53 research outputs found

    The Largest Unethical Medical Experiment in Human History

    Get PDF
    This monograph describes the largest unethical medical experiment in human history: the implementation and operation of non-ionizing non-visible EMF radiation (hereafter called wireless radiation) infrastructure for communications, surveillance, weaponry, and other applications. It is unethical because it violates the key ethical medical experiment requirement for “informed consent” by the overwhelming majority of the participants. The monograph provides background on unethical medical research/experimentation, and frames the implementation of wireless radiation within that context. The monograph then identifies a wide spectrum of adverse effects of wireless radiation as reported in the premier biomedical literature for over seven decades. Even though many of these reported adverse effects are extremely severe, the true extent of their severity has been grossly underestimated. Most of the reported laboratory experiments that produced these effects are not reflective of the real-life environment in which wireless radiation operates. Many experiments do not include pulsing and modulation of the carrier signal, and most do not account for synergistic effects of other toxic stimuli acting in concert with the wireless radiation. These two additions greatly exacerbate the severity of the adverse effects from wireless radiation, and their neglect in current (and past) experimentation results in substantial under-estimation of the breadth and severity of adverse effects to be expected in a real-life situation. This lack of credible safety testing, combined with depriving the public of the opportunity to provide informed consent, contextualizes the wireless radiation infrastructure operation as an unethical medical experiment

    Monitoring of electromagnetic field exposure in an international context

    Get PDF
    Objectives: Electromagnetic field exposure to general people is a public health concern and a topic of debate globally. Electromagnetic field is non-ionizing part of electromagnetic spectrum that can further be divided into extremely low frequency (0- 10 MHz) EMF and radiofrequency (10-300 MHz) EMF based on frequency and corresponding wavelength. Both of these components are of a topic of public debate and a subject of on-going research. The most common sources of extremely low frequency fields are alternating current carried in wiring, household appliances, power lines, electrical wiring, and electrical equipment. Some common sources of radiofrequency fields are mobile phone handsets and mobile phone base stations. Hence the main goals of this thesis were to propose a validated 3D computer model for extremely low frequency magnetic field exposure assessment from overhead powerlines and to develop a novel method of assessing radiofrequency field exposure in different microenvironments. More specifically, this thesis was planned with four different objectives as below: To systematically review the radiofrequency electromagnetic field exposure situation in the European countries based on peer-reviewed articles on spot measurements, personal measurement with trained researchers, and personal measurement with volunteers studies. To test the suitability of microenvironmental measurement surveys with portable exposimeters for monitoring of radiofrequency electromagnetic field levels in various everyday microenvironments in Switzerland. To apply already tested radiofrequency electromagnetic field monitoring protocol to monitor radiofrequency electromagnetic field exposure from Switzerland to international microenvironments of Ethiopia, Nepal, South Africa, Australia and the United States of America To validate a 3D computer model, developed for the calculation of the absolute value of magnetic flux density from an overhead power line, with a 6 measurement campaign conducted every two months for a year time. Methods: For the systematic review for radiofrequency electromagnetic field exposure in European countries, we systematically searched the ISI Web of Science for relevant literature published between 1st January, 2000 and 30th April, 2015 that assessed RF-EMF exposure levels by any of the methods; spot measurements, personal measurement with trained researchers and personal measurement with volunteers. For the non-ionizing radiation monitoring in Switzerland, we used ExpoM-RF device mounted on a backpack to assess radiofrequency electromagnetic field by walking through 51 different outdoor microenvironments from 20 different municipalities in Switzerland. Measurements were conducted between 25th March and 11th July 2014. The non-ionizing radiation monitoring in international microenvironments used the tested protocol from non-ionizing radiation monitoring in Switzerland. The measurements in international microenvironments were taken using two different kinds of portable RF meter called “ExpoM-RF” and “EME Spy 201”. The measurements were conducted either by walking (Switzerland and Nepal) or driving a car with ExpoM-RF device mounted on its roof (Ethiopia, South Africa, Australia, and the United States of America) or mixed walking and driving (Ethiopia, South Africa, Australia). We selected 15 different microenvironments from Switzerland, 18 microenvironments from Ethiopia, 12 microenvironments from Nepal, and 17 microenvironments from South Africa, 24 microenvironments from Australia and 8 microenvironments from the United States of America. Each of the selected microenvironments was measure twice: between 10 March and 14 April 2017. For the powerline validation study, six measurements were taken every two month between January 2015 and December 2015 from two different locations on two different power lines in order to describe variation of extremely low frequency magnetic field exposure by different seasons of the year. The measurements were taken from the selected power lines for at least 48 hours from each line on each measurement day. The measurements were taken using EMDEX II, temperature logger, and ESTEC device. Results: The systematic review yielded twenty one published studies that met our eligibility criteria of which 10 were spot measurements studies, 5 were personal measurement studies with trained researchers (microenvironmental), 5 were personal measurement studies with volunteers and 1 was a mixed methods study combining data collected by volunteers and trained researchers. The mean total RF-EMF exposure for spot measurements in European “Homes” and “Outdoor” microenvironments was 0.29 V/m and 0.54 V/m respectively. Among all European microenvironments in “Transportation”, the highest mean total RF-EMF 1.96 V/m was found in trains of Belgium during 2007 where more than 95% of exposure was contributed by uplink. The non-ionizing radiation monitoring in Switzerland found mean RF-EMF exposure of 0.53 V/m in industrial zones, 0.47 V/m in city centers, 0.32 V/m in central residential areas, 0.25 V/m non-central residential areas, 0.23 V/m in rural centers and rural residential areas, 0.69 V/m in trams, 0.46 V/m in trains and 0.39 V/m in buses. Temporal correlation between first and second measurement of each path was high: 0.83 for total RF-EMF, 0.83 for all five mobile phone downlink bands combined, 0.54 for all five uplink bands combined and 0.79 for broadcasting. The non-ionizing radiation monitoring internationally found mean RF-EMF exposure in all 5 countries varied between 0.94 V/m and 0.05 V/m. Mean total RF-EMF exposure was highest in Australia (0.94 V/m city centers) and lowest in South Africa (0.36 V/m in rural centers and rural residential areas). For outdoor areas major exposure contribution was from mobile phone base station. The mobile phone base stations contributed more than 65% in all measured microenvironments across the 5 countries. The two components of the powerline validation study: feasibility study by a computer model and its validation by field measurement of extremely low frequency magnetic field found the estimated precision of the results to be of the order of 10 % to 25 %, and this large degree precision may be due to errors in the coordinates and heights. The both components of the study helped in identifying the input data necessary for large-scale modeling of magnetic fields from high-voltage power lines and how long-term temporal averages of the field can be computed. Conclusion: The systematic review of radiofrequency electromagnetic field concluded that typical radiofrequency electromagnetic field exposure levels are substantially below regulatory limits. The non-ionizing radiation monitoring in Switzerland demonstrated that microenvironmental surveys using a portable device yields highly repeatable measurements, which allows monitoring time trends of RF-EMF exposure over an extended time period of several years and to compare exposure levels between different types of microenvironments. The non-ionizing radiation monitoring in international microenvironments further support the results from pilot study in Switzerland. The powerline validation study concluded the model agrees well with the measurement values, with average offsets in the range of a few percent. We also found that the precision of the results corresponds to the precision estimated during the pilot study

    Towards tactile sensing active capsule endoscopy

    Get PDF
    Examination of the gastrointestinal(GI) tract has traditionally been performed using tethered endoscopy tools with limited reach and more recently with passive untethered capsule endoscopy with limited capability. Inspection of small intestines is only possible using the latter capsule endoscopy with on board camera system. Limited to visual means it cannot detect features beneath the lumen wall if they have not affected the lumen structure or colour. This work presents an improved capsule endoscopy system with locomotion for active exploration of the small intestines and tactile sensing to detect deformation of the capsule outer surface when it follows the intestinal wall. In laboratory conditions this system is capable of identifying sub-lumen features such as submucosal tumours.Through an extensive literary review the current state of GI tract inspection in particular using remote operated miniature robotics, was investigated, concluding no solution currently exists that utilises tactile sensing with a capsule endoscopy. In order to achieve such a platform, further investigation was made in to tactile sensing technologies, methods of locomotion through the gut, and methods to support an increased power requirement for additional electronics and actuation. A set of detailed criteria were compiled for a soft formed sensor and flexible bodied locomotion system. The sensing system is built on the biomimetic tactile sensing device, Tactip, \cite{Chorley2008, Chorley2010, Winstone2012, Winstone2013} which has been redesigned to fit the form of a capsule endoscopy. These modifications have required a 360o360^{o} cylindrical sensing surface with 360o360^{o} panoramic optical system. Multi-material 3D printing has been used to build an almost complete sensor assembly with a combination of hard and soft materials, presenting a soft compliant tactile sensing system that mimics the tactile sensing methods of the human finger. The cylindrical Tactip has been validated using artificial submucosal tumours in laboratory conditions. The first experiment has explored the new form factor and measured the device's ability to detect surface deformation when travelling through a pipe like structure with varying lump obstructions. Sensor data was analysed and used to reconstruct the test environment as a 3D rendered structure. A second tactile sensing experiment has explored the use of classifier algorithms to successfully discriminate between three tumour characteristics; shape, size and material hardness. Locomotion of the capsule endoscopy has explored further bio-inspiration from earthworm's peristaltic locomotion, which share operating environment similarities. A soft bodied peristaltic worm robot has been developed that uses a tuned planetary gearbox mechanism to displace tendons that contract each worm segment. Methods have been identified to optimise the gearbox parameter to a pipe like structure of a given diameter. The locomotion system has been tested within a laboratory constructed pipe environment, showing that using only one actuator, three independent worm segments can be controlled. This configuration achieves comparable locomotion capabilities to that of an identical robot with an actuator dedicated to each individual worm segment. This system can be miniaturised more easily due to reduced parts and number of actuators, and so is more suitable for capsule endoscopy. Finally, these two developments have been integrated to demonstrate successful simultaneous locomotion and sensing to detect an artificial submucosal tumour embedded within the test environment. The addition of both tactile sensing and locomotion have created a need for additional power beyond what is available from current battery technology. Early stage work has reviewed wireless power transfer (WPT) as a potential solution to this problem. Methods for optimisation and miniaturisation to implement WPT on a capsule endoscopy have been identified with a laboratory built system that validates the methods found. Future work would see this combined with a miniaturised development of the robot presented. This thesis has developed a novel method for sub-lumen examination. With further efforts to miniaturise the robot it could provide a comfortable and non-invasive procedure to GI tract inspection reducing the need for surgical procedures and accessibility for earlier stage of examination. Furthermore, these developments have applicability in other domains such as veterinary medicine, industrial pipe inspection and exploration of hazardous environments

    Positioning of a wireless relay node for useful cooperative communication

    Get PDF
    Given the exorbitant amount of data transmitted and the increasing demand for data connectivity in the 21st century, it has become imperative to search for pro-active and sustainable solutions to the effectively alleviate the overwhelming burden imposed on wireless networks. In this study a Decode and Forward cooperative relay channel is analyzed, with the employment of Maximal Ratio Combining at the destination node as the method of offering diversity combining. The system framework used is based on a three-node relay channel with a source node, relay node and a destination node. A model for the wireless communications channel is formulated in order for simulation to be carried out to investigate the impact on performance of relaying on a node placed at the edge of cell. Firstly, an AWGN channel is used before the effect of Rayleigh fading is taken into consideration. Result shows that performance of cooperative relaying performance is always superior or similar to conventional relaying. Additionally, relaying is beneficial when the relay is placed closer to the receiver

    Constructing an EMF radiation Hygeia framework and model to demonstrate a public interest override

    Get PDF
    Scientific views on EMF radiation dosimetry and models increasingly suggest that even a tiny increase in the incidence of diseases resulting from exposure to EMF radiation could have broad¹ implications for public health, social accounting and the economy. In South Africa (SA) there is no national EMF radiation exposure protection standard, statutory monitoring or regulations. Multinational High Court deliberations indicate the need for public interest EMF radiation exposure protection standards in South Africa. Domestic citizens, academics, as well as regulatory and legislative practitioners, are unable to effectively monitor and investigate EMF radiation exposure emissions from infrastructure sources, because industries refuse to provide the required data. Industries have, since 2003, continually obstructed access to the data and the establishment of a national EMF radiation standard, citing that it would be in conflict with their strategic economic interests. The demonstration of a public interest override (PIO) function is legislatively required to gain access to the required data. This study constructed (1) a framework and (2) a model to perform test simulations against the (3) PIO criteria to demonstrate a PIO function and tested one PIO simulation scenario. Testing the PIO scenario firstly required the construction of a public interest framework, drawing input from multiple disciplines. The framework literature review used systematic case law and scientific-technical analysis whilst the framework science sought to understand the connections, feedbacks, and trajectories that occur as a result of natural and human system processes and exchanges. The EMF radiation exposure system functions to support human wellbeing needs and to explore the benefits and losses associated with alternative futures with the goal to uncover the current and future limits thereof. In the second instance a HYGEIA² model was selected as a base investigation and forecast simulation tool. The study had to uncover the key attributes and parameters necessary to construct and to run successful EMF radiation exposure simulations. Thereafter the HYGEIA model was modified to specifically identify and evaluate EMF radiation exposure hazard conditions. Through subsequent simulation runs, the constructed framework was then tested. Requested anthroposphere information was synthesized within a systems model to forecast ecosystem services and human-use dynamics under alternative scenarios. The simulation used the model, the model references and the framework for guidelines, thus allowing multiple simulation / demonstration runs for different contexts or scenarios. The third step was the construction of a PIO checklist which guides criteria testing and provides a means of gaining pertinent information for further studies, based on this dissertation. Framework EMF radiation policy inputs into the model were intersected with identified vulnerable area facilities which were selected based on international criteria. The research output revealed potential EMF radiation violations which served as system feedback inputs in support of a demonstrated PIO function. The research recommends that the identified EMF radiation exposure violations of public health undergo a Promotion of Access to Information Act (PAIA) judicial review process to confirm the research findings. The judicial qualification of a PAIA PIO function of ‘substances released into the environment’ and ‘public safety or environmental risk’ would enable access to EMF radiation emissions data essential to future studies

    A Survey of 3D Indoor Localization Systems and Technologies

    Get PDF
    Indoor localization has recently and significantly attracted the interest of the research community mainly due to the fact that Global Navigation Satellite Systems (GNSSs) typically fail in indoor environments. In the last couple of decades, there have been several works reported in the literature that attempt to tackle the indoor localization problem. However, most of this work is focused solely on two-dimensional (2D) localization, while very few papers consider three dimensions (3D). There is also a noticeable lack of survey papers focusing on 3D indoor localization; hence, in this paper, we aim to carry out a survey and provide a detailed critical review of the current state of the art concerning 3D indoor localization including geometric approaches such as angle of arrival (AoA), time of arrival (ToA), time difference of arrival (TDoA), fingerprinting approaches based on Received Signal Strength (RSS), Channel State Information (CSI), Magnetic Field (MF) and Fine Time Measurement (FTM), as well as fusion-based and hybrid-positioning techniques. We provide a variety of technologies, with a focus on wireless technologies that may be utilized for 3D indoor localization such as WiFi, Bluetooth, UWB, mmWave, visible light and sound-based technologies. We critically analyze the advantages and disadvantages of each approach/technology in 3D localization

    Full Issue: Volume 12, Number 2

    Get PDF

    From Logic to Realism to Brighter Future for Humanity

    Get PDF
    This collection of articles explores a wide range of subject, from Godel’s incompleteness theorem, to possible technocalypse and neutrofuturology. Articles on historical debates on irrational number to electroculture, on vortex particle, or on different Neutrosophic applications are included
    corecore