45 research outputs found

    Waterfall: Primitives Generation on the Fly

    No full text
    Modern languages are typically supported by managed runtimes (Virtual Machines). Since VMs have to deal with many concepts such as memory management, abstract execution model and scheduling, they tend to be very complex. Additionally, VMs have to meet strong performance requirements. This demand of performance is one of the main reasons why many VMs are built statically. Thus, design decisions are frozen at compile time preventing changes at runtime. One clear example is the impossibility to dynamically adapt or change primitives of the VM once it has been compiled. In this work we present a toolchain that allows for altering and configuring components such as primitives and plug-ins at runtime. The main contribution is Waterfall, a dynamic and reflective translator from Slang, a restricted subset of Smalltalk, to native code. Waterfall generates primitives on demand and executes them on the fly. We validate our approach by implementing dynamic primitive modification and runtime customization of VM plug-ins

    Draining the Swamp: Micro Virtual Machines as Solid Foundation for Language Development

    Get PDF
    Many of today\u27s programming languages are broken. Poor performance, lack of features and hard-to-reason-about semantics can cost dearly in software maintenance and inefficient execution. The problem is only getting worse with programming languages proliferating and hardware becoming more complicated. An important reason for this brokenness is that much of language design is implementation-driven. The difficulties in implementation and insufficient understanding of concepts bake bad designs into the language itself. Concurrency, architectural details and garbage collection are three fundamental concerns that contribute much to the complexities of implementing managed languages. We propose the micro virtual machine, a thin abstraction designed specifically to relieve implementers of managed languages of the most fundamental implementation challenges that currently impede good design. The micro virtual machine targets abstractions over memory (garbage collection), architecture (compiler backend), and concurrency. We motivate the micro virtual machine and give an account of the design and initial experience of a concrete instance, which we call Mu, built over a two year period. Our goal is to remove an important barrier to performant and semantically sound managed language design and implementation

    Benzo: Reflective Glue for Low-level Programming

    Get PDF
    International audienceThe goal of high-level low-level programming is to bring the abstraction capabilities of high-level languages to the system programming domain, such as virtual machines (VMs) and language runtimes. However, existing solutions are bound to compilation time and expose limited possibilities to be changed at runtime and from language-side. They do not fit well with fully reflective languages and environments. We propose Benzo1, a lightweight framework for high- level low-level programming that allows developers to generate and execute at runtime low-level code (assembly). It promotes the implementation, and dynamic modification, of system components with high-level language tools outperforming existing dynamic solutions. Since Benzo is a general framework we choose three applications that cover an important range of the spectrum of system programming for validating the infrastructure: a For- eign Function Interface (FFI), primitives instrumentation and a just-in-time bytecode compiler (JIT). With Benzo we show that these typical VM-level components are feasible as reflective language-side implementations. Due to its unique combination of high-level reflection and low-level programming, Benzo shows better performance for these three applications than the comparable high-level implementations

    Increasing the Performance and Predictability of the Code Execution on an Embedded Java Platform

    Get PDF
    This thesis explores the execution of object-oriented code on an embedded Java platform. It presents established and derives new approaches for the implementation of high-level object-oriented functionality and commonly expected system services. The goal of the developed techniques is the provision of the architectural base for an efficient and predictable code execution. The research vehicle of this thesis is the Java-programmed SHAP platform. It consists of its platform tool chain and the highly-customizable SHAP bytecode processor. SHAP offers a fully operational embedded CLDC environment, in which the proposed techniques have been implemented, verified, and evaluated. Two strands are followed to achieve the goal of this thesis. First of all, the sequential execution of bytecode is optimized through a joint effort of an optimizing offline linker and an on-chip application loader. Additionally, SHAP pioneers a reference coloring mechanism, which enables a constant-time interface method dispatch that need not be backed a large sparse dispatch table. Secondly, this thesis explores the implementation of essential system services within designated concurrent hardware modules. This effort is necessary to decouple the computational progress of the user application from the interference induced by time-sharing software implementations of these services. The concrete contributions comprise a spill-free, on-chip stack; a predictable method cache; and a concurrent garbage collection. Each approached means is described and evaluated after the relevant state of the art has been reviewed. This review is not limited to preceding small embedded approaches but also includes techniques that have proven successful on larger-scale platforms. The other way around, the chances that these platforms may benefit from the techniques developed for SHAP are discussed

    Cluster Computing with Single Thread Space

    Get PDF
    postprin

    Workload characterization of JVM languages

    Get PDF
    Being developed with a single language in mind, namely Java, the Java Virtual Machine (JVM) nowadays is targeted by numerous programming languages. Automatic memory management, Just-In-Time (JIT) compilation, and adaptive optimizations provided by the JVM make it an attractive target for different language implementations. Even though being targeted by so many languages, the JVM has been tuned with respect to characteristics of Java programs only -- different heuristics for the garbage collector or compiler optimizations are focused more on Java programs. In this dissertation, we aim at contributing to the understanding of the workloads imposed on the JVM by both dynamically-typed and statically-typed JVM languages. We introduce a new set of dynamic metrics and an easy-to-use toolchain for collecting the latter. We apply our toolchain to applications written in six JVM languages -- Java, Scala, Clojure, Jython, JRuby, and JavaScript. We identify differences and commonalities between the examined languages and discuss their implications. Moreover, we have a close look at one of the most efficient compiler optimizations - method inlining. We present the decision tree of the HotSpot JVM's JIT compiler and analyze how well the JVM performs in inlining the workloads written in different JVM languages

    Observable dynamic compilation

    Get PDF
    Managed language platforms such as the Java Virtual Machine rely on a dynamic compiler to achieve high performance. Despite the benefits that dynamic compilation provides, it also introduces some challenges to program profiling. Firstly, profilers based on bytecode instrumentation may yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations, or because the inserted instrumentation code disrupts such optimizations. To avoid such perturbations, we present a technique to make profilers based on bytecode instrumentation aware of the optimizations performed by the dynamic compiler, and make the dynamic compiler aware of the inserted code. We implement our technique for separating inserted instrumentation code from base-program code in Oracle's Graal compiler, integrating our extension into the OpenJDK Graal project. We demonstrate its significance with concrete profilers. On the one hand, we improve accuracy of existing profiling techniques, for example, to quantify the impact of escape analysis on bytecode-level allocation profiling, to analyze object life-times, and to evaluate the impact of method inlining when profiling method invocations. On the other hand, we also illustrate how our technique enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations. Secondly, the lack of profiling support at the intermediate representation (IR) level complicates the understanding of program behavior in the compiled code. This issue cannot be addressed by bytecode instrumentation because it cannot precisely capture the occurrence of IR-level operations. Binary instrumentation is not suited either, as it lacks a mapping from the collected low-level metrics to higher-level operations of the observed program. To fill this gap, we present an easy-to-use event-based framework for profiling operations at the IR level. We integrate the IR profiling framework in the Graal compiler, together with our instrumentation-separation technique. We illustrate our approach with a profiler that tracks the execution of memory barriers within compiled code. In addition, using a deoptimization profiler based on our IR profiling framework, we conduct an empirical study on deoptimization in the Graal compiler. We focus on situations which cause program execution to switch from machine code to the interpreter, and compare application performance using three different deoptimization strategies which influence the amount of extra compilation work done by Graal. Using an adaptive deoptimization strategy, we manage to improve the average start-up performance of benchmarks from the DaCapo, ScalaBench, and Octane suites by avoiding wasted compilation work. We also find that different deoptimization strategies have little impact on steady- state performance

    Achieving High Performance and High Productivity in Next Generational Parallel Programming Languages

    Get PDF
    Processor design has turned toward parallelism and heterogeneity cores to achieve performance and energy efficiency. Developers find high-level languages attractive because they use abstraction to offer productivity and portability over hardware complexities. To achieve performance, some modern implementations of high-level languages use work-stealing scheduling for load balancing of dynamically created tasks. Work-stealing is a promising approach for effectively exploiting software parallelism on parallel hardware. A programmer who uses work-stealing explicitly identifies potential parallelism and the runtime then schedules work, keeping otherwise idle hardware busy while relieving overloaded hardware of its burden. However, work-stealing comes with substantial overheads. These overheads arise as a necessary side effect of the implementation and hamper parallel performance. In addition to runtime-imposed overheads, there is a substantial cognitive load associated with ensuring that parallel code is data-race free. This dissertation explores the overheads associated with achieving high performance parallelism in modern high-level languages. My thesis is that, by exploiting existing underlying mechanisms of managed runtimes; and by extending existing language design, high-level languages will be able to deliver productivity and parallel performance at the levels necessary for widespread uptake. The key contributions of my thesis are: 1) a detailed analysis of the key sources of overhead associated with a work-stealing runtime, namely sequential and dynamic overheads; 2) novel techniques to reduce these overheads that use rich features of managed runtimes such as the yieldpoint mechanism, on-stack replacement, dynamic code-patching, exception handling support, and return barriers; 3) comprehensive analysis of the resulting benefits, which demonstrate that work-stealing overheads can be significantly reduced, leading to substantial performance improvements; and 4) a small set of language extensions that achieve both high performance and high productivity with minimal programmer effort. A managed runtime forms the backbone of any modern implementation of a high-level language. Managed runtimes enjoy the benefits of a long history of research and their implementations are highly optimized. My thesis demonstrates that converging these highly optimized features together with the expressiveness of high-level languages, gives further hope for achieving high performance and high productivity on modern parallel hardwar

    The construction of high-performance virtual machines for dynamic languages

    Get PDF
    Dynamic languages, such as Python and Ruby, have become more widely used over the past decade. Despite this, the standard virtual machines for these languages have disappointing performance. These virtual machines are slow, not because methods for achieving better performance are unknown, but because their implementation is hard. What makes the implementation of high-performance virtual machines difficult is not that they are large pieces of software, but that there are fundamental and complex interdependencies between their components. In order to work together correctly, the interpreter, just-in-time compiler, garbage collector and library must all conform to the same precise low-level protocols. In this dissertation I describe a method for constructing virtual machines for dynamic languages, and explain how to design a virtual machine toolkit by building it around an abstract machine. The design and implementation of such a toolkit, the Glasgow Virtual Machine Toolkit, is described. The Glasgow Virtual Machine Toolkit automatically generates a just-in-time compiler, integrates precise garbage collection into the virtual machine, and automatically manages the complex inter-dependencies between all the virtual machine components. Two different virtual machines have been constructed using the GVMT. One is a minimal implementation of Scheme; which was implemented in under three weeks to demonstrate that toolkits like the GVMT can enable the easy construction of virtual machines. The second, the HotPy VM for Python, is a high-performance virtual machine; it demonstrates that a virtual machine built with a toolkit can be fast and that the use of a toolkit does not overly constrain the high-level design. Evaluation shows that HotPy outperforms the standard Python interpreter, CPython, by a large margin, and has performance on a par with PyPy, the fastest Python VM currently available
    corecore