching data from main memory.

Further, as memory bandwidth is a shared resource, scaling is limited as the core count increases.

Examples of this will be presented in Chapters 6 and 7.

2.3.3.2 Inter-processor Scaling

Regardless of how an application scales at the vector and thread level, it can have vastly different

scaling performance when increasing the number of distributed memory resources. This is a key
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problem when programming for supercomputers as the performance of an application at scale is

limited by its propensity to amortise the costs of communicating memory between non-shared

memory spaces.

There are two perspectives on inter-processor scaling that can offer different insights into the

efficacy of the optimisation routines of a particular application, strong scaling and weak scaling.

Strong scaling fixes the problem size, and adds additional resources to speedup the calculation

of that particular problem, which relates to Amdahl’s law [3]. Weak scaling is where the size of

the problem proportionally increases with the resources, for instance, doubling the problem size

when going from 1 to 2 nodes, which relates to Gustafson’s law [56].

Figure 2.3: Hypothetical scaling graphs for strong scaling (left) and weak scaling (right).

Figure 2.3 depicts strong scaling and weak scaling graphs for a hypothetical application

scaled from 1 node to 4096 nodes of a supercomputer. The example strong scaling graph is

plotted as a log-log graph of node count vs speedup, and it shows that the application scales

nearly perfectly up to 32 nodes, but that the performance begins to drop well below ideal by

the time the problem is run on 4096 nodes. There can be many causes for a performance profile

like this, but the most likely issue is that the level of scaling has resulted in each node having

a small chunk of the overall problem, and communication costs are no longer amortised by the

computation.

The weak scaling graph on the right of Figure 2.3 shows a greatly reduced parallel efficiency

once executed on 4096 nodes, which demonstrates that the communication costs are increasing

with the introduction of additional nodes. There are many potential reasons for this behaviour,

but some interesting examples are: (1) the application requires some all-to-all communications

which can rapidly limit parallel scaling, or (2) the performance of the network degrades due to

some nodes being located in different racks of the supercomputer.

2.4 Numerical Simulations

It is generally intractable to simulate physical processes perfectly, and instead physicists employ

approximations in their numerical models. Numerically solving equations describing physical

processes requires careful handling of those approximations, and the methods of solution intro-

duce a number of issues of accuracy and efficiency. The algorithms discussed in this thesis will
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not be altered to improve their numerical properties, but some understanding of the fundamental

issues in numerical methods is useful to the dialogue and will be presented in this chapter.

Further, scientific applications are intended to serve a practical purpose, which means that

many features are required to interpretation and validity of the results. There are a number of

issues including visualisation, file handling, reproducibility, etc. that are not discussed in this

section, but are briefly discussed in Chapter 8.

2.4.1 Partial Differential Equations

In scientific simulations, the general goal is to accurately describe or predict some process or

processes involving rates of change, potentially evolving in time or stabilising to some steady

state. Such processes can be mathematically described using a system of partial differential

equations (PDEs), an example of which is the wave equation (Equation 2.2) [86]. There are

few practical cases where PDEs can be solved using a closed form solution, rather numerical

methods are typically employed. The cost of numerically solving PDEs for real life processes can

be high, and PDEs must be formulated in a manner in which they can be solved by a computer

efficiently.

∂2u

∂t2
= c2∇2u (2.2)

It is often the case that the PDEs, while accurate in their description of some approximation

of the truth, require additional computational fixups to account for phenomena not captured

by the approximations. An example that will be discussed in Chapter 7 is the numerical fix-up

of introducing artificial viscosities when solving the inviscid Euler equations of hydrodynam-

ics. Without the numerical fix-up, shock boundaries are discontinuous and lead to unphysical

oscillations, that comes about from the fact that the continuum is discretised and so does not

perfectly represent the shock boundaries. Rather than an accurate representation of the phys-

ical concept of viscosity, the resolution is often a more ad-hoc adjustment to the momentum

at discontinuities, introducing steep but numerically resolvable gradients that do not result in

oscillations [95].

2.4.1.1 Boundary Conditions

Due to the finite simulation of some physically continuous space it is necessary to control the

values at the boundaries of the discrete space, in order to maintain stability within a simulation.

There are many different possible boundary conditions including periodic and vacuum, and the

applications discussed in this thesis have all been developed to use reflective boundary conditions.

The reflective boundary condition means that conserved variables should be perfectly conserved

throughout the entire simulation, making it simple to validate the applications.

2.4.2 Discretisation

Discretisation is a fundamental process that helps to make partial differential equations compu-

tationally solvable. Some approximation is used to describe a continuous function or space using

a number of discrete points prior to some solution, generally involving a numerical method of

integration.
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The three most prevalent discretisation approaches are finite volume, finite difference and fi-

nite element discretisation [19] [86]. Each technique can be employed to manipulate a continuous

partial differential equation into a discrete equation by using some assumptions or approxima-

tions of the limiting behaviour as discrete elements are reduced in size, increasing the precision

of the integration.

The different approaches lead to different mathematical and computational challenges. Con-

sidering a transport equation, for instance the flow of fluid, a finite difference discretisation would

begin from the differential equation and expand it using series representation. A finite volume

discretisation begins from the integral formulation and operates on the principal of balancing

fluxes between closed volumes. The finite element approach starts with a weak formulation of an

equation, and discretises the computational domain into elements comprised of multiple nodes

that are described by shape functions [71].

2.4.3 Decomposition

In order to solve a computational problem in parallel it is necessary to perform some level of

decomposition, the process of logically breaking a problem into parts that can be independently

processed. There may be significant differences between the complexity of decomposition for

shared-memory and distributed processing purposes.

Figure 2.4: Two approaches to decomposing a two dimensional space: 1D decomposition (left),

and 2D decomposition (right) where the orange cells containing ‘H’ are halo cells.

In a distributed memory environment, the problem might be decomposed into parts that

limit the amount of communication that is necessary between processes. Further, load balancing

issues may be managed by carefully selecting an initial decomposition, or through dynamic re-

balancing [132]. Even a simple and structured problem might need to be distributed into multiple

levels on modern architecture, for instance, decomposition across compute nodes, scheduling to

multiple threads on each nodes, and grouping into SIMD instructions to be executed by a

core [151].

Figure 2.4 demonstrates a decomposition of a 6× 6 computational mesh for distributed pro-

cessing, where the communication approach between independent domains would likely be a
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halo exchange [112]. When considering unstructured meshes, for instance, the complex con-

nectivity of the mesh might make decomposition more complicated to setup. In applications

with dynamic mesh connectivity this problem is worsened as domain partitioning might need to

change along with the changes in connectivity, which will be discussed in Chapter 8.

2.4.4 Numerical Accuracy and Reproducibility

In many scientific simulations, the current approach is to use double precision floating point

representations in order to maintain a high level of accuracy through precise arithmetic. Some

applications have been developed to fulfil the requirement of bitwise identical reproducibility,

the strictest possible form. Applications using threading and tasks cannot efficiently guarantee

the order of operations, therefore there are major issues with using thread-based parallelism

when an application has strict reproducibility requirements.

There is recognition that reproducibility and accuracy are important concerns for future

scientific growth and much research is focused on hardware and software techniques to address

the problem, as discussed by Demmel et al. with respect to the progress towards exascale [37]. It

can be understood that all discussions about optimisation through the thesis maintain a suitable

level of accuracy, but that reproducibility is not necessarily enforced, and results may change

depending upon the target architecture or technique applied.

2.4.5 Structured Mesh

The process of decomposing a physical problem into discrete units will generally have a significant

impact on the computational approach and results, but also has implications for the performance

of the application [111]. Many approaches can be categorised as structured mesh discretisations,

which use squares, parallelepipeds, cuboids, etc. to represent discrete chunks of a problem

space. The connectivity is designed such that the discrete chunks are non-overlapping, with

highly regular and ‘structured’ mesh representations that enable evaluation of connectivity from

spatial location in constant time.

Figure 2.5: Three-dimensional structured meshes: a Cartesian mesh with congruent cells (left);

a rectilinear mesh with non-congruent cells (right).

There are two examples of structured meshes presented in Figure 2.5. On the left a Cartesian

mesh, where each of the mesh cells can be adequately described as a unit cube, potentially
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pending transformation. On the right, the mesh is rectilinear due to the non-congruent band of

mesh cells parallel to the x-z plane [19].

Where structured meshes are appropriate from a computational perspective, there are sig-

nificant performance benefits available due to the regularity of connectivity. The computational

methods include less geometric burden, where necessary quantities such as volumes and deriva-

tives between mesh cells are trivially calculated. Furthermore, spatial connectivity requirements

such as neighbour lists can be inexpensively determined from spatial location.

The Chapters discussing the heat diffusion and Eulerian hydrodynamics applications, in

Chapters 6 and 7, investigate the performance of structured mesh applications.

2.4.6 Unstructured Meshes

Figure 2.6: An example of a unstruc-

tured mesh in lags (Chapter 7).

Accurately meshing physical objects does not necessar-

ily map well onto structured meshes. In some cases the

meshing process itself can become an expensive part of

the scientific workflow that needs optimising. Further-

more, some problems require vastly different levels of

refinement between different locations of the simulated

region, which leads to structured meshes simulating the

entire space at the most accurate level of refinement.

A solution to those problems is to instead use an

unstructured mesh, as seen in Figure 2.6, which can

in theory allow arbitrarily connected polyhedra of arbi-

trary construction [97]. There are many consequences

of using unstructured meshes, for instance, calculating

volumes is significantly more challenging, and connec-

tivity between mesh cells often cannot be determined

analytically from spatial location, but needs to be fetched from neighbour lists stored in mem-

ory. It is necessary to maintain many indirections, which leads to increased memory footprints

and scattered memory accesses within the computational kernels, which might have a significant

impact on performance.

The Lagrangian hydrodynamics application in Chapter 7 discussed the implications of un-

structured meshes on modern parallel processors.

2.4.7 Explicit Solvers

Explicit methods determine a solution of a future state from a current state. Take the following

example differential equation:

dy

dt
= α

dy

dx
(2.3)

Approximate the temporal derivative with a forward difference and the spatial derivative

with a central difference:

yt+1
i − yti

∆t
= α

yti+1 − yti−1

2∆x
(2.4)
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Rearrange to:

yt+1
i = yti + α∆t

(
yti+1 − yti−1

2∆x

)
(2.5)

The equation has gathered all of the known data, allowing each of the discretised mesh cells

in the next timestep to be computed independently using the right hand side (RHS) update

equation. Explicit solvers apply operators to the computational mesh on a cell by cell basis

using known data. The approach is typically highly parallelisable as the operators can generally

be performed independently.

2.4.8 Implicit Solvers

An implicit formulation of a problem is where the dependent variables are related by a coupled

system of equations. Using the example given for explicit solvers, Equation 2.3, we can instead

approximate the spatial derivative at the following timestep:

yt+1
i − yti

∆t
= α

yt+1
i+1 − y

t+1
i−1

2∆x
(2.6)

Collecting the terms for the next timestep, and substituting γ in place of the scalar terms:

yti = yt+1
i − γyt+1

i+1 + γyt+1
i−1 , γ =

α∆t

2∆x
(2.7)

From Equation 2.7, it is possible to describe the operation across the whole computational

mesh using a single matrix equation in the form Ax = b. The vector b is an N -length vector,

where N is the number of cells in the computational domain, and represents the known state

of the computational domain, yti , while x is an N -length vector containing the state in the

subsequent timestep, yt+1
i . The matrix A is an N × N coefficient matrix containing at most

three non-zero entries of the coefficients: 1, −γ, and γ for each of the rows, depending upon

whether cells fall on the boundaries or not.

Formulating problems in this manner can avoid timestep restrictions that are imposed by the

inherent numerical stability of the problem. The computational characteristics of the solution

are significantly different from those of the explicit solution, as a linear solver is typically required

to find a numerical solution of an implicit method. The problem described above is inherently

sparse, allowing for the use of sparse linear algebra methods in the solution, and the matrix size

of N ×N is generally large, meaning that approximate methods are preferred to direct methods

for the linear solve.

2.4.9 Stencil Operations

As seen in the equations in Section 2.4.7, an explicit method is formulated into a set of equations

that update a mesh cell using a relation to other known mesh cells. This might lead to a spatial

relation resulting from local calculations involving gradients between attached cells, which are

described as stencils. The example in Section 2.4.7 describes a one dimensional stencil where

the quantity in each cell is updated with a scaling of the difference between the right and left

neighbouring cells.
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Figure 2.7: A Cartesian mesh with

two five point stencil computations de-

picted.

Figure 2.7 presents a two-dimensional stencil calcu-

lation on a structured mesh. The operation denoted by

‘a’ is a calculation involving the surrounding coloured

neighbours, and lies on a boundary. Both the ‘a’ and ‘b’

stencil computations can be performed independently

and in any order, making it straightforward to paral-

lelise the operation, especially if the storage of the re-

sults is to a new location.

If the mesh depicted were a tile of a larger compu-

tational domain then the ‘a’ stencil might not lay on

a computational boundary but rather a tile boundary.

In order to fulfil this stencil computation, there is an

independent working set of data required by each of the

non-shared memory processes and a, generally limited,

set of data that needs to be duplicated between pro-

cesses. This duplicated subset of data is called a halo

region, as was seen in Figure 2.4.

There is no restriction on the domain of dependence in a stencil operation; as such, the

stencils can include many more cells than the immediate neighbours. An important benefit

of stencil-based computational methods is that there will be spatial locality and, given correct

ordering of operations, temporal locality. Note that stencil operations appear in both explicit

and implicit formulations [112] [62].

2.5 Application Domains

Throughout this thesis, a number of applications will be considered for their performance and

portability on modern parallel processors. A short introduction to each is presented below, and

more specific details can be found in their corresponding chapters. The application domains

were chosen because they span a number of important parallel patterns, as discussed in the

preceding sections. Each application represents a typical package you might see in the multi-

physics applications of, for instance, astrophysics, or reactor simulation [30] [46] [145].

2.5.1 Heat Diffusion

Heat diffusion is a canonical and straightforward example of a second order PDE and requires

an implicit solve to maintain a practical timestep [112]. The PDE is expressed as follows:

δ~u

δt
= α∇2~u = α

(
δ2~u

δx2
+
δ2~u

δy2

)
(2.8)

Equation 2.8 describes the transition of heat in a medium as the curvature of the temper-

ature derivative across the spatial domain. The result is that any temperature spikes within

a domain will quickly smooth out and then the solution will slowly progress towards a steady

state equilibrium, in the absence of a continuous source term. The equation can be discretised

using an approximate differencing method, but typically has to be solved implicitly as the prob-

lem is stiff. A stiff equation is one where some terms lead to numerical instability unless an,

often prohibitively, small timestep is chosen. Implicit linear solutions to such equations lead to
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faster time to solution, as time step restrictions can be greatly relaxed [87]. In this thesis, the

computational method employed is the Conjugate Gradient (CG) method, as it is a simple but

fast converging approximate method for solving linear systems of equations. The CG method

is an iterative method for determining the solution of a matrix equation, and interested readers

can refer to Shewchuk’s clear introduction [146]. The heat diffusion application considered in

this thesis is hot2, which uses a stripped back CG solver.

2.5.2 Eulerian Hydrodynamics

In this thesis, the exemplar for explicit structured mesh computations will be a finite volume

Lagrangian-Eulerian remap code that is staggered in time and space. An example of a solution

calculated with flow is shown in Figure 2.8.

Figure 2.8: Example output of the flow hydro proxy application.

The equations solved are the Eulerian equations for conservation of compressible flow, pre-

sented in two dimensions.

δρ

δt
= − (~u · ∇ρ+ ρ∇ · ~u) Conservation of mass (2.9)

ρ
δ~u

δt
= − (ρ~u · ∇~u+∇ρ) Conservation of momentum (2.10)

ρ
δe

δt
= − (ρ~u · ∇e+ p∇ · ~u) Conservation of energy (2.11)

Where ~u is the velocity vector, ρ is the density, e is the energy, and p is the pressure. The

conservation equations are functions of those four unknowns, meaning that the three equations

are not complete. A relation can be made between the energy, density and pressure, called an

equation of state (EOS), that closes the set of equations.

p = (1− γ)ρe (2.12)

In the described application, flow, the equation is simply the ideal gas EOS, as seen in

Equation 2.12 [97]: There are many possible discretisations of the problem, and issues that arise

in the accurate calculation of differential quantities and interpolations, as well as numerical

fixes for problems arising from the physical approximations. At a high level, the computational

2https://github.com/uob-hpc/hot
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method uses a number of stencils to calculate the fluxes of each of the dependent quantities

across the faces of the cells in the structured mesh. Although the fine details are not presented

within this thesis, an interested reader could refer to [19], and the flow source code 3. Further,

a thorough description of the computational profile of the flow application will be presented in

Chapter 7.

2.5.3 Lagrangian Hydrodynamics

Figure 2.9: An example of a La-

grangian mesh deforming after a single

timestep.

The equations of hydrodynamics (as in Equa-

tions 2.9 to 2.11) can be also described using a La-

grangian representation, which considers that the dis-

cretised problem, composed of cells, deforms due to mo-

mentum and pressure gradients in the system, while the

mass of each cell is conserved. As such, a mesh that be-

gins as a Cartesian hexahedral domain can deform such

that the cells all have different volumes with asymmet-

ric faces.

The Lagrangian mesh in Figure 2.9 begins as a

Cartesian mesh and deforms in the first timestep. The

location of each node must be continuously stored in

memory, to be updated one or more times per timestep, while the connectivity in this case

might be statically determined during the application initialisation phase. In all applications

discussed within this thesis only static connectivity will be explicitly solved; however, some

discussions about the implications of dynamic connectivity will be included in Chapter 8.

The lags application4 is a Lagrangian solver that will be discussed in Chapter 7, the solver

was written from the ground up based on a number of related texts [19] [119]. The application

assumes that the computational mesh could be fully unstructured and comprised of arbitrary

polyhedra. Only a single type of polyhedra is allowed per mesh, as restricting the mesh to

a single type of polyhedra is an effective optimisation, introducing useful constraints on the

connectivity. The transition to unstructured meshes makes many of the computational tasks that

are simple in the structured case, such as finding volumes and spatial derivatives, significantly

more challenging.

2.5.4 Probabilistic Methods

Probabilistic methods typically employ robust parallel random number generation to sample

enough random quantities to converge upon an accurate solution to some problem, relying upon

the Central Limit Theorem [155]. The approach is applicable to many problems including:

solving complex multi-dimensional integration, and the transportation of particles [76]. Taking

a probabilistic approach can offer some benefits compared to strict deterministic numerical

schemes, potentially making calculations possible that would be untenable due to computational

and/or memory capacity limitations.

A simple but popular motivating example of the use of Monte Carlo approaches is the

calculation of π using random sampling, a visualisation of which can be seen in Figure 2.10. In

the simulation, points are randomly placed inside a square of length 2r that perfectly surrounds

3https://github.com/uob-hpc/flow
4https://github.com/uob-hpc/lags
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a circle of radius r. The ratio between the area of the square and circle is known to be π/4

so the random distribution of N particles within the square should lead to an expected N π
4

particles landing inside the circle. The Monte Carlo simulation therefore distributes N particles

randomly and then solves for π, with the accuracy increasing based on the size of N .

Figure 2.10: Monte Carlo calculation of π.

Particle transport can be solved using proba-

bilistic and deterministic methods; where the ap-

proaches are most clearly distinguished by the

types of source problems that they are suited

to [155]. The Monte Carlo approach to particle

transport does not use averaging approximations

like the deterministic approach, and is instead con-

sistent with the natural physical interpretation of

the laws of particles.

In this thesis, the neutral5 application will be

used to investigate the performance and portabil-

ity of Monte Carlo neutral particle transport appli-

cations. The application has been written from the

ground up based on a number of publicly available

research materials [88] [158] [23] [24].

5https://github.com/uob-hpc/neutral
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3.1 Introduction

One of the first, and most influential, choices that must be made when porting a large scientific

application, is the selection of parallel programming model. The parallel programming model is

the interface between the software and the server hardware, and HPC applications often require

fine grained controls in order to exploit the available hardware resources. Demand for expressive

and powerful parallel programming models means that constructing new models has become a

popular area of research, resulting in an explosion of the available choices [40] [105].

Selecting the correct programming model for a particular scientific project is a challenging

process that, if left to chance, can have major implications for the future performance, portability

of the project. Further, different programming models provide different features for productivity

and levels of accessibility, which can affect the development and maintenance costs of large

scientific applications.

Each of the parallel programming models in this section will be utilised later to port the ex-

emplar applications in arch, uncovering the efficacy of each model, and any challenges posed by

particular algorithms. The code samples and discussions focus on the C programming language,

but the majority of the concepts translate directly to Fortran.

3.2 Non Performance Portable Programming Models

Each of the applications and kernels discussed in this thesis have highly optimised versions of the

code written in low-level languages such as CUDA, OpenMP, and Intel Intrinsics. While CUDA

and Intel Intrinsics are specific to particular technologies, OpenMP is in fact a performance

portable model. The reason that it is discussed as a “non performance portable model” is that

it is only since version 4.0 that heterogeneous processors could be targeted with the offloading

model [17]. OpenMP 3.1 is one of the most popular high-performance options for targeting

multi-core CPUs, and provides an optimal CPU-specific baseline for the other performance

portable models. To readers familiar with the typical parallel programming stack, note that
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distributed parallel programming is briefly discussed in Section 3.5, but that threaded and on-

node performance is the principal focus of this thesis.

3.2.1 OpenMP 3 and Intrinsics

The OpenMP specification was first released in 1997, supporting thread-based parallelisation of

Fortran codes, with C/C++ support added shortly after. OpenMP 3 is the last specification of

the directive based programming model that did not contain the facilities for targeting heteroge-

neous processors using the target offloading model [16]. The specification is designed to allow

prescribed parallelism targeting multi-core CPUs and is readily adopted for threaded parallel

programming [32]. OpenMP provides an alternative to MPI for on-node parallelism, reducing

the amount of decomposition by leveraging the shared memory on a node.

The compilers available on modern supercomputers provide highly efficient implementations

of OpenMP, meaning that code written for one CPU is likely to be portable to other platforms

without significant changes to the parallel code [98]. When optimal CPU implementations are

presented in this thesis written in OpenMP, they are typically compiled with compilers providing

some level of OpenMP 4.5 support, but using only features and directives from the OpenMP 3

standard, and omp simd from OpenMP 4.0.

To achieve the best performance on CPUs it is possible to use architecture-specific intrinsics

that map more directly to machine instructions, or even inline assembly code. This can overcome

deficiencies in the compiler’s vectorising and optimising code generation passes and support

complex tasks such as explicit software prefetching. The intrinsic calls are not necessarily

portable between different generations of hardware, and are generally non-portable between

processors from different vendors.

Often, intrinsics routines are only used in high performance libraries, that have the resources

to support different versions for different processors. In HPC applications there would have to

be a strong motivation for a particular kernel to be translated into intrinsics, and typically to

motivate improvements in the compiler and libraries, rather than as a long-term solution. For

instance, the molecular dynamics code GROMACS uses a custom abstraction layer to allow the

use of SIMD instructions while retaining ease of portability [1].

3.2.2 CUDA

The potential for using GPUs in general-purpose computing meant that it was essential that a

software ecosystem was developed to enable research and adoption of such technologies [126].

The CUDA parallel programming platform and model was first released in 2006 to support the

offloading of computational tasks to NVIDIA graphics processors. The CUDA programming

model is a low-level C/C++ language extension that allows for fine-grained control of a GPU’s

hardware resources. If a developer requires maximum performance then CUDA and PTX provide

the greatest flexibility and control when targeting NVIDIA GPUs.

The adoption of the CUDA programming model within the scientific community is limited,

in part due to the complexity of the model, and also due to the proprietary nature of the

specification. The model is designed only for NVIDIA GPUs, meaning that there is good

functional portability between generations of those processors, but portability to GPUs or CPUs

from other vendors is unsupported. Typically, scientific application developers will rely on

higher level abstractions and high performance libraries. The Oak Ridge National Laboratory

supercomputer Titan was, at release, the largest supercomputer in the world, ranking first in
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the Top500 list, and was comprised of NVIDIA K20X GPUs [153]. The chosen strategy for

porting Oak Ridge’s scientific applications to run on Titan was via the OpenACC programming

model which will be discussed in Section 3.3 [15]. It does not appear that pure CUDA was ever

considered as a viable alternative for porting the scientific workloads.

In spite of this, expert developers may rely on the low-level power of the CUDA programming

model to develop high performance kernels where necessary. Further, the CUDA framework,

and in some cases the CUDA programming model, are essential for the development of high

performance abstractions and programming models. In Sections 3.3 and 3.4, models utilising the

CUDA framework will be discussed that offer portability to other processors while maintaining

a single codebase.

3.2.2.1 Execution Model

A brief description of the model will be provided, but the interested reader can refer to the

CUDA Programming Guide for more details [31].

Code Sample 3.1: Simple CUDA example.

1 __global__ void func(const int n, double* arr) {

2 const int i = blockDim.x*blockIdx.x+threadIdx.x;

3 if(i < n) {

4 arr[i] += 1.0;

5 }

6 }

7

8 void test(const double* h_arr) {

9 double* d_arr;

10 cudaMalloc(&d_arr, sizeof(double)*n);

11 cudaMemcpy(&d_arr, &h_arr, sizeof(double)*n, cudaMemcpyHostToDevice);

12

13 const int nthreads = 128;

14 const int nblocks = n / nthreads;

15 func<<<nblocks, nthreads>>>(n, d_arr);

16 cudaDeviceSynchronize();

17 }

Code Sample 3.1 presents a simple CUDA kernel, called from a host routine, and demon-

strates some of the most important features of CUDA programming. The global specifier

on Line 1 tells the compiler to generate device code for the subsequently defined routine. CUDA

kernels are issued to the hardware using hierarchical parallel structures: grids of blocks of

threads. There are limits on the size of each level of the hierarchy, but the threads are the

most constrained, allowing a maximum 1024 threads per block on the P100 and V100 compute

capabilities, for instance.

The number of threads is passed as a kernel launch parameter in Line 15 as 128 threads for

this kernel, and the number of blocks is then determined to be the length of the iteration space

‘n’ partitioned into chunks of length nthreads, where the chunks are named CUDA blocks.

Each thread is able to determine its location in the grid from the block ID and thread ID, as

seen in Line 2. It is important to note that the grid is issued at the block granularity, meaning

that if n % nthreads != 0, then the total number of threads in nblocks would be less than n

due to the truncation by division. To overcome this, it is possible to issue more than n CUDA
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threads (in blocks), perhaps by incrementing nblocks. The last block in the grid could access

out-of-bounds memory locations, which is why the code executed by the kernel is guarded with

a condition that ensures i < n.

Figure 3.1: The parallel hierarchy

exposed by the CUDA programming

model.

The array d arr is allocated on the device in

Line 10, and populated with the contents of h arr on

Line 11. Note that two pointers must be maintained

within the application, a host and a device pointer.

This can increase the overall burden of managing data

structures in the application as the number of pointers

is immediately doubled. In a proxy application this is

generally a minimal overhead but for large applications

it can introduce a significant burden to productivity un-

less abstracted away. The CUDA programming model

also provides the mechanisms to share the virtual ad-

dress space of the host and device, meaning only a single

pointer is necessary, and memory accesses are managed

with bi-directional page faults.

There is an additional layer of parallelism not exposed by Code Sample 3.1, which is the

concept of a warp, as seen in Figure 3.1. Warps are the finest level of parallelism, groups of

32 threads that are scheduled as a single entity to the target processor. In previous hardware

generations the warps have been guaranteed to operate in lockstep; however, the Volta archi-

tecture and CUDA 9.0 now support more fine grained synchronisation, with each thread of a

warp maintaining an individual program counter. Often, CUDA codes can be developed to be

warp-agnostic; however, all applications must choose a number of threads that is a multiple of

the warp size, 32.

3.2.2.2 Memory Model

The GPU manages multiple memory spaces, several of which will be considered in later chapters.

The key memory spaces will be briefly defined in relation to the Volta architecture:

• Global Memory: Stored in the GPU main memory, the highest latency and lowest

bandwidth memory space.

• Local Memory: Private to a thread, but accesses are cached in L1 and use interleaved

addressing so that accesses are coalesced if threads in a warp all access the same memory

location.

• Shared Memory: A programmable partition of the L1 cache that is shared amongst

CUDA blocks.

• Texture Memory: Device memory that is cached in the non-coherent texture cache,

allowing for higher bandwidth for memory accesses expressing some spatial locality.

• Constant Memory: Main memory that is cached in the constant cache, which is opti-

mised for broadcasting to threads in a half-warp.

Each of the memory spaces described is controllable to some extent, either by using a memory

space specifier such as shared or even through the use of inline PTX. The different spaces
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are exposed to account for different use cases and patterns, and this can be particularly powerful

when optimising applications. The ability to program the shared memory space, in particular,

can overcome the limitations of the GPU cache structure when compared to the large and

complex caches in modern CPUs.

3.2.2.3 Compilation and PTX

The CUDA programming model is part of the CUDA platform, which is now a mature parallel

programming software ecosystem providing an extensive tool chain [31]. CUDA code is first

compiled into an assembly form called PTX (Parallel Thread Execution), which can then be

compiled into SASS (Streaming Assembler) code that can be assembled into an executable

CUBIN binary format.

SASS is entirely proprietary and NVIDIA does not release details or documentation for it;

further, NVIDIA does not provide an open SASS assembler. So while there are some open

source attempts to provide the functionality, it is generally impossible to directly write SASS

code [54]. The level above SASS code, PTX, has extensive open documentation and the com-

piler, nvcc, is able to directly compile PTX code into an executable. An important difference

between SASS and PTX is that PTX is generation-independent, whereas SASS can vary be-

tween architecture generations. It is particularly important to the development of performance

portable programming models that it is possible to directly output and compile PTX code, as

this greatly increases the opportunities for the compiler to generate optimal code.

3.2.3 Exception to the Rule

There are few occasions where verifiable results demonstrate some performance portable model

is able to achieve better performance than one of the low-level languages like CUDA or OpenMP.

Typically, the CUDA or OpenMP implementation could simply be adjusted to manually apply

any optimisations, as the performance portable models will generally output device-specific code

like OpenMP or CUDA to the compiler. As discussed in Section 3.2.2.3, CUDA code is a level

above PTX, which is the lowest programmable level in the compilation chain. As a consequence,

there are rare opportunities to improve upon the performance of CUDA code if better PTX could

have been output.

During this project some contribution was made in collaboration with IBM research to the

campaign developing OpenMP 4.5 support in the Clang compiler. As part of the joint research,

it was discovered that the CUDA compiler cost model for generating non-coherent loads was

not optimal for all synthetic benchmarks investigated. It was possible to achieve marginal

improvements in performance over the generated CUDA code by emitting non-coherent loads

more sparingly [99]. If a user wanted to apply this optimisation to a CUDA code it is still

possible, but requires inline PTX. This is the only example of this particular issue observed

during the entire thesis, and in all other cases hand optimised CUDA could be tuned to achieve

equal or better performance than the other models.

3.3 Directive-based Models

Several directive-based models exist, but two options allow programming Intel CPUs and NVIDIA

GPUs, at the time of writing, which are OpenMP 4.5 and OpenACC. The directive-based mod-
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els allow parallel programming through the use of compiler directives (#pragma in C/C++, and

$! in Fortran), alongside a complementary runtime API.

3.3.1 Background

It was in 2013 that the OpenMP specification saw an explosion of features, designed to sup-

port the new trend of accelerator style processing. The features included a robust offloading

model that supported hierarchical parallelism and data movement [135]. OpenMP was not the

first directive-based models to successfully enable parallel processing on GPUs, the OpenACC

specification was. The history of OpenMP and OpenACC is turbulent, originating from the

decision of several members of the OpenMP ARB that the specification was moving too slowly

towards full accelerator support. This bore the initial OpenACC standard, which closely ap-

proximated the work already discussed for introduction into the OpenMP standard [170]. The

original intention was to utilise OpenACC as a research stepping stone to ultimately feed back

into OpenMP; however, this re-integration never occurred, partially due to the different paths

taken by each implementation.

An interesting comparison of the OpenACC and OpenMP specification was conducted by

Wienke et al. and speculated that OpenMP adoption might be higher in the long term as Ope-

nACC implementations did not support multi-cores [171]. Since that research, the PGI compiler

has successfully implemented OpenACC for multi-cores, including, more recently, AVX512 sup-

port. They also suggested that OpenACC was ahead of OpenMP in terms of functionality, but

as OpenMP heads towards OpenMP 5.0, the standards are becoming increasingly homogenised,

which means that translation is becoming easier between the two models. Active support for

OpenACC was discontinued in the Cray compilers around 2015, in favour of supporting the

OpenMP standard. The given justification for this decision was that OpenMP was an open

standard, a preference for supercomputer vendors who need flexibility in their choice of pro-

cessing technologies. In spite of this, OpenACC is now embedded in many production scientific

applications, including ANSYS Fluent, Gaussian, VASP, ACME, COSMO, and FLASH [124].

3.3.2 Models and Syntax

The increasing prevalence of GPU computing led to the consideration of directive-based models

as a solution for reducing complexity, thereby increasing productivity, and improving porta-

bility through standardised interfaces. The focus of this thesis is on the multi-threading and

offloading capabilities of the parallel programming models, and their impact on performance

portability [102] [99] [98]. A selection of the most pertinent directives and concepts are in-

troduced, and interested readers are referred to the OpenMP and OpenACC specifications for

further details [18, 125].

3.3.2.1 Execution Model

OpenMP provides the target directive for prescriptive offloading, while OpenACC offers two

directives: parallel, which supports a prescriptive parallelisation, and kernels, which supports

a descriptive approach. In all cases, the host will offload a region enclosed by a block structured

scope for execution on a target device.

Code Sample 3.2 shows three examples containing the least directives required to execute

parallel code on the GPU using OpenMP (Lines 1-4) and OpenACC (Lines 6-14).
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• Line 1 is the OpenMP target directive, and will result in the 100 iterations of the loop

being executed on a single execution unit of the target processor.

• Line 6 is the OpenACC parallel directive, which leads to one or more gangs being

initialised that will redundantly execute the region.

• Line 11 is the OpenACC kernels directive, where the code generation depends upon the

target architecture, and ability of the compiler to determine the independence of the loop

iterations. In the case that no loop carried dependencies are discovered, the N iterations

of the loop might be broken into gangs of workers and issued to the target processor in

parallel.

Code Sample 3.2: Parallel offload directives OpenMP / OpenACC.

1 #pragma omp target

2 for(int i = 0; i < N; ++i) {

3 // Some work

4 }

5

6 #pragma acc parallel

7 for(int i = 0; i < N; ++i) {

8 // Some work

9 }

10

11 #pragma acc kernels

12 for(int i = 0; i < N; ++i) {

13 // Some work

14 }

The kernels directive also instructs the compiler that it can balance parallelism amongst

loop nests as it deems most efficient, and even perform optimisations such as loop reordering.

This is important because it is the basis for a more descriptive approach to parallelisation,

which is somewhat akin to automatic parallelisation on a per loop basis, reducing the amount of

code that would need to change between target architectures, potentially benefiting performance

portability.

There is an argument that the descriptive approach, as offered by the kernels directive, can

lead to inconsistent outputs, as different compilers or compiler versions compile with different

parallel schemes depending upon their internal cost models. This places the burden of perfor-

mance optimisation on the compiler, which is a popular approach, as many scientific developers

would rather that the compiler was responsible for as much optimisation as possible. This does,

however, increase the complexity of implementing the standard, and make the results more

likely to be inconsistent between compilers. From the developer’s perspective, the descriptive

approach can significantly reduce the effort required to port a large application, but relies on

compiler intelligence and maturity for more complex kernels. Recognising the simplicity offered

by the kernels directive in OpenACC, a descriptive directive is planned for the OpenMP 5.0

specification.
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3.3.2.2 Parallel Hierarchy

The OpenMP 4.0 specification introduced the concept of leagues of teams of threads with vector

lanes, providing multiple distinct and controllable layers of parallelism. Instead of teams of

threads, OpenACC uses gangs of workers. A depiction of the parallel hierarchy can be seen

in Figure 3.3.2.2. With respect to NVIDIA GPUs, both teams and gangs can map directly to

CUDA blocks.

Figure 3.2: The models of parallel hierarchies provided by OpenMP and OpenACC.

In both models the parallel hierarchy can be explicitly controlled, using a range of different

directives and clauses. OpenMP provides a number of combined constructs, where multiple

directives are provided on the same line to provide some combined functionality. Importantly, the

combined constructs may have additional restrictions or characteristics that are not present with

the individual directives, and different compilers may implement the code generation differently

when using combined constructs.

Code Sample 3.3: Parallel offload directives in OpenMP.

1 #pragma omp target teams distribute parallel for simd

2 for(int i = 0; i < N; ++i) {

3 // Some work

4 }

Code Sample 3.3 shows the most expressive and important example of a combined construct.

In order to schedule the iterations of the loop onto the parallel hierarchy model, OpenMP requires

additional syntax beyond the target directive. The teams directive prescribes that multiple

teams should be created, and the master threads of each should execute the region redundantly,

while distribute schedules the loop iterations to teams.

A major issue uncovered as part of this thesis is that there are two justifiable approaches that

can be taken when implementing this offloading in a compiler [104]. Specifically, the final step

of worksharing the iterations amongst the team can be initiated by the parallel for, which

considers the OpenMP threads as mapping to the device threads, or the final work sharing can

map the vector lanes within the teams to the device threads. In fact, the Clang compiler adopts

the first approach, while the Cray compiler adopts the second approach.

The result is that the OpenMP code in Code Sample 3.3 will have a single thread per team,

with multiple vectors lanes for the Cray compiler, and multiple threads per team with a single

vector lane for the Clang compiler. This decision is problematic from a performance portability
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perspective; either the developer has to provide different directives depending upon the compiler,

or the compilers must correct the alternative approach and select sane defaults. In the case of

Cray and Clang, it is necessary that the developer provides the combined construct #pragma omp

target teams distribute parallel for simd. Failing to include the simd directive might

lead to poor performance on the Cray compiler if the loop analysis does not deem the loop to

be parallelisable.

Code Sample 3.4: Parallel offload directives in OpenACC.

1 #pragma acc parallel loop

2 for(int i = 0; i < N; ++i) {

3 // Some work

4 }

The equivalent loop in OpenACC is comparatively simple, as the same behaviour achieved

by the OpenMP combined construct target teams distribute parallel for simd should

theoretically be achieved by the OpenACC parallel loop directive. This approach is more

prescriptive than the kernels directive but more descriptive than the OpenMP combined con-

struct. In the case of nested loops for instance, the loop directive can be placed on each of

the loops and the compiler will make a determination about how the loop can be best mapped

to the architecture. For the PGI and Cray compilers, a gang maps directly to a CUDA block,

whilst the threads of a CUDA block map to lanes of the vector, as per the Cray mapping of

SIMD lanes to CUDA threads for OpenMP.

3.3.2.3 Memory Models

The offloading memory models in both OpenMP and OpenACC are designed to abstract the

host and device memory spaces, with some productivity enhancing syntax. The specifications

outline that implementations must manage the allocation of data on the target device, and then

maintain some mapping between a host pointer and the device pointer, such that a user sees only

a single pointer that can be used transparently in both the host and device code. The compiler

is responsible for determining the relevant pointer to use based on the contextual location of

the pointer dereference, i.e. a pointer used inside an OpenMP target region will lead to an access

to device memory. This overcomes the issue of managing multiple pointers as discussed in

Section 3.2.2 regarding CUDA.

Code Sample 3.5: Unstructured data movement directives.

1 #pragma omp target enter data map(to: arr[:N])

2

3 #pragma acc enter data copyin(arr[:N])

Code Sample 3.5 shows the unstructured data movement directives for both OpenMP (Line 1)

and OpenACC (Line 3). Both of the directives are equivalent and direct the compiler to allocate

some device memory for the pointer arr and copy the host data for arr to the device copy of

arr. It is now possible to use the pointer arr to access the device data if it is referred to within

within an OpenMP target region, or OpenACC parallel or kernels region. The same pointer

will reference the host data if referred to outside of those offload regions.

The structured data mapping regions provided by OpenMP 4.0 were found to be insufficient

for the purposes of porting larger software applications [102]. Using the structured data regions
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can lead to unnecessary data movement as they are limited to a block structured lexical scope.

Members of the OpenMP ARB raised the concern that the use of the unstructured regions

might lead to the introduction of memory leaks within an application. Although this is a

legitimate concern, scientific applications should develop robust memory management routines

to avoid such issues, and the unstructured data directives provide that flexibility for all supported

programming languages, without limiting the scoping. If memory management can be abstracted

within an application, it makes the entire structure cleaner and much easier to change models

in the future. It is a general recommendation of this thesis that the unstructured data mapping

directives are used in favour of the structured directives.

3.4 Abstraction Layers

Abstraction layers are an alternative parallel programming paradigm that rely upon an API of

routines, without requiring direct development within the compiler stack. C++ is a particularly

popular language for the development of abstraction layers because the semantics for generic

programming, via templates, allows compile time optimisation of routines using only standard

language features. Template specialisation can be used to provide device-specific implementa-

tions based on the template parameter, which are then handled at compile time [47].

3.4.1 RAJA

In this thesis, the C++ abstraction layer RAJA will be used to port a number of exemplar

applications alongside the other parallel programming models. RAJA is developed by Lawrence

Livermore National Laboratories and is specifically designed for porting large complex scien-

tific applications, allowing different back ends to target diverse architectures using the same

code. RAJA offers portability through C++ template abstractions, and the syntax means that

productivity can be greatly enhanced over writing individual architecture-specific codes.

RAJA has been chosen over Kokkos for this thesis as it makes it easier to maintain the existing

data structures for an application. This has benefits and limitations, but for the applications

ported in this thesis it was straightforward to introduce RAJA with only minor adjustments

to the computational kernels and specialisation of the data allocation features in the arch

project. In a real application it might be preferable to use the programming model’s own

memory abstractions, but it does not affect the findings presented in this thesis.

3.4.1.1 Execution Model

As previously discussed, the RAJA programming model relies upon C++ templates to abstract

the underlying implementation of a parallel loop. To make the API more accessible, the C++

lambda notation is used, which is a significantly more terse syntax than the alternative approach

of functors [103]. A fundamental principle in the development of RAJA was allowing the loop

body and loop traversal to be separated [67]. RAJA was designed to use abstractions on the

iteration space of a loop, enabling descriptions of complex access patterns such as blocking to

be encapsulated. Theoretically the abstraction can also be applied to the data structure ini-

tialisation, allowing for flexible reordering of loops depending upon the particular specialisation

determined by the policy.
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Code Sample 3.6: RAJA simple loop example.

1 RAJA::RangeSegment r(0, N);

2 RAJA::forall<exec_policy>(r, N, [=] RAJA_DEVICE (int i) {

3 // Some work

4 });

Line 1 of Code Sample 3.6 shows the iteration space abstraction RAJA::RangeSegment, which

describes a contiguous iteration space between the provided bounds, 0 and N. There are alter-

native abstractions to handle different patterns but RangeSegment is the most predominantly

used set when porting the exemplar applications in this thesis.

Line 2 commences the lambda function, which is a RAJA::forall, that will execute the loop

body in parallel using the provided segment. The execution policy is the key to specialising the

target of execution. If the provided execution policy is RAJA::omp parallel for exec, then

the back end specialisation for the forall routine will be OpenMP targeting multicore CPUs.

If the provided execution policy is RAJA::cuda exec<128>, then the back end will produce a

CUDA kernel that launches blocks of size 128 threads, targeting NVIDIA GPUs.

The lambda capture means that all variables in the enclosing scope can be referenced

from within the RAJA loop, and no explicit data movement syntax is required. The macro

RAJA DEVICE will inject the device specifier necessary for lambda routines targeting NVIDIA

GPUs, if the execution policy is targeting the CUDA back end.

Clearly, from the simple example presented in Code Sample 3.6, the concept of template

specialisation within C++ is extremely powerful for this purpose. Portability can be enabled in

an application without having to change individual characteristics of the parallel expression at

the loop body. This does not account for cases where specialisation of algorithms is required,

but it is quite conceivable that this could also be abstracted.

3.4.1.2 Memory Model

RAJA did not originally provide memory management functionality and so the user assumed full

responsibility for memory management. When using the CUDA back end, this would require the

developer to directly program the memory management in CUDA, and that is the approach taken

in the arch project. The subtle problem that comes about from directly managing memory when

programming with RAJA is that the pointers will be handled in the same fashion as CUDA when

the CUDA back end is compiled to, and OpenMP for the OpenMP back end. It is undesirable to

manage both host and device pointers within a production application, as previously discussed

with respect to CUDA in Section 3.2.2.

3.5 Message Passing

The message passing interface (MPI) is one of the best adopted parallel programming models for

scientific applications. MPI is efficiently implemented for modern supercomputers, and enables

distributed communications for the majority of applications. The characteristics and limitations

of MPI for scientific applications is well understood, and many large applications hosted by US

and UK national labs were originally written purely in MPI [59].

While it does provide some shared-memory facilities, MPI will not be strictly considered as a

programming paradigm and model in this thesis. The features provided by the MPI standard do

not currently support targeting accelerator or GPU style devices, meaning that shared-memory
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programming models are required to fill the gap. Pure MPI performance will provide a point of

comparison for the shared-memory models, and the instances where MPI poses limitations on

the performance portability of applications will be discussed throughout. MPI can be combined

with all of the parallel programming models discussed in this thesis, allowing shared memory

execution inside a domain with message passing between domains.

3.6 Domain Specific Languages

Domain Specific Languages (DSLs) could be considered an extension of an abstraction layer,

but that rather than simply abstracting the target hardware, the library also abstracts do-

main specific concepts. The languages are not designed for general purpose parallelisation of

applications, rather they are tailored to certain domains, encapsulating the key compute and

communication patterns required to optimised the codes for a specific type of application. Some

of the most well know examples of DSLs are stencil and mesh-based libraries, as the concept of

a stencil can be well abstracted and covers a great many scientific domains. The OPS and OP2

libraries, for instance, essentially encapsulate domain concepts of structured and unstructured

grids, enabling compile time optimisations and portability through C++ abstractions [134].

Some weather and climate codes have adopted DSLs, for instance, PSyclone is designed

specifically for use within the LFRic model. Lawrence et al. suggested that the DSL concept

allows a strong separation of concerns between the HPC experts who optimise for particular

architectures, and the domain scientists who want to express the algorithms necessary to solve

scientific problems [85]. The Exascale Computing Project1 includes DSLs in the PARSEC

project, the primary focus of which is distributed tasking for exascale [41]. DSLs are not directly

considered in this thesis, as the use of more general approaches is preferred when considering

diverse application types, as is the case in this thesis.

3.7 Performance, Portability and Productivity

Parallel programming models are often perpetually evolving to improve portability, productivity,

and performance through new features, while maintaining correctness. There is some disagree-

ment on how to reasonably quantify success in any one area [131]. The following section will

outline the most important issues relating to performance, portability and productivity, with the

focus being on those matters affecting scientific application development. Throughout Chap-

ters 5 to 7, concrete empirical data will be presented to support the discussion, and Chapter 8

will outline those significant issues that arise with production applications, beyond those issues

observed with research and benchmark codes.

3.7.1 Performance

Performance is an important focus in this thesis, but it is essential to motivate exactly why

performance needs consideration at all. There is a strong focus in computer science on the

adaptation of algorithms to improve their theoretical performance bounds. Some scientific do-

mains are at a level of maturity in terms of simulation that truly revolutionary algorithmic

changes are rare. Hydrodynamics, for instance, has been studied from a mathematical and

computational perspective for many years, and it is unlikely that vastly superior algorithms will

1https://www.exascaleproject.org
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be invented to solve existing hydrodynamical problems, especially given the elegance of current

solutions [136].

In some cases it is necessary to improve or develop algorithms to include new physics or

increase fidelity for novel purposes, which is likely accompanied by a period of high innovation.

Outside of those sudden advances, however, there are long periods of maintenance, where many

scientific institutions are simply concentrating on keeping the existing algorithms working effi-

ciently on the ever changing landscape of high performance architectures. Leaving applications

for long periods of time without considering the changes to new architectures can mean that the

codes perform poorly with respect to the improvements in the architecture. To take advantage of

the improvements in performance offered by each architectural generation, it is likely necessary

to make significant and far reaching adjustments to legacy codes.

The perception of performance of an application is generally relative to the particular prob-

lem, and possibly domain. Poor performance in time-sensitive weather codes, that have strict

restrictions on time to solution, might be considered reasonable performance in the domain of

astrophysics. It is not in the interest of this thesis to attempt to suggest what constitutes a

suitable absolute performance, but many of the discussions will consider the performance rel-

ative to some hardware limitation, particularly memory bandwidth and compute throughput.

It is also possible to compare performance between different implementations, and the results

of the arch implementations written using performance portable programming models will be

compared to the performance of the architecture-specific programming model implementations.

There are other measurements of performance that are important, but not directly consid-

ered throughout this thesis. For instance, power is an important point of comparison between

processors architectures, given that modern supercomputers are approaching the current limits

of feasible total power consumption.

3.7.2 Functional Portability

Functional portability is introduced into a language by building abstract models and spanning

the necessary features for targeting each architecture, but, without concrete implementations

of the specification, this portability will not be realised. As such, the observed portability of

each parallel programming language is often judged by compiler support rather than language

features. Language maturity can restrict the features enough that portability may not be pos-

sible for particular applications, but there are few portability issues that cannot be solved by

extending a specification to include new abstract models and syntax. The main problem with

this approach is that it is challenging to develop a cohesive language when multiple indepen-

dent actors contribute patch after patch to the original models. It is also undesirable to write

new programming models every time an architectural change occurs, as it requires significant

effort on the part of the language designers and the developers who have to learn a new model,

although this appears to be a popular strategy.

Portability was much less of an issue before the widespread use of accelerators, as, for some

time, the majority of high performance processors were CPUs. There is a wide array of compilers

supporting parallel programming models such as OpenMP targeting CPUs. Adding a diverse

architecture such as GPUs introduces many problems from the software environment down to

the application. Functional portability is a relatively binary issue; either an application will

successfully execute a test problem on a target platform or it will not. For the applications

considered in this thesis it was possible to run all test problems with the chosen combinations
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of programming models and processors with an acceptable time to solution, and so functional

portability itself was not a significant issue.

3.7.3 Productivity

Productivity is a more nebulous and qualitative subject than performance and portability, as

it is dependent upon the individual experience. It still remains an important characteristic of

parallel programming models, as scientific developers are keen to solve scientific problems rather

than concerning themselves with the details of complex models. As such, the language design

must offer a simple enough model that it is accessible, with enough functionality to ensure that it

is relatively complete and can express all of the patterns and algorithms that would be required

by the user. This is a challenging prospect, and can be influenced greatly by the model’s choice

of syntax and abstractions.

The primary challenge in the analysis of productivity is that it is highly subjective. The

metric of lines of code (LOC) is sometimes cited, but is reductionistic and often provides little

introspection, and is easily abused. Lopez et al. suggested that OpenACC is “usually sim-

pler than OpenMP” citing that the descriptive nature of the model reduced the programmer

burden [94]. Herdman et al. utilised the words of code (WOC) metric to compare the produc-

tivity of porting a code to CUDA and OpenCL versus OpenACC. They found that an order

of magnitude more WOC needed changing for the low level languages than the directive-based

OpenACC [62]. Hammond et al. used a slightly different metric, the number of sites changed,

to measure the impact of porting proxy applications to parallel programming models [57].

Although productivity is often discussed in terms of the features of the parallel program-

ming models, and the ease with which applications can be parallelised, it has been observed

that this is not necessarily the most important factor when porting a large legacy application.

Retrospectively considering the challenges faced preparing science codes for the Titan super-

computer, Wells et al. suggested that as much as 70-80% of programmer effort would be in the

restructuring of code to be made suitable for heterogeneous architectures [169].

3.7.4 Performance Portability

The topic of performance portability spans many challenges relating to the interaction between

the scientific applications and the target architectures. This section will introduce and consider

the key issues relating to performance portability, and the discussion will be continued in the

context of each of the scientific applications discussed in Chapters 5 to 7.

The issue of performance portability has become increasingly important as supercomputing

resources have diversified. Many scientific software developers are having to consider targeting

CPUs alongside different types of accelerators, for instance Intel Xeon CPUs, Arm CPUs, Intel

Xeon Phi Knights Landing CPUs and NVIDIA GPUs. This greatly complicates the program-

ming task, requiring developers to be familiar with multiple architectures, and possibly multiple

low-level programming models. Further, scientific codebases can be monolithic in structure with

millions of lines of code, and so supporting multiple architecture-specific versions of codebases

is likely intractable.
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3.7.4.1 Definition

Defining performance portability was revealed to be a challenging and contentious task [131].

Over the last couple of years, performance portability has been shown to be a major issue

facing the future of scientific progress. Groups of scientists have begun meeting annually for the

Performance Portability Workshop2 and related workshops at SC and ISC, in order to tackle

the challenges introduced by increasing hardware complexity. At the workshop, prominent

domain scientists, computer scientists and industry experts struggled to clearly agree on the

exact definition, although there was good consensus on some of the key characteristics that a

performance portable solution would need to present.

This thesis recommends that the definition, while aspirational, is not strictly important, as

different computing centres can maintain definitions relative to their own expectations. The

throughput requirements of weather centres are far more restricted than those of other domains,

for instance. This suggests those developing weather codes might prefer a stricter definition

of performance for a particular code, where 25% increased runtime might mean the difference

between a prediction being on time or not. A typical scientific lab is unlikely to be burdened

by such deadlines, meaning 25% has been cited as an acceptable trade-off [80].

It is possible to construct artificially performance portable solutions that simply maintain

individual algorithms per architecture, but this would greatly increase the code size and main-

tenance costs. Key papers relating to performance portability within scientific institutions cite

working towards single source portability [115] [75] [129]. The rigid restriction of a single source

approach might be too limiting, however, as it is essential that specialisation is possible when al-

gorithmic choices will lead to significant differences in performance. As such, productivity must

also be considered, meaning that when the term performance portability is used, it is somehow

tacit that productivity is a firm requirement also.

It is understood that improving one of the three characteristics in a problem might lead

to another characteristics suffering, for instance, performance is improved at the expense of

productivity with specialisation of algorithms to particular architectures. Achieving an academic

expectation of performance portability is unlikely in a real world environment, and sacrifices and

comprimises are necessary.

“In this thesis, performance portability is interpreted as a characteristic of programming en-

vironments and applications requiring that neither performance, portability, nor productivity

are neglected in favour of another in a manner that will prove detrimental to an application’s

long term capability.”

This could have been further strengthened to suggest that performance portability should

even account for future changes to architectures, but, given the radical differences between CPUs

and GPUs, it is clear that this would be challenging to fulfil. Some expect it to be impossible

to find a solution that allows perfect performance, portability, and productivity, however, it

should be possible to find reasonable solutions for most applications. To achieve this goal, each

of the scientific institutions need to compromise based on the most important qualities that are

required of a particular selection of programming environments.

2http://performanceportability.org/
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3.7.4.2 Inter-compiler Performance Portability

Depending upon the complexity of an application, there might be issues with the performance

portability of a particular model between different compilers.

Figure 3.3: Inter-compiler performance portability of arch applications on a Skylake CPU.

Figure 3.3 demonstrates the differences in performance of compiler implementations for

OpenMP code. The results are collected on dual sockets of 28-core Intel Xeon Skylake (8176)

CPU. The compiler versions used are: PGI 18.5, CCE 8.7.4, GCC 7.3, and Intel 18.3. Both the

heat diffusion and fluid dynamics codes demonstrate small (less than 10%) differences in the per-

formance of the compilers, which would not affect the scientific throughput enough to warrant

any additional effort. In the case of neutral, however, the performance between the compilers

is surprisingly varied. Note that neutral does not have an optimal MPI implementation so the

results are omitted. The PGI results for neutral, in particular, show an inefficient handling

of atomic instructions which leads to the routine being treated as if it were a critical region.

It is possible to instead use the LLVM back-end for the PGI compiler, and the correct atomic

instruction is generated and the performance is within reasonable limits. This does, however,

serve as an example that certain compilers might offer different levels of performance portability

simply because of differences in implementation.

3.7.4.3 Performance Portability for Programming Models

As part of this thesis it was determined that a number of practices could be followed for perfor-

mance portability, specifically for OpenMP targeting accelerators [104]. The first key point was

to use the combined construct #pragma omp target teams distribute parallel for simd

wherever possible. It is hopefully true that a large proportion of the kernels in a scientific appli-

cation simply have one or more, potentially collapsible loops, that can be considered independent

and scheduled onto the target accelerator. Of course, there may be kernels where this logic does
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not apply, and more specific fine-tuning may be required to achieve good performance. The

combined construct is the best way to prescribe that those loops are independent, in a manner

that will typically be consistently handled by a majority of compilers.

The second key point was that when implementing an application using OpenMP, it might be

tempting to tune particular parameters for the intended target architecture. This is a significant

risk in terms of performance portability for OpenMP, as there are no robust mechanisms to

manage this using the model. It is often best from a performance portability perspective to

allow implementation defined parameters to be chosen by the compiler unless performance is

significantly harmed. This point was later corroborated by researchers at Oak Ridge National

Laboratory [94].

OpenACC has some additional syntax to aid performance portability, the device type

clause, which limits configurations to specific targets, for instance number of gangs or work-

ers. This can improve performance portability, although it does increase the complexity at the

loop body [27]. Sidelnik et al. suggested that a major issue for performance portability within

a programming model was the need for the developer to directly manage data transfers [148].

Newer versions of the CUDA platform support managed memory, where data is moved implicitly

between the device and host. This change to the CUDA platform immediately enabled the same

functionality in RAJA without any changes to the source. As such, higher level languages might

benefit from improvements in the lower-level platforms with minimal changes, and potentially

no changes to the application, which greatly improves the productivity of maintenance of an

application.

3.7.4.4 Algorithmic Performance Portability

As stated by Edwards et al. many legacy codes were simply not designed for thread parallelism,

meaning that they are unlikely to perform well until they have been optimised for threading [47].

This is a consequence of the majority of early scientific codes being developed with MPI and

Fortran, which were unburdened from the issues of shared memory parallelism. It is shown later

in this thesis that the most efficient algorithms for particular architectures can be different, for

instance, the case shown in Chapter 5 improves as much as 5x through the use of a specific

algorithm when executed on a CPU. As previously eluded to in Section 3.7.4.1, this introduces a

requirement for specialisation within an application, tailoring key algorithms for certain target

architecture.

This is a powerful technique when a small number of kernels within an application require

specialisation, but can result in the codebase bloating and inadvertently becoming multiple

codebases, directly contravening the purpose of performance portability. Where possible, an

alternative approach is to find common ground between algorithms and attempt to write a

single algorithm that limits the impact of homogenisation on either architecture. This approach

must generally rely on some parameterisation in order to achieve reasonable performance on

both targets, which introduces a search space problem that can be solved with auto-tuning [77].

3.7.4.5 Achieving Performance Portability

Many programming models purport to provide performance portability, where they realistically

only guarantee portability, given compiler support, and correctness, with some also offering

significant benefits to productivity or tuning for performance. Some studies have already shown

good results; for instance, the University of Bristol HPC group has been able to achieve good
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performance portability for a number of application types across multiple modern processors

with the majority of the most used parallel programming languages [111] [103] [35]. Hohnerbach

et al. achieved performance portability for a molecular dynamics simulation through designing

portable algorithmic optimisations [66].

In this thesis, the analysis of performance portability will be performed on a case by case

basis with individual exemplar applications. It must be understood that the task of proving per-

formance portability for all architectural configurations, application domains, and programming

environments is beyond the scope of this thesis, but an attempt is made to cover key combi-

nations. In Chapter 8 it will be shown how real production applications begin to introduce

complexities rarely seen in benchmark codes and research applications, that can have a signif-

icant impact on performance portability. This makes it hard to generalise results and findings

to real production applications, but it is possible to account for some of the features that might

have the greatest impact.

3.8 Summary

In this chapter, a number of key parallel programming models have been introduced: OpenMP,

OpenACC, RAJA, and CUDA, all of which will be used to port proxy codes developed as part

of the arch suite of applications. Some of the models are marketed as performance portable,

providing multiple back ends to target modern heterogeneous parallel processors, including Intel

Xeon and Xeon Phi CPUs, and NVIDIA GPUs. Developing effective parallel programming

models is a complex art, requiring that the specification writers introduce enough features

for completeness, whilst making the model accessible enough that productivity is high. The

success of the programming model is often judged on the quality of the implementations, as

it is expected that they can achieve a high fraction of peak performance on the supported

architectures. Further, the usability and intuitiveness of the syntax are important points of

comparison, and cannot be neglected from the consideration of a parallel programming model’s

efficacy.

The topic of performance portability has been considered, constructing a definition that will

be used throughout this thesis, and exposing the key characteristics required for a performance

portable solution. It is an important consequence of the definition that the strictest single-source

requirements are relaxed, and specialisation of algorithms is permitted as long as it does not

create undue support burden. This discussion has shown that there is no single answer to the

performance portability issue, but that some research has shown good performance portability is

possible with specific codes. It is increasingly important that progress is made towards improving

the current state of programming environments and development practices to account for future

architectural changes.
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4.1 Introduction

Throughout this thesis the performance of applications will be considered on a range of modern

parallel processors. To clearly demonstrate the bounds of particular algorithms and applications,

it will be important to know many details of the target architectures. This information is in

some cases readily available, but different sources disagree on particular aspects of the processor

performance characteristics, and finding accurate data about specific processor bins is not always

possible. As such, this chapter focuses upon collecting accurate performance data about each

of the processors used in this thesis, alongside a discussion of the impact of each processor’s

design and performance characteristics. It will be shown in Chapters 5 to 7 that the collected

data is essential for describing and understanding the performance of the exemplar applications

in arch.
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4.2 Processor Configurations

Attempts to optimise HPC software typically require an intimate understanding of the target

architectures. There are many choices in processor architecture available, but in Europe and

the U.S., the supercomputing market is currently dominated by Intel, IBM, and NVIDIA [154].

Many parallel processors will be considered throughout this thesis, but the three most recent

processors from Intel and the two most recent processors from NVIDIA will be the primary

focus.

4.2.1 Intel CPUs

The Intel CPUs considered in this thesis span the last two generations of Intel Xeon processor

and the most recent Intel Xeon Phi processor.

CPU Cores/Socket Sockets CPU Clock

Intel Xeon Skylake (Platinum 8176) 28 2 2.1 GHz

Intel Xeon Broadwell (E5-2699v4) 22 2 2.2 GHz

Intel Xeon Phi Knights Landing (7210) 64 1 1.3 GHz

Table 4.1: Details of the key Intel processors used in this thesis.

Unless otherwise stated, all results in this thesis collected on the CPUs are for code compiled

using the Intel compilers version 18.3, and the Skylake and Broadwell results are for dual-socket

configuration.

Table 4.1 shows that modern Intel processors have a high core count and relatively low

base clock speed. The Intel Xeon Phi architecture takes the concept further with a reduced

clock speed in comparison to other models, but higher core count and high bandwidth memory.

Further details about the processors can be gound in Section 4.3.

4.2.2 NVIDIA GPUs

In this thesis, a number of generations of GPU will be used to investigate the performance of

the arch applications.

GPU SMs Architecture GPU Boost Clock

NVIDIA V100 GPU 80 Volta 1.53 GHz

NVIDIA P100 GPU 56 Pascal 1.48 GHz

Table 4.2: Details of the key NVIDIA GPUs used in this thesis, including streaming multipro-

cessor (SM) count.

All results in this thesis collected on the P100 and V100 GPUs are for code compiled using

CUDA 9 and GCC.

Table 4.2 presents key statistics for each of the GPU models, and shows that key parameters

have increased from generation to generation. The number of streaming multiprocessors (SMs)

have been increased between the architectural generations, and there have been changes to the

warp scheduler structure, which will be discussed in Section 4.4.
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4.3 Intel CPU Background

The Intel processors considered in this thesis are at different stages of maturity and have different

levels of adoption. The Intel Xeon Skylake CPU is, at the time of writing, the newest server-

grade processor available from Intel and features in 15 of the Top500 fastest supercomputers

in June 2018, although it has no entries in the top 10 yet. The Intel Xeon Broadwell CPU is

the previous generation and features in 246 of the Top500 list. The Intel Xeon Phi Knights

Landing CPU is the newest Xeon Phi product from Intel and features in 27 of the Top500

fastest supercomputers, of which 2 are in the top 10. Those supercomputers are Cori at NERSC

(9688 KNLs) and Trinity at Los Alomos National Laboratory (9984 KNLs). As such, the Intel

server-grade processors discussed in this thesis are important targets for optimisation efforts.

Device Broadwell Skylake KNL

Cores / Socket 22 28 64

L1 Data Cache Size 32 KiB / core 32 KiB / core 32 KiB / core

L2 Cache Size 256 KiB / core 1 MiB / core 1 MiB / tile

L3 Cache Size 2.5 MiB / core 1.375 MiB / core n/a

SIMD ISA AVX (256b) AVX512 (512b) AVX512 (512b)

DP Compute Throughput 0.99 GFLOP/s 1.70 TFLOP/s 2.66 TFLOP/s

Memory Bandwidth 76 GB/s 127 GB/s 460 GB/s

Table 4.3: Details of the key Intel CPUs used in this thesis. Note that a tile refers to a pair of

cores on a KNL.

The data in Table 4.3 shows that there has been a significant increase in the number of cores

and vector lanes between generations of the Xeon CPUs, with a large increase in computational

throughput as a result. There has also been a significant increase in the memory bandwidth

from DRAM between the Broadwell and Skylake CPUs, which is due to increase in the number

of channels on the Skylake memory controller. The KNL is a different architecture to the

other two CPUs, and offers high bandwidth memory (MCDRAM), which is rated to have 80%

more bandwidth than the dual-socket Skylake configuration. The KNL has lower peak compute

throughput than dual-socketed Skylake CPUs, primarily due to the low frequency of the CPUs.

The cache architecture has changed between the Broadwell and Skylake CPUs, as the size of

the L2 cache is greatly increased in the latter, and the L3 cache has been reduced and made

non-inclusive.

All of the results presented in this section are for the values that are determined based on

the configuration of the processors and memory controllers, but empirical data will be provided

in this section to demonstrate the achievable throughputs.

4.4 NVIDIA GPU Background

NVIDIA GPUs were originally designed to offload graphical tasks from the host processor, for

video graphics applications such as video games and film rendering. In recent years, NVIDIA

demonstrated the applicability of such processing technologies to a number of diverse compute

domains. They now provide an extensive software infrastructure, and HPC processors, offering

double precision compute units and large register files, that feature in 97 of the fastest super-

computers in the world. The NVIDIA V100 GPU is, at the time of writing, the newest Tesla
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GPU available from NVIDIA, and features in 11 of the Top 500 fastest supercomputers, 3 of

which are in the top 10. Those supercomputers are the 3rd fastest in the world Sierra (17280

V100 GPUs) at Lawrence Livermore National Laboratory, and the fastest supercomputer in the

world, Summit (27600 V100 GPUs) at Oak Ridge National Laboratory [154]. The P100 GPU

was the generation before the V100 GPU, and features in the 6th largest supercomputer in the

world, the Swiss national supercomputer Piz Daint, which contains over 5000 hybrid compute

nodes with an Intel Xeon CPU and NVIDIA P100 GPU. NVIDIA GPUs also feature in 7 of the

top 10 Green500 supercomputers, and the Summit supercomputer is the fastest supercomputer

in the world, but also the 5th most energy efficient supercomputer in the world.

Device Tesla P100 Tesla V100

SMs 56 80

FP32 cores / SM 64 64

FP64 cores / SM 32 32

Tensor cores / SM - 8

Boosted GPU clock 1.48GHz 1.53GHz

Shared Memory / SM 64KB 96KB

L2 Cache Size 4096KB 6144KB

Global Memory Size 16GiB 16GiB

Peak DP Throughput 5.3 TFLOP/s 7.8 TFLOP/s

Peak Memory Bandwidth 732GB/s 900 GB/s

Table 4.4: Details of the key NVIDIA GPUs used in this thesis.

Table 4.4 shows that the performance has improved significantly between the two generations

of GPU, even though they were both released within a short period of time. The key differences

are that the number of streaming multiprocessors has increased, new Tensor cores have been

added for deep learning workloads, and the memory bandwidth has been improved. Extensive

details about the improvements made in the V100 GPU can be found in the V100 whitepaper

and CUDA Programming Guide [123] [31].

In most cases, it should be straightforward to move applications from the P100 to the V100

and observe significant increases in performance due to the improvements to compute throughput

and memory bandwidth. In spite of this, increases in shared memory capacity, and streaming

multiprocessor count might require retuning of parameters or adaptations to algorithms. Also,

the new design for intra-warp synchronisation invalidates some early optimisations that relied

on warps acting in lockstep and thereby not requiring synchronisation [31].

4.4.0.1 Scheduling in Streaming Multiprocessors

A key component of the GPU architecture is the use of warp schedulers, which encapsulate the

resources that work can be scheduled to in a streaming multiprocessor (SM). Figure 4.1 shows the

adjustment to the warp scheduler layout, where the number of floating point units is maintained

but the number of warp schedulers is doubled in the V100 and each SM is only capable of

processing half the number of threads of a warp per cycle. Much of the scheduling process of the

SMs is left as implementation defined or unspecified in the NVIDIA documentation. Some of

the concepts are relatively transparent, as the scheduler must be capable of performing known

scheduling tasks, such as issuing blocks to SMs, and warps to warp schedulers within an SM,
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Figure 4.1: The layout of streaming multiprocessors in the P100 and V100 GPUs.

but the exact details are not well published on.

To test the scheduling of blocks to SMs it is possible to fetch the streaming multiprocessor

ID for a particular block using the %smid register in inline PTX. On the V100, given a kernel

that can fit 8 blocks per SM, the scheduler appears to issue the first 40 blocks (block IDs 0-39)

to even SMs and the next 40 blocks (block IDs 40-79) to odd SMs. This behaviour continues

until there are 8 blocks per SM, at which point the scheduler can no longer issue blocks to SMs

until blocks have been retired. The same behaviour is seen with the P100. It has also been

shown by Jia et al. that the scheduling of warps to warp schedulers is as warp id % 4 on the

V100 GPU [72].

4.4.0.2 Kernel Launch Overhead

Using the approach discussed by Volkov et al., the kernel launch overhead was measured for a

number of generations of NVIDIA Tesla GPUs [168]. A large number of kernels were launched

asynchronously, but in a slight adaptation to the concept presented by Volkov et al. the kernel

was left empty.

Figure 4.2: Overhead of individual kernel launch per generation.

It can be seen in Figure 4.2 that the kernel launch overhead has steadily improved over

successive generations, but only by a small percentage each time. The kernel launch overhead

is still significant and it is essential that the amount of work in each computational kernel is
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sufficient to amortise this cost. In most of the applications considered in this thesis it is possible

to construct large kernels that have individual runtimes significantly greater than the kernel

enqueue overhead. There will, however, be an application where the problem of kernel launch

overhead needs to be considered; this case will be discussed in Chapter 5.

4.5 Memory Bandwidth

The rate at which compute performance has grown has not been matched by equivalent increases

in memory performance, and the problem has continued over the last two decades [110] [107].

As will be shown throughout this thesis, memory bandwidth is an important factor in the per-

formance of many scientific applications, and is often the limiting factor to single node runtimes.

Memory bandwidth can be easily measured on modern processors using micro-benchmarks, such

as STREAM1 and BabelStream2 [106] [35]. The four kernels used to measure bandwidth in this

thesis measure: streaming reads (read), streaming writes (write), streaming read then writes

(read write), and the traditional triad kernel of STREAM (triad).

Figure 4.3: Memory bandwidth of four streaming kernels on parallel processors (see Section

4.2).

The memory bandwidth results in Figure 4.3 show that the NVIDIA P100 and V100 GPUs

offer the highest memory bandwidth for all kernels. As previously discussed, both of the pro-

cessors are packaged with high bandwidth memory, specifically HBM and HBM2, respectively.

The KNL also offers a high bandwidth memory, MCDRAM, but does not achieve the same level

of memory bandwidth, although it is significantly faster than the Skylake and Broadwell. The

Skylake still uses DRAM but improved the memory bandwidth over the previous generation,

the Broadwell, by increasing the number of channels on both memory controllers from 2 to 3.

Interestingly, for both the GPUs, the best memory bandwidth performance can be achieved

using either pure reads or pure writes, with no substantial difference between them. For the

CPU technologies, on the other hand, the write bandwidth is significantly lower than read,

read/write or triad. In the case of the KNL, both the pure read and pure write tests score

significantly lower than the triad benchmark. This is important when evaluating results for

particular kernels, as the expected upper limit will be different based on the balance of reads

and writes within the kernel for the CPU code.

1https://www.cs.virginia.edu/stream
2https://github.com/uob-hpc/babelstream
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4.6 Memory Latency

Instruction latencies are measured in Appendix A, but in this section the memory latency of

different levels of cache for each processor are considered. Using a pointer chasing approach

inspired by ‘lat mem rd’ from lmbench, a new latency testing benchmark3 was developed for the

purposes of this thesis [152]. Accurately measuring latency requires care due to hardware and

software mechanisms that attempt to optimise away latency overheads. The pointer chasing

method greatly improves the accuracy of measurement of accurate CPU cycles by avoiding

compile time optimisations and inhibiting prefetching. The benchmark measures the latency

from cache or main memory to registers by stepping through a large array that acts as a ring

of points with strides at the granularity of a full cache line.

The choice of stride is important; by choosing an array length that is a power of 2 and stride

of 5, the ring of pointers is defined such that some prefetching mechanisms are avoided on the

CPU and KNL. For instance, the hardware prefetching of up to 4 contiguous cache lines can be

avoided without having to disable prefetching in the BIOS. Further to this, a choice of a prime

stride will ensure that the entire array can be read by a single core in a strided sequence without

collisions.

The primary reasons for developing a new benchmark was that there was no open source

option for the NVIDIA GPUs, and it was preferable to apply a consistent approach for the CPU

and GPU. At the time of writing, a thorough literature review could not uncover any prior

attempts to plot the latency of Intel CPUs and NVIDIA GPUs alongside eachother. The results

are quite relevant to the optimisation of the Monte Carlo neutral particle transport application

neutral, discussed in Chapter 5.

4.6.1 Implementation

As discussed, the CPU implementation uses the known method of pointer chasing, and only

a single core participates in the memory accesses. On the GPU there are a number of other

considerations that mean that it is necessary to tailor the benchmark to the architecture. The L1

data cache is invalidated between kernel calls, and so it is no longer possible to perform a single

warmup cycle before the test cycle. Instead the single thread launched on the GPU performs an

un-timed warmup cycle through the entire array to ensure that data is resident in the highest

possible level of cache prior to executing the pointer chase. The pointer chasing routine fetches

the clock using the CUDA intrinsic routine before and after the operation has been performed.

A large enough number accesses are performed to amortise the timing overheads introduced

by the intrinsic calls. This is similar to the approach of Mei et al. except that the timing is

placed outside of the iterative loop and the pointer chase accesses are performed at the cache

line granularity [113].

4.6.2 Results

In this section the results of the benchmarks will be presented, with all results plotted together

to make it easier to compare the results between different architectures.

Figure 4.4 plots the latency in CPU cycles for memory requests as the working array size is

doubled. The Intel Xeon Skylake results exposes a four tiered memory hierarchy, where the first

plateau is L1 (4 cycles), then L2 (14 cycles), then L3 (70 cycles), and finally DRAM (300 cycles).

3https://github.com/uob-hpc/lats
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Figure 4.4: Memory latency in cycles for all considered HPC processors.

The KNL results show the latency for the two different types of main memory available to the

CPU: DRAM and MCDRAM. There are again clear plateaus in the plot; however, compared to

the Skylake latency plot there is one fewer plateau, due to the KNL having L2 as the last level

of the memory hierarchy. The levels are L1 (4 cycles), L2 (17 cycles), and then DRAM (184

cycles) or MCDRAM (222 cycles), as the KNL does not have a level 3 cache. It is interesting

to note that the latency of MCDRAM is 21% higher than the latency for accessing DRAM, an

important trade-off for the high bandwidth. Each level of the CPU memory hierarchy is at least

3.5x slower to access than the previous level. The longest latency is 300 cycles to DRAM for the

CPU and 222 cycles to MCDRAM for the KNL, meaning it is necessary to expose a significant

amount of concurrency to amortise those latencies. The KNL results corroborate those collected

by McCalpin in 2016 [109].

The data in Figure 4.4 shows that the V100 significantly improved the latency of each level

of the memory hierarchy, when compared to the P100 GPU. The improvement was roughly 490

cycles for the P100 to 406 cycles for the V100 in HBM2, 240 cycles for the P100 to 200 cycles

for the V100 in L2, and 84 cycles for the P100 to 28 cycles for V100 in L1. An NVIDIA white

paper regarding the V100 GPU details the improvements to the L1 cache, which is merged with

the shared memory subsystem, improving bandwidth and reducing latency [123].

Figure 4.5 transforms the same data presented in Figure 4.4, scaling the results by the

CPU clock speed, in order to demonstrate the extent of the latency optimisation. The memory

latency disparity is even larger between the V100 GPU and Intel Xeon CPU than Figure 4.4

suggests. There is an important reason for this architectural decision, and that is that NVIDIA

GPUs utilise high concurrency to hide latencies, rather than optimising for latencies. NVIDIA

GPUs allow essentially free context switching as each warp scheduler maintains a finite number

of active warps, such that the warp states do not need to be written back to DRAM when

switching between them [167]. Given enough independent instructions, the warp schedulers

can amortise the high latency costs to memory. In contrast, Intel Xeon CPUs leverage deep

latency-optimised memory hierarchies to achieve the same purpose.

Another possible observation in the latency plots (Figures 4.4 and 4.5) is the point at which

memory accesses fall from one level of the hierarchy to a subsequent level. For the L1 cache the

Intel Xeon and Xeon Phi processors spill at 32KiB, while the NVIDIA P100 GPU spills at 16KiB



CHAPTER 4. HPC ARCHITECTURES 54

Figure 4.5: Memory latency in nanoseconds for all considered HPC processors.

and the V100 spills at 64KiB; in fact the P100 L1 cache is actually 24KiB but the granularity of

the benchmark does not capture this. A similar pattern is exposed for the L2 cache, where the

Intel Xeon and Xeon Phi CPUs begin to spill at 512KiB, although the apparent transition to

L3 cache is not immediate and, for the Skylake, the majority of the performance is maintained

until 1MiB, which is the L2 capacity for a single core. The L2 cache is shown to be equal in

size between the P100 and V100 GPUs at 4MiB; however, the size of the V100 cache is actually

slightly larger at 6MiB [123]. It is also possible to note from the results that, different to the

Intel CPU L2 cache, the full cache is shared between all multiprocessors meaning that a single

thread can access the entire capacity with a consistent latency.

4.7 In Flight Memory Requests

The latency benchmark lats showed that the memory bandwidth achieved when performing a

chain of dependent loads is much lower than the maximum possible bandwidth of the system,

as would be expected. For example, the Skylake CPU achieved:

64B× 3.69GHz

298 cycles
= 800MB/s (4.1)

If it were possible to issue a greater number of independent loads that could be serviced with

some concurrency then the expected memory bandwidth could approach the true limit. For

instance, the bandwidth benchmark showed a peak memory bandwidth for reads of 229 GB/s

for the dual-socketed Skylake CPU. Assuming that all cores of both sockets would be required

to maximise the loads in flight, the clock would turbo to 2.8Ghz, and so:

229GB/s× 298 cycles

64B× 2.8GHz
= 380 loads in flight (4.2)

This means that the CPU would be required to place around 7 loads in flight per core to

saturate memory bandwidth. For the NVIDIA V100 GPU, the peak memory bandwidth was

894GB/s for reads, the latency for a single load from HBM was 400 cycles, and the turbo clock

speed is 1.53GHz:
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894GB/s× 400 cycles

64B× 1.56GHz
= 3582 loads in flight (4.3)

This shows that the NVIDIA V100 GPU requires many more loads to be maintained in flight

than the CPU, at around 45 per SM. The NVIDIA GPU contains 80 streaming multiprocessors,

which can each maintain a maximum of 64 warps (of 32 threads), meaning 80× 64× 32 threads

could be available to launch memory requests.

4.8 Random Memory Access

Typically, memory bandwidth is measured as effective memory bandwidth, where the number of

bytes read and written is divided by the runtime. The analysis of the number of bytes read and

written can be ad-hoc or measured directly, but the result is that locality is handled implicitly.

For random accesses, the assumption is that locality cannot be expressed and therefore there

will never be a possibility to improve the effective part of the bandwidth. Each individual

read is actually transfered at the granularity of a cache line, even though the memory access

generally results in only a single element of that cache line being utilised for the function of

the application. Considering the memory accesses at the cache line granularity exposes the true

bandwidth of memory accesses.

4.8.1 Random Memory Access Benchmark

Some prior work on measuring random memory access performance focused on the Cell proces-

sor, and the efforts were added to the HPC Challenge benchmarks [2] [144]. The approaches and

benchmark do not fulfil the requirements of this thesis for multiple reasons. Benchmarks are

needed that expose random memory access performance using in-loop random memory access,

as well as showing the performance on modern GPUs. Two possible approaches that can be

taken to measure random memory accesses, each with benefits and limitations:

• Random memory accesses can be performed using random number generation within the

loop body. This has the potential to introduce overheads due to inefficiencies in the random

number generation process, but might be more representative of real world cases.

• Random numbers can be pre-computed to construct a random walk through memory and

accessed as an indirection. This increases the memory footprint, affecting the observed

memory bandwidth results.

A more powerful approach is to use the pointer-chasing method, as discussed in the latency

benchmarks (Section 4.6), so that the pre-computation of random walks does not require addi-

tional memory costs. Using this approach, a new random memory access benchmark, random4,

was developed for the purposes of this thesis in order to explore the performance of random mem-

ory accesses on modern HPC processors. The benchmark is multi-threaded for both CPU and

GPU, vectorisable, and can be run with the arithmetic-free approach of pre-computed random

walks, or the traditional approach of in-loop random number generation.

4https://github.com/uob-hpc/random
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4.8.1.1 Implementation

The benchmark initialises memory that is large enough to provide NBLOCKS unique cache lines for

each thread to read. Each block contains NTHREADS × NLANES cache lines, where NTHREADS is

the number of threads and NLANES is the number of vector lanes, specific to the target processor.

After the first initialisation step, each cache line contains a pointer to a unique cache line in the

subsequent block, offset by some random distance, with the last block pointing to the first block

in order to construct a ring. Figure 4.6 (left) shows a ring of pointers for thread 0 for cache

lines 0→ 12→ 19→ 30→ 0.

Figure 4.6: Block layout for the initialisation (left) and block shuffling (right) of memory in the

random memory access benchmark. Each numbered square represents a unique cache line.

Subsequently, a random shuffling is performed on the pointers by removing each pointer and

reinserting it into a random location in the same walk, as seen in Figure 4.6 (right). As such,

each thread accesses random entries of random blocks, ensuring there is no bias or patterns

introduced in the memory accesses. Further, every cache line is accessed exactly once, avoiding

any incidental locality.

Figure 4.7: Frequency of cache lines accesses.



CHAPTER 4. HPC ARCHITECTURES 57

The second mode in the benchmark generates random numbers using the PCG random

number generation library on each iteration of the loop [127] . A particular vectorised version

of the library, provided by Intel, is used to enable vectorisation within the benchmark. The

benchmark is parameterised so that the same number of memory accesses is performed as with

the pointer chasing benchmark; however, the truly random selection of cache lines from the

large one-dimensional array will result in collisions. Figure 4.7 shows the distribution of random

accesses to cache lines for a large set of blocks. Given that the number of random accesses N

is equal to Nc the number of cache lines, and the random number generation is unbiased, most

cache lines are either accessed once or not at all. This means that the number of independent

cache lines accessed during the benchmark using RNG is 30% less than the pointer chasing

benchmark. In spite of this the total memory access in terms of number of cache lines accessed

is equivalent for both benchmarks.

Another key difference to consider is that the random number generation is performed in the

loop and so the instructions might have some influence on the overall performance, which will be

discussed and considered. As such, this mode of execution in the benchmark gives a less accurate

representation of the true limits of the hardware, while giving results more representative of the

possible real world use cases.

4.8.2 Validation

Cache miss frequency and uncore counters were used to verify that the random memory access

benchmark resulted in continuous accesses to DRAM, rather than inadvertently performing

regular accesses to the fast caches. It was possible with the uncore counters to demonstrate

that benchmark fetched at least 99.7% of all memory requests directly from DRAM, meaning

that an insignificant number of cache lines were served from cache for both approaches. The

access frequencies were validated for both of the benchmarks, and all random number generation

was performed using the well tested PCG library. As such, the benchmark was validated as an

accurate representation of random access memory pattens served primarily from main memory.

4.8.3 Results

The benchmark is initialised such that the array is distributed onto both sockets, even though

the later accesses are random, in order to best represent the memory layout that might be seen

in a mesh-based application. Also, all of the CPU results presented use huge pages of 2MiB, in

order to avoid issues with the TLB; however, note that this setting does not affect the GPU’s

internal paging.

4.8.3.1 Unvectorised Results

The unvectorised results are particularly important to the analysis of the neutral application in

Chapter 5, and so the results for the pointer-chasing benchmark are presented with and without

vectorisation.

The results in Figure 4.8 at unroll factor 1 show the performance of each core performing a

single memory access, and the memory bandwidth is less than 10% of the achievable memory

bandwidth. Even without vectorising the problem, it is possible to allocate multiple random

walks to each thread and unroll the independent accesses. This allows more loads to be added

to the load buffer on a single thread, and the performance improves, although it is limited to
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Figure 4.8: Unvectorised results for the pchase benchmark, by unroll factor.

65% of the achievable memory bandwidth. The perceived loss in memory bandwidth is due to

the fact that the memory access patterns can cross NUMA domains, and if the same experiment

is conducted on a single socket, it is possible to achieve full memory bandwidth on the Skylake

using unrolling. It is important to note that this unrolling might not be as successful in a

real-world scenario, unless the independent loads are close to each other in the application, as

the instructions must be able to fit in the reorder buffer. In the pointer-chasing benchmark the

loads can be immediate neighbours.

4.8.3.2 Vectorised and GPU Results

In order to enable vectorisation, the number of independent memory access streams through the

one-dimensional array was increased from 28 cores to 28 cores× 16 vector lanes per socket on

the Skylake CPU, and the same approach was applied to the KNL. The results are shown for a

large working set of around 500 MiB.

Device Mem. Bandwidth (pchase) Mem. Bandwidth (simple)

Skylake 106 GB/s, 98% peak 80 GB/s, 74% peak

KNL 169 GB/s, 54% peak 152 GB/s, 49% peak

V100 413 GB/s, 46% peak 391 GB/s, 43% peak

Table 4.5: Best observed random memory access performance (Skylake results are for a single

socket).

In Table 4.5, results are shown for both benchmark variations. It was hypothesised that

the simple benchmark might be faster than the pchase benchmark, as it exposes some locality

in the problem, but this is not the case for any of the processors. The Skylake results for the

pointer chasing benchmark show the memory bandwidth is around 106GB/s, which is 98% of

the achievable read bandwidth. While full bandwidth is achievable in pchase mode, for the

simple case the use of random number generation within the loop reduces the performance to
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74% of the read bandwidth. In contrast, the KNL is only able to achieve around 54% of read

bandwidth, which appears to be due to the fact that prefetching is required to achieve maximum

bandwidth on the KNL. Prefetching is not necessarily possible with random memory accesses,

and so this is a significant limitation. The results on the GPU are surprisingly high at around

46% of maximum read bandwidth, which is more than was expected given that the random

memory accesses are not able to be coalesced.

The results in this section will be useful when considering the performance achieved by the

neutral proxy application in Chapter 5.

4.9 Summary

This chapter discussed the key details of the HPC-oriented parallel processors that will be used

throughout this thesis. The Intel and NVIDIA processors were shown to be the most popular

processors in the world, featuring in many of the worlds fastest supercomputers. Architec-

tural improvements were considered for the most recent generations of Intel Xeon CPUs and

NVIDIA GPUs, demonstrating an increasing focus on improving memory bandwidth, alongside

the consistent increases in compute throughput. Empirical data was collected for the parallel

processors, exposing key architectural details of their memory performance characteristics.

The NVIDIA GPU kernel launch overheads were shown to have only marginally improved

over the last 4 generations, which limits the potential for optimisations involving many small

kernel launches. Instruction and memory latency have dramatically improved over the last

few generations of GPUs, and the results clearly demonstrated the difference in the latency

optimised nature of the Intel Xeon CPUs, and the latency hiding requirements of the NVIDIA

GPUs. The peak memory bandwidth of the GPUs is currently vastly superior to the CPU

offerings, including the KNL, although it is expected that those differences will diminish in the

future, as high bandwidth memory is introduced into modern CPUs. The processor designed

by Fujitsu for their exascale machine, the A64FX, is set to include 32 GiB of HBM2 memory,

making it the first traditional CPU with plans to include high bandwidth memory [172].

Random memory access performance was dissected using a new benchmark, and the results

show that achieving full bandwidth is problematic for all of the architectures. To achieve max-

imum true bandwidth it was necessary to place enough memory requests in-flight using loop

unrolling or vectorisation. It was also shown that random memory accesses across NUMA do-

mains generally leads to poor performance due to the increased latency of the memory requests.

Further, random memory access performance was shown to be lower than expected on the KNL,

and higher than expected on the NVIDIA GPU.
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5.1 Introduction

The class of problems solved with Monte Carlo methods employ probabilistic approximations

to the solution of some equation, relying upon the central limit theorem to infer the average

behaviour of a system based on observations of simulated data [76] [155]. Typically, it is possible

to reduce those solvers into independent tasks that can be parallelised with no dependencies.

Asanovic et al. described the Monte Carlo Dwarf of parallel computation as relying on repeated

trials to gather statistical results, and that the class is considered “embarrassingly parallel” [6].

They further stated that the communication patterns of Monte Carlo algorithms typically mean

that communication is not a dominant factor in the performance. This has been shown to be

an incorrect classification for some Monte Carlo cases in a distributed sense, and this chapter

will show the extent to which this is not true when attempting to thread Monte Carlo neutral

particle transport codes [133].

The specific case of Monte Carlo neutral particle transport relies upon apriori knowledge of

the probability distributions describing the physics of a particle transporting through some mix

60
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of materials. Using those distributions to describe the interactions of a single particle and scaling

the simulation to a large number of particles, it is possible to accurately describe the average

behaviour of a particle population [140]. However, there are multiple reasons why this particular

method cannot be considered “embarrassingly parallel”. For instance, the entire geometry for a

target problem is typically too large to store for every individual processing element, meaning

that some amount of domain decomposition is required [163] [24]. The necessity to decompose

information about materials and geometries introduces the issues of load balance, and managing

random communication patterns [132]. Even in the case where complete replication of the

domain is possible, it might be necessary to perform all-to-all communications to synchronise

tallying data.

5.2 Problems in Monte Carlo Neutral Particle Transport

The use of Monte Carlo methods for particle transport is known to date back to around the

1940s [96]. The method itself was well understood and described by early research, and many

of the statistical techniques used today are similar to those described in the 1950s [76]. Diverse

areas of science have found uses for Monte Carlo neutral particle transport, including radiation

dosimetry and other medical purposes, the simulation of neutrinos in supernovae, and the design

and safety of nuclear reactors [70] [5] [145]. Each of the diverse areas introduces different physics

and data, but the fundamental methods often lead to the same limiting characteristics. A survey

is presented of those issues that have been shown to make optimising Monte Carlo neutral particle

transport codes challenging.

Much research has been devoted to the large scale communication of Monte Carlo neutral

particle transport applications, and great success has been achieved in this area [25]. There are

now a number of well established algorithms for the communication of particles within a domain

decomposed Monte Carlo neutral particle transport simulation, and as such that aspect will not

be the focus of the investigations in this thesis. Generally, the natural formulation of Monte Carlo

neutral particle transport algorithms employs a loop over histories. Vector processors introduced

a previously unseen problem with this particular formulation, as the individual particles in a

candidate vector would be performing diverse computations [5]. The ‘over events’ approach,

originally suggested by Brown et al. resolved this problem, but at the expense of introducing a

sort into the algorithm [23].

Siegel et al. more recently investigated the shared memory performance of the OpenMC code

using several threading strategies with OpenMP [149]. They recognised that threading Monte

Carlo methods is an important area for research due to the increase in core counts and requisite

decomposition, and much investigation is required to prepare the production codes for the cur-

rent architectural trends. They found that coarse-grained parallelism was the best performing,

although this approach does not appear to vectorise and might not be suitable for GPU archi-

tectures, potentially leaving significant performance to be gained. As they increased the core

counts for their parallel implementation of OpenMC, they observed a drop off in performance

beyond some number of cores. Given the complexity of the application and the architectures,

there was no clear answer as to why the performance did not scale linearly, demonstrating more

work is required to understand the limitations of threaded Monte Carlo applications on existing

architectures.

Brantley et al. outlined the need for future Monte Carlo codes to be able to target diverse

parallel architectures [20]. Their future targets include the Trinity supercomputer, comprised
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of Intel Xeon and Xeon Phi CPUs, and Sierra, containing IBM POWER9 CPUs and NVIDIA

Volta GPUs. There was additional recognition that the ‘over events’ algorithm might offer an

important option for targeting highly parallel architectures. Tramm et al. recognised the need

for extensive research into the performance of cross sectional calculations from large lookup

tables [158]. They found that for some applications and problems, determining cross sections

from lookup tables represents a large proportion of the overall solve time. For the purposes of

investigating this particular issue, the XSBench proxy application was developed to isolate the

performance characteristics of this step.

Long et al. considered a cache size timestep limiter, that would attempt to overcome the

issues observed with random walks through a mesh seen in a photonics code [93]. In principal

the approach should improve problems with locality in the Monte Carlo formulation, caused

by the random natures of the particle movement, that limit the performance on modern cache

based architectures.

As such, it has been found that a number of areas require further research for Monte Carlo

neutral particle transport:

• Shared memory parallelism.

• Vectorisation for existing SIMD architectures.

• The performance of tallies.

• Lookup table performance.

• Random memory access performance with respect to streaming particles.

• Performance portability of the Monte Carlo method, including offloading to GPUs.

To be able to investigate those issues it will be necessary to perform algorithmic and data

structure research, as well as conducting experiments porting to diverse architectures using the

parallel programming models discussed in Chapter 3.

5.3 Monte Carlo Particle Transport Applications

Given the long history of Monte Carlo neutral particle transport codes, there are many open

source Monte Carlo neutral particle transport applications. Each of the applications has been

developed with diverse expectations and purposes, but typically using similar underlying meth-

ods.

5.3.1 MCNP

The Monte Carlo N-Particle Transport Code (MCNP), developed by Los Alomos National Lab-

oratory, is a Monte Carlo neutral particle transport code that has been in development since at

least 1957 [29]. It is a fully featured application that can simulate neutron, photon and electron

transport, as well as couplings of those particles, within complex geometries [155]. MCNP is

comprised of nearly 500k LOC, and is relied upon by a large international user base for many

different purposes including nuclear reactor safety. The application is export controlled, which

means that the source code is not freely available, and it is not possible to discuss the specific

design decisions made in the application.
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5.3.2 OpenMC

The OpenMC code was originally developed for the purposes of investigating scalable algorithms

targeting exascale computing [140]. OpenMC uses constructive solid geometry and can handle

all nuclear reactions producing secondary neutrons, but does not yet handle photons. At the

time of writing, the application contains around 50,000 LOC. According to Tramm et al. a large

proportion of the runtime of OpenMC is devoted to the calculation of macroscopic neutron

cross sections [158]. The application has been particularly optimised for parallel fission bank

site handling, using an algorithm designed to support parallel scaling [141].

5.3.3 Quicksilver

Quicksilver, developed at Lawrence Livermore National Laboratories, is a proxy application for

the code Mercury [20]. The proxy application is intended to match the performance profile of

Mercury in terms of memory access and communications patterns, and solves time-dependent

neutron transport. The application is, at the time of writing, around 13000 LOC, with OpenMP

and MPI used for parallelism. Quicksilver can handle cells with different materials, multiple

different types of tallies, and has been designed in such a manner that the particle tracking is

threaded over particles. The application has been designed to work with energy groups, which

significantly diminishes the impact of cross sectional lookup tables, as a smaller number of energy

bins are required.

5.3.4 Branson

Branson is an Implicit Monte Carlo (IMC) mini-app solving gray thermal radiative transfer

(TRT), that was developed by Alex Long at Los Alomos National Laboratories [92]. The mini-

app was developed for the purpose of conducting algorithmic experimentation, and is currently

around 10000 LOC. The application contains many different algorithms for parallel transport,

including the domain decomposition methods of particle passing and mesh passing. Branson is

not yet designed for thread-based parallelism, and the parallelisation is currently handled with

MPI only.

5.4 neutral: Monte Carlo Neutral Particle Transport

The available Monte Carlo applications were shown to be often large, offering many features,

with complex geometries, and in some cases codes that do no lend themselves to thread paral-

lelism. Dosanjh et al. outlined the strategy for exascale co-design, particularly in relation to the

Mantevo project, and suggested that mini-apps should typically be constrained to O(1K) lines

to allow rapid exploration of key performance issues [45]. The two best candidates for use in this

thesis were Quicksilver and Branson, however, both options were open sourced after neutral

had already been developed. Further, both of the applications have characteristics that would

have limited the scope of the research:

• Quicksilver is large for regular porting exercises, large enough that it would take consider-

able effort to change algorithms and data structures to the extent that is performed with

neutral. The application has been developed to use energy groups, which makes it more

challenging to represent the performance of continuous energy applications.
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• Branson is marginally smaller, but focuses purely on Implicit Monte Carlo, which would

have excluded investigations into the complex area of managing particles produced due

to fission, for instance. Further, the algorithms included primarily focus on MPI-based

parallelism, and significant changes would be required to introduce thread parallelism.

As such, in order to effectively investigate the open areas, it was necessary to develop a

streamlined application that would allow for a focus on shared memory parallelism, including

SIMD and GPU algorithms. The application needed to be small and amenable to porting

and algorithmic experiments, while offering enough functionality to be representative of the

performance profile of feature subsets of the larger Monte Carlo neutral particle transport codes.

The research areas discovered in Section 5.2 form the basis for the feature set required in a new

application.

The neutral application has been written from scratch for use in this thesis to compare

cutting edge and novel algorithms on architectures including NVIDIA GPUs. The computa-

tional code and physics were derived from a number of open research articles and books, with

a focus on capturing the structure and computational profile of the features without extensive

emphasis placed on scientific accuracy [138] [96] [88]. The computational code is encapsulated

and expressed within around 1000 LOC, an order of magnitude fewer than Branson and Quick-

silver, and nearly 3 orders fewer than OpenMC, making it much easier to perform porting and

other code-affecting studies. In particular, the restricted size of neutral has made it possible

to develop many variations of the application that adopt different algorithms, data structures,

and programming models, without introducing an untenable maintenance overhead. The lim-

itation of this approach is that it is more challenging to capture all of the characteristics of a

large Monte Carlo neutral particle transport code. This issue will be discussed in detail and

additional experiments performed to ensure that key issues with representativeness have been

addressed.

The neutral application forms the basis of this chapter, and it is used to: develop new

algorithms, investigate random memory access performance, demonstrate GPU parallelisation

strategies, and show methods for vectorisation of Monte Carlo neutral particle transport codes on

modern SIMD architectures. In some cases the results even defy conventional wisdom regarding

the performance of code with deep branching on the GPU.

5.4.1 Particle Tracking

A convenient feature of the Monte Carlo formulation of particle transport is that the major

elements of the algorithm are expressed with clear physical intuition. Particle tracking is the

core of Monte Carlo transport codes, and encapsulates the majority of the physics that happens

within a timestep. The particle tracking loop of the neutral application changes depending

upon the particular choice of algorithm and depends upon whether the domain is decomposed

in a distributed fashion. In spite of this, the concepts of the particle tracking are consistent

between all approaches and the characteristics of the particle tracking loop play a major role

in the overall performance of the application, and so it is described here. The particle tracking

approach is typical, and was primarily derived from the descriptions given by Gentile et al. [53].

At a high level it is possible to consider three independent types of events within the particle

tracking loop:

• Facet events: Individual particles can be transported through the mesh in a continuous

fashion; however, dependencies upon the computational mesh mean that data must be
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stored as particles move between mesh cells. In a distributed environment it is possible

that the particles can transition between processing elements upon encountering the facet

of a cell.

• Collision events: Throughout its lifetime a particle can encounter nuclei along its tra-

jectory, either being absorbed or scattering, and potentially producing new particles.

• Census events: In a time-dependent application this event occurs once a particle has

reached the end of the current timestep.

Figure 5.1: The particle tracking concept of Monte Carlo neutral particle transport, depicting

the three events, and the determination of the first encountered event.

As seen in Figure 5.1 the distance to those events are calculated for a particle, before the first

encountered event is handled and the particle moved appropriately. As previously mentioned,

the Monte Carlo method is popularly considered to be an embarrassingly parallel approach,

due to the fact that the particles are, in theory, completely independent. In reality, for this

particular application the particles are dependent upon the shared computational mesh. An

obvious solution to this problem is to entirely replicate the computational domain between

processing elements. While this would resolve the interprocess scaling due to communication,

the resulting algorithm grows greatly in terms of capacity, and the performance can suffer due

to poor cache utilisation. As modern supercomputers move towards massively parallel on-node

processing, domain replication is becoming increasingly challenging to support [139].

An important consequence of the particular particle transport approach is that load im-

balance can be introduced locally and remotely. Given reflective boundary conditions, as in

neutral, it is possible that a particle can stream from one side of the computational mesh to

the other side in a single timestep. Particle densities within a particular domain might start

extremely imbalanced, say if the particle source was a single cell of a full mesh, but then even

out as particles transport randomly across the space. Alternatively the converse is possible,

where the source is evenly distributed across the entire computational domain but, due to the

problem specification, a majority of particles become ‘stuck’ in a single high density location.

It is therefore challenging to select an optimal decomposition using a general approach, as the

optimal decomposition changes at the sub-timestep granularity on a per-problem basis.
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From another perspective, a single particle can transport across the whole mesh, depositing

energy, while on the same mesh another particle could be sourced into a single cell, collide

many times and then reach census in that same cell. As such, the application includes many

branches, and is highly sensitive to the problem specification, a problem corroborated in the

existing research [20].

5.4.2 Tallying

Tallying is the process by which observations are captured for particular quantities within a

simulation. There are many different possible types of tallies, and the relevant choices will

change based on the domain and particular purpose of the simulation. Tallies can capture

different quantities within a simulation, for instance fluxes, reaction rates, and secondary particle

production. The domain of a tally could be a single cell or geometric object within the spatial

domain, or it could span the entire spatial domain [155].

Van Veen et al. considered the performance of full reactor simulation, and found that the

cost of fission energy tallies significantly impacts the performance of the solve for large numbers

of tallying bins [39]. Romano et al. stated that care must be taken to ensure that the scaling of

the tallies is not limited by the number of tally bins [140]. The neutral application has been

developed with two different types of tally: (1) balance tallies, that keep track of event counts

from particle histories; and (2) a continuous energy deposition tally, where the energy deposited

on average by particles transporting is stored in a tallying mesh.

The continuous energy deposition tally is an important feature of the application because it

requires a large number of tally bins, one per cell in the computational domain, and introduces

the potential for a race condition. The tallying does not require a search, as the tally bin

is determined directly from the spatial location of the particle. If each particle is handled

independently, it is possible that the independent histories require tallying to the same cell,

which introduces a data race that can be solved using atomic instructions. As the energy

deposition does not have to be resolved until a particle has left a cell or reached census, facet

events are always required to perform an expensive tallying operation. The collision events do

not, increasing the potential for load imbalance, depending upon the algorithm.

5.4.2.1 Random Number Generation

In the neutral application, random number generation is used extensively to handle sourcing,

particle population control, and sampling of random events for each particle history. A robust

parallel random number generation facility is required to avoid bias in the results. Different

random number generators offer particular characteristics and trade-offs, for instance, some

offer reproducibility to enhance testing and debugging, while others might use secure crypto-

graphic schemes. It would be possible to take advantage of one of the cryptographically secure

random number generation facilities and techniques; however, their robustness often leads to

inefficiencies in the computations and difficulties with parallelisation due to shared state. An

alternative approach is counter-based random number generation (CBRNG), which resolves the

reproducibility issue and allows for easy parallelisation due to the scalar state [143].

Both OpenMC and the Quicksilver mini-app use a custom linear congruential generator

(LCG) class, while Branson uses Random123 [20] [140]. The Random123 library offers a high

period, and the underlying approach means that it is possible to skip-ahead and even rewind

through the number stream in O(1) time [143]. Although CBRNG approaches are highly paral-
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lelisable, it is not necessarily true that they are vectorisable, and this becomes important when

attempting to vectorise the Monte Carlo neutral particle transport algorithm, as discussed in

Section 5.7.

5.4.3 Nuclear Cross-Sections

The probability that a particle will encounter an event on its current trajectory is dependent

upon the properties of the material that it is presently transporting through. In a mesh-based

approach, probability tables are required for all combinations of simulated materials and simu-

lated reactions within those materials, across the whole problem domain.

Figure 5.2: The nuclear cross section of U-235 in log-log scale.

The computer science response to the threat of large data tables is to recommend the employ-

ment of compression techniques or approximations, to polynomials for instance. Unfortunately,

the complex nature of the resonances do not lend themselves to approximation. Figure 5.2 is an

example of an evaluated nuclear cross section taken from the European Evaluated Nuclear Data

File (ENDF) database [21]. Clearly, compression or approximation by polynomial is intractable

for such a complex function. A more suitable approach is to select a finite number data points

for interpolation, storing them in a lookup table.

The neutral application is designed such that the nuclear data tables can be easily changed,

allowing for the addition of new materials and events. Each of the test data sets is representative

in size, around 30K double precision energy/cross-section pairs, for 468KiB each, but loosely

approximates real data in order to present a more average case. Some nuclides require a total

lookup table capacity that is larger than described, and some applications will require numerous

tables that combined spill out to DRAM [158]. The cross sections in neutral are for absorption

and elastic scattering. The probabilities are affected by resonances between the particle and the

material, and they are given as a function of the energy of the particle. This means that the

lookups must be updated whenever the particle energy changes during its history, or moves into

a new material with new lookup tables [88].
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Readers familiar with the published research regarding neutral should be aware that results

are presented using only a binary search rather than using the linear search optimisation. This

means that the performance of the scattering problem is significantly different in some cases,

due to the change in memory access patterns.

5.4.4 Core Algorithm

In this thesis, a number of algorithms are explored in order to discover the best performing

approach relative to each of the target HPC processors. The most obvious and well known

approach is to parallelise over the list of independent particle histories, named ‘over histories’.

This approach is highly parallel, except for the dependencies on the computational mesh, but it

makes vectorisation challenging, and the branching appears too complex for parallelisation on

GPUs. Liu et al. found that vectorisation was prohibited by the complex nature of the loops

in the over histories approach, and those small loops that could be vectorised in their Monte

Carlo code observed insignificant performance improvements [90]. They went on to suggest that

the over events approach described by Brown et al. might improve the vectorisability of their

code and outlined it as future work [23].

Figure 5.3: Matrix depicting the organisation of events and particles throughout time.

The events that occur during a neutral test problem are effectively described as in Figure 5.3.

Each column is an individual particle history, where ‘C’ represents a collision, ‘F’ represents a

facet event, and the arrows represent the transition between events towards census. Every history

ends with an implicit census event, which for most problems will not impact the performance

due to being executed only once per N events in a particular history. There are two important

features of the representation: (1) the particle history lengths are not necessarily equal, and (2)

the dependencies are only between events for a particle, not between particles, so concurrency

can be introduced across particles. To complement the over histories approach, the over events

approach will also be considered, and a novel algorithm will later be presented that implements

a hybridisation of the two approaches.



CHAPTER 5. MONTE CARLO NEUTRAL PARTICLE TRANSPORT 69

5.4.4.1 Over Histories

The over histories algorithm follows each particle history independently from birth to census,

before the next particle is processed. The outer particle loop is a parallel loop that distributes

the particle population to threads. The inner loop moves a particle through continuous space

until it encounters the edge of a computational domain or reaches census, named the history

loop.

Code Sample 5.1: The over histories algorithm for neutral.

1 foreach particle: // particle loop

2 loop: // history loop

3 distance_to_events(particle)

4

5 if colliding:

6 handle_collision(particle)

7 else if encounter_facet:

8 handle_facet(particle)

9 else:

10 handle_census(particle)

11 exit loop

Although Code Sample 5.1 does not show the implementation of each of the routines, they

contain a mix of computational code, branching, random number generation etc., which will be

discussed throughout the subsequent sections. The organisation of the code into this parallel

structure has a number of important consequences in terms of performance:

• Particle data is generally maintained in registers or high levels of cache

As the particles are being processed in parallel, with one particle per processing element,

the particle data can generally be stored in registers or L1 cache. This means that the

particle data does not adversely impact the performance of the application; however, the

memory requests for the cross sectional data and mesh variables, which reside in lower

levels of cache or main memory, are still required.

• Load imbalance is possible

As the particles loop over independent events, and each event has a different computational

cost and profile, it is possible that a load imbalance is present between threads. For

instance, it is possible that some subset of particles perform significantly more collision

events than facet events; if the collision events take significantly longer to process then it

is possible that threads would have to wait for others to complete the full history.

• Minimal thread synchronisation is required

The synchronisation of threads is only required after all particles have been processed,

meaning that there is negligible synchronisation overhead.

• Deep branching is present in the parallel loop

As the nested routines also contain branching, the depth of the branching is considerable,

particularly in comparison to the other exemplar applications discussed in this thesis. An

important consequence is that vectorisation of this particular loop structure is not possible

with current compiler technologies targeting modern CPUs.
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The over histories approach is essentially a base case with which to compare other algorithmic

techniques. If possible it is essential that the approach is extended or replaced with some

vectorisable method.

5.4.4.2 Over Events

The over events formulation has been included in this thesis as an alternative to the over

histories approach that appears to be more amenable to vectorisation and GPU programming.

The approach was first described by Troubetzkoy et al. as a solution to porting Monte Carlo

neutral particle transport codes to vector processors, and later refined by Brown et al. [161] [23].

Considering the physics from a breadth-first rather than depth-first perspective allows for a

reformulation of the particle Monte Carlo algorithm to process individual events in batches of

particles.

The algorithm as described by Brown et al. shuffles particles into queues that are to en-

counter the same event [23]. Although code for this particular algorithm was not available, the

description given in the paper provides many implementation details.

Code Sample 5.2: The over events algorithm based on Brown et al.

1 shuffle(particles) -> facet_particles, collision_particles, census_particles

2

3 collision_loop:

4 tracking_loop:

5 handle_facet(facet_particles)

6 shuffle(particles) -> facet_particles, collision_particles, census_particles

7

8 if empty(facet_particles):

9 exit tracking_loop

10

11 handle_collision(collision_particles)

12 shuffle(particles) -> facet_particles, collision_particles, census_particles

13

14 if full(census_particles):

15 exit collision_loop

16

17 handle_census(census_particles)

The algorithm in Code Sample 5.2 shuffles particles into groups, handling all facets before

handling collisions and then starting the cycle again until census is reached for all particles. It is

not entirely clear from the original paper how the shuffling procedure is actually implemented,

nor its connection to the calculation of future events. Necessarily after each event a particle

encounters, the next event for that particle must be determined. It is therefore assumed that

the shuffling operation has to perform the distance calculations for each of the possible reactions

and then shuffles based on the outcomes.

The over events approach has several diverse characteristics compared to the over histories

approach:

• The event handling routines may be vectorisable

It will be possible to vectorise the event handling routines over particles without needing

to mask out particles.
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• Sorting is required in the history loop

If the sorting cannot be completed in high levels of cache, the cost is expected to be

considerable even on a CPU. The implications for GPUs are much more significant as

sorting can be an expensive operation that might have to be performed in the high latency

global memory.

• Branch depth is decreased

The depth of branching is decreased because the first set of tests is completely replaced

with parallel loops. This, coupled with the fact that the particles would be sorted into

streams that are undergoing the same event, means that the divergence should be reduced.

This is theoretically an attractive property for targeting GPUs.

• Particle data can no longer be cached

With the over events approach particle data is no longer guaranteed to reside in high

levels of cache as, in the worst case, the entire particle history might be accessed during

the process of following the individual particle histories.

The algorithm did not explicitly handle the vectorisation of tallying, which will be investi-

gated in this thesis. Unfortunately, the use of sorting is expected to perform poorly for modern

processors, and so it is necessary to consider alternative approaches to the over events algorithm.

Ideally, this approach would provide the benefits of the over events algorithm but without the

need to perform the expensive sorting operations.

5.4.4.3 Sort-free Over Events

Modern SIMD processors and GPUs are able to avoid the need for sorting vectors through the

use of masking, and this technique can be used for this particular algorithm. The over events

algorithm will be adapted to take advantage of vector masking.

Code Sample 5.3: The over events algorithm for neutral using predication.

1 loop:

2 distance_to_events(particles)

3

4 foreach particle:

5 determine_next_event(particles)

6

7 foreach particle:

8 if particle.colliding:

9 handle_collision(particle)

10

11 foreach particle:

12 if particle.encounter_facet:

13 handle_facet(particle)

14

15 if all_particles_at_census(particles):

16 exit loop

17

18 foreach particle:

19 handle_census(particles)
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Code Sample 5.3 shows the new algorithm that represents the over events concept, but im-

plemented in a sort-free manner. All of the particles are processed regardless of their next event,

but masking is used to ensure that the particles not encountering the presently processed event

do not have their state updated. The result is that the algorithm is able to work on large vec-

torisable streams of particles without having to move the particle data around in memory. This

approach introduces some additional challenges compared to the original over events approach:

• Synchronisation is increased

Due to the fact that the events are performed in parallel there will be synchronisation for

every particle and every iteration of the loop. This means that the synchronisation cost

increases from N in the over histories approach to roughly 3LN , where 3 is the number

of independent parallel loops, and L is the number of loop iterations required to bring

all particles to census. The parameter L depends upon the problem specification, but in

neutral L is typically many orders of magnitude smaller than N .

• Sorting is replaced with predication

The potentially expensive sorting operations are removed, but depending upon the problem

specification the predication might limit performance.

An immediate limitation of this approach is that the particles cannot all be moved through

the tracking phase before the collisions are handled, as is possible with the original over events

approach. Regardless, this formulation is expected to be more compatible with highly parallel

processors, whether CPUs or KNLs which require vectorisation, or GPUs which require long

parallel streams.

5.4.5 Parameters

Even though neutral includes only a minimal set of features, the number of parameters for each

problem is still large. The choice of parameters and problem specification can have a significant

impact on the performance.

5.4.5.1 Particle Population

The particle count determines the precision of the solution, as increasing the number of particles

will converge the solution towards an increasingly precise value describing average behaviour of

the system, as dictated by the central limit theorem [155]. The runtime of the application is

proportional to the number of particles, and for each of the constructed test problems a linear

increase in the number of particles is honoured by an equivalent increase in runtime.

The particle population plots in Figure 5.4 demonstrate a smoothing of the solution as the

population is increased. The population is increased from 1e6 particles to 1e7 particles, and a

diffusive solution is observed, as would be expected of particles targeted at dense homogeneous

regions. There is no expectation that neutral would be used to determine accurate results to

test problems, but it is important that the correct behaviour on parameter change is observed,

and this has been extensively validated.

5.4.5.2 Particle Sourcing

Each of the particles is sourced at some spatial location with a particular initial energy. The

location of sourcing is problem dependent, and will be described alongside the discussion of the
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Figure 5.4: Tuning the number of particles towards convergence, 1e6 particles (left) and 1e7

particles (right).

particular problem. When initialising the energy of the particles, it is possible to either set all

particles to the same initial energy or sample each particle’s energy from a distribution. There

are several potential impacts regarding the distribution of energies:

• Particles with different initial energies will access different entries from the cross sectional

lookup tables. This is highly problem dependent but particles with similar energies might

perform many accesses to proximate locations within the lookup tables, expressing unex-

pected locality. It must be noted, however, that in neutral, the lookup tables are small

enough that they will fit in L2 cache, making locality less of an issue.

• The frequency of specific events performed by each particle could be significantly different

depending upon the starting energy of that particle. It is possible to construct problems

containing a mixture of high energy particles streaming across facets and rarely colliding,

alongside particles of low energy regularly colliding and rarely crossing facets.

Particle sourcing is modeled as a singular instantaneous occurrence in neutral, and the

initial population of particles is maintained until a number of time steps have been completed.

In spite of this, it is possible to adapt neutral to perform continuous sourcing, perhaps by

timestep.

5.4.5.3 Timestep

The timestep in neutral is relatively inconsequential, as the time-dependence primarily serves

as a point of synchronisation and storage of the tallying data. As such, the timestep is chosen

to be long enough to observe a large number of events, but the interpretation of the results is

independent of this choice.

5.4.5.4 Mesh Dimensions

The dimensions of the computational mesh influence several aspects of the application. For

instance, finer mesh cells in the domain are expected to lead to more frequent facet events, and

might increase the distance between random memory accesses. In a multi-physics environment,

the mesh management is typically dictated by other packages, rather than the Monte Carlo

simulation itself. If the mesh is controlled by, for instance, a hydrodynamics package, a level of

refinement will be necessary to reach the necessary fidelity of the simulated flow. For each of the

test problems considered for the neutral application, the mesh dimensions 40002 are chosen,

and this is consistent with the other applications considered.
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5.4.6 Problems

The problem dependence of the Monte Carlo neutral particle transport method makes it chal-

lenging to develop general optimisations. In order to make claims about the application perfor-

mance, it is necessary to consider a set of test problems that exercise different conditional code

paths, and also to represent more realistic test problems. As the problems are introduced below,

the characteristics of the routines will be discussed. Each of the problems specified are entirely

synthetic, but have been designed to expose the performance characteristics of the application,

while being easily validated.

5.4.6.1 The streaming problem

The streaming problem sources particles in a small region in the center of the spatial domain and

allows them to stream freely across the space without collision (Figure 5.5). The specification

means that each particle travels across roughly 7000 facets per timestep, so the particles will

interact with at least one boundary of the domain within each timestep if the local problem

size is 40002. This test problem is particularly interesting as it exposes an important issue with

the Monte Carlo codes: that particles can move randomly and independently from each other,

exposing little to no spatial or temporal locality.

Figure 5.5: Example plot of energy deposition for the streaming problem.

In this test problem, the branching overhead is reduced as only the facet event will occur in

each timestep, isolating out the performance of the facet events for individual analysis. When a

collision or facet event occurs, it is necessary to calculate and store the energy deposition for that

portion of the particle history. In a facet event it is also necessary to store this energy deposition

tally into the tally mesh, which means continual random access read-modify-write operations to

update a mesh the size of the local computational domain. As multiple independent particles

interact with the same tally mesh, it is necessary to perform the tally atomically in order to

avoid multiple threads updating the same tally mesh location at the same time.

The facet event has to handle the movement of the particle through the computational

domain and resolve the reflective boundary conditions, which results in simple code with several

levels of nested branches. It is also necessary to fetch the local density of each cell that a particle

travels through by accessing the cell centered density mesh. This results in a random read from

a mesh the size of the local computational domain. Constructing a test problem that performs
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only facet events makes it easy to calculate the figure of merit facets per second. This particular

metric is invariant to many variables in the problem parameter space, often allowing fairer

evaluation of performance than absolute runtime. For this problem 1e6 particles are simulated

for a single timestep.

5.4.6.2 The scattering problem

The scattering problem, as seen in Figure 5.6, sources particles in a high density material that

results in only collisions. The particles will typically reach census without leaving the cell they

were sourced into.

Figure 5.6: Example plot of energy deposition for the scattering problem.

During a collision, the particular reaction is randomly sampled based on the macroscopic

cross sections for absorption and scattering. Handling an absorption reaction involves a simple

update of the particle weight, while the scattering reaction results in a new direction and energy

being calculated for the particle. Energy deposition for the trajectory up until the present event

will be tallied locally, given that there will be a change in energy or particle weight, but the

value need not be flushed into the global tallying mesh. Further, a particle can ‘die’, which

is the point at which its energy has fallen low enough that it is not longer of relevance to the

simulation. The local energy deposition is tallied globally in the particle’s terminal cell, and it

is marked to be ignored from that point forward.

Once the collision event has completed, new microscopic cross sections are fetched from the

lookup tables, and a new mean free path to collision is sampled. Due to there being several

random processes within the collision event, it is necessary to generate up to three random

numbers per collision. The simple single-nuclide single-material case will be used as a starting

point, but Chapter 8 will consider the implications of including multiple materials and complex

materials comprised of multiple nuclides in the solve. As with the facet events, it is possible to use

a figure or merit, collisions per second, for this particular problem, observing the same benefits

of parameter invariance for some parameters. For this problem 1e7 particles are simulated for a

single timestep.
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5.4.6.3 The csp problem

The csp problem, as seen in Figure 5.7, has been constructed to be more representative of a

standard test problem, where particles are sourced within a low density material and stream

unless they collide with a square region of high density material in the center of the domain. The

problem does not perfectly balance the number of collisions and facet events, but the proportion

is more natural than the other synthetic problems.

Figure 5.7: Example plot of energy deposition for the csp problem.

Note that, although the problem is more balanced, the number of facet events is significantly

higher than the number of collision events. As particles both collide and cross facets in this test

problem, all of the branches will be active in the simulation. This has consequences for both

vectorisation and GPU programming that will be discussed throughout this chapter. For this

problem 1e6 particles are simulated for a single timestep.

5.5 Implementation on CPU

Having understood the performance characteristics of the application, it is possible to perform

specific optimisations to the code and algorithms. The targets for this section are Intel Xeon

and Intel Xeon Phi CPUs, as they offer diverse architectures but allow a common programming

approach.

5.5.1 Over Histories

As previously discussed, the over histories approach is the most well known approach to Monte

Carlo neutral particle transport and follows the individual histories of particles. The consequence

of following a single particle at a time is that the particle data can be cached in registers or cache

through the entire history and only written back once the particle reaches census. The memory

access of the particles is therefore negligible compared to the overall cost of the full timestep.

The processors used in this section are discussed in Section 4.2, and the code is compiled with

Intel 18.3.

The results for each processor in Figure 5.8 are not informative in isolation, however, in

comparison to each other it is observed that the KNL is significantly slower to execute the

same problems as the Skylake CPU. The achievable memory bandwidth is around 2.2x larger
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Figure 5.8: Performance of the over histories approach for the Skylake and KNL.

for KNL’s MCDRAM than Skylake’s DRAM, while the dual-socketed Skylake CPUs achieve

around 1.3x the compute throughput of the KNL. Given that the KNL requires vectorisation to

achieve full memory bandwidth, the lack of vectorisation in the over histories approach precludes

maximum performance in the KNL. In spite of this, the difference between the Skylake and KNL

is so significant that it is expected that there are additional issues affecting the performance,

beyond just vectorisation.

5.5.2 Performance Analysis of Over Histories

In order to have some basis for future discussion, an extensive profiling of the over histories

algorithm running on an Intel Xeon Skylake CPU is performed for each of the test problems.

Although fine-grained profiling of the over histories approach is possible, the accuracy is typically

poor, as each kernel amounts to a small number of operations, where only a single particle is

processed at a time per thread and the events are small. For the scattering problem, for

instance, the solver handles 7 billion distance calculations and collisions within around 25s on

an Intel Xeon Skylake CPU. Given 56 cores, then per core this is roughly one event every 200

nanoseconds. Profiling the average time per history or wall clock time is useful, but due to the

high problem dependence there is little comparability of results between problems.

5.5.2.1 Profiling the scattering Problem

During the scattering problem each particle performs roughly 700 events, comprised of:

(1) evaluating the distance to facet, and (2) performing the collision event. The collision events

either lead to absorption of the particle, which reduces the particle weight, or particle scatter-

ing, where the energy and direction of the particle changes. At the end of the simulation each

particle will complete a census event, but the performance impact is negligible.

The performance affecting characteristics of this kernel are the two calls to generate random

numbers and the two binary searches to find entries in the cross-sectional lookup tables. As seen

in Figure 5.9, each particle’s energy diminishes over hundreds of events until the particles fall

below the energy level of interest. To conform to the approaches taken by other applications,

the lookup table is accessed using a binary search, which typically accounts for around 90% of

the cost of a collision event. For the over histories method on an Intel Xeon Skylake CPU, the
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Figure 5.9: The energy profile of a particle throughout the scattering problem.

best performance observed for the scattering problem was a rate of 2.8e8 collisions per second.

5.5.2.2 Memory Bandwidth of the scattering Problem

During each scattering event, a collision event occurs that searches through two cross-sectional

lookup tables. Each search is a binary search and so up to 15 individual memory accesses are

performed, with at least 11 and at most 12 of those accesses touching distinct cache lines on

an Intel CPU. Given the random distribution of particles and trajectories leading to random

energy changes, an average of 11.5 individual cache line accesses per binary search is a reasonable

approximation. Taking the best results observed on the Skylake CPU for this problem, 2.8e8

collisions per second, this would then suggest a memory bandwidth of 404 GB/s for the two table

lookups per event. In fact, the cross-section data tables are only 468KiB each, while the size of

the L2 cache is 1MiB per core, and so the tables will be cached in L2 and L3 on the Skylake

CPU. Given that the bandwidth to L2 is around 5 TB/s (see Appendix B), the bandwidth to

cache is significantly underutilised.

As the lookup tables are cached, the majority of DRAM accesses during the solve are to the

density and energy deposition meshes. Running on a KNL and collecting the uncore counters,

it was observed that a scattering test run with 1e6 particles (note that this is an order of

magnitude fewer simulated particles than the typical test problem handles) resulted in 430MiB

of reads to MCDRAM and 205MiB of writes to MCDRAM. The particle data is around 70MiB,

and each particle fetches the material density for a single cell of the mesh, for around 60MiB of

additional reads, and each particle performs a final tally leading to another 60MiB of reads and

writes. This data confirms that a majority of the lookup table data persists in L2 cache, as two

instances of 11.5 accesses per collision event would lead to nearly 1 TiB of read accesses.

As with many features of probabilistic transport, this issue is problem dependent, as once

the size and quantity of lookup tables changes, data may begin to spill out of cache leading to

different performance characteristics. Artificially increasing the lookup tables to 128MiB each,

for instance, the throughput dropped to 6.1e7 collisions per second from 2.8e8 collisions per

second on the Skylake CPU. This equates to around 83.6GB/s memory bandwidth, which is

around 38% of peak observable DRAM bandwidth for the dual-socketed Skylake CPUs. The
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issue of varying lookup table sizes will be discussed in detail in Section 5.8.

5.5.2.3 Computational Throughput of scattering Problem

Irrespective of the differences observable as the lookup tables increase, the optimisation of table

lookups is deferred. VTune shows that over 90% of all memory accesses hit L1 or L2 cache and

that the VPU utilisation is low, which needs to be resolved by vectorisation. In this particular

regime, the computations might become the dominant factor, so it is necessary to measure the

computational throughput of the scattering events on the CPU. Intel CPU hardware counters

over-count the number of floating point instructions, as instructions issued where the operands

are not yet available might be counted multiple times. A more exact method for counting the

number of floating point operations is to use the Intel Software Development Emulator1 (SDE).

SDE counts around 1e5 floating point instructions for every particle history in the scattering

problem. The Skylake can execute the streaming problem in roughly 25s, and the KNL takes

around 55s, which leads to compute throughputs of 40 GFLOP/s and 18 GFLOP/s respectively.

Given that each core of the Skylake can turbo to 2.8GHz if not executing AVX instructions,

and each core can dual issue FMAs per cycle, the peak performance is 627 GFLOP/s for a

dual-socket configuration. This shows that the un-vectorised version of the application is reach-

ing around 6% of peak compute throughput for the non-vectorised code on the Skylake. The

same analysis applied to the KNL shows that around 5% of peak non-vectorised performance is

achieved. As the vast majority of accesses are serviced from L1 or L2, it appears that neither

the memory bandwidth nor the compute throughput are the limiting factor on the CPU. The

profiler suggests that the application is back end bound, which is caused by long latency oper-

ations. Until the application is successfully vectorised, accurate analysis of the routine is more

challenging, and so further profiling is delayed until the Section 5.9.1.

5.5.3 Profiling the streaming Problem

The streaming problem is particularly interesting, as it focuses on one of the most critical

issues with solving particle transport problems using the Monte Carlo method, regardless of the

type of simulated particle. When particles stream continuously and independently through the

computational domain, accesses to domain variables are randomly distributed, and this is well

known to be a challenge for existing processors. The results in Section 4.8 show that achieving

full bandwidth for random memory accesses is challenging on the processors considered in this

study. Further to this, each facet event needs to atomically write to the global tally mesh. In

neutral this is the energy deposition tally, and the tally updates are protected against data

races through the use of atomic instructions.

5.5.3.1 Memory Bandwidth of the streaming Problem

If random sourcing is performed across the entire computational mesh, it is possible to perform

comparisons of different problem sizes by adjusting the size of the computational mesh. Fig-

ure 5.10 shows the performance change as the size of the computational mesh increases from

512 KiB to 16 GiB. As the memory footprint reaches 32 MiB (20482), the performance begins

to decrease, to around 2x fewer facets per second by the time the working set reaches 16 GiB.

The results show an inverse correlation between the performance and the number of L3 cache

1https://software.intel.com/en-us/articles/intel-software-development-emulator
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misses, a strong indication that memory bandwidth is the limiting factor in this case. There are

a number of other memory accesses beyond those to the mesh data, for instance the particle data

and the x and y location on the mesh. In spite of this, these structures are small enough to fit

within L2, where the bandwidth was shown to be large for all of the processors in Appendix B.

In this section, the throughput will be measured with respect to the local density and tallying

memory accesses only.

Figure 5.10: Scaling the streaming problem and plotting cache misses.

The best throughput observed for the streaming problem was a rate of 7.5e8 facets per

second on the Skylake CPU, or roughly one facet event per core every 75 nanoseconds. Given

that each of the facet events fetches the local density and updates the tallying mesh once, there

is a single random read and a single random atomic read-modify-write. As such, each facet

event reads 16 bytes and writes 8 bytes, and so the memory bandwidth of the application can

be perceived as 18GB/s, which is around 9% of the peak achievable DRAM bandwidth. There

is an important distinction to be made between effective and true bandwidth, which plays a

major role in modeling the performance of neutral. Each double precision memory access is

actually eight times larger than the previous metric suggests, as the access is at the granularity

of a cache line, and given that the solver expresses negligible locality for the facet events, this

must be accounted for in the model. As such, the bandwidth calculation can be scaled to 144

GB/s, which is 69% of the peak observable DRAM bandwidth. Although this brings the result

much closer to the observable DRAM bandwidth, the analysis does ignore the inherent locality

in the problem, which is discussed in Section 5.5.5.

Each of the tally updates is performed atomically, and so it is possible that the memory

bandwidth is influenced by the performance of handling the atomics. Changing the energy

deposition routine so that it uses a regular read-modify-write, rather than performing the tallying

atomically, improves the throughput of the scattering problem by 1.2x to 9.0e8 facets per

second on a Skylake CPU. This suggests that the atomic instruction itself is not limiting the

performance by a significant amount, and that the hardware atomics are quite efficient for this

particular use case.
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5.5.4 Profiling the csp Problem

The csp problem includes a mix of both facet events and collision events, so it is expected that

new issues will arise in the performance as predication is required to enable vectorisation. Due

to the dynamic mix of events occurring in every timestep, it is more challenging to reason about

the csp problem on a per event basis.

Figure 5.11: The balance of events in the csp problem.

As can be seen in Figure 5.11, the number of collisions is relatively low as particles entering

the high density material and colliding multiple times will fall below the energy threshold. It is

possible to construct problems where the event profile is more even between the two events, but

this is not necessarily more representative of a true problem. There are many problems where

the majority of the time the particles will be streaming through materials and only colliding

infrequently.

5.5.5 Incidental Locality

Although the trajectories of each individual particle can be considered random with respect to

one another, there are some important points of locality that need to be addressed. Due to the

structured mesh, there is a chance that the next cell in a particle’s trajectory will be on the

same cache line as the current cell. This means that some of the memory accesses do in fact

exhibit locality, as can be seen by the coloured entries in Figure 5.12. This is less pronounced in

the three-dimensional case, where only two of six faces result in the possibility of entering the

same cache line.

Figure 5.12: The incidental locality of a random particle trajectory in neutral.
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On average, the chance for random trajectory to stay in the same cache line is 37.5%,

which can be accounted for in any modeling of the performance. The random memory access

performance experiments performed in Section 4.8 showed that TLB misses could be almost

entirely mitigated with huge pages. The working set for neutral is at most 244MiB, and huge

pages are enabled for all experiments, minimising the potential impact of TLB misses on the

application.

Another interesting issue that can come about from the random locality exhibited by the

problem is that the access patterns might invoke the hardware prefetcher in a manner that

actually harms performance. Depending upon the angle of trajectory, a streaming particle

might cause the prefetcher to continually bring in more cache lines than necessary, as it detects

accesses to multiple cache lines, thereby reducing the available memory bandwidth from DRAM

due to irrelevant accesses.

5.5.6 Thread Scheduling

It was hypothesised that, given the different frequencies of events encountered by each particle,

and the corresponding cost of each event, there might be some load imbalance between threads.

Figure 5.13: Adjusting the OpenMP thread scheduling for the csp problem.

Figure 5.13 shows the results of using thread scheduling to mitigate the load imbalance for

the over histories approach. The performance is marginally improved on the KNL, however, the

Skylake performance worsens due to the scheduling overheads if a form of dynamic scheduling

is enabled. The load balance of neutral is problem dependent, and the csp problem does not

lead to a significant load imbalance on the CPU architectures. It is nevertheless important

to rule this out as a cause of performance differences, and tracing is used to ensure that the

optimisation discussed throughout the chapter do not introduce unexpected load imbalances.

5.5.7 Hyperthreading

For many scientific applications, hyperthreading has little impact on performance as memory

bandwidth or compute performance dominate the core kernels. In spite of this, Tramm et al.

found that hyperthreading directly improved the performance of a stripped back kernel repre-

senting macroscopic cross sectional lookups [157]. Their observation was that the hyperthreading

improved the performance of XSBench, as it allowed more read requests to be in flight. The

macroscopic cross section lookup used in their study requires a binary search, which has a ran-

dom memory access pattern, the same as the cross sectional lookup in neutral. Further to this,
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neutral requires random memory accesses for particle tracking and tallying, which might also

benefit from hyperthreading.

Figure 5.14: Adjusting the number of hardware threads for the problems in neutral. The

results are for Skylake (left) and KNL (right).

The results in Figure 5.14 demonstrate that a significant increase in performance is observed

as the number of hyperthreads is increased on both the Intel Xeon Skylake and Knights Landing

processors. On the CPU, increasing the number of threads per core from 1 to 2 improves the

runtime of each test problem by 1.3x to 1.5x, while on the KNL the performance improves by

1.8x to 2.5x. It is relatively common for applications to improve as the number of hyperthreads

is increased on the KNL, as more than one hardware thread is generally required to saturate

memory bandwidth [128]. In contrast, it is rare that scientific applications benefit from addi-

tional hyperthreads on CPUs, and some HPC clusters even disable hyperthreading. The results

here suggest that there is a significant difference in the performance profile between the neutral

application and other more typical scientific applications.

The streaming case, which does not have to update macroscopic cross sections in this

single-material problem, also observes a significant improvement in performance. It is therefore

hypothesised that the improved performance through hyperthreading observed by Tramm et

al. related to random memory access performance. The results of Section 4.8 showed that the

simple mode of the random memory access benchmark benefited significantly from an increase

in hyperthreads, corroborating this hypothesis. When applied to neutral it is shown that

even the random memory accesses for particle tracking could be improved through the use of

hyperthreading.

5.5.8 Over Events

Using the over events approach described in Section 5.4.4.2, it is possible to expose vectorisable

streams of work, which might enable improved performance compared to the over histories

approach. Vectorisable loop structures mean it will be possible to place a greater number

of loads in flight, hopefully overcoming the issues with random memory access performance

observed for the over histories approach, and discussed in Section 4.8.
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5.5.9 Sort-free Over Events

Taking advantage of vector masking and predication rather than sorting particles into streams

is expected to be vastly superior on modern architectures, where data movement is so expensive.

Figure 5.15: The performance of the over events approach with respect to the over histories

approach.

Figure 5.15 shows that the over events approach actually leads to worse performance for the

majority of the test cases, and in many cases the slow down is significant. The single case where

the over events approach is shown to be superior is the scattering case on the KNL, and the

result for the Skylake is closer to parity as compared to the other test problems. There are

multiple contributing factors to the poor performance for the over events model. The particle

data structure is increased in size as fewer elements of the particle history can be stored in

registers, but must instead be stored against the particle to avoid expensive re-computations.

Depending upon the problem and whether some subset of the particle population is operated

on, it might be necessary to fetch the particle data from memory, resulting in greatly increased

memory access costs.

In the scattering case for over histories, the amount of memory access was strictly limited

by the size of the lookup tables, as discussed in Section 5.5.2.1. Enabling vectorisation allows

the application to exploit the full computational throughput of the architectures, potentially

allowing significant performance improvements for the small lookup table case. In the over

events case, the particle data can no longer be cached and so the scattering case becomes

bottlenecked on the Skylake’s memory bandwidth. On the contrary, the MCDRAM on the KNL

offers high enough memory bandwidth for the application to benefit from the improvements in

computational throughput.

For the CPU technologies, the over events approach was not successful in improving perfor-

mance compared to the over histories approach in the majority of cases. In Section 5.7 a novel

approach to improving the issue will be presented for the CPU and KNL.

5.6 Implementation on GPU

Conventional wisdom suggests that the over histories algorithm would not be well suited for

acceleration on a GPU. In this thesis all of the different algorithmic variants were considered

on the GPU and the results demonstrate important characteristics of GPU programming that

contradict popular belief about their capabilities. It was suggested by van Heerden et al. that



CHAPTER 5. MONTE CARLO NEUTRAL PARTICLE TRANSPORT 85

traditional over histories parallelisation on the GPU would only be able to observe moderate

speedups due to the level of divergence between threads [164]. They outlined an approach for

avoiding warp divergence, by assigning individual particles to warps, allowing a sharing of data

between the particles. The cooperation between threads within each warp appears to rely upon

a number of factors, for instance, the geometric data being a reasonable size to be fetched by the

full warp. The main drawback for use with neutral is that the computations are not amenable

to cooperation within a warp, and the geometric data is small enough that it would not be

profitable for coalesced access. In neutral, allocating particles to warps vastly underutilises the

GPU compute and memory resources.

Liu et al. investigated the difference between the over histories and over events approaches,

but found that the simulation speed was an order of magnitude slower for the over events ap-

proach [90]. Their investigation suggested that the large number of global memory transactions

was the determinant factor in this. The original research was conducted with an NVIDIA Tesla

M2090 GPU, and so re-consideration of this approach with new hardware and modern insight

might yield improved results. The details of the V100 GPU used in this chapter are discussed

in Section 4.2, and all code is compiled with CUDA 9.0.

5.6.1 Over Histories

The reason that the over histories approach appears to be poorly constructed for the GPU

is that it leads to code with many deep branches. An implementation of the over histories

approach was developed in neutral using CUDA, which essentially comprised of a single large

computational loop parallelised over the particle population.

Figure 5.16: Performance of the V100 compared to the Skylake for the over histories approach.

Figure 5.16 shows the performance of the over histories algorithm on a V100 GPU compared

to the Skylake, where the performance of the streaming problem is 2.3x faster, while the

scattering problem was around 20.5x faster. The stark difference between the CPU and

GPU in this case is caused by a number of coinciding issues. The CPU implementation is not

vectorised, while the particles are distributed evenly across warps on the GPU, allowing better

use of the GPU compute and memory resources. The streaming case on the GPU achieves

a true bandwidth of 327 GB/s, which is around 41% of read-write bandwidth, as shown in

Section 4.5. This proportion of peak is less than observed for the Skylake CPU, which achieved

around 69% of peak achievable DRAM bandwidth.

As previously mentioned, this particular problem specification only accesses a small quantity
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of lookup table data, more representative of energy group codes, but the performance can

change as the lookup table is increased in Section 5.8. The results defy the expectation that

the branching within the kernels make the algorithm untenable on the GPU, as even the csp

problem is able to improve upon the CPU performance.

Problem Read B/W Write B/W % of Achievable

csp 179GB/s 48GB/s 29%

streaming 187GB/s 48GB/s 30%

scattering 190GB/s 6GB/s 25%

Table 5.1: Bandwidth results collected with nvprof on a V100 GPU.

Table 5.1 shows the memory bandwidth as reported by nvprof for the over histories ap-

proach on a V100 GPU. Importantly, the bandwidth measured by nvprof is a true bandwidth

measurement, derived by measuring the individual accesses across the bus. The reason for the

disparity between the expected true bandwidth and the measured true bandwidth relates to the

previously discussed issue of incidental locality (Section 5.5.5). Locality is present in the 2D

problem that means that the bandwidth measured as 2 cache line reads and 1 cache line writes

over-estimates the volume of main memory accesses if caching is not taken into account.

The ‘stall memory dependency’ counter shows the percentage of stalls that occur because

resources are not available for a memory request or the maximum number of memory requests

possible are in flight. For streaming the result is 90% and for scattering it is 32%. The

high fraction of stalls due to memory requests is important as it shows that, for the streaming

problem, memory performance is being limited due to the number of outstanding memory

requests being saturated. Considering that the achieved bandwidth was only 30% of observable

peak, there is a disparity between the memory requests being in flight and the successful memory

accesses. Further to this, the scatter problem, reaches around 1.3 TFLOP/s, which is around

19% of peak compute performance, alongside 25% of peak memory bandwidth.

5.6.1.1 Sort-free Over Events

Having successfully implemented the over histories approach on the CPU, it was possible to

implement the predicated over events approach on the GPU. As the approach finds long streams

of work, it was expected that the performance could improve upon the over histories approach on

the GPU. This was especially expected to be true for the streaming and scattering problems,

as the events performed by the problems would be the same for all particles in the stream,

minimising thread divergence.

The results in Figure 5.17 show that the performance is significantly worse than expected,

with the over events approach executing 2-3x slower than the over histories approach. There

are several reasons why the performance of the predicated over events approach did not reach

the expected performance. It is useful to first consider the single event problems, scattering

and streaming, ignoring the top level of branching in the application.

For both of the single event problems, the GPU achieves around 80% of observed peak

memory bandwidth for the event handling routines. The reason that the memory bandwidth

utilisation has been greatly increased is that the total amount of memory accessed has been

increased, as the particle data needs to be re-fetched for each event loop. The traditional over

events approach does not suffer from this issue as a queue of particles is maintained, reducing the
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Figure 5.17: Performance of the predicated over events approach on a V100 GPU.

amount of particle data that is re-fetched. In spite of this, the traditional over events approach

was prohibitively slow due to the necessity to sort, meaning that the over events approach

appears to be less suited to the GPU than originally expected.

In fact, the over histories approach avoids any performance overhead for accessing the par-

ticle data, meaning that the performance is instead limited by the random memory accesses for

lookup tables and streaming accesses. The over events approach reduces branching but poten-

tially at the expense of increased global memory access, unless the working set is constrained.

5.7 Enabling Vectorisation via Blocked Over Events

It has been shown that the over histories algorithm in neutral does not vectorise with the

optimising compilers available at the time of writing. The over events approach enables vec-

torisation with sorting or masking, but the performance was generally significantly worse than

the over histories version regardless of which approach was taken. It is clear from the perfor-

mance analysis that the CPU architectures could benefit from vectorisation, particularly in the

streaming case where the compute performance is an influential factor. In collaboration with

Intel, a new algorithm (Code Sample 5.4) was developed that attempts to capture the benefits

of both the over histories and predicated over events approaches at the same time, which will

be referred to as the blocked over events approach throughout.

The approach initialises a number of threads, which act as coarse grained tasks that indepen-

dently work on batches of particles. Each thread decomposes its batch of particles into blocks,

and works on each block in turn, taking all particles in the block to census before moving on to

the next block in the batch. Inside the event loop of Line 7 the loop structure is essentially the

same as the over events approach, except that the loop bounds are now compile time constants,

that can be set to less than or equal to the number of particles N . As the loop structure is

the same as the over events approach it is possible to vectorise the loops by masking out vector

lanes based on a particle’s participation in the current event.

The approach introduces the block size as a parameter. An initial default block size of 32 was

chosen, as this would span four AVX512 registers, allowing for four way unrolling, ensuring that

the dual-issuing of the Skylake CPU is taken advantage of, alongside any potential instruction-

level parallelism. This approach is similar to the predicated over events, except that the block
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size can be changed to ensure that the particle data is cached in a high level of cache, removing

the issue of particle data re-fetching. Further, the problem of synchronisation is solved as the

SPMD pattern is applied over blocks, while allowing vectorisation of the inner loops, meaning

that the synchronisation costs are reduced to the same as the over histories approach.

Code Sample 5.4: The blocked over events algorithm for neutral.

1 block_loop:

2 choose_block(particles) -> block_particles

3

4 for particle in block_particles:

5 cache_particle_data(particle)

6

7 event_loop:

8 for particle in block_particles:

9 calculate_time_to_events(particle)

10

11 for particle in block_particles:

12 if colliding(particle):

13 handle_collision(particle)

14

15 for particle in block_particles:

16 if encounter_facet(particle):

17 handle_facet(particle)

18

19 if all_particles_at_census(block_particles):

20 exit event_loop

21

22 for particle in block_particles:

23 handle_census(particle)

The approach introduces the possibility for executing on a sliding scale between the over

histories and over events approaches. The block size can be changed between 1 particle per

block for the over histories approach and N/nthreads particles per block for the over events

approach. Executing the optimised implementation in the two extreme cases added a minor

overhead of around 10% compared to the over histories implementation but added no overhead

compared to the over events implementation. As such, the algorithm could be tuned to take

advantage of the benefits of either approach when targeting a specific problem.

5.7.1 Vectorising the Collision Event Routine

The facet and census events, and distance calculations, all vectorised well with only minor

adaptations to the event code. It was necessary to perform some additional work to make sure

that the collision events were vectorised with the Intel compiler.

5.7.1.1 Restructuring of the Binary Search

The binary search that handled the discovery of the energy index for the current nuclide was

originally implemented using a simple while loop. This implementation inhibited vectorisation

using the Intel compiler targeting both the Skylake and KNL, due to the complex loop constraint.
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In order to resolve this issue a for-loop based binary search was developed that calculates the

initial trip count from the base-2 logarithm of the number of entries in the table, while using

the same constructs in the loop body.

5.7.1.2 Intrinsic Atomic Call

Under certain circumstances, each of the events are responsible for atomically writing back to

the tallying mesh for energy deposition. Using OpenMP as the parallel programming model for

parallelising the code introduced an issue in this regard as the use of the atomic directive from

within a vectorised region was expressly prohibited. The resolution to this issue was to develop

a simple intrinsic routine that could be called within the vectorised routine, which overcame

the restriction of OpenMP. Having fixed the binary search and removed the atomic directive

the routines now successfully vectorised. In spite of this there were still performance issues that

needed to be resolved.

5.7.2 Tunable Block Size

Being able to tune the block size means that it is possible to control the amount of particle

data caching that occurs while ensuring that there is enough data to fill some number of vector

registers. This additional parameter had to be tuned for both the CPU and KNL, as it was not

feasible to determine the best possible choice analytically.

Figure 5.18: Tuning the block size for the blocked over events algorithm, for the Skylake (left)

and KNL (right) CPUs.

The results in Figure 5.18 are for the Skylake and KNL CPUs, executed with the blocked over

events algorithm with all routines successfully vectorised according to the Intel compiler reports.

On the KNL, the block size of 8 is shown to provide the best performance across the three test

cases, while on the Skylake the different events observe significantly different performance results

as the block size is increased. The csp problem in particular worsens as the block size is increased

beyond 4, which is indicative of an overhead introduced by the vectorisation of the problem.

The block size of 4 is presumably the point where the vector masking incurs the least overhead.
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5.7.3 Particle Data Structures

The Array of Structures (AoS) particle data layout means that the x and y coordinates are packed

next to each other in memory, and so both can be brought into L1 at the same time. This is

the optimal choice of data structure for the over histories approach, which works on individual

particles, but the same is not necessarily true for the blocked over events approach, which works

on batches of particles. Although the access to particle data represents a low proportion of

memory accesses, as seen with the over histories approach, the blocked over events approach is

vectorised. As such, the data structure affects the vector instructions output by the compiler.

Code Sample 5.5: Access to particle data within the SIMD region for AoS.

1 #pragma omp simd

2 for (int ip = 0; ip < np; ++ip) {

3 if (particles[ip].dead) {

4 ...

5 }

6 }

Code Sample 5.5 shows the beginning of a vector loop where the particle data needs to be

accessed. The condition stops the loop from updating the state of particles that have fallen

below the energy level of interest, and are now considered ‘dead’. In order for each lane to fill a

register that can test this branch, it is necessary to gather the strided variable ‘dead’ from the

particle data structure. This example extends to all other particle data accesses within the vector

loops, causing frequent gathering and scattering. Changing the data structures to Structure of

Arrays (SoA), or Array of Structures of Arrays (AoSoA) will resolve this issue, making it so that

gathers and scatters are not required. Bareford et al. improved the performance of miniEPOCH,

and Shulenberger et al. improved the performance of QMCPACK by changing structures to an

AoSoA layout [147] [11].

5.7.3.1 Performance

The results are now plotted for the change in data structure for both the Skylake and KNL

CPUs, where the block size for all tests was set to 8 (see Section 5.7.2).

Figure 5.19: Altering the data structure for the blocked over events approach on the Skylake

CPU.

The performance results shown in Figure 5.19 demonstrate that a reasonable performance

improvement is observed through the vectorisation of the streaming and scattering test prob-

lems. The csp problem, on the other hand, performed significantly worse than the over histories
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approach. Again, this is expected to be caused by overheads associated with the masking in

the csp problem. Regardless of the comparison to the over histories approach, all of the ver-

sions performed best with the AoSoA data structure, although the performance difference was

minimal between SoA and AoSoA.

Figure 5.20: Altering the data structure for the blocked over events approach on the KNL.

Figure 5.20 presents the results for the KNL, which show a performance improvement across

all of the test problems. The csp problem was significantly faster to run with the blocked over

events approach with the AoSoA data structure, and both the streaming and scattering

problems sped up significantly as a result of the vectorisation. As with the Skylake CPU, the

AoSoA data structure was the best performing for all problems, by a slightly larger but still

small margin.

Random123, while theoretically vectorisable, lead to inefficient instructions that reduced the

vectorised performance. Although a vectorisable version of Random123 has been developed, the

implementation requires calculation of batches of random numbers, which increases the memory

footprint and was not useful for this particular application. The Random123 library was replaced

with the vectorisable PCG RNG library provided by Intel [127].

Figure 5.21: The speedup of the over blocks approach compared to the over histories approach

for the Skylake and KNL.

The final speedups for the blocked over events approach using the PCG RNG library can

be seen in Figure 5.21. The results show that a vectorised implementation is important for

applications with small lookup tables, and that the KNL greatly benefited from vectorisation in

all of the kernels, although it was not able to best the performance of the dual-socketed Skylake
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CPUs. While the improvements to the streaming and scattering case were significant on the

Skylake CPU, the csp problem appears to benefit less from the optimisations due to the loss of

efficiency from masking vector operations with a mix of events.

5.8 Increasing the Lookup Table Size

One of the main points of problem dependence for Monte Carlo neutral particle transport is the

capacity of lookup tables accessed during the solve. To demonstrate the change in performance

that occurs for large lookup tables, the unionised grid approach is implemented in neutral. The

unionised grid approach means that only a single binary search needs to be performed for each

cross sectional lookup, regardless of the number of different nuclides in a particular material [22].

A large number of nuclides, 300, is chosen to approximately match the number of nuclides used

in benchmarks of reactor simulations [158]. The size of the lookup tables was also increased to

1e5 entries, to make the overall pool of lookup entries larger.

The data touched by the particles in the simulation depends upon the energy profile that the

particles transition through during the histories. This does not significantly affect the binary

search, which still has to step through the whole energy grid, but does affect the number of

cross sectional entries that will be accessed by a particle population, potentially limiting the

memory footprint. In a regime where the accesses to the lookup tables are likely to be more

expensive than the binary search, it was important that the initial energy profile of the particles

was randomly distributed, to avoid inadvertently introducing locality.

Device Skylake KNL V100

Mem. Bandwidth 180 GB/s 126 GB/s 130 GB/s

Table 5.2: The memory bandwidth achieved by the different processors when executing the

scattering problem for 300 nuclides.

The large lookup table regime significantly alters the performance profile of the collision

events. Using the uncore counters it is possible to determine the amount of memory that is moved

during the large lookup table version of the scattering problem, around 2 TiB. The results in

Table 5.2, for the over histories approach, show that the Skylake CPU achieves a high fraction of

peak memory bandwidth for this problem, around 180 GB/s or 83%. The KNL achieves a lower

fraction of peak, at around 126 GB/s, or 28%. Introducing this functionality into the optimised

blocked over events implementation marginally improves the Skylake performance to around

195 GB/s, but the KNL achieves a lower fraction of memory bandwidth. It is hypothesised

that the reason that the KNL performance worsens is because the memory requests are now

served as gathers from MCDRAM, saturating the finite gather units. The performance on the

GPU is around 130 GB/s, which is a low fraction of peak performance, and is caused by the

fact that the memory accesses are not coalesced. In order to coalesce the read accesses, it is

necessary to make blocks co-operate on the fetch of the nuclide data, which requires a significant

restructuring of the over histories algorithm.

It is observed that when simulating problems with many nuclides, it is likely that the entire

simulation will become bound by memory bandwidth. Given that the GPU and KNL offer high

bandwidth memory, it should be possible to achieve even higher peak memory bandwidth by

tailoring the algorithms to account for this.
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5.9 Performance Portability

In this section, the performance portability of the neutral mini-app will be considered with

respect to different programming models and the optimal algorithms discovered during the

chapter.

5.9.1 Best Cases Across Architectures

In this section, the blocked over events implementation for the CPU, and over histories imple-

mentation for the GPU will be considered as the optimal implementations.

Figure 5.22: The performance of the best performing versions of neutral on the 3 parallel

processors.

Figure 5.22 shows that the best achieved memory bandwidth on the Skylake CPU for the

streaming case is around 144 GB/s, while the KNL achieves around 120 GB/s. The fraction

of peak memory bandwidth can be improved on the Skylake by splitting MPI ranks per NUMA

domain, reducing the costs of random communication across the domains. The V100 GPU

achieves around 248 GB/s, or 30% of peak memory bandwidth, which is limited because the

random memory accesses to the density and energy deposition tally meshes cannot be coalesced.

The results on the KNL are close to the results that are observed with the simple mode of the

random memory access benchmark in Section 4.8. It is understood, through consultation with

Intel, that the limitation in this case is that prefetching is not possible, and this restricts the

achievable bandwidth. The KNL and V100 achieve 71% and 59% of the best observed random

memory access performance, respectively, when executing the streaming case.

The scattering case achieves 260 TFLOP/s on the Skylake CPU, around 8% of peak

compute throughput, with negligible memory bandwidth used as the majority of the data is

resident within cache. From profiling, and considering the instruction mix, it is hypothesised

that the reason the performance is limited on the CPU is due to the latency of long chains

of dependent L2 cache requests required to complete the binary search. Another issue that

increases the latency in the solution is that each collision event can perform up to 4 double

precision sqrt operations, and up to 8 double precision divisions, and a double precision log

operation. The latency hiding nature of the GPU helps the latency of the memory accesses
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and long-latency operations to be hidden in the scattering case, enabling a greater fraction of

compute performance, 1.3 TLOP/s, or 17% of peak throughput, to be achieved.

The csp problem does not improve as much as the single events on the CPU, suggesting

that the cost of masking becomes a limiting factor to the performance. Importantly, the best

performance was achieved on the three architectures using two radically different approaches.

This introduces a challenge in terms of achieving performance portability, that is made even

more difficult by the differences in performance observed in Section 5.8, for the different lookup

table sizes.

5.9.2 Programming Model Performance

The other Monte Carlo codes discussed in this thesis, for instance Quicksilver, and OpenMC,

use an over histories style algorithm, and so it is the most interesting algorithm from the

perspective of performance portability for programming models [20] [140]. The over histories

implementation of the neutral application has been ported to run on Intel Xeon CPUs, Intel

Xeon Phi CPUs, and NVIDIA GPUs, using a number of different parallel programming models,

and the results will be discussed in the following section. Note that each of the independent

code ports were algorithmically and compute-workload identical, ensuring that the results can

be consistently compared between the different implementations.

The processors used in this section are discussed in Section 4.2, and the compilers used are:

Intel 18.3 for OpenMP and RAJA on the Skylake and KNL, PGI 18.5 for OpenACC on all

targets, CCE 8.7.4 for OpenMP 4.5 on the GPU, and CUDA 9.0 for all GPU implementations.

First, the performance is compared on the Skylake CPU.

Figure 5.23: The performance on neutral executed on a Skylake CPU with varying program-

ming models.

In Figure 5.23 the results are presented for executing each of the test problems using OpenMP,

OpenACC, and RAJA, all targeting the Skylake CPU. As can be seen from the plot, the perfor-

mance portable implementations are close to the performance of the best performing OpenMP

implementations for all of the test problems (within 5% for csp and streaming, and 15% for

scattering). In fact, the code generation for each of the models will lead to similar outputs, as

RAJA internally uses OpenMP and OpenACC uses a similar threading model for its multicore-

targeting capabilities.

Figure 5.24 shows the results of executing the over histories version of neutral using

OpenMP, OpenACC and RAJA targeting a KNL. The results show that there is a larger
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Figure 5.24: The performance on neutral executed on a KNL with varying programming mod-

els.

overhead of around 40-50% for OpenACC, while RAJA executes with a relatively consistent

overhead of around 28%. The OpenACC support for KNLs is relatively recent, and the primary

focus of optimisation efforts has been for the Skylake CPU, which is obvious from the results

in Figure 5.23. Given that the Intel Xeon Phi line of processors has been discontinued, further

optimisation of the PGI OpenACC code generation for the KNL is unlikely.

Figure 5.25: The performance on neutral executed on an NVIDIA P100 GPU with varying

programming models.

The results in Figure 5.25 show a significant difference in the performance of the paral-

lel programming models, which was not seen with the Skylake. CUDA being the low-level

architecture-specific programming model achieves the best performance, by a significant margin

in some cases. None of the performance portable programming models perform well for the

csp problem, due to the poor performance of the scattering case, although the results for the

streaming case are good for OpenACC and OpenMP, and tolerable for RAJA.

It was not possible to compile neutral using OpenACC, OpenMP, or RAJA, using the

Random123 library, which has a GPU-optimised implementation. Instead, PCG was used, and

it is possible that this implementation introduces some overhead for the performance portable

solutions for the scattering problem. The OpenMP scattering is the worst case, and even

this result required the number of teams to be increased so that there is only one iteration of

the particle loop per thread. This fine-tuning improved the performance by 20%, but no other
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optimisations had an impact.

One observation is that the register count is significantly higher for OpenMP at 128 registers

per thread, but that this appears to be a hard cap imposed upon compilation by the Cray com-

pilers, which suggests that the register count could be even higher. The CUDA implementation

uses 76 registers, while the OpenACC implementation uses 136, which leads to a low occupancy

of around 15%. Limiting the number of registers to 128 improves the performance of the Ope-

nACC implementation by around 10%. The OpenACC implementation only adds an overhead

of around 1.25x floating point operations, but the utilisation of memory bandwidth is reported

as significantly higher by nvprof, suggesting more data is being stored in global memory.

5.10 Summary

Monte Carlo neutral particle transport is a useful exemplar case that has given insight into not

just a general class of algorithms and scientific applications, but has been useful for exposing

characteristics of a broad range of target architectures and parallel programming models. The

algorithms for solving Monte Carlo neutral particle transport include random memory accesses,

varying sizes of lookup tables, atomic updates, and load imbalance, for millions of independent

continuously transporting particles. Depending upon the input problem, the application can

have multiple performance affecting bounds, emphasising that it is not always possible to de-

termine a specific bound for an application, rather the bound is potentially tied to the problem

specification. The performance impact seen when increasing the lookup table size shows that

the problem dependence of the Monte Carlo neutral particle transport application means that

different algorithms might be necessary for different problem specifications. This makes it par-

ticularly challenging to implement a single optimal solver that can cover different problem cases

on modern architectures.

It was possible to characterise the performance of a number of asymptotic problem specifica-

tions using neutral. The scattering problem was shown to be limited by latency for the small

lookup tables, and the GPU was able to overcome those latencies to some extent to achieve a

higher fraction peak throughput. For the large lookup tables, the adjusted scattering prob-

lem becomes memory bandwidth bound on all of the architectures, and more work is needed

to optimise the KNL and GPU implementations for this particular case. The streaming case

is memory bandwidth bound, although the modeling of the memory bandwidth is challenging.

Accurate analysis must take into account the true memory bandwidth and the incidental locality

in the problem. The csp problem most closely tracks the streaming case, but in some cases

the performance is limited by the masking required to handle both event types.

Until neutral was optimised and vectorised, memory and instruction latency dominated

the performance on the CPU and KNL. Through the development of a novel sort-free blocked

particle tracking algorithm, and a number of optimisations to the random number generation

and energy deposition tallying, it was possible to vectorise the entire particle tracking process

efficiently. The results were a significant improvement in the single event performance, partic-

ularly the scattering events. The final results show that a high fraction of peak performance

for streaming events is achievable on the Skylake CPU, and considerable improvements were

observed on the KNL, although there is still room for improvement. Although the scattering

case improved most from vectorisation, the performance is still sensitive to latencies.
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6.1 Introduction

The problem of heat diffusion on a two-dimensional structured grid has been chosen because it

is simple to implement and is quite representative of large memory bandwidth bound scientific

codes [112]. Each of the kernels is essentially a sparse linear algebra routine, and there are not

many opportunities for node-level optimisation. The focus of this chapter will instead be on

characterising and modeling the problem, as well as considering its performance portability.

6.1.1 Associated Research

The use of representative applications for the purposes of investigating performance portabil-

ity and developing new algorithms has been used extensively on the path to exascale. Bird

et al. developed the miniEPOCH mini-app, which is a proxy for the EPOCH particle-in-cell

code, and used it to uncover a number of optimisations for modern processors, including loop

fission and data structure alterations [14]. Using the miniMD mini-app, Pennycook et al. in-

vestigated the effect of gather-scatter performance on the vectorisation of molecular dynamics

simulation, in particular considering the performance on the then recently released Intel Xeon

Phi coprocessors [130].

Much research has been conducted into the performance of the parallel programming models

with respect to a number of scientific applications. The development of robust parallel pro-

gramming models that can support CPUs and offloading to accelerators is an important area of

research that has a number of open questions. Karlin et al. ported three applications, LULESH,

Kripke and Cardiod to OpenMP 4.5 in support of the CORAL project, and found that it was

possible to achieve a reasonable level of performance for the applications using the directive

based model [80]. Lopez et al. also ported representative kernels to OpenMP 4.5, particularly

observing differences between the compilers resulting in inconsistent performance [94]. They

further noted that OpenACC was “simpler” to use than OpenMP, as the compiler assumes

more responsibility for the parallel configuration. Kirk et al. considered the performance of a

number of parallel programming models using TeaLeaf [81].

Lin et al. ported a number of stencil codes belonging to the DOE, and found good perfor-

mance once all data movement between the host and device was minimised [89]. They noted that

support for managing the memory spaces on an NVIDIA GPU was not available in OpenMP

4.0, but the features will be introduced in OpenMP 5.0 as custom memory spaces and handling

of unified memory [116].

A synopsis of the Advanced Simulation and Computing (ASC) strategy for Lawrence Liv-

ermore National Laboratory was described by Neely et al. In this document, OpenMP 4.5,

OpenACC, RAJA, and Kokkos are all cited as planned parallel programming models to be used

in the porting of DOE applications [120]. The strong traction of C++ abstraction layers moti-

vated the inclusion of RAJA in the investigations in this thesis. Results demonstrated in research

related to other applications, including TeaLeaf and CloverLeaf, conducted as part of this thesis,

have shown that RAJA and Kokkos are similar and offer consistent performance [103] [100].

The Tpetra sparse linear algebra library was ported by Hoemenn et al. using Kokkos to

enable performance portability between CPUs and GPUs [65]. This was important research as

it showed the relevance of the C++ abstraction layers to provide performance portability to the

high performance libraries.
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6.1.1.1 Libraries

Scientific simulations often directly or indirectly solve a system of partial differential equa-

tions [13]. When implementing simulations that result in linear systems of equations, there are

many choices of libraries that can support the development process. The libraries offer different

functionality and levels of abstraction, for instance, high performance linear solver libraries, such

as Trilinos and PETSc provide many high and low level routines [9]. The methods are typically

constructed from multiple BLAS style linear algebra primitives, and so it is generally possible

to manually implement solvers using lower-level linear algebra libraries such as BLAS, cuBLAS

and MKL [44] [122] [69].

Although there are many successful high performance libraries, they can introduce difficulties

in terms of performance portability. The vendor-tuned low-level libraries like MKL and cuBLAS

are of course architecture-specific, while the higher level libraries like PETSc and Trilinos do

not all provide performance portable interfaces. In the case where specialisation is provided to

diverse architectures, such as the GPU support in PETSc, it can be challenging to integrate those

features with custom kernels developed within an application. The problem is amplified when

considering multi-physics codes that require interoperation between multiple high performance

libraries, especially when offloading computation to an accelerator.

6.2 Implementation

In this thesis the Conjugate Gradient (CG) method is employed to solve heat diffusion, as it is

a fast-converging linear solver that is easily implemented.

6.2.1 The Conjugate Gradient Method

A full mathematical treatment of the Conjugate Gradient method is outside of the scope this

thesis so only the key details are presented, however, detailed introductions to the method are

available from Shewchuk et al. and Nocedal et al. [146] [121]. The Conjugate Gradient method

is a member of the Krylov subspace solvers and can be interpreted as an iterative approximation

to the solution of a linear system Ax = b that uses the fact that the conjugate vectors pi of

an n × n matrix A can be used to form a basis. Using that basis it is possible to describe the

solution vector x as a linear combination of those vectors x =
∑
i αipi. The coefficients αi can

be determined using the closed equation αi =
pT

i ri
pT

i Api
, where ri = b−Axi is the residual of the

i-th guess for the solution vector.

These characteristics make it possible to iteratively determine the solution by successively

calculating conjugate vectors and coefficients and updating the solution vector x. In practice,

this iterative approach is expensive and incurs large storage overheads. A further optimisation

of this algorithm is introduced by interpreting the problem as a projection into Krylov subspace,

allowing each residual and conjugate vector to be calculated directly from their values in the

previous iteration, greatly reducing storage overheads.

6.2.2 The Conjugate Gradient Algorithm

Given the previous mathematical derivation, the approximate iterative algorithm can be con-

structed. Pseudo-code for the algorithm can be seen in Code Sample 6.1.
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Code Sample 6.1: The local CG algorithm.

1 x = 0 // Initial guess for solution

2 r = b - A * x // Calculate initial residual

3 p = r

4

5 loop:

6 alpha = (r * r) / (p * A * p)

7 x_new = x + alpha * p

8 r_new = r - alpha * Ap

9 if((r_new * r_new) < EPS) break // Convergence check

10 beta = (r_new * r_new) / (r * r)

11 p_new = r_new + beta * p

When applied to the heat diffusion equation, the sparse matrix A can be explicitly con-

structed or a matrix free approach can be employed. The entries of the matrix are the coef-

ficients of the implicit formulation and, depending upon the problem specification, might be

static or dynamic per time step. Noting that both alpha and beta are scalar values, a manual

inspection of the local algorithm shows the following operation counts: 1 sparse matrix-vector

multiplication, 3 N-length dot products, 3 N-length vector additions, and 3 N-length scalar-

vector multiplications. In a dense calculation, the matrix-vector multiplication would likely

be the limiting factor; however, given that the matrix-vector operation is sparse, it does not

necessarily dominate the performance of the algorithm [112].

For the heat diffusion problem, the matrix A is a collection of coefficients that describe a

stencil of neighbours for each cell in the computational domain. The sparsity of the matrix A is

dependent upon the number of dimensions and the depth of the stencil. In the three-dimensional

case with a stencil depth of one, there will be at most seven non-zero entries in each of the rows of

the matrix. As such, the matrix-vector multiplication performs 7 multiplications for each entry

of the solution vector, with several of the accesses to the solution vector being non-contiguous.

A convenient aspect of the described algorithm is that it is perfectly composed of simple linear

algebra kernels, which makes it straightforward to predict the performance of the application

based on the well-known characteristics of the kernels. In fact, the sparse matrix-vector, dot

product, vector addition and vector scaling are memory bandwidth bound on all of the modern

processors discussed in this thesis.

6.2.3 The hot Application

The hot application is a two-dimensional heat diffusion solver written for this thesis. There exist

several established applications solving heat diffusion, such as TeaLeaf1 and HPCG2, which have

been used throughout this thesis [103] [112] [101] [42]. The hot application was developed as a

minimal example of a heat diffusion solver in the arch framework, to enable rapid exploration

of parallel programming models. Those results observed for hot are directly applicable to

other applications such as TeaLeaf, and even larger applications employing sparse linear algebra

solvers.

A thorough discussion of the reasoning behind developing the arch project is provided in

Chapter 1, but for hot the principle purpose was reducing the code size, and to demonstrate in-

tegration into the arch infrastructural layer. The entire solver is expressed in less than 200 lines

1https://github.com/uob-hpc/tealeaf
2http://www.hpcg-benchmark.org/
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of computational code, meaning that porting to new parallel programming models is straight-

forward.

6.3 Performance Analysis

The performance of the Conjugate Gradient method is well understood on modern architectures.

The key details will be briefly presented in relation to hot before a performance portability

analysis is presented. The processors used in this section are discussed in Section 4.2, and the

compilers used are: Intel 18.3 for the Skylake and KNL, and CUDA 9.0 for the V100.

6.3.1 Default Test Case

Due to the fact that hot performs an implicit solve, there is little parameter dependence except

for the iteration count to convergence, which can change depending upon properties of the so-

lution, parameters, and the initial conditions or guess. The iteration count does not matter for

the purposes of this performance evaluation as that will generally be considered by the compu-

tational scientist developing the particular test problems. It is instead the goal of this project to

understand the performance of individual iterations of individual time steps, considering them to

be constant. In spite of this, in order to be easily related to other research and easily presented,

the absolute runtime will be presented for a simple default test case.

Figure 6.1: Solution of a heat diffusion problem solved by the hot application.

The default test case solves a single time step of length 1e-2s for a mesh of size 4096× 4096,

requiring 4030 iterations to minimise the error to below 1e-10.

6.3.2 Kernels

The hot application contains multiple kernels that all contribute to the overall runtime.

Kernel Calls Runtime

calculate alpha 4030 11.88s

calculate new r2 4030 13.57s

update conjugate 4029 5.98s

Table 6.1: Performance by kernel for hot on a Skylake CPU.

As shown in Table 6.1, the three major computational kernels in hot are relatively balanced

in terms of their contribution to the runtime, meaning that all three of the kernels would need
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to be optimised to achieve the best outcome. When the kernels are executed in a distributed

fashion, there is also a communication cost to perform the all-to-all reductions of the scalar

variables required by the kernels.

6.3.3 Performance on CPU and KNL

It will be subsequently demonstrated that the algorithm is predictably memory bandwidth

bound. As such, considering the performance on a modern CPU when executing on all cores of

a socket guarantees that the results are representative. Using fewer than the maximum number

of available cores on a CPU might lead to incorrect representation of the performance.

Figure 6.2: The memory bandwidth achieved by hot relative to STREAM kernels on a single

socket of Skylake CPU.

On a modern Xeon server grade processor like the Skylake, for instance, it is necessary

to execute on many cores to generate enough L3 cache misses to saturate DRAM bandwidth.

Further to this, the distribution of cache is more challenging to reason about when under-utilising

the cores on a socket. In spite of this, it is still informative to observe the achieved scaling of

the algorithm given additional cores of the CPU.

The application is known to be memory bandwidth bound, and Figure 6.2 presents the

memory bandwidth of hot scaled up to 28 cores of a Skylake CPU, alongside the results of

the same test performed on STREAM. The memory bandwidth achievable with the Intel Xeon

Skylake is significantly higher than previous Intel CPUs and, when dual-socketed, can rival pre-

vious generations of GDRAM-based NVIDIA GPUs. For a single socket, the Skylake processors

achieves roughly 100 GB/s for the STREAM triad benchmark. The results show that memory

bandwidth is saturated on the Skylake when hot is executed on 12 cores, and the behaviour of

the application almost perfectly matches that of the STREAM benchmark.

6.3.4 Vectorisation

Vectorisation is not expected to have a significant influence on the performance of a memory

bandwidth bound code running on a modern Intel Xeon CPU. When successfully vectorised and

running a 4096 × 4096 problem, hot runs in around 7.9s on a Skylake CPU. If vectorisation

is completely inhibited then the performance decreases to 8.7s. Performing the same analysis

using the STREAM benchmark, the improvement in performance for vectorisation is 199GB/s
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to 215GB/s, or around 8%, showing that there may only be a minor benefit for vectorising

highly memory bandwidth bound kernels.

The same analysis applied on the KNL resulted in a 60% increase in runtime when vec-

torisation was disabled. This increased reliance on successful vectorisation was observed with

neutral in Chapter 5 and will be seen in later discussions (Sections 6.7 and 7.2.2).

6.4 Performance on GPU

The linear algebra operations performed in hot can be easily translated to GPUs and similar

architectures.

Figure 6.3: Performance of hot executing on NVIDIA GPUs, bandwidth (left) and runtime

(right).

As the memory bandwidth on subsequent GPUs has increased, the performance achieved by

the hot application has increased significantly, a trend which has also been observed by many

scientific institutions including Sandia National Laboratories according to Trott et al [160]. The

results in Figure 6.3 demonstrate that the runtime of the application for a representative problem

has improved more than 6x across the multiple generations of GPU. The newest generation of

GPUs, the V100, achieves around 860 GB/s which is roughly 4.2x more attainable bandwidth

than dual-socketed Skylake CPUs. The results of the codes on the two architectures matches

this trend closely as the runtime is around 4x faster between Skylake CPU and V100 GPU.

6.5 Balance

It is useful to consider the performance of the hot application using a simple performance model

to ensure that the algorithm behaves as expected. Both the lower and upper bounds of memory

access patterns will be modeled by considering perfect caching and zero caching.

Approximation 1 Considering execution on a single node of a large test problem, more than

98% of the runtime is spent in three routines, which will be the only routines modeled.
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In order to seed the performance models, a number of statistics were calculated for the

application. The assembly code and PTX for each of the routines was analysed to determine the

double-precision FLOP count Odp. The number of independent memory accesses is calculated

by considering a perfect model of caching where each unique array is accessed once per read

and/or write.

Odp IA

Routine BR BW SKL KNL V100 SKL KNL V100

calculate alpha 32B 8B 10 11 14 0.25 0.28 0.35

calculate new r2 32B 16B 4 4 4 0.08 0.08 0.08

update conjugate 16B 8B 1 1 1 0.04 0.04 0.04

Table 6.2: Statically analysed arithmetic intensities for routines in hot.

The results in Table 6.2 suggest that the performance of hot would be dominated by the

memory accesses. Modern HPC architectures require high arithmetic intensities and/or exten-

sive locality in order to overcome the large memory access latencies and limited bandwidths, as

discussed in Chapter 4.

Routine BR BW Odp IA

calculate alpha 38.0B 8.3B 10 0.22

calculate new r2 32.8B 16.2B 3 0.06

update conjugate 16.1B 8.1B 1 0.04

Table 6.3: Empirical derived calculation of the arithmetic intensity for routines in hot for KNL.

It was possible to empirically determine an arithmetic intensity for the 4096 × 4096 on the

KNL using the precise instruction mix emulated by the Intel Software Development Emulator

Toolkit (SDE) and the total bytes accessed as measured by the uncore counters on the processor.

Table 6.3 shows a close fit between the analysed arithmetic intensity and result observed at

runtime. The arithmetic intensity is so low that working sets large enough to spill out of cache

will be memory bandwidth bound.

Approximation 2 Given such a low arithmetic intensity, it is possible to approximate that the

cost of any FLOPs are amortised by the memory accesses.

Therefore, the runtime of an individual routine could be described by the following simple

model when executed on a single processor:

T =

It∑
t=0

I(t)c ×MN
∑
r

(B
(r)
R +B

(r)
W )

D
(6.1)

r ∈ {calculate pAp, calculate new r2, update conjugate} (6.2)

where:
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B
(r)
R = number of bytes written per mesh cell for routine r

B
(r)
W = number of bytes read per mesh cell for routine r

D = aggregate memory bandwidth achievable for memory level (in bytes/sec)

I
(t)
c = number of iterations to convergence for time step t

It = number of time step iterations

M,N = dimensions of 2D mesh

T = predicted wall clock runtime in seconds

The parameter D is an aggregate value accounting for the total memory bandwidth available

on a single node or accelerator; this metric could therefore refer to the bandwidth of dual-

socketed CPUs or a single GPU.

Figure 6.4: Varying mesh dimensions for hot with modeled and observed runtime results.

In Figure 6.5 the modeled data is shown for DRAM and L2, and the results show that

the model accurately describes the performance from DRAM. Going from the right side of

Figure 6.5 to the left side, the time per cell decreases between the problem sizes N = 212 and

N = 210, as the working set begins to fit in the 1 MiB per core L2 cache ( (210)2×8B×6 arrays
56 cores =

877KiB per core). Interestingly, the performance never achieves the L2 cache bandwidth, and a

considerable overhead is observed as the mesh size reduces to N = 256.

The results of this modeling exercise further prove that large working sets in the solver will

only benefit from improvements in DRAM. When the problem small enough that it is resident

in high levels of cache, the runtime approaches the cache bandwidth for the processor but small

problems sizes do not saturate memory bandwidth. The cause of the overheads is an interesting

issue, as the optimisation for small problems requires a more subtle approach than for the large

memory bandwidth bound problem. The overheads will be discussed relative to the parallel

programming model ports in Section 6.7.

6.6 Distributed Performance

The previous sections demonstrated optimal parallel execution on CPUs, GPUs and KNLs,

regardless of whether the parallelisation uses OpenMP to take advantage of shared memory
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or uses MPI to execute isolated parallel processes. It is subsequently possible to observe the

performance as the application is scaled across multiple nodes within a cluster. An exploration of

different communication avoiding strategies for the TeaLeaf mini-app is presented in Martineau

et al. [112]. The research was a multi-organisational effort to understand how the scaling of heat

conduction could be improved using novel algorithms.

6.7 Performance Portability

Having proven that hot exhibits expected performance characteristics, and understood the sub-

tleties of implementation on a Skylake CPU, it is now possible to consider the wider problem

of achieving performance portability with the application. It is reasonable to expect that the

parallel programming models achieve a high fraction of peak performance for hot, given that the

structure of the application is simple and the kernels are comprised of linear algebra primitives.

The processors used in this section are discussed in Section 4.2, and the compilers used are: Intel

18.3 for OpenMP and RAJA on the Skylake and KNL, PGI 18.5 for OpenACC on all targets,

CCE 8.7.4 for OpenMP 4.5 on the GPU, and CUDA 9.0 for all GPU implementations.

6.7.1 Preliminary Performance for Default Test Case

The application hot is ported to a number of different parallel programming models and the

performance is measured for the default test case, as described in Section 6.3.1. The results

presented are for the best performing implementations, while still allowing the compilers to

choose implementation defined parameters based on internal cost models.

6.7.1.1 CPU Performance

The results in Figure 6.5 are similar to those found in published work performed as part of this

thesis with the mini-app TeaLeaf [100]. The difference between the best and worst implementa-

tions on the Skylake processor is less than 12% of the best achieved memory bandwidth, which

will be a tolerable for scientific institutions unless they have strict timeliness requirements.

Figure 6.5: The performance of hot on a Skylake CPU.
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The results are so consistent between the models that the benefits to portability offered

by the performance portable parallel programming models are particularly pronounced. Even

if scientific developers only expect to target CPUs in the near future, then the performance

portable parallel programming models offer future proofing and quality of life improvements

with little impact on the CPU performance.

6.7.1.2 KNL Performance

Figure 6.6 presents the results for the KNL, including the three sensible configurations of hy-

perthreads. It can be noted that each of the different implementations performs optimally with

different numbers of hyperthreads. This highlights that the difference in performance between

the configurations is challenging to analytically determine.

The OpenMP implementation serves as the base case with which the other implementations

can be compared, and achieves 75% of the achievable peak performance, shown by the triad

results from Section 4.5. The MPI performance is slightly lower than OpenMP, and this is most

pronounced for 4 hyperthreads. This issue can be explained by a large increase in the cost of

communication as the number of hyperthreads doubles from 2 to 4.

Figure 6.6: The performance of hot on a KNL.

The initial RAJA port simply collapsed the nested loops over space into a single RAJA

forall, but using this scheme only achieved around 25% of the memory bandwidth of OpenMP.

The performance overhead was only observed for those routines that were using the RAJA

reduction templates. To resolve this issue it was first necessary to more closely follow the

parallelisation performed with OpenMP, where the outer loop was parallelised with the RAJA

forall, and the inner loop was a sequential loop with omp simd above it. Subsequently it was

necessary to create an additional temporary variable to perform the SIMD reduction within

the inner loop, and then accumulate this into the RAJA reduction template in the outer loop.

Structuring the code in this manner enabled the performance shown in Figure 6.6. The problem

with this particular fix is that it has quite a significant impact on the performance portability

of the solver, where the configuration is now not suited to the GPU.

The best performing implementation using OpenACC introduces around a 26% overhead,
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while the best performing RAJA implementation introduces a roughly 10% overhead, when

compared to the optimal OpenMP. As discussed in Section 6.3.4, achieving maximum memory

bandwidth on the KNL requires successful vectorisation; however, both OpenACC and RAJA

have been compiled with AVX512 support, and RAJA is successfully vectorising. The loop-

body code generation for RAJA is handled by the Intel compiler, which is the same as the

OpenMP implementation, making it likely that, as long as vectorisation has been enabled, the

output vector code is similar between the implementations. In the case of OpenACC, the code

generation is unique to the PGI compilers, and so it is possible that the vector code being

generated is not as well optimised for the KNL.

6.7.1.3 GPU Performance

The final architecture considered is the GPU, where the particular processor is the NVIDIA

P100 GPU. The code is compiled with the compilers listed in Section 4.2.

Figure 6.7: The performance of hot on a P100 GPU.

The results in Figure 6.7 are for the P100 GPU, where OpenACC performs well but both

OpenMP and RAJA exhibit overheads of 24% and 20%. When the research was originally

performed with TeaLeaf, this result was quite impressive, as OpenMP 4.0 and RAJA had only

just implemented GPU support [101]. Having had many years to mature, it is now expected that

the programming models could achieve better proportions of peak for this particular application.

As with the CPU, a 10-20% overhead is likely permissible for the benefits of only having

to maintain a single code base. Karlin et al. suggested that 25% was permissible for porting

LULESH at Lawrence Livermore National Laboratories (LLNL), for instance [80]. Given the

simplicity of the application, the results for the performance portable models likely should have

been better than those observed, but only marginally. It is possible that the poor results stem

from decisions in the compilers that are based on cost models that simply did not determine the

optimal selection of parameters, and it might be fruitful to perform fine tuning.

6.7.2 Performance for Small Problems

It was noted in Section 6.5 that the performance of the OpenMP implementation was sub-

optimal for small problems. In order to explore this issue further, an experiment is conducted

where each of the parallel programming models executes a small test problem of 1000 iterations
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on a mesh of dimensions 2562. Identical parallel configurations and code are used for the small

problems as were used for the large test problem.

Figure 6.8: The performance of hot for a small test problem on a Skylake CPU.

The results in Figure 6.8 show the performance of this small test problem on the Skylake

CPU. Further to the issue observed initially with OpenMP, the overheads introduced by the

performance portable programming models are far greater than observed when the test problem

was larger than the CPU cache.

Kernel MPI OpenMP OpenACC RAJA

communication 0.40s n/a n/a n/a

boundary 0.66s 1.58s 2.42s 3.26s

calculate alpha 0.10s 0.41s 2.31s 2.09s

calculate new r2 0.08s 0.43s 2.33s 2.00s

update conjugate 0.05s 0.22s 0.32s 0.47s

Table 6.4: Performance of key routines in hot for small test problem on Skylake CPU.

The problem size is small enough that the communication costs in MPI are the dominant

performance factor, as can be seen in Table 6.4. The computation accounts for only around

10% of the total runtime, with the rest consumed by halo updating and communication. In

comparison, the OpenMP implementation results present significantly increased costs for the

boundary communication and computation. The reason for this increase is that each of the

individual parallel regions incurs an overhead, firstly to fetch the threads from the thread pools

and then finally to synchronise all of the threads. For many problems this cost is completely

amortised, but as can be seen in the results, the performance impact can be quite significant for

small problems.

The RAJA results in Table 6.4 are for the RAJA forall loop, which does not explicitly

provide any hint to the compiler to vectorise the loop. The compiler did not auto-vectorise

the kernels in hot, but fixing vectorisation did not improve the performance. As the loop-

level overheads cannot be explained by poor vectorisation or resolvable differences between

the implementations, it is expected that there are intrinsic overheads in the APIs, and the

implementation defined parameters are not suited to small problems. Those overheads likely

support the generality required by the programming models; however, they might make small

kernels prohibitively slow, likely requiring a coarsening of parallelism in some applications.
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Figure 6.9: The performance of hot for a small test problem on a KNL.

The results presented in Figure 6.9 are for the KNL with 1 hyperthread per core, as this

was considerably faster than other configurations for all of the implementations. The OpenMP

implementation was the fastest in this case, as the cost of the MPI communication becomes

larger in proportion to cost of synchronising in OpenMP. Overall, all of the implementations

perform worse for small problems on the KNL than the Skylake. This is partly due to the

increased cost of calculating halo boundaries and communication for the increased core count.

Figure 6.10: The performance of hot for a small test problem on a P100 GPU.

The results in Figure 6.10 are for the P100 GPU, and demonstrate some interesting features

about running the small problem on a GPU. The performance is worse overall than the CPU,

although it can be seen in Table 6.5 that the performance is marginally faster at the kernel

level than for the CPU, as seen in Table 6.4. The extra runtime is caused by kernel launch and

synchronisation overheads, as well as the slightly inflated costs of halo exchanges.

Kernel CUDA OpenACC OpenMP RAJA

calculate alpha 324ms 338ms 297ms 375ms

calculate new r2 285ms 293ms 258ms 330ms

update conjugate 107ms 106ms 99ms 108ms

Table 6.5: Performance of key routines in hot measured by nvprof on P100 GPU.

In the case of OpenMP, the results are actually superior to the CUDA implementation. It
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is important to recognise that this is not suggesting that the performance portable model is

inherently faster than CUDA, just the implementation. The approach taken in the OpenMP

implementation is to chunk the iteration space and give multiple iterations to each of the threads,

rather than the approach taken in the CUDA implementation of greatly over subscribing the

GPU with a single iteration per thread. Also, the reduction implementation in OpenMP does not

require additional kernel calls, which means that the performance of the reduction is optimised

for small problems where kernel launch overheads are not amortised by the size of the individual

computations. In contrast, the CUDA port, the OpenACC implementation in the PGI compiler,

and the RAJA library have been optimised for large reductions and perform an additional post-

kernel step to finalise the reduction. It is of course possible to reimplement the reduction in

CUDA, but the reductions in OpenACC and RAJA are likely to require extensive work to

account for this issue.

6.8 Summary

Although hot is small, it is representative of a large class of applications that solve sparse linear

systems, and while the performance of large problems is well understood, new issues arise as the

problem size is reduced. It has been possible to demonstrate that the CG method is memory

bandwidth bound and communication bound, depending upon the size of the input problem

and target processors [112].

In spite of the algorithmic simplicity of the kernels included in the solver, the performance

portable programming models did not achieve optimal performance in all cases observed. The

performance portable models were able to achieve within 30% of the best achieved performance

for test problems that were large enough to saturate DRAM, but did not perform as well for

the small problems on the CPUs due to overheads introduced for generality. It must be noted,

however, that the chosen small problems are unlikely to be useful in real-world scenarios for the

CG method, but the overheads might be important to other problem domains.

Problem dependence does not just affect performance portable models, however, as exposed

by the OpenMP results beating CUDA on the P100 GPU due to the reduction implementation.

Writing low-level code that is optimal for the full range of problems in the domain of a particular

solver can be challenging, and often needs to be handled on a case by case basis. This particular

issue was discussed further in Chapter 5. Surprisingly, the performance portable models per-

formed particularly well for the small problem on the NVIDIA GPU, which shows some resilience

to the issue of problem dependence, and overheads seen with the CPU implementations.

For hot there is little tuning opportunity other than the parallel configuration, which only

resulted in a small difference between the applications. As parameter tuning generally harms

performance portability this was not a major issue, but it would have been preferable if it were

possible to completely tune away any differences between the architecture specific codes and

the performance portable implementations. Given an application running large scientific test

problems and a memory bandwidth bound code, which is quite typical, the performance portable

parallel programming models are likely to be attractive options.
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Hydrodynamics
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7.1 Introduction

Another important class of applications is hydrodynamical solvers, which features in all pro-

duction scientific domains that require fluid motion. Some diverse examples are astrophysics,

and simulating laser ignition [119] [83]. The hydrodynamical step is often supported by other

physics in a multi-physics environment, and generally drives mesh motion within an applica-

tion [55]. Although a structured hydrodynamics application can be highly optimised for modern

architecture, the necessary approximations lead to complex algorithms designed to overcome

numerical inaccuracies. In this thesis, full consideration is given to the inviscid compressible

Eulerian equations of hydrodynamics, with an expectation that many of the insights will be

applicable to formulations based on alternative governing equations.

It is possible to create formulations up to three dimensions, with structured or unstruc-

tured grids, complex dynamic meshing constructions using Adaptive Mesh Refinement (AMR)

or Arbitrary Lagrangian-Eulerian (ALE), and different frames of reference that fix or follow

the compressible volume [83] [78]. Each of the different formulations of hydrodynamics intro-

duces differences in performance characteristics. Although it is not possible to address the full

spectrum within this thesis, an attempt will be made to address two common formulations in

modern HPC applications: Eulerian and Lagrangian. Alongside those applications the differ-

ences between structured and unstructured mesh solvers will also be considered.

Prior research has shown that explicit hydrocodes should typically achieve a good level

of performance on modern architectures, so the purpose of this chapter is to: (1) show that

the performance portable models can achieve good performance with different variations of

hydrocode, and (2) highlight those characteristics of hydrocodes that are different from the

Monte Carlo and sparse linear algebra methods considered in previous chapters.

112
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7.2 Structured Eulerian Hydrodynamics

Eulerian hydrodynamics makes the assumption that all volumes on the mesh are fixed, and the

hydrodynamical quantities flow through those fixed volumes over time. At the most fundamental

level this results in the change in internal quantities for each cell using upwind schemes for the

flux through the cell faces.

The flow application1 is a two-dimensional structured Eulerian hydrodynamics solver writ-

ten from scratch for this thesis. The application uses an ideal gas equation of state, quadratic

artificial viscosity, and a Van Leer flux limiter [19] [165]. The solver is staggered in both space

and time, with dimensional splitting to handle the multiple dimensions, alternating the first di-

mension in each timestep to improve numerical symmetry throughout the solve. The application

supports distributed execution and has been optimised for CPUs, GPUs, and other accelerator

devices and has been validated on a range of scientific test problems.

The application is similar in construction to CloverLeaf, although it does not use a predictor-

corrector scheme, and the results for flow are directly applicable to CloverLeaf [61]. The reasons

for developing flow rather than using an application like CloverLeaf are:

• The programming language is C throughout, which is the easiest language to interoperate

with low-level, directive-based, and C++ abstraction programming models.

• As with all other applications in arch, flow is designed to support multiple parallel pro-

gramming models within a single source framework, where only the core parallel loops are

duplicated between models.

• The application is lightweight, with only 1000 lines of computational code, making it easy

to conduct fast performance investigations with. In contrast, the CloverLeaf mini-app

contains 11000 F90 LOC, and 3000 C LOC.

• As the application is hosted by the arch project, it is possible to provide insights into

managing hydrodynamics as part of a suite of applications.

There are similarities between flow and hot, and so it is possible to exclude some of the

analyses for flow as key interesting features of structured grid and memory bandwidth bound

codes have been shown in Chapter 6. In spite of this, the flow application is a new proxy appli-

cation developed specifically for this thesis, and so it is necessary to consider the performance

profile, and validate that the application is exhibiting the expected memory bandwidth bound

shown with other explicit hydrocodes [62].

7.2.1 Performance Analysis

The processors used in this section are discussed in Section 4.2, and the compilers used are:

Intel 18.3 for the Skylake and KNL, and CUDA 9.0 for the V100 GPU. Although the flow

application is a structured grid code, similar to hot, the application solves a different problem

using an explicit solver. The resulting code is comprised of 18 separate kernels that perform the

advection and numerical fixups required to reach an accurate solution.

1https://github.com/uob-hpc/flow
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7.2.1.1 Default Test Case

The flow application is quite resilient to changes in the problem specification. In order to

demonstrate the performance and other key details about the application, a test problem has

been chosen that is a representative size that can fit on a single node.

Figure 7.1: Default test problem (left), and the same problem after 1000 timesteps (right).

The default test case solves for 40962 cells and runs for 100 iterations, with reflective bound-

ary conditions applied. A square region of high density gas is constructed in the center of a

region of low density gas and the initial condition is that the entire mesh is static. This par-

ticular problem is sufficiently large and long running to begin to see details emerge in the flow,

a segment of the final solution is shown in Figure 7.1 (left). Further details are seen as the

solver progresses through subsequent timesteps, as shown in Figure 7.1 (right); however, the

performance characteristics do not change. It is also important to note that, although some

mesh cells change dramatically between timesteps, the particular hydrodynamical formulation

is quite balanced, and each of the cells will require roughly the same amount of computation

regardless of whether a significant proportion of the cell was advected or not. It will be discussed

later in Chapter 8, that production hydrodynamical solvers are likely to encounter issues of load

balance not represented in this scheme.

7.2.1.2 Kernels

The flow application is significantly different from the other applications observed so far as it

is comprised of a large number of small kernels, that generally run in a similar length of time.

Table 7.1 shows the performance of 100 runs of each kernel, for a total solve time of 6.87s on

the dual-socketed Skylake CPUs. In some cases the kernels are grouped: artificial viscosity

encompasses 2 kernels, advect mass and energy encompasses 4 kernels, and advect momentum

encompasses 8 kernels. Each of the kernels executes in around 2-6ms, meaning that there are

no distinct ‘hot-spots’ that can immediately benefit from optimisation.

For each of the kernel groups, a value has been given for the minimum amount of data

touched in a single iteration. This particular metric accounts for accessing each mesh element

once (twice if read and written) for the dependent variables in a function, with subsequent

accesses assumed free. This models a scenario of perfect caching, which would be observed in
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Kernel Num. Kernels Runtime Data Moved Mem. BW

set timestep 1 0.24s 500 MB 210 GB/s

equation of state 1 0.23s 402 MB 175 GB/s

pressure acceleration 1 0.62s 1024 MB 165 GB/s

artificial viscosity 2 1.13s 1792 MB 159 GB/s

shock heating work 1 0.51s 977 MB 196 GB/s

storing old density 1 0.16s 256 MB 160 GB/s

advect mass energy 4 1.73s 3072 MB 178 GB/s

advect momentum 8 2.25s 3584 MB 159 GB/s

Table 7.1: Performance by kernel for flow on Skylake CPU.

the case that locality had been perfectly expressed within the problem.

Studies considering Eulerian hydrodynamics applications, like CloverLeaf, have shown that

the solver is strongly memory bandwidth bound [62]. The results in Table 7.1 clearly show that

flow application also achieves a high fraction of the achievable memory bandwidth, as discussed

in Section 4.5. The lowest achieved result is 159 GB/s, which is 73% of achievable memory

bandwidth, and the other kernels improve upon this up to 97% of maximum achievable memory

bandwidth. The key to achieving this level of performance is in ensuring that all data accesses

are stride 1 wherever possible, with simple Structure of Arrays data structures.

7.2.1.3 Vectorisation

The memory bandwidth results are for the well vectorised version of the code. On a Skylake

CPU, vectorisation has a minimal impact on the performance of the application, improving the

runtime of the default test case from 7.4s to 7.2s. Vectorisation does not have a significant

impact because, similar to hot, the majority of the cycles are spent waiting for requests to be

served from DRAM.

7.2.1.4 GPU Performance

Taking the same analysis performed for the CPU it is possible to determined the memory

bandwidth achieved for the individual kernels when executed on a V100 GPU.

Kernel Calls Runtime Data Moved Mem BW

set timestep 101 0.07s 500 MB 721 GB/s

equation of state 100 0.05s 402 MB 804 GB/s

pressure acceleration 100 0.14s 1024 MB 731 GB/s

artificial viscosity 100 0.24s 1792 MB 747 GB/s

shock heating work 100 0.13s 977 MB 769 GB/s

storing old density 100 0.03s 256 MB 853 GB/s

advect mass energy 100 0.41s 3072 MB 749 GB/s

advect momentum 100 0.49s 3584 MB 731 GB/s

Table 7.2: Performance by kernel for flow on V100 GPU.

Table 7.2 presents the results of 100 timesteps of the GPU kernels, for a total runtime of
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1.56s. The results show that the kernels ported well to the GPU, achieving a large fraction of

the maximum achievable memory bandwidth, at least 84%. In comparison to the Skylake CPU,

the runtime has improved by 4.4x on the GPU, which is around 10% more than the 4x difference

in memory bandwidth observed through benchmarking.

7.2.2 Performance Portability

In this section, the performance portability of the flow application will be considered with

respect to the parallel programming models discussed in Chapter 3. The processors used are

discussed in Section 4.2, and the compilers used are: Intel 18.3 for OpenMP and RAJA on the

Skylake and KNL, PGI 18.5 for OpenACC on all targets, CCE 8.7.4 for OpenMP 4.5 on the

GPU, and CUDA 9.0 for all GPU implementations.

Figure 7.2: The memory bandwidth achieved by ports of flow executing on a Skylake CPU.

Figure 7.2 shows the average overall memory bandwidth achieved by each of the ports of

flow executing on the Skylake CPU. All of the ports are able to achieve a high fraction of

achievable memory bandwidth, but that RAJA is slightly lagging behind the other models.

MPI and OpenMP achieve the best performance, as expected, at around 79% of achievable

memory bandwidth, while OpenACC achieves 75% and RAJA achieves 63%. The fraction of

peak performance achieved by the performance portable models, and particularly OpenACC, is

within a tolerable limit of the best achieved performance for the application.

Figure 7.3 shows the memory bandwidth achieved by each of the ports of flow executing on

the KNL. The best fraction of peak performance recorded for the KNL was 57% for OpenMP,

compared to the 440 GB/s achieved by the triad kernel. Section 4.5 demonstrated that there

were large differences in the best achievable memory bandwidth on the KNL, depending upon

the balance of reads and writes within the kernel. The majority of kernels in flow are read-

access dominant, and so a more reasonable estimation of the best achievable memory bandwidth

is 300 GB/s, as achieved by the read kernel. In this case, the OpenMP performance is roughly

77% of the achievable memory bandwidth, which is a more reasonable result of peak performance.

The OpenACC performance is significantly lower than the other programming models,

and there are several reasons that this occurs. The timestep calculation uses the OpenACC
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Figure 7.3: The memory bandwidth achieved by ports of flow executing on a KNL.

reduction directive with a min operator, which appears to perform quite poorly on the KNL,

and likely does not represent expected performance.

Figure 7.4: The memory bandwidth achieved by ports of flow executing on a P100 GPU.

Figure 7.4 shows the memory bandwidth achieved by each of the ports of flow executing

on the P100 GPU. The CUDA port achieves a good fraction of achievable memory bandwidth,

around 77%, while OpenACC achieves 63%, OpenMP achieves 68%, and RAJA achieves 71%.

Note that in this case, the OpenMP code is using the target offload features introduced in the

OpenMP 4.5 specification, so the source code is different from the CPU implementation. The

results demonstrate that the models are able to achieve a high fraction of peak performance,

although the performance portable implementations incur an overhead of around 10%-20% com-

pared to the best case CUDA code.
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7.2.3 Productivity

Out of the application classes considered within this thesis, hydrodynamics is the most insight-

ful in terms of productivity. The applications are larger with more complex code structures

than the other applications considered; however, they are not necessarily representative of the

complexity exposed in typical production applications. A common feature of the proxy applica-

tions considered in this thesis is that the code has been specifically developed with threading in

mind. The codes require little to no refactoring or cleansing between porting exercises, which

means that the observations below account only for changes due to the programming model. In

a real application, the effort required to port a legacy code to a GPU, for instance, might be

overwhelmingly dominated by the cost of refactoring existing code constructs to be suitable for

highly parallel execution, which is not easily captured by proxy applications [159].

All of the applications are part of the arch suite, and all of the shared infrastructural code

is contained within the arch project. The most significant shared feature in the arch project is

the data management routines that encapsulate the allocation and movement of data using the

features provided by each of the parallel programming models. For a discussion about making

the arch project performance portable, refer to Section 8.1.1.

7.2.3.1 OpenMP

The OpenMP porting exercise was fast and straightforward, where the entire port only re-

quired 23 code sites to be changed in order to achieve the performance shown above. In most

change sites the combined construct target teams distribute parallel for simd was ap-

plied (Code Sample 7.1), but some sites required the use of the reduction directive.

Code Sample 7.1: Example kernel ported with OpenMP.

1 #pragma omp target teams distribute parallel for

2 for (int i = pad; i < (ny + 1) - pad; ++i) {

3 for (int j = pad; j < (nx + 1) - pad; ++j) {

The main issue with respect to productivity is that OpenMP is not easily made performance

portable, and in the arch suite of applications, the OpenMP 3.0 CPU-targeting code is con-

sidered a distinct port from the OpenMP 4.5 GPU-targeting code. The consequence is that it

is necessary to maintain duplicate versions of the computational code, which from a produc-

tion perspective would not be acceptable. Although the directives are verbose, the productivity

enhancements of developing an OpenMP 4.5 port of a hydrocode compared to a CUDA port

are significant. Relying upon implementation-defined parameters for the balance of teams and

threads, for instance, greatly reduced the number of considerations when porting each of the

loops. As the kernels were already threaded for multi-core execution using OpenMP targeting

the CPU, with stride 1 memory accesses where possible, the main point of consideration for

each loop was that enough parallel work was exposed for the GPU.

7.2.3.2 OpenACC

For the most part, the OpenACC port was as straightforward as the OpenMP port, and the

number of code sites changed was the same, although the number of LOCs changed was higher

at 71 LOC. In many cases it was possible to use the kernels directive enclosing the loop nest,

with the loop independent construct before each of the loops (Code Sample 7.2).
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Code Sample 7.2: Example kernel ported with OpenACC.

1 #pragma acc kernels

2 #pragma acc loop independent

3 for (int i = pad; i < (ny + 1) - pad; ++i) {

4 #pragma acc loop independent

5 for (int j = pad; j < (nx + 1) - pad; ++j) {

The use of the kernels directive allowed all of the loops to be parallelised without considering

the underlying implementation. As with the OpenMP port, there were not many decisions

to make about each of the loop nests, as the compiler can choose parallel decompositions,

detect memory movement, data sharing, and reductions automatically. In one case it was

necessary to use the present directive to inform the compiler of data movement relating to a

particular parallel region, where the parallel directive was necessary to generate the correct

min reduction.

7.2.3.3 RAJA

When porting to RAJA, it was necessary to replace all of the loops with lambda functions.

The majority of the loops in flow are comprised of two nested loops, due to the solver being

two-dimensional. There are several different approaches to parallelise loop nests containing a

pair of loops using RAJA, for instance: (1) collapse the nest and use a single RAJA forall over

the whole iteration space; (2) use the RAJA nested loops approach. The element of choice when

porting a particular loop nest can introduce immediate problems for productivity, as significant

time and attention might need to be devoted to analyse or prototype the best approach.

Code Sample 7.3: Example kernel ported with RAJA.

1 RAJA::forall<exec_policy>(

2 RAJA::RangeSegment(0, (nx+1)*(ny+1)), [=] RAJA_DEVICE (int i) {

3 const int ii = i / (nx+1);

4 const int jj = i % (nx+1);

5 if(ii >= pad && ii < (ny+1)-pad && jj >= pad && jj < (nx+1)-pad) {

Code Sample 7.3 depicts a kernel ported to RAJA using a style particularly well-adapted to

execution on a GPU. The style ensures that the maximum possible parallel workload is passed

to the GPU, and the data accesses can be more easily organised for coalesced memory accesses,

assuming a standard SoA data structure layout.

Code Sample 7.4: Kernel with RAJA outer loop and inner for loop.

1 RAJA::forall<exec_policy>(

2 RAJA::RangeSegment(0, (ny+1)-2*pad), [=] RAJA_DEVICE (int i) {

3 for(int j = pad; j < (nx+1)-pad); ++j) {

Code Sample 7.4 shows the porting approach that achieved the best performance for hot

and flow, which is not optimal on the GPU. The solution would be the use of the RAJA nested

loops, and it will be useful future work to investigate whether optimal implementations of the

arch suite can be developed using the nested loop functionality.
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7.3 Unstructured Lagrangian Hydrodynamics

Lagrangian hydrodynamics assumes that the mass within a fluid volume is fixed, but that

pressure translates, compresses, and expands that cell over time. This deformation of the cell

means that the Lagrangian approach leads to dynamic mesh motion throughout the solve,

whereas the Eulerian approach leads to a static or fixed mesh.

The lags application has been written from scratch as a solver for Lagrangian hydrodynamics

that can solve for arbitrary polyhedra using a predictor-corrector scheme. The solver uses a

compatible discretisation, where the gradient and divergence operators have the same properties

in their approximate discrete forms. Further to this, the solver uses an edge-based artificial

viscosity, and a subcell discretisation so that additional pressures can be introduced to avoid

hourglassing. The solver is a significant departure from the Eulerian approach discussed in

Section 7.2 as the geometry is exposed within the solve. Also, lags has been written to support

fully unstructured meshes with static connectivity throughout the duration of the solve.

The lags application has similarities to applications such as PENNANT2, and to some extent

LULESH3 [48] [79]. The reason that lags was developed in isolation from those applications is

similar to the reasoning for the other applications in arch:

• The programming language is C throughout, which is the easiest language to interoperate

with low-level, directive-based, and C++ abstraction programming models.

• As with all other applications in arch, flow is designed to support multiple parallel pro-

gramming models within a single source framework, where only the core parallel loops are

duplicated between models.

• Again, the exposed computational code in lags is lightweight, at roughly 1000 LOC, while

PENNANT is 5000 LOC, and LULESH is around 7000 LOC.

• As the application is hosted by the arch project, it is possible to provide insights into

managing hydrodynamics as part of a suite of applications.

• The application is an integral component of the hal3d Arbitrary Lagrangian-Eulerian

hydrocode, discussed in Section 8.2.6.

For consistency, a similar analysis will be provided for lags as was provided for flow, to

enable easier comparisons between the performance profiles for the different numerical methods.

7.3.1 Performance Analysis

Although the hydrodynamics packages share a number of common characteristics, the Eulerian

and Lagrangian frames of reference introduce significant differences in the numerical method.

This is even more pronounced in lags as it supports fully unstructured meshes, composed of a

single type of polyhedra. The processors used in this section are discussed in Section 4.2, and

the compilers used are: Intel 18.3 for the Skylake and KNL, and CUDA 9.0 for the V100 GPU.

2https://github.com/lanl/pennant
3https://github.com/llnl/lulesh
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7.3.1.1 Default Test Case

The dimensions for the default test case are 2563, which is less cells than was considered in the

Eulerian case. In fact, the total memory footprint of the solver is significantly higher than for

flow, as there is a subcell discretisation, which means some variables are stored for multiple

subcells within a cell. In the experiments discussed in the subsequent sections, the mesh is

composed of hexahedrons and initialised as a regular Cartesian mesh. As the solution evolves,

the mesh will deform but the connectivity will not change.

Figure 7.5: Problem solved by lags, note that the grid is structured but the algorithms assume

an unstructured mesh.

7.3.1.2 CPU Performance

The lags application is quite different from flow, and introduces new characteristics and issues

that must be resolved using numerical fix-ups.

Kernel Calls Runtime

calc nodal vol and c 20 2.9s

calc subcell force from pressure 20 2.7s

calc artificial viscosity 20 5.1s

Table 7.3: Performance by kernel for the Lagrangian solve in lags on a Skylake CPU.

Similar to flow, the application is composed of many independent kernels; however, the

performance of those kernels is significantly less flat for lags. There are 19 core computational

kernels in lags, and the 3 kernels shown in Table 7.3 account for around 73% of the total runtime

of the default test problem. One of the reasons that those kernels dominate the performance is

because they are involved in the processing of subcell forces, which requires stepping through

the large subcell data structures. Different from the other applications discussed in prior sec-

tions of this thesis, the geometric data stored in lags has to be accessed via indirection. The

nodal positions and mesh connectivity are all stored in indirection arrays, and the only fixed
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information relates to the properties of the single type of polyhedra that the mesh is constructed

from, for instance, the number of nodes and faces on the cell.

Kernel Mem. Accessed Mem. Bandwidth

calc nodal vol and c 6.0 GiB 43 GB/s

calc subcell force from pressure 8.1 GiB 62 GB/s

calc artificial viscosity 9.3 GiB 36 GB/s

Table 7.4: Memory bandwidth by kernel for the Lagrangian solve in lags on a Skylake CPU.

Table 7.4 shows the memory bandwidth results for the largest kernels in lags. The results

demonstrate that the kernels are achieving between 17% and 29% of the achievable memory

bandwidth on the Skylake CPU. The memory accessed is measured using a perfect cache model,

which considers that a loop will touch each element in an array once upon reading and once

upon writing. This is the same model that has been utilised for hot and flow, and serves as a

best case memory bandwidth result, assuming maximum locality is expressed in the algorithm.

Locality is not as easily expressed in unstructured algorithms, as the indirections and un-

structured data layouts lead to memory access patterns with potentially large and unpredictable

strides. Unlike the flow application, where the simple implementation resulted in a high utili-

sation of peak memory bandwidth, the lags application only achieves a fraction of the memory

bandwidth in the most expensive computational kernels on the Skylake CPU. It is hypothe-

sised that a greater fraction of peak memory bandwidth could be achieved using blocking, to

improve locality as threads traverse the mesh. In an unstructured mesh this might be achieved

by re-ordering the cell list so that threads operate on more focused chunks of the mesh.

7.3.1.3 Preliminary GPU Performance

Implementing the solver on the GPU was relatively straightforward, and the initial implemen-

tation used the same traversal strategies and data structures as were used on the CPU.

Kernel nvprof Mem. Bandwidth Mem. Bandwidth

calc nodal vol and c 730 GB/s 54 GB/s

calc subcell force from pressure 688 GB/s 18 GB/s

calc artificial viscosity 639 GB/s 23.3 GB/s

Table 7.5: Memory bandwidth by kernel for the Lagrangian solve in lags on a NVIDIA V100

GPU.

Table 7.5 shows that while nvprof is reporting a large fraction of peak memory bandwidth

is achieved, the analytic model, which considers perfect caching, is showing that in the worst

case only 2% of bandwidth is being achieved. This demonstrates an important issue with the

measurement of memory bandwidth, where nvprof is reporting the true memory bandwidth

across the bus, but the effective bandwidth is significantly lower in fact, and a greater fraction

of effective bandwidth can be achieved. The perfect caching model assumes that the locality has

been expressed well in the algorithm, but this is not the case with the GPU implementation,

and algorithmic changes are required. In order to optimise the application, it is necessary to

think about the data structures that handle the unstructured mesh and the subcell data.



CHAPTER 7. HYDRODYNAMICS 123

7.3.1.4 Implications of Supporting Unstructured Meshes

There are multiple challenges introduced when supporting an unstructured mesh within a hydro-

dynamics package, even when the mesh itself is initialised as a structured mesh as for lags. The

loops now need to include indirections, in order to determine which parts of the mesh connect

together. The indirections increase the memory footprint, and introduce overheads depending

upon the mesh traversal strategies. Another challenge introduced by the nature of the unstruc-

tured mesh indirections is that it is sometimes necessary to perform a short search through

the indirection arrays to match the connectivity between different elements of the mesh. Those

operations potentially result in a traversal of unused data elements, which is undesirable.

7.3.1.5 Implications of Supporting Subcell Forces

The kernels that dominate performance in Table 7.4 are long and complex, making it difficult

to perform a straightforward analysis. A more simplistic kernel also touching subcell data is

considered to make the discussion clearer and easier to follow, but the findings are directly

applicable to the most expensive kernels in the application. The techniques discovered using

this test kernel will later be applied to optimised the GPU implementation.

Code Sample 7.5: Energy correction routine in lags.

1 for (int cc = 0; cc < ncells; ++cc) {

2 double cell_force = 0.0;

3 for (int nn = 0; nn < NNODES_BY_CELL; ++nn) {

4 const int ni = cells_to_nodes[cc * NNODES_BY_CELL + nn];

5 const int si = cc * NSUBCELLS_BY_CELL + nn;

6 cell_force += (velocity_x0[ni] * subcell_force_x[si] +

7 velocity_y0[ni] * subcell_force_y[si] +

8 velocity_z0[ni] * subcell_force_z[si]);

9 }

10

11 energy0[cc] -= dt * cell_force / cell_mass[cc];

12 }

An example kernel is presented in Code Sample 7.5, where the method first loops over the

cells in the mesh, and then over the nodes attached to each cell. In this regime, every element

of subcell force {x,y,z}, energy0, cell mass and the indirection array cells to nodes

will be accessed once, while every element of velocity {x0,y0,z0} will be accessed up to

NNODES BY CELL times. In the perfect caching scenario, the velocities are stored within cache

and never need to be refetched after their first use in the kernel. In reality, when considering

the default test case, the velocities in total are around 400 MiB of data and the caching is

dependent upon the architecture and data layout. In total, the routine touches around 4.3 GiB

of data, and processes it with a bandwidth of 184 GB/s on a Skylake CPU, which is around 85%

of achievable memory bandwidth. Around 11% of the total memory footprint in this kernel is

introduced by the indirection array for accessing the nodes surrounding each cell.

Considering this same kernel executed on the NVIDIA V100 GPU, the results are quite

different, as the achieved memory bandwidth, based on a perfect caching model, is 130 GB/s,

which is around 15% of achievable memory bandwidth. A major issue that can be observed on

the GPU is that the cells to nodes indirection and the subcell data subcell force {x,y,z}
are not accessed in a coalesced manner. A reorganisation of the subcell data, so that the access
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is by nodes in the leading dimension, enables coalescence, and increases the achieved memory

bandwidth by 5.5x to 716 GB/s.

7.3.1.6 GPU Data Structure Transposition

Having recognised the issues with the data structures, it is observed that many of the kernels

are not performing coalesced memory accesses. In order to resolve this, it is possible to re-

organise the data structures to attempt to enable coalesced access for the largest number of

kernels possible.

Kernel Mem. Bandwidth Speedup

calc nodal vol and c 171 GB/s 3.1x

calc subcell force from pressure 151 GB/s 8.3x

calc artificial viscosity 93 GB/s 4.0x

Table 7.6: Memory bandwidth by kernel for the Lagrangian solve in lags on a NVIDIA V100

GPU, with transposed data structures.

The results in Table 7.6 demonstrate that a significant improvement in performance was

possible by transposing those data structures. The solver is now achieving between 11% and

20% of the peak achievable memory bandwidth, which brings it closer to the fraction of peak

performance achieved on the Skylake. Taking the routine calc subcell force from pressure,

for instance, the parallel loop steps over the cells in the mesh. In the loop it is necessary to

iterate over all of the faces attached to a cell, and then further fetch the nodes attached to each

face. The structures cells to faces, cells to nodes, and subcell force {x,y,z} have all

been transposed so that they are accessed in a coalesced manner by the GPU threads. The

pressure array is cell-centered and the kernel traverses by cell, and so this array was already

accessed optimally by the threads. The total capacity of the arrays that can be accessed in a

coalesced manner is 7 GiB, while the remaining data structures, containing over 1.1 GiB worth

of data, are not accessed in a coalesced manner. Coalescing accesses to the remaining data

structures would require fundamental algorithmic changes, that could potentially lead to the

performance of other kernels being affected. Further, coalescing accesses to those arrays might

mean that it is not possible to coalesce accesses to the larger subcell data structures, which

would defeat the purpose.

Although the re-ordering of data structures can have a positive impact on the performance,

there are also cases where transposing the data structures results in worse performance. An

example is the data structure cells to nodes, which is optimally accessed in node order if

the iteration space is traversed in node order, with the converse also being true. There is a

surprisingly simple resolution to this problem, which is to duplicate the indirections specialised

to the particular traversal. This optimisation increases the overall memory footprint of the

application, but does not increase the memory footprint at the kernel level, and enables coalesced

memory accesses. A problem with this approach is that it is only useful for the data that is

static during the solve, which is the indirection data. For the variable data, the same effect could

only be achieved through transposition operations in between kernels, which is prohibitively

expensive.
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7.4 Summary

The problem of structured Eulerian hydrodynamics can be solved in a straightforward manner

due to the regular organisation of the mesh allowing the kernels to perform simple geometric

calculations. Although the kernels in flow are of varying length and complexity, and the per-

formance profile is flat between the kernels, achieving good performance was straightforward

through consistent organisation of data structures to enable stride one memory accesses, and

minimising the amount of data touched within each kernel. The low arithmetic intensity of the

application means that the performance on each different processor follows the available memory

bandwidth, as was observed with hot.

It was shown that performance portable implementations of the application could be success-

fully developed with RAJA, OpenMP, and OpenACC, although there is currently a performance

bug limiting the performance of min reductions for OpenACC on the KNL. It was possible to use

flow to consider the level of productivity offered by each of the parallel programming models.

The number of code sites that needed to be changed was low for all of the models, but there were

some challenges exposed in RAJA in terms of organising the data traversal for optimal memory

access, that might force the use of the RAJA nested loop syntax. The nested loop syntax was

not directly explored with flow, but represents an interesting area for future work.

The problem of unstructured Lagrangian hydrodynamics was also considered, using the

lags proxy application. The unstructured mesh with subcell data lead to challenges in terms of

organising memory for the best performance on each of the architectures. It will be important

future work to consider mechanisms by which the traversal of data structures can be encapsulated

and accesses to specific arrays transposed, depending upon the architecture. RAJA offers some

applicable functionality, but this is limited to the traversal of the iteration space, which might

not be flexible enough to resolve the issues observed in lags or relevant production applications.
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The focus of this thesis has been the performance, portability, and productivity of a number

of small research codes, sometimes called proxy applications [63]. The concept of using small

codes in place of larger applications has been used for a long time, for instance, in 1984 Brown

et al. used a small representative Monte Carlo proxy application to prototype their over events

version of the Monte Carlo algorithm [23]. In spite of their long and prolific use, there are a

number of issues inherent with the use of proxy applications, particularly when they are intended

to represent specific production applications.

As discussed by Hemmert et al., the applications might not capture all of the necessary

features of a production application, and this is an important point of discussion and critical

evaluation [58]. This section provides some critical analysis of the results of this thesis, by

considering which aspects of performance are not represented in the proxy applications discussed
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in the preceding chapters.

In some cases the decisions will only influence the performance by some small margin for a

particular architecture. In other cases the performance difference can be so significant that codes

optimised for a CPU, for instance, can have unacceptably high runtimes on other architectures.

Further, it is possible that optimisations applied to an application do not work at all when

introduced into a production application because the proxy application was not representative

in its feature set.

8.1 Infrastructural Code

Real production scientific codes can include multiple physics packages that need to be co-

ordinated, which means transferring, and potentially transforming, input data between the

packages. For instance, the Integrated Forecasting System developed by the European Centre

for Medium-Range Weather Forecasts includes physics packages that solve convection, radiation,

cloud physics, etc. [55].

Such applications can be comprised of hundreds of thousands of lines of code, where a portion

of the code has to be dedicated to common components that handle tasks such as reading

inputs, managing data tables, performing visualisation, and other tasks indirectly related to

the wider simulation [62]. It is important that there is a delineation between the two concerns,

as the programming approaches and models that are best suited to high performance parallel

computation are unlikely to be the same as those best suited to building a robust software

application.

8.1.1 The arch project

Throughout this thesis, a number of the applications have been discussed that are part of arch.

The arch suite is a collection of applications, while the arch project1 is software in its own

right that contains all of the cross-cutting infrastructural code for the applications contained

within the suite [97]. The code has been developed in an attempt to demonstrate the feasibility

of completely isolating the infrastructural concerns of a set of applications, while maintaining

generality and completeness.

Figure 8.1 depicts the applications in the arch suite (bottom), and the shared features in the

arch project (top). Each of the components has to work with the range of parallel programming

models, including threaded and distributed models.

8.1.1.1 Communication

The communication component is straightforward in arch, and essentially manifests as a wrap-

per around MPI calls. This allows MPI to be disabled at compile time and the interfaces to be

simplified. It is possible that certain applications might require different communicators, which

is currently a limitation of the approach.

8.1.1.2 Meshes and Mesh Data

Meshes are constructed within arch, and any application-specific artefacts are managed directly

by the application code. The project supports multiple mesh types, structured and unstructured,

1https://github.com/uob-hpc/arch/
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Figure 8.1: The arch infrastructure.

as well as some sub-cell discretisations, but the initialisation is typically to a regular 2D or 3D

Cartesian mesh, for simplicity and ease of analysis. In the unstructured case the mesh is allowed

to deform, where the mesh is stored as list of nodes (or vertices) continuously positioned in

space, with static connectivity. No assumptions are made about the mesh connectivity that

would inhibit simulation on any unstructured mesh, but it is possible to choose to restrict the

mesh so that it is constructed of only a single type of polyhedra, reducing the number of required

indirections.

Managing meshes as shared resources is relatively straightforward when considering an indi-

vidual physics package; however, the management of meshes that span several packages within

a multi-physics environment can be more challenging. In most applications, the choice of mesh

is consistent between the different packages, though it is possible to convert the mesh between

packages. The problem is that continually converting between two types of mesh comes at the

cost of additional memory movement [73].

8.1.1.3 Performance and Portability

Although the individual features of the arch project are not novel, most applications will be

required to develop some provision for those components, and there are some interesting issues

that arise in terms of performance portability. There was the additional requirement with arch

that it could support a range of parallel programming models (see Chapter 3), which demanded

greater generality than might be necessary in a production infrastructural code.

The programming models that arch currently supports are MPI, CUDA, OpenMP, Ope-

nACC, and RAJA, which span multi-threaded CPU execution, GPU execution, and distributed

execution. The key findings from a performance portability perspective were:

• It was possible to achieve functional portability with all of the programming models us-

ing an encapsulated infrastructural layer: The experience strongly supports the idea that

a independent infrastructural interface can be written in any chosen language, with the

computational components developed in a high performance language such as Fortran
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or C. Although arch is written purely in C, it is recommended that the infrastructural

layer of new codes is written in a performant but modern programming language, partic-

ularly one that handles generic programming, such as C++. The reasoning behind this

recommendation can be found in Section 8.1.2.

• Data management routines were best encapsulated in generic wrappers: This includes

all allocation and data movement. By encapsulating the data management, the cost of

changing parallel programming models is greatly reduced, as long as the encapsulation

is written in a general manner. Key optimisations, such as ensuring NUMA first touch

allocation is correctly handled, can be applied to all routines with relative ease. The main

limitation of this approach, which is the repetitive nature of such APIs, can be alleviated

using generic programming features of a language, such as C++.

• Both OpenACC and RAJA easily integrated into arch: When considering only the perfor-

mance portable programming models, arch was easily made portable between CPU and

GPU, for instance, using OpenACC and RAJA. OpenMP required two different versions

of the core features, which contradicts the single source requirement imposed by many

scientific institutions. With some additional effort, it is possible to develop a single source

version of arch by using preprocessor macros to switch between the CPU and GPU im-

plementations; however, this approach essentially fakes performance portability, and more

works needs to be done within the language to support this issue.

With a relaxed interpretation of performance portability, where the only goal is to be able to

achieve functional portability to existing parallel processors, within some tolerable expectation

of performance, OpenACC and RAJA were successful in achieving performance portability with

the arch project. It was possible to construct test problems where the overheads of performance

portable programming models were prohibitively large, but it is unlikely that the test problem

represent true scientific workloads, where the overheads are expected to be amortised (Chapter

6). Care needs to be taken to ensure that data management is handled in a robust and portable

manner, and further investigation is required to understand how those programming models

handle other, more complicated, production features.

8.1.2 Note on Programming Language Choice

Many scientific software applications are written in Fortran, and, while support for the earlier

versions of the Fortran language is extensive in modern compilers, support for modern Fortran

features and tooling is not [26]. In spite of this, modern Fortran includes a multitude of features

that attempt to emulate the successful aspects of object-oriented programming languages, such

as C++, which improve the prospects of Fortran as a suitable candidate for the development of

the whole application stack.

As part of this thesis it has been found, using proxy applications such as TeaLeaf, that

Fortran can be used at the loop level by domain scientists, with C++ used to manage the cross-

cutting concerns and infrastructural code [103]. This maintains the benefits to the scientific

programmers of Fortran for clean kernels with first class multi-dimensional array support, and

improved chances of auto-vectorisation for those performance-sensitive computational compo-

nents. The infrastructure programmers can leverage generic and object-oriented programming

to make the performance-insensitive components easier to develop and maintain, while ensuring

that components can be easily encapsulated to make the application more robust.
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In many U.S. labs, core applications have been ported entirely to C++, with Sandia na-

tional laboratory using Kokkos, and Lawrence Livermore National Laboratory using RAJA for

performance portability [47] [67]. This change from Fortran required scientific developers to

become familiar with the C++ language and idioms, and does have some drawbacks. Extensive

use of C++ might make it more challenging to port applications to achieve good performance

on modern architectures, and sets a more challenging barrier-to-entry for new scientific software

developers.

Computer scientists, particularly those with training in parallel programming and high per-

formance computing, have an acute awareness of the implications to performance and portability

of certain coding practices. Those computer scientists might be able to develop highly perfor-

mant C++ codes that can interoperate with the available programming models and libraries.

The same cannot necessarily be expected of scientific software developers whose focus is primar-

ily on the pursuit of their particular scientific goals, especially when you consider the increasing

complexity of targeting today’s massively parallel processors. The use of C++ abstraction

layers, such as RAJA and Kokkos, greatly reduces the risk that scientific developers become

bogged down with the features provided by the language, as they are able to instead focus on

the abstractions provided by the model.

8.2 Features Sometimes Ignored in Proxy Applications

Packages coupled in multi-physics applications are generally consistent in their handling of

specific features, for instance, if the solution requires multi-material interfaces, then all of the

packages are required to handle those interfaces. In this section, features that might be required

in production codes, but are typically ignored in proxy applications, will be considered.

Proxy applications exist today that handle each of the features discussed in this section,

for instance, Quicksilver handles multiple materials, XSBench manages large lookup tables, and

SNAP handles a numerical error in the main computational loop [20] [158] [34]. In spite of this,

proxy applications are regularly developed as isolated projects that focus on a single package,

with reduced feature sets. Optimising a package without considering a particular feature might

lead to poor performance once those optimisations are applied to a production application.

8.2.1 Multiple Materials

The introduction of multiple materials means that the mesh data structures become significantly

more complicated, and some additional computation is required to manage material interface

tracking. Figure 8.2 shows an example 3x3 grid containing 4 materials [49]. The materials have

continuous interfaces independent from the mesh discretisation. Beyond the numerical issues

of solving multi-material problems, the key computational challenge can be observed in the

difference between cell 0 and cell 7. Cell 0 contains 1 material, while cell 7 contains 4 materials,

which requires 4x the storage of relevant variables.

In many cases it is not possible to determine apriori a sensible upper limit on the number of

materials, as different problems will require varying numbers of materials. For most problems,

accessing the data structure now relies upon the use of indirection arrays, which increases the

memory footprint, and, depending upon the algorithm, might lead to non-contiguous memory

accesses. The requirements of simulating multiple materials on a structured grid mean that

the choice of data structures is not easily determined. As part of this thesis, experiments were
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Figure 8.2: Multi-material layout for a structured mesh, showing material interfaces [49].

performed that looked at the performance of multi-material data structures on modern parallel

processors [49].

Figure 8.3 and 8.4 present the memory bandwidth achieved with the particular data struc-

tures for three exemplar kernels. The kernels are memory bandwidth bound and represent

workloads that could be found in a typical hydrodynamic application requiring multi-material

interfaces. Details of the data structures are given in the paper [49]. The results demonstrate

that, for even simple structured grid kernels, the performance could be dramatically altered by

the selection of multi-material data structures.

Figure 8.3: Performance of multi-material data structures ported to two CPUs, where P8 refers

to the IBM POWER8 [49].

In the single material (SM) case, a reasonably high percentage of peak memory bandwidth

is achieved for the two key kernels, this is because the kernels are simple and contain contiguous

stride 1 memory accesses. As seen in Chapter 7, single material hydrodynamics applications are

typically able to achieve a high fraction of peak memory bandwidth, and the optimisation of
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hydrodynamics applications often relies upon this.

For the material-centric (MC) data compact structure, the worst observed performance is

18% of peak memory bandwidth, while the best performance observed is 61% of peak, over 3x

higher. This is a significant reduction in the achieved peak memory bandwidth, and this thesis

has found that optimising multi-material data structures is a challenging area that requires

further investigation.

The combinations of kernel and processor influence the optimal choice of data structure.

Further, the different choices of data structures have important consequences on the structure

of the individual kernels, as some data structures might, for instance, lead to searches within

the computational loops, which can introduce a significant performance overhead. The choice

of data structure also imposes restrictions on the performance of all of the physics packages

within a production application, where each package might perform optimally with a different

data structure. As such, the search space for optimisation becomes larger and more challenging

to explore, given that each of the data structure choices requires significant changes to the

computational kernels.

Figure 8.4: Performance of multi-material data structures ported to the KNL and P100

GPU [49].

This particular investigation into multi-material data structures focused on the case where

the underlying material structure was static. The problem is even further complicated once

particular forms of fluid motion are enabled.

8.2.1.1 Eulerian Flow Field

If the flow field is described in an Eulerian manner, then an even larger problem is introduced

than the static multi-material data layouts. Those material interfaces will no longer be deter-

mined apriori and the interfaces must be maintained throughout the simulation as they advect

with the flow.

The key issue with this formulation is that mesh cells can contain as few or as many materials

as exist within the system, and the frequencies can change each timestep. The consequence is

that it is challenging to perform data allocation, as allocating space for all possible materials

within all cells will greatly increase the memory footprint as the number of materials grows. This

might impact the performance in the best case, or make lead to prohibitive memory footprints
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in the worse case.

Dynamic data structures are required that grow and shrink to accommodate the flow of

materials through the system. In most cases, the use of dynamic data structures will lead to

the potential for race conditions, that must be guarded using, for instance, atomic instructions.

This can have a major influence on the performance depending upon how regularly the race

conditions need to be handled throughout the simulation. The implementation of such data

structures on modern parallel processors is an open area of research.

8.2.2 Large Lookup Tables

Tramm et al. observed that OpenMC requires lookup tables amounting to several gigabytes in

total capacity [158]. The findings of the present study were that neutral’s performance profile

was altered by the inclusion of large lookup tables, and writing an optimal version of the code

that could handle the different lookup table sizes is challenging. As the size of the lookup table

was increased, to the point where the lookup tables spilled out of the available caches, certain

routines transitioned from compute bound to memory bandwidth bound. In more extreme cases,

where the size of lookup tables are larger than the available DRAM capacity for a particular

node, the problem could lead to an application or specific kernels having to page data to and

from disk, or from the limited HBM on a GPU to the DRAM of a CPU.

Large lookup tables are used for other purposes than cross sectional lookups, for instance

with Equation of State (EOS) calculations [137]. Given the significant performance impact

that large lookup tables had on the performance of neutral, it might be useful to consider the

performance of large lookup tables in proxy applications that have typically used small closed

form equations instead [4].

8.2.3 Load Imbalance

Large lookup tables can be an issue from the perspective of managing the data capacity, and

formulating efficient data structures to hold such information. Further, there is another issue

that can arise from large EOS tables, the potential for load imbalances. It is possible that

materials in a simulation require different equations of state, for instance, one material could be

represented by a closed form ideal gas equation, while another material requires a lookup in a

large EOS table. This difference in the time taken to calculate the equations of state could lead

to a load imbalance, which has implications at the node-level and for distributed execution.

Karlin et al. introduced an optional parameter to emulate load imbalance for the EOS

equations within LULESH [78]. This represents an interesting and potentially powerful ap-

proach, whereby the true computational features of a problem are essentially abstracted and

parameterised. This reduces the requirement to maintain complex domain-specific code, and

the flexibility to experiment with various parameters.

There are many other sources of load imbalance, for instance, Monte Carlo neutral particle

transport solved across distributed domains will generally have to manage load balancing [132].

Geist et al. predicted that load balance will become a major issue moving towards exascale

computing due to the number of distributed processors co-operating in the simulation [52].
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8.2.4 Internal Error Handling and Diagnostics

Typically, internal error handling and diagnostics are left out of proxy applications, either as part

of the initial refactoring exercise, or simply because the application was written from the ground

up. Error handling and diagnostics are an important aspect of many production applications,

and might have subtle consequences for the resulting applications.

Error handling within loop bodies can inhibit vectorisation, for instance, due to early loop

exits or printing error messages. In most cases, error handling can be moved outside of the loop

bodies, leaving the error checks inside the loop and potentially leveraging parallel reductions to

capture the results of the error check. If more robust results are required by the error handling,

then it may be necessary to store more extensive results from the error checking, for instance,

on a per-cell basis of a computational mesh.

8.2.5 Dynamic Connectivity in Unstructured Meshes

Another issue that has not been addressed in this thesis is the problem of dynamic connectivity

in unstructured meshes. Applying the constraint of static connectivity to unstructured meshes

enables many optimisations that would otherwise be impossible. Koniges et al. developed a

code called ALE-AMR as part of the validation process for the National Ignition Facility at

Lawrence Livermore National Laboratory [83]. The code simulated dynamic mesh connectivity,

including tearing of the mesh; faithfully representing this production code would greatly increase

the complexity of the hydrodynamics applications considered in this thesis.

8.2.6 Mesh Quality Control

As part of this thesis, a 3D ALE hydro code, hal3d, was developed from scratch that uses a

subcell discretisation and supported arbitrary polyhedral meshes [51]. This was an attempt to

develop a proxy application that managed more challenging computational features than present

in the other applications considered in the preceding chapters.

Figure 8.5: A mesh where compression

will lead to a reduced timestep.

In hydrodynamics, mesh quality will affect the

timestep, as the Courant-Friedrichs-Lewy (CFL) condi-

tion stipulates that the timestep must be bound by the

speed of sound within the system [19]. This condition

asserts that information cannot travel further than the

bounds of an individual cell within a single timestep; as

the timestep is a scalar value for the whole mesh this

limitation means that a single small or narrow cell will

reduce the timestep for the whole simulation, as seen

in Figure 8.5. Another issue of mesh quality that can

occur with Lagrangian hydrodynamics is the tangling

of meshes due to rotation, or vorticity, in the problem. Once a mesh has tangled, the results are

no longer correct, leaving few options for successful simulation.

Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics is an extension of Lagrangian hydro-

dynamics that adds a fix-up for the issues with mesh quality. The approach allows one or more

Lagrangian hydrodynamical steps to occur before applying some relaxation algorithm to the

mesh, ensuring that the mesh does not tangle or suffer from an imbalance of mesh cell compres-

sions. The remap step has to operate in a conservative manner and so many algorithms need to
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be applied to ensure that all conservation laws are strictly upheld. Regardless of performance,

this remap step will allow the solver to continue the simulation, and improves the length of the

timestep by improving cell quality based on the CFL condition.

Even implementing the bare minimum code necessary to handle ALE remapping for arbitrary

polyhedra, the code is significantly larger (roughly 10000 LOC) than the other applications in

this study, making it much more difficult to work with. The process of porting to new parallel

programming models, for instance, took far longer than with the small proxy applications.

8.3 Problems for Proxy Applications

The majority of proxy applications in use today are isolated codes that have been stripped down

from larger scientific applications or research codes, or written from the ground up to represent

some class of applications [63]. The removal of features such as those discussed above can mean

that coding efforts attempting to optimise the core solvers miss out on important characteristics

of the performance profile of the real applications.

As suggested by Dosanjh et al. and observed in Section 8.2.6, it is challenging to perform

agile experiments with codes that are much larger than 1000 LOC [45]. Introducing large

features, such as multiple-materials, increases the code size and complexity, and greatly reduces

the capacity for Computer Scientists to optimise the codes in a timely manner.

A recommendation of this work is that, where applicable, independent proxy applications

are developed to pilot features, as performed in the multi-material investigation in Section 8.2.1.

Separation of concerns is not without risk, as features such as multi-materials might have far-

reaching influences on the proxy application, potentially even requiring different core algorithms.

For more contained features, an alternative approach is that of emulation and parameterisation,

proposed by Karlin et al., depending upon the particular feature and how pervasive the changes

are to the code [78].

8.3.0.1 Applications in the arch Suite

Considering the applications that are discussed in this thesis, it would be possible to incorporate

several of the discussed features. For instance, the hot application could become part of a multi-

physics stack that requires an unstructured mesh, which would necessitate the use of a different

algorithm, perhaps GMRES.

It is hypothesised that introducing multi-material cells into flow would be far more disruptive

than the results of the research described in Section 8.2.1 suggest, as the application results in

an Eulerian motion of the underlying fluid. The change would impact most of the routines in

the application, which would have to access dynamic data structures through indirections. This

could have a major influence on the performance of the application, and the impact will be

variable depending upon the target architecture. It would be useful future work to add multiple

materials or some load imbalance to the hydrodynamics applications, flow, lags, and hal3d,

perhaps using the approach in LULESH.

With respect to the Monte Carlo neutral particle transport application, the relevant features

can be influenced by the particle that is being transported. Photons and neutrons, for instance,

behave differently and lead to different physical approximations in the simulation. The purpose

of neutral was to capture some of the similar performance-affecting problems of the general

class of neutral particle transport applications, but issues such as fission, which is specific to
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neutronics, will introduce problems that are not captured by the work. Error handling can have

a much more significant impact on an over histories Monte Carlo neutral particle code, as the

majority of the computation is performed in a single large parallel computational loop. If the

error handling was not parallelisable, then it would likely be necessary to store additional state

and perform the error handling at the end of the timestep.

Even though the features discussed in the preceding sections exist in some production ap-

plications, the results collected for the proxy applications in this thesis are still pertinent to

many applications. In fact, the results can be representative of classes of the applications, but

the features discussed above introduce nuances that might need reconsideration for particular

problems. Coupling this with the recurring issue of problem dependence, shown especially with

neutral, the search space for optimisation is large and challenging to explore.

8.3.0.2 Validation of Proxy Applications

Proxy applications must be validated to ensure they return correct answers, to catch bugs and

avoid inadvertently adjusting the amount of work processed. This is regularly accomplished

using either pre-calculated or analytic solutions. Another interesting aspect of validating proxy

applications considers quantification of their representativeness, which can be challenging due

to the reduced feature-set of proxy applications.

Researchers at Lawrence Livermore National Laboratories developed the Veritas project,

that collects performance counters and supports comparisons between real application and proxy

applications [91]. In theory, this allows proxy application developers to tune their codes to more

closely represent production applications. It would be important future work to analyse the

arch proxy-apps using Veritas, in order to specialise them to particular production applications,

potentially in different domains.

8.4 Summary

The arch project is one of the only examples of a common infrastructural code that supports

multiple research codes, and represents a novel effort in extension to the general area of re-

search relating to proxy applications [63]. Further, it is the only known example that supports

multiple parallel programming models for those applications, and provides a useful tool for the

investigation of performance portability in this regard. The project has shown that it is possible

to develop such an infrastructural layer to support performance portability, but there are some

issues that arise from attempting to construct the generic interfaces such that new applications

do not require radical shifts in the code architecture.

The use of proxy applications is now popular amongst computer scientists for algorithmic

exploration, but this chapter has shown that there are a number of key features of real appli-

cations that are not often considered in the proxies. Those features can have implications for

the implementation on modern hardware, for instance, managing dynamic multi-material data

structures on a GPU is a challenging open area for research.

Developing truly representative proxy applications is challenging, especially when considering

multi-physics applications. In spite of this, it is generally intractable to perform experimentation

with production applications, and so the use of proxy applications is the best option for many

problem domains. Proxy developers must carefully consider the impact particular features have

on the resulting implementation, and recreate the performance profiles as faithfully as possible.



Chapter 9

Conclusions and Future Work

This thesis has presented a thorough investigation into the porting and optimisation of four

important types of physics application: Eulerian hydrodynamics, Lagrangian hydrodynamics,

Heat diffusion via CG solve, and Monte Carlo neutral particle transport. Brand new exemplar

applications have been developed for each, in order to allow extensive performance analysis,

algorithmic development, and investigations into performance portability. There were many

common themes between the applications, but there were also some differences that make porting

and optimisation more difficult in some cases.

Each of the applications has been shown to exhibit some level of problem dependence, which

affected the performance of the final solutions. In the case of the conjugate gradient (CG)

solver, the performance is relatively normalised if the majority of the memory accesses are

from DRAM, as the solver becomes heavily memory bandwidth bound in the sparse matrix-

vector multiplications. If the main problem parameter, mesh dimensions, is changed then some

performance issues can be observed depending upon the parallel programming methodology.

When tuning the size of the computational mesh to a small cache-resident size, the performance

results changed quite significantly, as the small workloads in each kernel exposed the varying

overheads in the programming models. The small problems are only likely to be required in

a strong scaling scenario, where a large test problem is parallelised over a large cluster. As

shown in related research, the heat diffusion solver TeaLeaf is heavily communication bound

when strong scaling, making the result less relevant to heat diffusion [112]. In spite of this, the

overheads have been shown to be present, and there are many applications with small solves,

or solves where the parallel workloads shrink over time, for instance, those using multi-grid

approaches. It would be useful future work to consider the overheads of OpenMP, OpenACC,

and RAJA with respect to diverse algorithms like multi-grid solvers.

The problem dependence in other applications was more far-reaching, for instance, the hy-

drodynamics package selection is strongly influenced by the desired types of meshes. Solving for

structured grids in two or three dimensions was highly performant on all architectures, and the

parallel programming models were successful in achieving a high level of performance portability.

If the problem instead demands an unstructured mesh, the application is made more complex

and the memory footprint is increased by the structures required to handle the mesh. In some

of the kernels, the indirections necessary to support the unstructured mesh accounted for 50%

of the memory footprint, which has a significant impact on the performance. The indirections

potentially mean that data has to be gathered from memory, which can be expensive, depending

upon the proximity of the accesses. One of the major issues explored was that it was challenging

137
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to determine an optimal ordering for the data structures, as selecting the best strides for a kernel

that traversed the mesh in cell order might not be the optimal selection for a kernel that stepped

through in node order. This problem was even more noticeable when switching between archi-

tectures, as the CPU and GPU preferred a different ordering of the data structures to optimise

for cache or enable coalescence. The memory access patterns of the unstructured routines mean

that it was not possible to achieve the full bandwidth predicted by a perfect caching model for

all kernels. The traversal approach means that data is touched with large strided accesses and

not enough locality is expressed, such that the local memory footprint is too large to maintain

the working set in cache, and data has to be regularly refetched. The suggested approach to

overcome those issues, in the lags application, is to use blocking over the compuational domain,

which is left as interesting future work.

The most problem-dependent application considered was the Monte Carlo neutral particle

transport proxy, neutral. Prior research has discussed issues at the distributed level, considering

load balancing and domain decomposition, while this thesis has explored exploiting on-node

parallelism [132] [25]. As the solution of the transport equations are handled with explicit

representations of the physics rather than through numerical solution, the divergence in physical

behaviour translates into divergence in the algorithm at runtime. The different types of events

in such a simulation all lead to different paths of execution with individual memory footprints

and computational requirements, making it challenging to optimise for a “general” case. It was

shown that, depending upon the size of lookup tables required for the solution of the problem,

the problem could shift between being heavily memory bandwidth-bound to becoming latency-

bound, achieving only a fraction of the peak computational throughput and memory bandwidth.

The lookup tables become the limiting factor as they increase in size and spill out of cache, as

the amount of data fetched per search is greatly increased, and the performance becomes more

strongly limited by memory bandwidth.

In the streaming case, the performance limiting characteristic is the random memory access

patterns of the particles randomly streaming across the computational mesh. The lack of locality

means that the memory access patterns are generally unique between threads, and hardware

prefetching can do more harm than good for most particle trajectories. The performance of

random memory accesses was found to be quite poor on some of the architectures, even when

carefully accounting for the true bandwidth. This inhibits good performance for codes like

Monte Carlo neutral particle transport, where random memory access patterns are present with

little to no predictable locality. The random memory access performance observed on the KNL,

in particular, requires more research to understand if there are techniques that can be applied to

Monte Carlo neutral particle transport to achieve a greater fraction of peak memory bandwidth.

When targeting a GPU, divergence can lead to an under-utilisation of the available GPU

resources, which restricts the achievable throughput. This was not observed for the CG solve or

the hydrodynamics solver, although it is possible that equation of state lookups and handling of

artificial viscosities could lead to divergence. It is typically recommended that codes containing

deep branching would not be suitable for GPU acceleration, as the branching reduces the number

of threads co-operating on a stream of instructions, reducing the throughput. A number of

algorithms were explored for the Monte Carlo neutral particle transport application, and the

results contradict the conventional wisdom. The results showed that, while the divergence does

incur some penalty, the best approach on the GPU, the over histories algorithm, contained

many branches, and still achieved good performance with respect to the CPU. On an NVIDIA

GPU, the architectural approach of latency hiding makes it easier to achieve good performance,
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as the warp schedulers are able to place more memory requests in flight, and reduce the impact

of stalls, when compared to the CPU.

A challenge for the future of Monte Carlo neutral particle transport applications on the GPU

is finding ways to ensure that coalescence is enabled, which is not necessarily possible for the

streaming requests without some innovation. One possible line of investigation is the biasing

of the problem at the cell level, such that individual master particles are followed but that, for

each new cell that the particle enters, a large number of imaginary particles are also simulated

that have subtly perturbed trajectories, and can uniquely contribute to the statistics. If the

biasing was such that the number of particles resident in the cell was large enough to fill a warp

on a GPU, it is possible that the statistical accuracy of the solver could be increased, while

increasing the utilisation of the GPU resources, resulting in a net gain. This is an important

direction for future research, where the fidelity of an algorithm can be increased to take better

advantage of the resources of the hardware.

On the CPU, it was possible to improve the memory access performance of the streaming

case and achieve a high fraction of the peak true memory bandwidth, although this required

the development of a novel sort-free algorithm, named the blocked over events approach. This

approach is successful in improving the memory access performance of the streaming case on

the Intel Xeon and Xeon Phi CPUs, and reducing the latency issues seen with small lookup

tables for the scattering case. However, the implementation is significantly more complicated

than the over histories approach, and more work is required to ensure that it would be a suitable

method for a production-scale application.

A criteria for success when porting a scientific application might be to achieve a high fraction

of peak performance on all target architectures. In particular, the case where this is achieved

with a single-source solution can be considered a performance portable solution, which was in

some cases shown to be achievable with a number of important modern parallel programming

models. There were cases where the programming model support in the compilers precluded rea-

sonable performance, for instance, the Cray OpenMP implementation performed poorly for the

scattering problem of the neutral proxy application on the GPU, and OpenACC performed

poorly for flow on the KNL.

This thesis has demonstrated that, in most cases, the considered performance portable par-

allel programming models, RAJA, and OpenACC, can currently support a performant single

source solution for the scientific applications considered. The OpenMP implementation, on the

other hand, requires the use of the preprocessor to achieve a performance portable single-source

solution, which has limitations for support. This approach is more attractive than duplicating

the computational code, which greatly increases the opportunity for bug replication, and in-

creases maintenance costs, but some mechanisms need to be introduced into the specification

to support performance portability. The next iteration of the OpenMP specification, version

5.0, will include a directive similar to kernels in OpenACC that will enable greater perfor-

mance portability at the expense of control, although it is not necessarily a full solution to the

performance portability problems in OpenMP. It will be important future work to consider if

the new features in OpenMP 5.0 are sufficient to enable performance portability in the arch

applications.

From a productivity perspective, the difference in syntax between the directive-based models

and C++ abstraction layers is largely a matter of taste, as the models have been shown to offer

numerous productivity enhancements, and all support rapid porting of already threaded loops.

In spite of this, many scientific applications are written in Fortran, and so the transition to a
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C++ abstraction layer will be a more expensive pursuit than using one of the directive-based

models. It is hypothesised that the cost of refactoring codes for threading will represent a more

significant cost for legacy applications [159]. In the case of PENNANT, for instance, it was found

that the original description of the parallelism required considerable restructuring in order to

target a GPU, and this is expected to be more pronounced in a production application.

One of the key conclusions of this research is that it is often the compiler implementations

that limit the performance, rather than the parallel programming model, as the models con-

sidered all provided features to achieve a high fraction of the best performance possible with

tuned implementations. In spite of this, there are some cases that have been exposed as part of

this thesis where features missing from a specification can limit the potential for performance,

for instance, the lack of shared memory control in OpenMP limits the potential for optimising

codes that benefit from shared memory use [99]. In terms of performance portability, the com-

piler support can introduce a burden to the programmer, as it might be necessary to maintain

different versions of parallel descriptions that are tuned for particular compiler implementations.

As each of the applications has been shown to exhibit varying levels of problem dependence

and performance portability, it is important to consider the implications of those issues on the

future of those codes. Compute performance continues to grow faster than memory performance,

and this will exacerbate the issues of problem dependence, as more specialised algorithms are

required to account for particular problems. Proxy applications play an important role in

preparing for those challenges, and it will be important future work to consider how algorithmic

specialisation can be introduced into an application in a robust manner. It must be noted that

the use of proxy applications is limited by the representativeness of the feature-set included

in the application. It has been shown that modern physics applications contain a number of

diverse features, such as multiple materials and large lookup tables, that can greatly alter the

performance profile of an application. Applications including features such as complex multi-

material interfaces exhibit diverse and challenging performance characteristics, that might be

difficult to optimise for modern architectures. In spite of this, it is likely that, going forward,

science will become more reliant upon such features to improve the accuracy of simulations,

making the future task increasingly challenging.



Appendix A

Instruction Latency

Instructions such as addition, subtraction, multiplication, and FMA are generally optimised such

that each execution unit within the processor is utilised for a cycle per simple floating point

instruction. Complicated instructions such as division and transcendental functions typically

require multiple clock cycles to process, although many architectures provide optimised paths

for those instructions if there is some relaxed tolerance regarding accuracy.

Processor cores can contain multiple execution units, meaning that multiple simple float-

ing point arithmetic instructions can be executed in a single cycle. This also applies to vector

instructions that accept vector registers; for instance a Skylake 8176 can dual issue FMA in-

structions on 512-bit vector registers, processing 32 single precision FMAs per cycle per core.

For Intel Xeon and Xeon Phi CPUs the exact latencies are provided in their user documen-

tation; whereas the same values are not extensively openly documented for NVIDIA GPUs. To

measure the instruction latencies for all processors, a benchmark was developed that constructs

a dependency chain on a variable and repeats instructions on that variable using a single thread.

Capturing the clock cycles elapsed for a long chain asymptotes towards the latency in cycles.

Instruction V100 V100 (FM) P100 (FM) K20X (FM)

Add 4 cycles 4 cycles 6 cycles 9 cycles

Mul 4 cycles 4 cycles 6 cycles 9 cycles

FMA 4 cycles 4 cycles 6 cycles 10 cycles

Sqrt 60 cycles 15 cycles 14 cycles 19 cycles

Div 132 cycles 4 cycles 6 cycles 9 cycles

Table A.1: Latencies observed when executing different instructions on NVIDIA GPUs; the

‘FM’ label indicates that the latency benchmark was compiled with the ’--use fast math’ flag

passed to nvcc.

Table A.1 demonstrates that the number of cycles to perform dependent floating point opera-

tions, the latency for those instructions, has significantly improved across the three generations.

Further to this, the number of cycles for a division was greatly increased when an over- or

under-flow occurred; for instance, the latency of a division would increase from 132 cycles to

288 cycles for specific test problems if strict mathematical precision is required. In the case that

fast math can be enabled the latencies are more stable.
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Cache Bandwidth

Cache bandwidth has been measured in several prior studies for a range of processors [117] [36] [72].

The results will be collected and presented for all of the processors relevant to this thesis, with

some minor amendments to the prior approaches.

B.0.1 Skylake and KNL Cache Bandwidth

In order to provide the most accurate performance data for each level of cache as well as DRAM,

a maximum observed memory bandwidth was taken between two kernels that perform the same

operation but one kernel uses non-temporal stores. In all cases the loops were vectorised to take

advantage of the 512-bit vector registers and instructions.

Figure B.1: Cache bandwidth measured for the Intel Xeon Skylake.

Figure B.1 shows the cache bandwidth as measured for the Skylake processor using a num-

ber of different kernels. The L1 aggregate bandwidth is shown to be 13.7TB/s, while the L2

aggregate cache bandwidth was around 4.8TB/s. For the L1 cache bandwidth this equates to

127B/cycle, around 66% of the theoretical peak, given that the Skylake supports 128B/cycle

reads and 64B/cycle writes in L1.

The cache bandwidth on the KNL is lower than observed for the Skylake, with the maximum

L1 bandwidth reaching around 6TB/s and the maximum L2 bandwidth reaching around 2TB/s.

For both processors, different results were observed depending upon the chosen kernel.
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Figure B.2: Cache bandwidth measured for the Intel Xeon Phi Knights Landing.

B.0.2 NVIDIA GPU Cache Bandwidth

In order to measure cache bandwidth on the GPU it was necessary to carefully organise the

working set on the GPU. The chosen approach was to maintain a single block of 32 warps per

SM, ensuring that a single array was tied to a single multiprocessor, which made it easy to

reason about the location of the working set.

Figure B.3: Bandwidth targeting L1 cache for P100 and V100 GPUs.

The problem with this approach is that the GPU cannot saturate the memory bandwidth

of each level of the memory hierarchy using scalar loads for a single 1024 thread wide block per

SM. The solution was to adjust the scalar loads to vector loads, which ensures that sufficient

memory transactions could be initiated by each of the threads to overcome the limited number

of warps per SM.

The performance measured for the L1 cache, as seen in Figure B.3, peaks at nearly 2.0TB/s

for the P100 and 5.3TB/s for the V100. This demonstrates a significant improvement in the

aggregate performance of the L1 cache, which derives from the increased number of SMs and
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the amalgamation of the L1 and shared memory caches, as previously discussed [123].

Code Sample B.1: Cache bandwidth benchmark.

1 asm volatile("{\n\t"

2 ".reg .f32 t<13>;\n\t"

3 "ld.global.cg.v4.f32 {t1, t2, t3, t4}, [%1];\n\t"

4 "ld.global.cg.v4.f32 {t5, t6, t7, t8}, [%2];\n\t"

5 "ld.global.cg.v4.f32 {t9, t10, t11, t12}, [%3];\n\t"

6 "fma.rn.ftz.f32 t1, t5, 0f40000000, t1;\n\t"

7 "fma.rn.ftz.f32 t1, t9, 0f40000000, t1;\n\t"

8 "fma.rn.ftz.f32 t2, t6, 0f40000000, t2;\n\t"

9 "fma.rn.ftz.f32 t2, t10, 0f40000000, t2;\n\t"

10 "fma.rn.ftz.f32 t3, t7, 0f40000000, t3;\n\t"

11 "fma.rn.ftz.f32 t3, t11, 0f40000000, t3;\n\t"

12 "fma.rn.ftz.f32 t4, t8, 0f40000000, t3;\n\t"

13 "fma.rn.ftz.f32 t4, t12, 0f40000000, t3;\n\t"

14 "st.global.cg.v4.f32 [%0], {t1,t2,t3,t4};\n\t"

15 "}" :: "l"(a) , "l"(b), "l"(c), "l"(d));

Another challenge on the GPU is the balance between L1 and L2 cache sizes. In total

each V100 SM contains 128KB of unified L1 cache, for 10MiB total and 6MiB of L2; which

means that measuring the bandwidth of both levels of cache requires more care than with the

CPU where the L2 capacity greatly exceeds the L1 capacity. The L1 hit rate was measured as

100% for the kernel for problem sizes smaller than 128KiB per SM, showing that the observed

performance is for the bandwidth in L1. Uncovering the L2 cache performance requires some

manual adjustments to the caching policy of the load and store operations. This is achieved

by manually writing the kernel in inline PTX, and setting the load cache policy to .cg, which

represents a cache global policy that avoids L1 caching.

Figure B.4: Bandwidth targeting L2 cache for P100 and V100 GPUs.

Code Sample B.1 shows the cache bandwidth benchmark written for measuring cache band-

width accurately on the NVIDIA GPUs. Inline assembly is used to support fine grained control

of the caching policies for each memory access and inhibit the outer iteration loop from being
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optimised away. The included FMA operations is a minimal set required to ensure that the

vector loads are performed in full, without being optimised out.

The L2 bandwidth for the P100 is shown to peak at around 1.6TB/s, while the L2 bandwidth

peaks at 2.2TB/s for the V100. This difference in performance can be mostly accounted for by

the increased number of streaming multiprocessors and different clock frequencies. It can be

noted in both Figure B.3 and Figure B.4 that for the largest problem sizes the performance

is representative of the maximum attainable memory bandwidth on the V100 GPU, as seen in

Section 4.5.
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