
J-Calc: A typed lambda calculus for
Intuitionistic Justification Logic

Konstantinos Pouliasis1,2,5

Department of Computer Science
The Graduate Center at City University of New York,

NY, USA

Giuseppe Primiero3,4,5

Department of Computer Science
Middlesex University
United Kingdom

Abstract

In this paper we offer a system J-Calc that can be regarded as a typed λ-calculus for the {→,⊥} fragment of
Intuitionistic Justification Logic. We offer different interpretations of J-Calc, in particular, as a two phase
proof system in which we proof check the validity of deductions of a theory T based on deductions from
a stronger theory T ′ and computationally as a type system for separate compilations. We establish some
first metatheoretic results.

Keywords: Typed λ-calculus, Justification Logic, Modular Programming.

1 Introduction

A plausible reading of Gödel’s incompleteness results ([18]) is that the notion of “va-

lidity” diverges from that of “truth within a specific theory”: given a theory that

includes enough arithmetic, there are statements whose validity can only be estab-

lished in a theory of larger proof-strength. This phenomenon can be shown even

1 This research is part of Konstantinos Pouliasis’ Phd study as a Enhanced Chancellor Fellow at the
Graduate Center of the City University of New York under the supervision of Prof. Sergei Artemov. He is
indebted to Prof. Sergei Artemov’s advisement and guidance during his academic journey.
2 Email: Kpouliasis@gc.cuny.edu
3 This research was conducted while Giuseppe Primiero was a Post-Doctoral Fellow of the Research Foun-
dation Flanders (FWO) at the Centre for Logic and Philosophy of Science, Ghent University Belgium. He
gratefully acknowledges the financial support.
4 Email: G.Primiero@mdx.ac.uk
5 Both authors are indebted to the constructive comments of the anonymous referees of the Intuitionistic
Modal Logic and Applications Workshop, 2013.

Preprint submitted to Electronic Notes in Theoretical Computer Science 31 May 2013

mailto:Kpouliasis@gc.cuny.edu
mailto:G.Primiero@mdx.ac.uk

with non-Gödelian arguments in the relation e.g. between I∆0 and IΣ1 arithmetic

[27], IΣ1 and PA, PA and ZF, etc. [29,15]. The very same issues arise in automated

theorem proving. A good example is given by type systems and interactive theorem

provers (e.g. Coq, Agda) of the typed functional paradigm. In such systems, when

termination of functions has to be secured, one might need to invoke stronger proof

principles. The need for reasoning about two kinds of proof objects within a type

system is apparent most of all when one wants to establish non-admissibility results

for a theory T that can, in contrast, be proved in some stronger T ′. The type sys-

tem, then, has to reconcile the existence of a proof object of some type φ in some

T ′ and a proof object of type ¬∃s.ProvT (s, φ) that witnesses the non-provability of

φ (in T).

In this work, we argue that the explicit modality of Justification Logic [7] can

be used to axiomatize relations between objects of two different calculi such as

those mentioned above. It is well known that the provability predicate can be ax-

iomatized using a modality [14], [9]. The Logic of Proofs LP [3] goes further and

provides explicit proof terms (proof polynomials) to inhabit judgments on validity.

By translating reasoning in Intuitionistic Propositional Calculus (IPC) to classical

proofs, LP obtains a classical semantics for IPC through a modality (inducing a BHK
semantics). In this paper we axiomatize the relation between the two kinds of proof

objects explicitly, by creating a modal type theory that reasons about bindings or

linking of objects from two calculi: a lower-level theory T , formulated as IPC with

Church-style λ-terms representing intuitionistic proof objects; and a higher-level,

possibly stronger and classical (co-)theory T ′ fixed as foundational, with justifica-

tions expressing its proof objects. The axiomatization of such a (co-)theory follows

directly the proof system of Justification Logic (here restricted to its applicative

K-fragment) and is used to interpret classically (meaning truth-functionally) the

constructions of the intuitionistic natural deduction. The underlying principle of

our linking system is as follows:

constructive necessity = admissible validity = truth (in T) + validity (in T ′)

Necessity of a true (in T) proposition P is, thus, sensitive to the existence of

a proof (witnessed by a justification) of its intended interpretation within T ′. We

assume an interpretation function on types Just that maps the type universe of T

into the type universe of T ′. We employ judgments of the kind M : P (read as “M

is a proof of type P in T”) that represent truths in T and judgments of the kind

j : Just P (to be read as ”j is a justification of the interpretation of P in T ′”) that

represent truth in T ′ (validity). Incorporating them, the principle can be rewritten

in a judgmental fashion:

M : P + j : Just P ⇒ 2jP true

Notice that the 2-types are indexed by justifications (2jP) being sensitive to the

interpretation (T ′) chosen. To complete the picture we need canonical elements of

2j-types. Naturally, witnesses of this kind are links between proof objects from T

2

and T ′ with corresponding types (P and Just P). For that reason we introduce a

linking witness constructor Link. This is how necessity is introduced: by proof-

checking deductions of T with deductions of T ′, we reason constructively about

admissibility of valid (via T ′) statements in T . The principle thus becomes:

M : P + j : Just P ⇒ Link(M, j) : 2jP

We show how this principle is admissible in our system.

A possible application of the presented type theory can be a refined type sys-

tem for programming languages with modular programming constructs or external

function calls as we show in section 5. In these kinds of languages (e.g. of the ML
family) a program or module can call for external definitions that are implemented

elsewhere (in another module or, even in another language) 6 . We can read functions

within 2-types indexed by justifications as linking processes for such languages that

perform the mapping of well–typed constructs importing and using module signa-

tures into their residual programs. By residual programs we mean programs where

all instances of module types and function calls are replaced by (i.e. linked to)

their actual implementations, which remain hidden in the module. We show with

a real example how, with slight modifications, our type system can find a natural

application in this setting. Here we focus on the type system itself and not on its

operational semantics.

The backbone of this work is the idea of representing the proof theoretic seman-

tics for IPC through modality that stems from [5],[6]. An operational approach to

modality related to this work can be found in [4]. The modularity of LP, i.e. its

ability to realize other kinds of modal reasoning with proper changes in the axiom-

atization of proof polynomials, was shown with the development of the family of

Justification Logics [7]. This ability is easily seen to be preserved here. Our work

incorporates the rich type system and modularity of Justification Logic within the

proofs-as-programs doctrine. For that reason, we obtain an extension of the Curry-

Howard correspondence ([30], [17]) and adopt the judgmental approach of Intuition-

istic Type Theory ([21], [22], [23], [25], [11]). Our system borrows from other modal

calculi developed within the judgmental approach (e.g. [28], [19],[1] and especially

[13] for the modal logic K). A main difference of our system with those systems,

as well as with previous λ-calculi for LP ([2], [10]) is that our type system hosts

a two-kinded typing relation for proof objects of corresponding formulae. It can

be viewed as an attempt to add proof terms for validity judgments as presented in

[28]. The resulting type system adopts dependent typing ([12], [26]) to relate the

two kinds of proof objects with modality. The construction of the type universe as

well as of justificational terms draws a lot from ideas in [8] and from [16]. Extending

typed modal calculi with additional (contextual) terms of dependent typing can be

also found in [24].

6 See [20].

3

2 A road map for the type system

The present system can be viewed as a calculus of reasoning in three interleav-

ing phases. Firstly, reasoning about proof objects in the implicational fragment

of an intuitionistic theory T in absence of any metatheoretic assumptions of valid-

ity, introduced in Section 3. This calculus is formalized by the turnstile Γ `IPC 7

where Γ contains assumptions on proofs of sentences in T . The underlying logic

is intuitionistic, the system corresponding to the implicational fragment of simply

typed lambda calculus. Secondly, reasoning with justifications, corresponding to

reasoning about proof objects in some fixed foundational system: the (co-)theory

T ′, introduced in Section 4. We suppose that T ′ provides the intended semantics

for the intuitionistic system T . The corresponding turnstile is ∆ `J. Abstracting

from any specific metatheory, all that matters from a purely logical point of view

is that the theory of the interpretation should – at least – include as much logic as

the implicational fragment of T and it should satisfy some minimal conditions for

the provability predicate of T . Finally, reasoning about existence of links between

proof objects in the implicational fragment of both axiomatic systems, introduced in

Section 6. This mode of reasoning is axiomatized within the full turnstile ∆; Γ `JC.

The core of this system is the 2-Introduction rule, which allows to express construc-

tive reasoning on linking existence. The idea is – ignoring contextual reasoning for

simplicity – that linking a construction in T with a justification of its corresponding

type in T ′ we obtain a proof of a constructive (or, admissible in T) validity. The

rule in full (i.e. including contexts) corresponds to the construction of a link for a

compound term based on existing link on its subterms. The full turnstile Γ; ∆ ` is,

hence, a modal logic that “zips” mutual reasoning between the two calculi. Within

this framework we obtain a computational reading for justification logic restricted

to K modal reasoning. Before presenting this mutual reasoning at any arbitrary

level of nesting (i.e. arbitrary modal types), we first introduce JCalc1 which is a

restriction of the type universe up to 1 level of 2-nesting.

We fix a countable universe of propositions (Pi) that corresponds to sentences

of T . The elements of this universe can be inhabited either by constructions or

justifications. We will need, accordingly, two kinds of inhabitation relations for

each proposition. We will be writing M : φ for a construction M of type φ in T .

We will be writing j : Just φ to express the fact that j is a justification (proof in

T ′) of the proposition φ. When there is no confusion we will be abbreviating this

by j :: φ. A construction in M : φ in T does not entail its necessity: to this aim,

a corresponding justification j : Just φ from T ′ has to be obtained. Vice versa,

the justification (j) of φ in T ′ alone entails its validity but not its admissibility

in T (constructive necessity). This is expressed by the proposition – type 2jφ.

A construction of 2jφ can be obtained only when the (weaker) theory T actually

“responds” with a construction M of the type φ to the valid fact φ known from T ′

by deducing j. Hence, once (and only if) we have j :: φ then 2jφ can be regarded

7 One could alternatively use an additional constant symbol null and write null; Γ `IPC to denote reasoning
purely in T and, thus, in absence of any metatheoretic environment.

4

as a well formed proposition. The stronger theory might be able to judge about

2jφ (given j :: φ) and prove e.g, u :: 2jφ. In that case T ′ “knows” that φ is

admissible in T . In other words, when reasoning with justifications, the universe

of types is contextual. To speak about an admissible (or, constructive) necessity of

a proposition we require the existence of a corresponding proof object j in T ′ that

establishes its validity.

3 Reasoning without foundational assumptions: IPC

Reasoning about the implicational fragment of the constructive theory (T), without

formulating provability statements, is done within the implicational fragment of the

simply typed lambda calculus. We start by giving the grammar for the metavariable

φ used in the rules.

φ := Pi|φ→ φ

The calculus is presented by introducing: the universe of types Prop0; rules for

constructing well-formed contexts of simple propositional assumptions Γ0; the rules

governing `IPC.

Pi ∈ Prop0
Atom0

φ1 ∈ Prop0 φ2 ∈ Prop0

φ1 → φ2 ∈ Prop0
Impl0

nil `IPC wf
Nil0

Γ0 `IPC wf φ ∈ Prop0

Γ0, x : φ `IPC wf
Γ0-Exp

Γ0 `IPC wf x : Pi ∈ Γ0

Γ0 `IPC x : Pi
Γ-Refl

Γ0, x : φ1 `IPC M : φ2

Γ0 `IPC λx : φ1. M : φ1 → φ2

→I
Γ0 `IPC M : φ1 → φ2 Γ0 `IPC M ′ : φ1

Γ0 `IPC (MM ′) : φ2

→E

4 Reasoning in the Presence of Foundations: A calculus
of Justifications J

Reasoning in the presence of minimal foundations corresponds to reasoning on the

existence of proof objects in the foundational theory T ′. The minimal foundational

assumptions from the logical point of view is that T ′ “knows” at least as much logic

as T does. The more non-logical axioms in T , the more the specifications T ′ should

satisfy (one needs stronger foundations to justify stronger theories). Abstracting

5

from any particular T and T ′, and assuming only that T incorporates minimal logic,

the specifications about existence of proofs in T ′ are:

• to have “enough” types to provide – at least – an intended interpretation of

every type φ of T to a unique type Just φ. In other words a subset of the types

of T ′ should serve as interpretations of types in T ;

• to have – at least – proof objects for all the instances of the axiomatic charac-

terization of the IPC fragment described above; 8

• to include some modus ponens rule which translates as: the existence of proof

objects of types Just (φ → ψ) and of type Just φ in T ′ should imply the

existence of a proof object of the type Just φ.

4.1 Minimal Justification Logic J-Calc1

Under these minimal requirements, we develop a minimal justification logic that is

able to realize modal reasoning as reasoning on the existence of links between proofs

of T and T ′. We first realize modal reasoning restricted to formulae of degree (i.e.

level of 2-nesting) 1. Such a calculus will be used as a base to build a full modal

calculus with justifications for formulae of arbitrary degree. Here is the grammar

for the metavariables appearing below:

φ :=Pi|2jφ|φ1 → φ2

j :=si|C|j1 ∗ j2
t :=xi|λxi : φ.t|Js :: φ.t

C :=K[φ1, φ2]|S[φ1, φ2, φ3]|C1 ∗ C2

π :=Πs :: φ1. φ2|Πs :: φ1. π

T :=φ|Just φ|π
s :=si

x :=xi

4.1.1 Reasoning on minimal foundations J0
Reasoning about such a minimal metatheory is axiomatized in its own turnstile

(`J0). 9 Henceforth, judgments on the justificational type universe of J0 (corre-

sponding to formualae in the (co-)theory T ′) together with wf predicate for ∆0

contexts go as follows:

8 If we extend our fragment we should extend our specifications accordingly but this can be easily done
directly as in full justification logic. We choose to remain within this fragment for economy of presentation.
9 This is the part of the calculus that corresponds directly to the algebra of justifications restricted to the
applicative fragment.

6

nil `J0 wf
Nil

∆0 `J0 wf ∆0 `J0 φ ∈ Prop0

∆0 `J0 Just φ ∈ jtype0
Simple

∆0 `J0 Just φ ∈ jtype0 s 6∈ ∆0

∆0, s :: φ `J0 wf
∆0-App

∆0 `J0 wf s :: φ ∈ ∆

∆0 `J0 s :: φ
∆0-Refl

We add logical constants to satisfy the requirement that J0 includes an axiomatic

characterization of – at least – a fragment of IPC. Following justification logic, we

define a signature of polymorphic constructors including K, S from combinatory

logic. The values of those constructors are axiomatic constants that witness exis-

tence of proofs in T ′ of all instances of the corresponding logical validities. This

axiomatic characterization of intuitionistic logic in J0 together with rule scheme

Times (applicativity of justifications) satisfy the minimal requirement for T ′ to rea-

son logically.

∆0 `J0 Just φ1 → φ2 → φ1 ∈ jtype0

∆0 `J0 K[φ1, φ2] :: φ1 → φ2 → φ1

K

∆0 `J0 Just (φ1 → φ2 → φ3)→ (φ1 → φ2)→ (φ1 → φ3) ∈ jtype0

∆0 `J0 S[φ1, φ2, φ3] :: (φ1 → φ2 → φ3)→ (φ1 → φ2)→ (φ1 → φ3)
S

∆0 `J0 j2 :: φ1 → φ2 ∆0 `J0 j1 :: φ1

∆0 `J0 j2 ∗ j1 :: φ2

Times

4.1.2 Zipping: J-Calc1 = IPC + J0 + 2−Intro
In this section we introduce J-Calc1 for reasoning on the existence of links i.e. con-

structions that witness the existence of proofs both in IPC (T) and J0 (T ′). By

constructing a link we have a proof of a constructive necessity of a formula, showing

that it is true and valid. Links have types of the form 2jφ where j is a justification

of the appropriate type. J-Calc1 realizes modal logic theoremhood in K up to degree

1 (i.e. formulae where its subformula includes up to 1 level of 2).

We start by importing well-formedness judgments for contexts and justificational

types (∆0Wf, JustWf respectively), and for the Prop1 universe and its contexts:

7

∆0 `J0 wf
∆0; nil `JC1 wf

∆0Wf
∆0; Γ1 `JC1 wf ∆0 `J0 j :: φ

∆0; Γ1 `JC1 j :: φ
Just0Wf

φ ∈ Prop0 ∆0; Γ1 `JC1 j :: φ

∆0; Γ1 `JC1 2
jφ ∈ Prop1

Prop1-Intro

∆0; Γ1 `JC1 φ ∈ {Prop0,Prop1} x 6∈ Γ1

∆0; Γ1, x : φ `JC1 wf
Γ1-App

From justifications of formulas in Prop0, we can reason about their admissibility

in T . Hence, Γ1 might include assumptions from the sorts Prop0 and Prop1. For the

inhabitation of Prop0,Prop1, we first accumulate intuitionistic reasoning extended

to the new type universe (Prop1), adapting the rules from Section 3:

∆0; Γ1 `JC1 wf x : φ ∈ Γ1

∆0; Γ1 `JC1 x : φ
Γ1-Refl

∆0; Γ1, x : φ1 `JC1 M : φ2

∆0; Γ1 `JC1 λx : φ1. M : φ1 → φ2

→I

∆0; Γ1 `JC1 M : φ1 → φ2 ∆0; Γ1 `JC1 M
′ : φ1

∆0; Γ `JC1 (MM ′) : φ2

→E

For relating the two calculi, a lifting rule is formulated for turning strictly Prop0
judgments to judgments on proof links (Prop1). In the rule, the �-operator ensures

that context list � Γ includes assumptions strictly in Prop0. The operator � can be

viewed as the opposite of lift operation applied on context lists erasing one level of

boxed assumptions at the top level as described below.

� Γ := match Γ with

nil⇒ nil

| Γ′, x′i : 2jφi ⇒ � Γ′, xi : φi

|Γ′, ⇒ � Γ′

A corresponding iterative let-binding construct (let∗) is introduced simultaneously

with the context lifting. The purpose of the iterative let binding is to extract the

target(s) (T ′ terms) of existing links on subterms (x1 . . . xn) of some composite term

M in T and compose them to the target of the whole term M creating its residual.

We show the operation of this construct in the example from section 5.

8

let∗ Γ :=

match Γ with

nil⇒ let () = ()

| Γ′, x′i : 2jφi ⇒ (let∗ Γ′) in let link(xi, ji) = x′i
|Γ′, ⇒ let∗ Γ′

The 2-Introduction rule goes as follows:

; � Γ1 `JC1 M : φ ∆0; Γ1 `JC1 j :: φ

∆0; Γ1 `JC1 (let∗ Γ) in link (M, j) : 2jφ
2-Intro

Finally, under empty Γ1, we are permitting abstraction from a non-empty ∆0.

The resulting abstractions (J−terms), as we will see, are the inhabitants of modal

types and correspond to linking processes. Their typing is, naturally, of Π-kind

since the typing of a link is sensitive to its target code. We introduce Π-formation

and inhabitation rules:

∆0, s :: φ1;`JC1 φ2 ∈ {Prop0,Prop1}
∆0;`JC1 Πs :: φ1.φ2 ∈ Π

Π type0
∆0, s :: φ1;`JC1 π ∈ Π

∆0;`JC1 Πs :: φ1.π ∈ Π
Π type1

∆0, s :: φ;`JC1 t : T

∆0;`JC1 Js :: φ. t : Πs :: φ.T
Π-Intro

∆0;`JC1 t : Πs :: φ.T ∆0;`JC1 j :: φ

∆0;`JC1 (t j) : T[s := j]
Π-Elim

5 Computational Motivation: A type system for sepa-
rate compilation

In this section, we show how J-Calc can be viewed as a type system for program

generation in typed languages that support separate compilation (modular program-

ming or external function calls). These languages follow the client/ sever approach

to programming: client code, can refer to code definitions implemented by the server

elsewhere; the server can be some module or even another language providing the

required function calls, but it needs not know the details of the implementation

(encapsulation). A challenge in such a system is to provide a mechanism of sepa-

rate compilation such that the client (or, source) code is compiled independently of

changes in the implementation of the server. In what follows we present J-Calc as

9

a type system for linking processes in such a setting. Following our language: the

constructs of T represent here client (or source) expressions and constructs of T ′

represent target (or server) code expressions. Our linking by way of the 2-Intro rule

linking processes generators that consume different implementations from the server

and link them with constructs of the source. We show, following a textbook exam-

ple for modules, that our type system provides the abstraction required for such a

language so that client code needs to be compiled once and only, independently of

the different implementations that the server module might provide.

5.1 Producing generic code

As an example, we will use ML-like module definitions. We start with a definition

of a module’s public signature (i.e. the operations provided by the server to the

client). Here we provide the signature for a stack of integers.

module type INTSTACK =

sig

type intstack

val Empty: intstack

val push : int->intstack->intstack

val pop: int->intstack->intstack

end;;

This signature can be implemented in various ways but our goal is to produce

generic code from compiling source code only once. We take for example the source

code expression ` (push 2 Empty) : intstack and show step-by-step the construc-

tion of generic code following our calculus. First we factorize the usage of the

signature by rewriting the term:

� Γ = x1 : int→ intstack→ intstack, x2 : intstack ` (x1 2 x2) : intstack

Secondly, we assume implementations of “missing” code in the validity context,

i.e.

∆ = s1 :: int→ intstack→ intstack, s2 :: intstack ` s1 ∗ 2 ∗ s2 :: intstack

Using the 2-Intro rule we obtain:

∆; Γ = x′1 : 2s1(int→ intstack→ intstack), x′2 : 2s2intstack `
let link(x1, s1) = x′1 in

let link(x2, s2) = x′2 in

link(x1 2 x2, s1 ∗ 2 ∗ s2) : 2s1∗2∗s2intstack

10

Finally, abstracting we get a linking process generator of typing that is sensitive

to the different implementations provided by the server:

` Js1.Js2. λx′1.λx′2. let∗ Γ in link(x1 2 x2, s1 ∗ 2 ∗ s2)

of type:

Πs1.Πs2.2
s1(int→ intstack→ intstack)→ 2s2intstack→ 2s1∗2∗s2intstack

where

let∗ Γ =deflet link(x1, s1) = x′1 in let link(x2, s2) = x′2

5.2 Providing implementations

The server might provide different implementations of the instack module signa-

ture. The two textbook approaches use lists or arrays of integers. Given different

implementations, the initial source code has different computational value since the

links that it induces change. Schematically:

push
link−−−→ Cons :2Cons(int→ intstack→ intstack)

Empty
link−−−→ [] :2[]intstack

push 2 Empty
link−−−→ Cons 2 [] :2Cons*2*[]intstack

push
link−−−→ Addarr :2Addarr(int→ intstack→ intstack)

Empty
link−−−→ Void :2Voidintstack

push 2 Empty
link−−−→ Addarray 2 Void :2Addarr*2*Voidintstack

Both cases are captured by the generic code we produced giving us the ability

of separate compilation of source and implementation. In the first case we have:

Just[intstack]=List,

Just[push]= Cons,

Just[Empty]=[]

From which we obtain using 2−Intro:

11

` link(Empty, []) : 2[]intstack

and

` link(push, Cons) : 2Cons(int→ intstack→ intstack)

Finally, using linking process generator obtained in the previous section and

under standard operational semantics for application (β-reduction) and let-binding

evaluation we link the source code to its residual program using the list imple-

mentation:

` link(push 2 Empty, Cons*2*[]) : 2Cons*2*[](int→ intstack→ intstack)

Analogously, using the exact same code generator, closing ∆ with implementa-

tions

Just[intstack]= Array

Just[push]= addarr

Just[Empty]= create()

We obtain the links:

link(push, addarr) : 2addarr(int→ intstack→ intstack)

link(Empty, create()) : 2create()intstack

And from the previous generic judgment under standard operational semantics

for application (β-reduction) and let-binding evaluation we link the source code to

its residual program using the Array implementation:

link(push 2 Empty, addarr * 2 * create()) ` 2addarr∗2∗create()inststack

Note that the client code does not need to recompile. Our generic code construc-

tion provides the expressive means to evaluate source contextually given different

implementations of the module signature.

6 The Full Calculus: J-Calc

J-Calc1 motivates the generalization to modal reasoning of arbitrary nesting: J-Calc.
To allow such generalization, we need justifications of types of the form Just 2jφ.

12

Let us revise: If φ is a proposition (or, a sentence in the language of T), then Just φ
corresponds to the intended interpetation of φ in some (co-)theory T ′. In J-Calc1

we could reason logically about the constructive admissibility of (valid according

to T ′) facts of T . The existence of a link of a proof in T with an existing proof

of the same type in T ′ would lead to constructions of a type of the form 2jφ

with φ a simple type. To get modal theoremhood of degree 2 or more we have

to assume that T ′ can express the existence of such links in itself. That is to

say that T ′ can express the provability predicates both of T and of itself. Hence,

supposing that j :: φ, we can read a justification term of type Just 2jφ as a witness

of a proof in T ′ of the fact ∃x.ProofT (x, φ) ∧ ∃x.ProofT ′(x, Just φ) expressed in

T ′. We will specify which of those types T ′ is expected to capture by introducing

additional appropriate constants. Having this kind of justifications we can obtain

Propi for any finite i as slices of a type universe in a mutual inductive construction.

Schematically: Prop0 ⇒ Just Prop0 ⇒ Prop1 ⇒ Just Prop1 and so on. This way

we obtain full minimal justification logic. As different kinds of judgments are kept

separated by the different typing relations, we do not need to provide distinct calculi

as we did for J-Calc1 but we provide one “zipped” calculus directly. 10

6.1 Justificational (Validity) Judgments

The justificational type system has to include: judgments on the wellformedness of

contexts (wf); 11 judgments on what T ′ can reason about (jtype) under the require-

ment that it is a metatheory of T ; judgments on the construction of the justifica-

tional type universe (jtype) and minimal requirements about its inhabitation (i.e,

a minimal signature of logical constants). The grammar of terms is the same as

in section 4.1, the difference now is that the restrictions on the Prop universe are

dropped.

We introduce progressively: formation rules for Prop; the formation rule for jtype;
rules to build well-formed contexts of propositions and justifications (where we will

be abbreviating using the following equational rule: nil, s1 :: φ1, s2 :: φ2, . . . =def

s1 :: φ1, s2 :: φ2, . . .).

10 In fact, adjoining Γ contexts when reasoning within justifications is pure weakening so we could have kept
those judgments separated in a single–context ` relation. We gain something though: we can squeeze two
premises (∆ ` j :: φ, ∆; Γ ` wf) to a single one (∆; Γ ` j :: φ).
11 Analogous treatments of judgments on the validity of contexts can be found e.g. in [26].

13

nil; nil `JC wf
NIL

∆; Γ `JC wf

∆; Γ `JC Pi ∈ Prop
Atom

∆; Γ `JC φ1 ∈ Prop ∆; Γ `JC φ2 ∈ Prop

∆; Γ `JC φ1 → φ2 ∈ Prop
Impl

∆; Γ `JC j :: φ

∆; Γ `JC 2jφ ∈ Prop
Box

∆; Γ `JC φ ∈ Prop

∆; Γ `JC Just φ ∈ jtype
Jtype

∆; Γ `JC Just φ ∈ jtype s 6∈ ∆

∆, s :: φ; Γ `JC wf
∆-App

∆; Γ `JC φ ∈ Prop x 6∈ Γ

∆0; Γ, x : φ ` wf
Γ-App

6.1.1 Prop Inhabitation

Here is the first part of logical propositional reasoning of the system.

∆; Γ `JC wf x : φ ∈ Γ

∆; Γ `JC x : φ
Γ-Refl

∆; Γ, x : φ1 `JC M : φ2

∆; Γ `JC λx : φ1. M : φ1 → φ2

→I

∆; Γ `JC M : φ1 → φ2 ∆; Γ `JC M ′ : φ1

∆; Γ `JC (MM ′) : φ2

→E

6.1.2 jtype Inhabitation

Now we move to the core of the system. In the judgments below we provide the

constructions of canonical elements of justificational types (jtype). The judgments

reflect the minimal requirements for T ′ to be a metatheory of some T as presented

in Section 4.1.1 together with specifications on internalizing proof links reasoning in

itself. More specifically, we demand that T ′ can capture reasoning on links (between

proof objects of T and itself) within itself and also, internalize modus ponens of T .

To capture these provability conditions we add the constant constructors ! (bang)

and Kappa. Although introduction of links is axiomatized in the next section, the

judgments concerning the ! and Kappa constructors should be viewed in conjunction

with 2 − Intro. They witness the fact that T ′ internalizes modus ponens (of T)

and linking existence (again of T).

14

∆; Γ `JC Just φ1 → φ2 → φ1 ∈ jtype

∆; Γ `JC K[φ1, φ2] :: φ1 → φ2 → φ1

K

∆; Γ `JC Just (φ1 → φ2 → φ3)→ (φ1 → φ2)→ (φ1 → φ3) ∈ jtype

∆; Γ `JC S[φ1, φ2, φ3] :: (φ1 → φ2 → φ3)→ (φ1 → φ2)→ (φ1 → φ3)
S

∆; Γ `JC j2 :: φ1 → φ2 ∆; Γ `JC j1 :: φ1

∆ `J j2 ∗ j1 :: φ2

Times
∆; nil `JC M : 2Cφ

∆; Γ `JC !C :: 2Cφ
Bang

∆; Γ `JC Just 2j′φ1 ∈ jtype ∆; Γ `JC Just 2j(φ1 → φ2) ∈ jtype

∆; Γ `JC Kappa[j, j′, φ1, φ2] :: 2j(φ1 → φ2)→ 2j′φ1 → 2j∗j′φ2

Kappa

6.2 Proof Links

Our next task is to formulate the main rule for the K modality as a lifting rule

for going from reasoning about constructions to reasoning about admissibility of

validities via proof linking. To reflect the modal axiom K in Natural Deduction we

have to obtain a rule that reflects the following provability principle:

φ1 true, . . . , φn true ` φ true φ1 valid, . . . , φn valid ` φ valid

2φ1 true, . . . ,2φn true, . . . ` 2φ true
2-Intro

We proceed with giving inhabitants analogously to what was explained in Section

4.1.2: 12

∆; � Γ `JC M : φ ∆; Γ `JC j :: φ

∆; Γ `JC (let∗ Γ) in link (M, j) : 2jφ
2-Intro

Finally, abstraction from ∆ contexts over empty Γ contexts applies in the ex-

tended type universe:

∆, s :: φ;`JC t : T

∆;`JC Js :: φ. t : Πs :: φ.T
Π-Intro

∆;`JC t : Πs :: φ.T ∆0;`JC j :: φ

∆;`JC (t j) : T[s := j]
Π-Elim

12We prefer this to the mouthful but equivalent:

∆;x1 : φ1, . . . , xi : φi as Γ `M : φ
∀φi ∈ Γ. ∆′; nil ` ji :: φi ∆′; nil ` j :: φ ∆′;x1 : 2j1φi, . . . ,2

jiφi ` wf

∆′;x1 : 2j1φi, . . . ,2
jiφi ` JBox j : 2jφ

2-Intro

15

7 Further Results and Conclusions

Standard meta-theoretical results can be proven for J-Calc. We just mention here

that the iterative let operator satisfies standard commutativity with the substitution

rule for justifications and that structural rules can be proven. We will be skipping

the index in `JC.

Theorem 1 (Weakening). J-Calc satisfies Weakening in both modes of reasoning:

(i) If ∆; nil ` j :: φ, and ∆; Γ ` wf then, ∆; Γ ` j :: φ.

(ii) If ∆; Γ ` j :: φ, then ∆, s :: φ′; Γ ` j :: φ, with s fresh.

(iii) If ∆; Γ `M : φ, then ∆; Γ, x :φ′ `M : φ, with x fresh.

Proof. For all items by structural induction on the derivation trees of the two kinds

of constructions. The proof of the first is vacuous since Γ contexts are irrelevant in

justification formation. As a result, its inverse can also be shown.

Theorem 2 (Contraction). J-Calc satisfies Contraction:

(i) If ∆, s :: φ, t :: φ; nil ` j :: φ′, then ∆, u :: φ; nil ` j[s ≡ t/u] :: φ′.

(ii) If ∆, s :: φ, t :: φ; Γ ` wf, then, ∆, u :: φ; Γ[s ≡ t/u] ` wf.

(iii) If ∆, s :: φ, t :: φ; Γ ` M : φ′, then, ∆, u :: φ; Γ[s ≡ t/u] ` M [s ≡ t/u] : φ′[s ≡
t/u].

(iv) If ∆; Γ, x : φ, y : φ `M : φ′, then ∆; Γ, z : φ `M [x ≡ y/z] : φ′.

Proof. First item by structural induction on the derivation trees of justifications

(validity judgments). Note, as mentioned in the previous theorem, that it can be

shown for arbitrary Γ. For the second, nested induction on the structure of context

Γ (treated as list) and the complexity of formulas. Vacuously in the nil case. For

the non-empty case: case analysis on the complexity of the head formula using

the inductive hypothesis on the tail. Cases of interest are with 2sφ or 2tφ as

subformulae. Use the previous item and judgments for wf contexts. For the third

and the fourth, again by structural induction on the derivation.

In a similar fashion we can show the more general:

Theorem 3 (Preservations of Types under Substitution). J-Calc preserves types

under substitution and simultaneous substitution:

(i) If ∆; Γ, x : φ ` t : T, and ∆; Γ `M : φ then ∆; Γ ` t[x/M] : T

(ii) If ∆, s :: φ,∆′; Γ ` t : T, and ∆;` j :: φ then ∆,∆′[s/j]; Γ[s/j] ` t[s/j] : T[s/j]

We additionally mention that the calculus satisfies permutation for both contexts

∆ and Γ with the restriction that the permutations in ∆ should not break the chain

of dependencies. Lastly, we mention here that under standard let-binding evaluation

and application as β-reduction within a dependently typed framework, a small step

operational semantics has been developed and progress and preservation can be

shown.

16

For future work, we plan to extend the computational relevance of the full cal-

culus (JCalc) by establishing its connection with higher-order module systems (e.g.

where module signatures can refer to other module signatures which, in turn, are

implemented by a third module). Linking processes in such systems would utilize

our type system in full. Cut-elimination results are currently under development.

References

[1] Zine El abidine Benaissa, Eugenio Moggi, Walid Taha, and Tim Sheard. Logical modalities and multi-
stage programming.

[2] Jesse Alt and Sergei Artemov. Reflective λ-calculus. Technical Report CFIS 2000-06, Cornell
University, 2000.

[3] Sergei N. Artemov. Logic of proofs. Annals of Pure and Applied Logic, 67(1–3):29–59, May 1994.

[4] Sergei N. Artemov. Operational modal logic. Technical Report MSI 95–29, Cornell University,
December 1995.

[5] Sergei N. Artemov. Explicit provability and constructive semantics. Bulletin of Symbolic Logic, 7(1):1–
36, March 2001.

[6] Sergei N. Artemov. Unified semantics for modality and λ-terms via proof polynomials. In Kees
Vermeulen and Ann Copestake, editors, Algebras, Diagrams and Decisions in Language, Logic and
Computation, volume 144 of CSLI Lecture Notes, pages 89–118. CSLI Publications, Stanford, 2002.

[7] Sergei N. Artemov. Justification logic. In JELIA, pages 1–4, 2008.

[8] Sergei N. Artemov. The ontology of justifications in the logical setting. Stud. Log., 100(1-2):17–30,
April 2012.

[9] Sergei N. Artemov and Lev D. Beklemishev. Provability logic. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 13, pages 189–360. Springer, 2005.

[10] Sergei N. Artemov and Eduardo Bonelli. The intensional lambda calculus. In Sergei N. Artemov and
Anil Nerode, editors, Logical Foundations of Computer Science, International Symposium, LFCS 2007,
New York, NY, USA, June 4–7, 2007, Proceedings, volume 4514 of Lecture Notes in Computer Science,
pages 12–25. Springer, 2007.

[11] Steven Awodey and Florian Rabe. Kripke Semantics for Martin-Löf’s Extensional Type Theory. In
TLCA’09, pages 249–263, 2009.

[12] Gilles Barthe and Thierry Coquand. An Introduction to Dependent Type Theory. Lecture Notes in
Computer Science, pages 1–41.

[13] Gianluigi Bellin, Valeria de Paiva, and Eike Ritter. Extended curry-howard correspondence for a basic
constructive modal logic. In Proceedings of Methods for Modalities, 2001.

[14] George S. Boolos. The Logic of Provability.

[15] Samuel R. Buss. Chapter ii first-order proof theory of arithmetic. In Samuel R. Buss, editor, Handbook
of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics, pages 79 – 147.
Elsevier, 1998.

[16] Melvin Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic, vol. 132(1), pp.
1-25, 2005.

[17] Jean Y. Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge University Press, New
York, NY, USA, 1989.

[18] Kurt Gödel. On Formally Undecidable Propositions of Principia Mathematica and Related Systems.
Dover Publications, April 1992.

[19] Jean Goubault-Larrecq. On computational interpretations of the modal logic S4. Technical report,
Institut fur Logik, Komplexität und Deduktionssysteme, Universitat, 1996.

[20] Robert Harper. Programming in Standard ML. 1998.

[21] Per Martin-Löf. Constructive Mathematics and Computer Programming. In 6-th International
Congress for Logic, Methodology and Philosophy of Science, 1979, pages 153–175. North–Holland,
1982.

17

[22] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[23] Per Martin-Löf. On the Meanings of the Logical Constants and the Justifications of the Logical Laws.
Nordic Journal of Philosophical Logic, 1(1):11–60, May 1996.

[24] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM
Trans. Comput. Logic, 9(3):23:1–23:49, June 2008.

[25] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s Type Theory: An
Introduction. Oxford University Press, USA, July 1990.

[26] Ulf Norell. Dependently typed programming in Agda. In Lecture Notes from the Summer School in
Advanced Functional Programming, 2008.

[27] Rohit Parikh. Existence and feasibility in arithmetic. J. Symb. Log., pages 494–508, 1971.

[28] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical.
Structures in Comp. Sci., 11(04):511–540, August 2001.

[29] Peter Smith. An introduction to Gödel’s theorems, Cambridge University Press, 2007.

[30] Morten Heine B. Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume
149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.

18

	Introduction
	A road map for the type system
	Reasoning without foundational assumptions: IPC
	Reasoning in the Presence of Foundations: A calculus of Justifications J
	Minimal Justification Logic J-Calc_1

	Computational Motivation: A type system for separate compilation
	Producing generic code
	Providing implementations

	The Full Calculus: J-Calc
	Justificational (Validity) Judgments
	Proof Links

	Further Results and Conclusions
	References

