139 research outputs found

    A simplified lower bound for implicational logic

    Full text link
    We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.Comment: 31 page

    J-Calc: a typed lambda calculus for intuitionistic justification logic

    Get PDF
    In this paper we offer a system J-Calc that can be regarded as a typed λ-calculus for the {→, ⊥} fragment of Intuitionistic Justification Logic. We offer different interpretations of J-Calc, in particular, as a two phase proof system in which we proof check the validity of deductions of a theory T based on deductions from a stronger theory T and computationally as a type system for separate compilations. We establish some first metatheoretic result

    Intuitionistic implication makes model checking hard

    Full text link
    We investigate the complexity of the model checking problem for intuitionistic and modal propositional logics over transitive Kripke models. More specific, we consider intuitionistic logic IPC, basic propositional logic BPL, formal propositional logic FPL, and Jankov's logic KC. We show that the model checking problem is P-complete for the implicational fragments of all these intuitionistic logics. For BPL and FPL we reach P-hardness even on the implicational fragment with only one variable. The same hardness results are obtained for the strictly implicational fragments of their modal companions. Moreover, we investigate whether formulas with less variables and additional connectives make model checking easier. Whereas for variable free formulas outside of the implicational fragment, FPL model checking is shown to be in LOGCFL, the problem remains P-complete for BPL.Comment: 29 pages, 10 figure

    The model checking problem for intuitionistic propositional logic with one variable is AC1-complete

    Full text link
    We show that the model checking problem for intuitionistic propositional logic with one variable is complete for logspace-uniform AC1. As basic tool we use the connection between intuitionistic logic and Heyting algebra, and investigate its complexity theoretical aspects. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem.Comment: A preliminary version of this work was presented at STACS 2011. 19 pages, 3 figure

    J-Calc: a typed lambda calculus for intuitionistic justification logic

    Get PDF
    In this paper we offer a system J-Calc that can be regarded as a typed λ-calculus for the {→, ⊥} fragment of Intuitionistic Justification Logic. We offer different interpretations of J-Calc, in particular, as a two phase proof system in which we proof check the validity of deductions of a theory T based on deductions from a stronger theory T and computationally as a type system for separate compilations. We establish some first metatheoretic result

    An Intuitionistic Formula Hierarchy Based on High-School Identities

    Get PDF
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms corresponding to the high-school identities, we show that one can obtain a more compact variant of a proof system, consisting of non-invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalisation procedure. Moreover, for certain proof systems such as the G4ip sequent calculus of Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the non-invertible proof rules as strict inequalities between exponential polynomials; a careful combinatorial treatment is given in order to establish this fact. Finally, we extend the exponential polynomial analogy to the first-order quantifiers, showing that it gives rise to an intuitionistic hierarchy of formulas, resembling the classical arithmetical hierarchy, and the first one that classifies formulas while preserving isomorphism
    • …
    corecore