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Abstract

Processor design has turned toward parallelism and heterogeneity cores to achieve
performance and energy efficiency. Developers find high-level languages attractive
because they use abstraction to offer productivity and portability over hardware com-
plexities. To achieve performance, some modern implementations of high-level lan-
guages use work-stealing scheduling for load balancing of dynamically created tasks.
Work-stealing is a promising approach for effectively exploiting software parallelism
on parallel hardware. A programmer who uses work-stealing explicitly identifies
potential parallelism and the runtime then schedules work, keeping otherwise idle
hardware busy while relieving overloaded hardware of its burden.

However, work-stealing comes with substantial overheads. These overheads arise
as a necessary side effect of the implementation and hamper parallel performance.
In addition to runtime-imposed overheads, there is a substantial cognitive load as-
sociated with ensuring that parallel code is data-race free. This dissertation explores
the overheads associated with achieving high performance parallelism in modern
high-level languages.

My thesis is that, by exploiting existing underlying mechanisms of managed
runtimes; and by extending existing language design, high-level languages will be
able to deliver productivity and parallel performance at the levels necessary for
widespread uptake.

The key contributions of my thesis are: 1) a detailed analysis of the key sources
of overhead associated with a work-stealing runtime, namely sequential and dynamic
overheads; 2) novel techniques to reduce these overheads that use rich features of
managed runtimes such as the yieldpoint mechanism, on-stack replacement, dy-
namic code-patching, exception handling support, and return barriers; 3) compre-
hensive analysis of the resulting benefits, which demonstrate that work-stealing
overheads can be significantly reduced, leading to substantial performance improve-
ments; and 4) a small set of language extensions that achieve both high performance
and high productivity with minimal programmer effort.

A managed runtime forms the backbone of any modern implementation of a
high-level language. Managed runtimes enjoy the benefits of a long history of re-
search and their implementations are highly optimized. My thesis demonstrates
that converging these highly optimized features together with the expressiveness of
high-level languages, gives further hope for achieving high performance and high
productivity on modern parallel hardware.
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Chapter 1

Introduction

This thesis addresses the problem of productively achieving high performance par-
allelism in managed languages.

1.1 Problem Statement

Computing hardware is becoming more and more complex. Today and in the fore-
seeable future, performance will be delivered principally in terms of increased hard-
ware parallelism. This fact is an apparently unavoidable consequence of wire delay
and the breakdown of Dennard scaling [Bohr, 2007], which together have put a stop
to hardware delivering ever faster sequential performance. Single systems now scale
to over one hundred cores.

The software community is facing orthogonal challenges of a similar magnitude
with major changes in the way software is deployed, sold, and interacts with hard-
ware. Software demands for correctness, complexity management, programmer pro-
ductivity, time-to-market, reliability, security, and portability have pushed develop-
ers away from low-level programming languages towards high-level ones. These
languages offer productivity and portability by building upon a managed runtime.

It is essential that these managed languages be able to efficiently exploit high de-
grees of hardware parallelism offered by modern hardware. Unfortunately, software
parallelism is often difficult to identify and expose, which means it is often hard
to realize the performance potential of modern processors. Common programming
models using threads impose significant complexity to organize code into multiple
threads of control and to balance work amongst threads to ensure good utilization of
multiple cores. This shortcoming has helped work-stealing scheduling [Frigo et al.,
1998a; Reinders, 2010] gain popularity. Work-stealing is a framework for allowing
programmers to explicitly expose potential parallelism. A work-stealing scheduler
within the underlying language runtime schedules work exposed by the program-
mer, exploiting idle processors and unburdening those that are overloaded. Work-
stealing has been adopted by several high-level languages, such as X10 [Charles et al.,
2005], Habanero-Java [Cavé et al., 2011] and Chapel [Chamberlain et al., 2007]. It is
also offered as library in some managed languages, such as the Java ForkJoin frame-
work [Lea, 2000] in Java 7 and the Task Parallel Library [Leijen et al., 2009] in the

1



2 Introduction

Microsoft .NET framework [Platt, 2002].
Although the details vary among the various implementations of work-stealing

schedulers, they all incur some form of overhead as a necessary side effect of enabling
dynamic task parallelism. If these overheads are significant, then programmers are
forced to carefully tune their applications to expose the ‘right’ amount of potential
parallelism for maximum performance on the targeted hardware. Failure to expose
enough parallelism results in under-utilization of the cores; exposing too much par-
allelism results in increased overheads and lower overall performance. Over-tuning
of task size can lead to brittle applications that fail to perform well across a range of
hardware systems and may fail to properly exploit future hardware. Therefore, tech-
niques that significantly reduce the overheads of work-stealing schedulers simplify
the programmer’s task by largely eliminating the need to tune task size.

Achieving load balancing using work-stealing is just one dimension to produc-
tively achieving parallelism in managed languages. There is also a substantial cog-
nitive load associated with ensuring parallel code is data-race free. This becomes a
monolithic exercise in a large code-base. The programmer must ensure the correct-
ness in the face of concurrency. Traditionally, managed languages provide object-
level consistency by default for all objects. Recent work on Atomic Sets [Vaziri et al.,
2006] takes a data-centric approach for consistency requirements. In this model, the
programmer simply specifies that sets of object fields share some consistency prop-
erty, without specifying what the property may be. The compiler ensures consistency
by wrapping all race-prone code blocks with synchronized access. However, Vaziri
et al.’s data-centric approach to achieving concurrency correctness is limited to the
conventional thread-based parallelism.

The software community is thus facing the significant challenge of harnessing the
true performance potential of modern hardware with managed languages.

1.2 Scope and Contributions

The aim of my research is to mitigate the two major challenges for productively
exploiting high performance parallelism in managed languages—lowering the over-
heads associated with work-stealing scheduling and naively achieving correct paral-
lelism by extending the design of high-level languages.

To do this, I chose X10 and Java as the representatives of modern high-level lan-
guage and Jikes RVM [Alpern et al., 2000] Java virtual machine as the managed
runtime implementation. To evaluate work-stealing, I chose a language-based ap-
proach which can execute over Jikes RVM. A language based approach for using
work-stealing aims to increase programmer productivity [Charles et al., 2005]. Irre-
spective of these choices, the methodology and insights developed here should be
applicable beyond this specific context.

Sequential overhead of work-stealing A work-stealing implementation can be vi-
ewed in terms of three phases, namely initiation, state management and termi-
nation. This thesis identifies that each of these phases contribute significantly
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to the sequential overheads—the increase in single-core execution time due to
transformations that expose parallelism. We introduce two efficient designs
which significantly reduce these overheads. The key to our approach is to ex-
ploit mechanisms already available within managed runtimes, namely: a) the
yieldpoint mechanism; b) on-stack-replacement; c) dynamic code-patching; and
d) support for efficient exception delivery. By combining these approaches, we
lower the sequential overheads from 195% to 40%.

Dynamic overhead of work-stealing Once parallelism is introduced, additional dy-
namic overheads emerge in a work-stealing runtime. This overhead is associ-
ated with stealing amongst the threads and is most evident when parallelism is
greatest. As core counts rise, dynamic overheads are an increasingly important
factor in the performance of work-stealing runtimes. This thesis evaluates the
dynamic overhead associated with work-stealing and proposes a new design
to lower the cost of stealing. To do this, we apply the same strategy that we
used successfully to reduce sequential overheads—reuse existing mechanisms
in managed runtimes. Our design exploits a return barrier mechanism to re-
duce the dynamic overhead of work-stealing by almost 50%.

Performance and Productivity via Data-Centric Atomicity and Work-Stealing High-
level languages should provide an easy to use interface for achieving parallelism-
–both in terms of correctness and performance. A parallel program is correct
when program execution is free from data races. This thesis provides a small
set of extensions to Java for achieving race-free concurrency. The approach is
to identify the principal benefits of work-stealing and data-centric concurrency
control [Vaziri et al., 2006; Dolby et al., 2012] respectively, and then bring those
together into a single, simple framework within Java that combines data-centric
concurrency control with a high performance work-stealing implementation.
Using our Java extensions, we are able to substantially improve the perfor-
mance of a number of realistic Java workloads.

In summary, this thesis addresses the goal of hiding the complexities associated
with effectively taming the large-scale parallelism in modern hardware via managed
languages. We show the potential of exploiting the rich features of managed runtimes
in improving the efficiency of work-stealing implementations.

1.3 Thesis Outline

The body of this thesis is structured around the three key contributions outlined
above.

Chapter 2 provides an overview of parallel programming models and managed
runtime environments. It provides background on different work-stealing implemen-
tations used in this thesis. It also presents key features of managed runtimes which
are extensively used in subsequent chapters. Chapter 3 discusses our experimental
methodology.



4 Introduction

Chapters 4, 5 and 6 comprise the main body of the thesis, covering the three key
contributions. Chapter 4 and Chapter 5 identify sequential and dynamic overheads
respectively in work-stealing implementations. They use features of managed run-
time environments to develop novel techniques for addressing these overheads. Then
Chapter 6 designs and implements easy to use annotations for achieving data-race
free parallelism in Java.

Finally Chapter 7 concludes the thesis, describing how my contributions have
identified, quantified, and addressed the challenges of achieving high performance
parallelism in modern managed languages. It further identifies key future directions
for research.



Chapter 2

Background

This thesis takes a well-known idea, work-stealing to exploit parallel hardware, and
asks why it doesn’t work as well as it should with managed languages. This chapter
provides relevant background information on parallel programming models and key
features of managed runtimes.

The chapter starts with a brief discussion on parallel programming in Section 2.1
and parallel programming models in Section 2.2. Section 2.3 provides an implementa-
tion-oriented overview of work-stealing scheduling. Section 2.4 discusses managed
runtime environments. The chapter concludes by introducing Jikes RVM and fea-
tures relevant to this thesis.

2.1 Parallel Programming

Parallel programming is the technique of using two or more computing elements to
solve a single problem. Parallel programming is used heavily in various areas in-
cluding weather forecasting, astronomy, oceanographics, and data mining. Parallel
programming dates back to the late 1950’s with the advent of shared memory mul-
tiprocessors. The scale of parallel systems grew until massively parallel processors
came to existence. Starting in the late 1980’s, cluster computing came into picture
and became the dominant architecture for parallel programming. However, with
the advent of multicore processors from 2001 [IBM, 2002], parallel programming is
now no longer a niche area and is becoming mainstream. Today, dual and quad
core processors are at the heart of most modern computing devices. The need to
achieve more and more performance without increasing the power consumption and
heat dissipation, promises that today’s multicore processors will be replaced with
many-core processors [Jeffers, 2013; Intel Corporation, 2013].

2.2 Parallel Programming Models

Parallel programming models are concerned with different ways of expressing a par-
allel program. The ultimate goal is to parallelize a sequential code in such way that
is simple and achieves the maximum performance when executed. To serve this goal
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of productivity and performance, there has been a plethora of research. Accordingly,
there are various ways to classify different parallel programming models existing to-
day. For this thesis, we classify it in three broad categories: address space model, task
parallelism model and concurrent object-oriented model.

2.2.1 The Address Space Model

The address space model defines how data are referred to by the parallel program.
The two dominant models are the shared memory and distributed memory models.
When using shared memory, a computation is generally divided into threads, which
uniformly share the memory. The sharing of a single logical memory may be imple-
mented in hardware [Owicki and Agarwal, 1989], or in software [Keleher et al., 1994;
Carter et al., 1991]. Contrarily, with distributed memory, the computation is generally
divided among processes and each of the processes execute on a separate processor
having its own private address space. To communicate, these processes generally
send messages over a high speed interconnect. OpenMP [Dagum and Menon, 1998]
is a popular standard for shared memory parallel programs, whereas Message Pass-
ing Interface (MPI) [Snir et al., 1995] is the de-facto standard for programming large
distributed memory system. The cost of maintaining coherence (whether in hard-
ware or software) means that shared memory does not scale as well as distributed
memory.

The Partitioned Global Address Space (PGAS) programming model [PGAS, 2011]
has recently gained popularity. It strikes a balance between shared and distributed
memory models. It provides ease of programming due to its global address memory
model and performance due to locality awareness. Here, the threads are mapped
to processes and threads, as supported by the language runtime. Languages in this
category include, Co-Array Fortran [Numrich and Reid, 1998], Titanium [Yelick et al.,
1998] and UPC [El-Ghazawi and Smith, 2006].

Despite the benefits, PGAS model suffers two drawbacks. First, it implicitly as-
sumes that all processes run on similar hardware and second, it does not support
dynamically spawning multiple activities [Saraswat et al., 2010]. The Asynchronous
Partitioned Global Address Space (APGAS) programming model [Saraswat et al., 2010]
addresses these drawbacks and can be thought of as being derived from both the
MPI and OpenMP models by extending the PGAS model with place and async
(Section 2.2.1.1). Languages that follow this model include, X10 [Charles et al.,
2005], Chapel [Chamberlain et al., 2007], Fortress [Allen et al., 2005] and Habanero-
Java [Cavé et al., 2011].

We will now briefly discuss X10 and Habanero-Java, which are used in this thesis.

2.2.1.1 X10

X10 is a strongly-typed, imperative, class-based, object-oriented programming lan-
guage designed for high performance computing. The sequential core of X10 is very
similar to the Java and C++ programming languages [Saraswat et al., 2013]. X10
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comes in two flavors: a) Managed X10, built on a Java backend; and b) Native X10,
built on a C++ backend.

X10 includes specific features to support parallel and distributed programming.
In X10 locality is explicitly represented in the form of places. A place can be thought
of as a virtual shared memory multiprocessor, where a computational unit has a
finite number of threads sharing a bounded amount of shared memory uniformly.
Asynchronous activities address the requirements of both thread-based parallelism
and asynchronous data transfers in X10. Every X10 activity runs inside a place.
While an activity executes at the same place throughout its lifetime, it may dynami-
cally spawn activities in remote places. A new activity, S, is created by the statement
async S. To synchronize activities, X10 provides the statement finish S. Control
will not return from within a finish until all activities spawned within the scope of the
finish have terminated. For achieving concurrency, X10 provides language constructs
such as when and atomic. This thesis uses only two of the X10 language constructs
for achieving work-stealing task parallelism in Managed X10 (async and finish).
Sample code written in X10 using finish and async is shown in Figure 2.3(a) (ex-
plained in detail in Section 2.3.4). X10 restricts the use of a local mutable variables
inside async statements. A mutable variable (var) can only be assigned to or read
from within the async it was declared in. To mitigate this restriction, X10 permits the
asynchronous initialization of final variables (val). A final variable may be initialized
in a child async of the declaring async. A definite assignment analysis guarantees
statically that only one such initialization will be executed on any code path, so there
will never be two conflicting writes to the same variable.

2.2.1.2 Habanero-Java

The Habanero-Java language was developed at Rice University as an extension to
the original Java-based definition of the X10 language. Habanero-Java can also be
thought of an extension of Java for the APGAS programming model. Parallel pro-
gramming constructs in Habanero-Java are similar to that in X10 (place, async and
finish). To achieve concurrency, Habanero-Java allows Java concurrent locks [Lea,
2004] and the isolated construct (similar to atomic in X10). As with X10, for
Habanero-Java, this thesis only uses finish and async constructs. Figure 2.3(b)
shows sample code written in Habanero-Java, explained in detail in Section 2.3.5..

2.2.2 Task Parallelism

A programmer using task parallelism decomposes a sequential computation into
several small sub-computations, called as tasks. These tasks are created such that
they can be executed in parallel. Scheduling parallel tasks is not easy, so the runtime
takes the burden of scheduling the tasks. The runtime generally creates a fixed
size thread pool, which can execute each of the tasks from start to finish. Once the
execution of tasks is complete, the results are joined together to complete the actual
computation.
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Two commonly used task parallelism models are work-sharing and work-stealing,
which are explained below.

2.2.2.1 Work-Sharing

Work-sharing task parallelism relies on a centralized shared task queue. Surplus
tasks are continuously added to this queue by the runtime. Whenever a worker
thread is idle, it will poll this queue and retrieve a task to execute locally. Due to
this multi-threaded environment, any addition or removal of tasks to or from the
queue always needs to be synchronized. However, as the thread pool size increases,
this synchronization can become a scalability bottleneck. Work-stealing addresses
this limitation and improves the scalability. OpenMP supports a work-sharing run-
time, where the programmer declares the parallel regions in his code using compiler
directives (pragmas).

2.2.2.2 Work-Stealing

Work-stealing is a very efficient strategy for distributing work in a parallel system.
The ideas behind work-stealing have a long history which includes lazy task cre-
ation [Mohr et al., 1990] and the MIT Cilk project [Frigo et al., 1998b], which offered
both a theoretical and practical framework. In this model, the runtime maintains a
pool of worker threads, each of which maintains a local set of tasks. When local work
runs out, the worker becomes a thief and seeks out a victim thread from which to
steal work.

The elements of a work-stealing runtime are often characterized in terms of the
following aspects of the execution of a task-parallel program:

Fork A fork describes the creation of new, potentially parallel, work by a worker
thread. The runtime makes new work items available to other worker threads.

Steal A steal occurs when a thief takes work from a victim. The runtime provides
the thief with the execution context of the stolen work, including the execution entry
point and sufficient program state for execution to proceed. The runtime updates the
victim to ensure work is never executed twice.

Join A join is a point in execution where a worker waits for completion of a task.
The runtime implements the synchronization semantics and ensures that the state of
the program reflects the contribution of all the workers.

Work-stealing implementations include: Cilk [Frigo et al., 1998a], Java ForkJoin [Lea,
2000], Habanero-Java, Microsoft’s Task Parallel Library [Leijen et al., 2009], Intel
Threading Building Blocks [Reinders, 2007], X10 and Chapel.
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1 {
2 int x = a.foo();
3 b.bar();
4 c.baz(x);
5 }

(a) C++

1 conc {
2 int x = a.foo();
3 b.bar();
4 c.baz(x);
5 }

(b) ICC++

Figure 2.1: C++ and ICC++ variants of the same code. The conc annotation identifies poten-
tial concurrency.

2.2.3 The Concurrent Object-oriented Model

The concurrent object-oriented model goes back at least to Actors [Agha, 1986]. In
this model, synchronization is managed at the level of each object, with each object
handling messages sent to it in some sequential order. The original model made
state changes atomic with a single become operation; subsequent languages such
as ABCL [Yonezawa, 1990] and ICC++ [Chien, 1996] present a more conventional
imperative semantics in which synchronization is still enforced at the object level,
but with some form of lock.

The actor model naturally expresses concurrency in terms of concurrent message
sends to objects, and languages like ICC++ carry on this style. A key semantic of
languages like ICC++ is that concurrency is elective in the sense that concurrency
annotations indicate potential concurrency but the runtime system is left with flexi-
bility to determine when to actually create parallel tasks. The other key design goal
was to make expressing concurrency as simple as possible. With ICC++, it takes the
form of the conc annotation as shown in Figure 2.1, where a standard C++ block
(Figure 2.1(a)) is shown in contrast to a conc block (Figure 2.1(b)).

In Figure 2.1, the semantics of the conc block constrains x = a.foo() to execute
before c.baz(x) due to the data dependence but otherwise allows all work in the
block to execute concurrently. These semantics naturally generalize to support con-
current loops with the same conc annotation applied to the loop. Note the syntactic
minimality of the conc annotation with respect to the sequential code in Figure 2.1(a).

In this model, there is an implicit synchronization at the end of the block, essen-
tially a join with the tasks inside the conc block.
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1 class Counter {
2 atomicset a;
3 atomic(a) int value;
4 int get() { return value; }
5 void dec() { value--; }
6 void inc() { value++; }
7 }

(a) Example of atomicset and atomic annotations in AJ.

1 class PairCounter {
2 atomicset b;
3 atomic(b) int diff;
4 Counter|a=this.b| low = new Counter|a=this.b|();
5 Counter|a=this.b| high = new Counter|a=this.b|();
6 void incHigh() {
7 high.inc();
8 diff = high.get()-low.get();
9 }

10 ...
11 }

(b) Example of atomicset aliasing in AJ.

Figure 2.2: Data-centric concurrency control in AJ language from Dolby et al. [2012].

2.2.3.1 Atomic Sets for Java (AJ)

Traditionally, concurrent object-oriented languages provide object-level consistency
by default for all objects. More recently, the Atomic Sets model [Vaziri et al., 2006;
Dolby et al., 2012] extended Java with explicit data-centric synchronization in which
the programmer specifies that sets of object fields share some consistency property,
without specifying what the property may be. This differs from traditional object-
oriented models in two key ways: the first is that all consistency is specified by the
programmer, and unannotated fields have no synchronization. The second is that the
idiom naturally encompasses specifying both subsets of an object’s fields and sets of
fields that span multiple objects.

Figure 2.2 illustrates the Atomic Sets constructs as described in [Dolby et al.,
2012]. Figure 2.2(a) is a simple example in which class Counter declares a sin-
gle Atomic Set, a, with the atomicset(a) declaration and that the field value is
in a with the atomic(a) declaration. Figure 2.2(b) is a more complex example in
which PairCounter declares an Atomic Set, b, containing diff. It also includes
two Counter objects, low, and high; the |a=this.b| declarations indicate that the
Atomic Set b is aliased to Atomic Set a, i.e. both the objects have the same Atomic
Set. This is how Atomic Sets can be extended to encompass the state of multiple
objects.



§2.3 An Implementation-Oriented Overview of Work-Stealing 11

2.3 An Implementation-Oriented Overview of Work-Stealing

The focus of this thesis is on the implementation of work-stealing scheduling. This
section discusses a work-stealing scheduler from an implementation point of view.
A work-stealing implementation can be thought of as following basic phases, each of
which require special support from the runtime or library:

1. Initiation. (Allow tasks to be created and stolen atomically).

2. State management. (Provide sufficient context for the thief to be able to execute
stolen execution, and the ability to return results).

3. Termination. (Join tasks and ensure correct termination).

We now explain each of these and what they require of the runtime, first generally,
then concretely in terms of X10, Habanero-Java and Java ForkJoin implementations.

To help illustrate work-stealing, we use a running example of the recursive calcu-
lation of Fibonacci (Fib) numbers. Figure 2.3 shows X10, Habanero-Java and ForkJoin
code for computing Fib numbers. Figure 2.4 shows the graph of the recursive calls
made when executing fib(4) in Figure 2.3. Calls to the non-recursive base case
(n < 2) are shown as rectangles.

2.3.1 Initiation

Initiation is concerned with ensuring that: 1) tasks are available to be stolen whenever
appropriate, and 2) each task is only executed once. A task in this thesis is similar to
frame in the Cilk [Frigo et al., 1998b] implementation. An idle thread may make itself
useful by stealing work, so becoming a thief. This begins with the thief identifying
a victim from which to steal. For example, the thief may randomly select a potential
victim and if they appear to have work available, attempt a steal.

Tasks are typically managed by each worker using a double ended queue (deque),
one deque per worker, as illustrated in Figure 2.5. Each worker pushes tasks onto the
tail of its deque using an unsynchronized store operation. Both the worker and any
potential thieves then use atomic compare-and-swap (CAS) instructions to remove
tasks from the worker’s deque, with the worker acquiring from the tail (newest), and
thieves attempting to acquire from the head (oldest). Tasks are thus made available
and only stolen once, with the deque discipline minimizing contention and increas-
ing the probability that long-running tasks are stolen.

2.3.2 State Management

When a task is stolen, the thief must: 1) acquire all state required to execute that
task, and 2) provide an entrypoint to begin execution of the task, and 3) be able
to return or combine return state with other tasks. Work-stealing implementations
typically meet requirements 1) and 3) through the use of state objects that capture the
required information about the task, and provide a location for data to be stored and
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1 def fib(n:Int):Int {
2 if (n < 2) return 1;
3

4 val a:Int;
5 val b:Int;
6

7 finish {
8 async a = fib(n-1);
9 b = fib(n-2);

10 }
11

12 return a + b;
13 }

(a) Fib in X10.

1 static class IntegerBox {
2 public int v;
3 }
4

5 static void fib (int n, IntegerBox res) {
6 if (n < 2) return 1;
7

8 final IntegerBox x = new IntegerBox();
9 final IntegerBox y = new IntegerBox();

10

11 finish {
12 async fib (n-1,x);
13 fib (n-2,y);
14 }
15

16 res.v = x.v + y.v;
17 }

(b) Fib in Habanero-Java.

1 Integer compute() {
2 if (n < 2) return 1;
3

4 Fib f1 = new Fib(n - 1);
5 Fib f2 = new Fib(n - 2);
6

7 f1.fork();
8 int a = f2.compute();
9 int b = f1.join();

10

11 return a + b;
12 }

(c) Fib in Java ForkJoin.

Figure 2.3: Using three different work-stealing implementations to write the Fib micro-
benchmark.
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fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

Figure 2.4: Execution graph for fib(4).

shared across multiple tasks. Requirement 2) is handled differently depending on
the execution model, and is discussed in more detail below for specific systems.

2.3.3 Termination

In general, the continued execution of a worker is dependent on completion of some
set of tasks, each of which may be executed locally, or by a thief. Such dependencies
are made explicit by the programmer and must be respected by the implementation
of the work-stealing runtime. The work-stealing runtime must: 1) handle the general
case where execution waits, dependent on completion of stolen tasks executing in
parallel. However, it is also critical for the scheduler to: 2) efficiently handle the
common case where no tasks in a particular context are stolen, and therefore are all
executed in sequence by a single worker. Furthermore, work-stealing schedulers also
aim to: 3) maintain a particular level of parallelism. To ensure that this occurs, when
a worker is waiting on completion of a stolen task, instead of suspending the worker,
the scheduler may attempt to have that worker find and execute another task.

2.3.4 Work-Stealing in X10

X10’s work-stealing scheduler is implemented by a combination of an X10-source-to-
X10-source program transformation and a runtime library. The program transforma-
tion synthesizes code artifacts (continuation methods and frame classes) required by
the runtime scheduler. X10 meets the key work-stealing requirements as follows:

Initiation. X10’s work-stealing workers use deques as described above. Like Cilk,
X10 adopts a work-first scheduling policy: when a worker encounters an async state-
ment, it pushes the continuation of the current task to its deque and proceeds with
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fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

(a) Execution state

fib(4)

fib(3)

(b) Deque

Figure 2.5: State during evaluation of fib(4). Execution is at the first fib(0) task. Dashed
arrows indicate work to be done. Dotted boxes indicate completed work.
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fib(4)*

fib(3)

fib(2) fib(1)

fib(1) fib(0)

(a) Victim

fib(4)*

fib(2)

fib(1) fib(0)

(b) Thief

Figure 2.6: State for victim and thief after stealing the continuation of fib(4).



16 Background

the execution of the async body. For instance, a worker running fib(4) first exe-
cutes fib(3) (Figure 2.3(a) line 8), making the fib(2) work item (line 9) available
for others to steal. When done with async fib(3), the worker attempts to pop the
tail deque item and if non-null, will execute the continuation (fib(2), line 9).

State management. Each thread’s stack is private, so in order to permit multiple
workers to concurrently access and update the program state, the X10 compiler en-
capsulates sharable state into frame objects. Consequently, methods are rewritten
to operate on fields of frame objects instead of local variables. Frame objects are
linked together into trees that shadow the tree structure of the task graph. In other
words, Figure 2.4 represents the tree of frame objects assembled during the execu-
tion of fib(4). When X10 is compiled to Java, frame objects are created on the heap
to ensure that they are accessible to both the worker and potential thieves. In the
C++ implementation however, an optimization is performed that sees frame objects
stack-allocated by default, and only lazily migrated to the heap when a steal oc-
curs [Tardieu et al., 2012]. The managed X10 compiler analyzes the source code and
indexes all of the points immediately after async statements (‘reentry’ points). It
then generates a second copy of the source code in which methods take a pc (pro-
gram counter) as an extra argument. The control flow of the generated methods is
altered so as to permit starting execution at the specified pc.

Termination. If a worker proceeds from the beginning of a finish block to its end
without detecting a steal, then that worker has itself completed every task in the
finish context and may return. Termination is more complex when a steal occurs.
When a thief steals a work item within the scope of a finish, the scheduler begins
maintaining an atomic count of the active tasks within that finish body. When a
worker completes a task, or execution reaches the end of the finish body, the count
is atomically reduced and checked. If the count is non-zero, the worker gives up
and searches for other work to process. When the count is zero, then the finish is
complete and the worker starts executing the continuation of the finish statement.

2.3.5 Work-Stealing in Habanero-Java

Habanero-Java (Section 2.2.1.2) evolved from early versions of X10 and the finish-
async programming in Habanero-Java is very similar to X10. A broader description
of finish-async work-stealing in Habanero-Java appears in [Guo, 2010]. Unlike X10,
Habanero-Java offers three different work-stealing policies: a) a work-first policy; b)
a help-first policy [Guo et al., 2009]; and c) an adaptive policy [Guo et al., 2010].

The implementation of Fib for Habanero-Java is shown Figure 2.3(b).

Initiation. The work-first version in Habanero-Java works very much like X10 (Sec-
tion 2.3.4). In all the three work-stealing policies, each worker maintains a local
deque similar to the X10 work-stealing implementation. In the help-first version,
the async body is pushed to the deque and the continuation is executed first. If this
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policy is used, the worker running fib(4) will push fib(3) (Figure 2.3(b), line 12)
on the deque and first executes fib(2) (line 13). In the adaptive policy, the runtime
dynamically switches between work-first and help-first policies.

State Management. In order to permit multiple workers to concurrently access and
update the program state, Habanero-Java maintains heap allocated frame objects sim-
ilar to X10. For the fib function (Figure 2.3(b)), slow and fast clone versions of the
method generated by the work-stealing compiler [Raman, 2009]. To mimic val in
X10 (Figure 2.3(a), lines 4 and 5), Habanero-Java requires heap allocation of objects
to capture results (Figure 2.3(b), lines 8 and 9).

Termination. The finish guarded termination in Habanero-Java is very similar to
X10.

2.3.6 Work-Stealing in Java ForkJoin

The Java ForkJoin framework [Lea, 2000] is an implementation of the interface
java.util.concurrent.ExecutorService that takes advantage of work-stealing
scheduling in Java 7 [Oracle Corporation, 2013]. It was originally implemented by
Doug Lea [Lea, 1999]. The general design of the ForkJoin framework is a variant
of the work-stealing framework devised by Cilk and is explained in detail in [Lea,
2000]. Here we briefly discuss its key components. The ForkJoin implementation of
Fib is shown in Figure 2.3(c).

Initiation. To allow fib(n-1) to be stolen, the user explicitly heap-allocates a Fib
object (Figure 2.3(c), line 4) and calls fork() on this object (line 7). Like X10, ev-
ery worker thread maintains a deque. fork pushes a task to the deque, making it
available to be stolen.

State Management. In ForkJoin, tasks are represented as task objects. These ob-
jects include: methods for scheduling and synchronizing with the task, any state
associated with the task, and an explicit entrypoint for executing the task.

Termination. When a worker thread encounters a join operation, it processes other
tasks, if available, until the subject of the join has been completed (either by the
worker or by a thief). When a worker thread has no work and fails to steal any from
others, it backs off (via yield, sleep, and/or priority adjustment) and tries again
later unless all workers are known to be similarly idle, in which case they all block
until another task is invoked from the top-level.



18 Background

2.4 Managed Runtime Environments

This section provides the background on the managed runtime environments and
features that are pertinent to this thesis.

2.4.1 The Quest for Productivity

Processor vendors can no longer deliver performance by increasing single core fre-
quency. Instead, they have started manufacturing chips with with multiple processor
cores and these are now mainstream. Further, to reduce power, processor architects
are now turning to customization and heterogeneity [Borkar and Chien, 2011; Cao
et al., 2012; Balakrishnan et al., 2005; ARM Corporation, 2011; Morad et al., 2006;
Venkatesh et al., 2010; Suleman et al., 2009; Li et al., 2010; Koufaty et al., 2010]. Tam-
ing this new generation of processors is a very daunting task and is a first order
concern for software deployment. Managed languages aim to enhance the program-
mer’s productivity even in the face of complex hardware. They provide abstraction
over the hardware by using managed runtime environments, which deliver portabil-
ity, reliability, security and faster time to market.

2.4.2 Managed Runtime Features

The key features of modern managed runtimes were nailed down by Smalltalk-
80 [Deutsch and Schiffman, 1984] and Self-91 [Chambers and Ungar, 1991] systems.
Managed runtimes came into their own with the advent of the Java programming
language [Gosling et al., 1996] and has been a very active research area since. Re-
cent examples of widely used virtual machine implementations include Java Virtual
Machine [Oracle, 2013] for Java; Common Language Runtime for Microsoft’s .NET
framework [Box and Pattison, 2002]; Parrot Virtual Machine [Wall and Schwartz,
1991] for dynamic programming languages like Perl; Dalvik virtual machine [Born-
stein, 2008] as a part of Android operating system [Rogers et al., 2009]; PyPy [Rigo
and Pedroni, 2006] for Python [Martelli, 2003]; YARV for Ruby [Sasada, 2005]; etc.

Managed runtimes are widely used due to their rich features. Some of the key
features, which are exploited in this thesis are as discussed below.

2.4.2.1 The Yieldpoint Mechanism

A yieldpoint is a mechanism for supporting quasi-preemptive thread scheduling
[Arnold et al., 2000]. Yieldpoints are also the program locations where it is safe to run
an exact garbage collector. Apart from garbage collection, the VM uses yieldpoints
to implement services such as adaptive optimization. Yieldpoints are generated by
the compiler as program points where a running thread checks a dedicated bit in a
machine control register to determine whether it should yield. The compiler gener-
ates precise stack maps at each yieldpoint. If the bit is set, the yieldpoint is taken and
some action is performed. If the bit is not set, no action is taken and the next instruc-
tion after the yieldpoint is executed. In Jikes RVM virtual machine (Section 2.4.3),
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yieldpoints are inserted in method prologues and on loop back edges [Arnold et al.,
2000].

2.4.2.2 Dynamic Compilation

Dynamic compilation, also known as Just-In-time compilation (JIT) allows dynami-
cally loaded code to be compiled. The alternatives are to interpret the code, or to
prohibit dynamic loading. Dynamic compilation is also used to implement adaptive,
or feedback directed optimization [Arnold et al., 2002]. Software systems have been
using JIT compilation techniques since the 1960s [McCarthy, 1960]. Aycock [2003]
describes the history of JIT compilers in detail. Modern virtual machines have very
sophisticated JIT compilers. Generally code is first interpreted, or compiled with a
baseline non-optimizing compiler. When the virtual machine notices that code is ex-
ecuted frequently (i.e. hot), the JIT compiler is invoked to recompile the code with
higher optimization levels.

2.4.2.3 On-Stack Replacement

There are many adaptive strategies employed to selectively compile and recompile
hot methods [Arnold et al., 2000, 2002; Paleczny et al., 2001; Suganuma et al., 2001].
Transition to the newly compiled version of a method can be done by modifying
dispatch structures, so that future method invocations branch to the new compiled
version. However, the transition for a method that is currently executing on some
thread’s stack presents a formidable engineering challenge. One such example is in-
lining of methods inside a long running loop. On-stack replacement (OSR) is a mech-
anism employed by virtual machines for replacing the currently executing method
and re-initiating the execution in a new version. This mechanism was first deviced by
Self programming language [Hölzle and Ungar, 1994; Chambers and Ungar, 1991].
OSR is also exploited to provide enhancements such as debugging optimized code
via de-optimization [Hölzle et al., 1992], deferred compilation to improve compiler
speed and/or code quality [Chambers, 1992] and optimization and code generation
based on speculative program invariants [Paleczny et al., 2001]. In a nutshell, OSR
mechanism works as follows [Fink and Qian, 2003]: 1) extract compiler-independent
state (program variables, etc.) from a suspended thread; 2) generate new code for
the suspended method; and 3) transfer execution in the suspended thread to the new
compiled code. OSR is used in several modern virtual machines such as Jikes RVM,
HotSpot JVM [Paleczny et al., 2001] and V8 JavaScript engine [Google, 2013].

2.4.2.4 Dynamic Code Patching

Dynamic code patching refers to the modification of one instruction to transform it
into another in the presence of multiple execution threads [Sundaresan et al., 2006].
The oldest implementation of Dynamic code patching dates at least as far back as the
SELF language which used it for supporting incremental recompilation [Chambers
et al., 1989]. In modern JVMs it is extensively used to perform JIT compilation, such
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as: class resolution; interface method dispatch; method recompilation support; spec-
ulative optimization support; and method dispatch in case of static and devirtualized
calls [Sundaresan et al., 2006; Ishizaki et al., 2000; Cierniak et al., 2000]. Dynamic code
patching is also used to implement return barriers (Section 2.4.2.6).

To understand dynamic code patching, we will refer to the case of dynamic class
resolution. According to JVM specifications [Lindholm and Yellin, 1999], class res-
olution should be performed lazily. When a method is compiled for the first time,
it might contain references to unresolved classes on paths that have not executed
prior to this compilation. During the execution, once the unresolved references are
resolved, code patching is used to replace the old instructions to point to the resolved
references.

2.4.2.5 Exception Delivery Mechanism

An exception is an event which can occur during the execution of the program and
disrupts the program’s control flow. Handlers are subroutines where the exceptions
are resolved and they may allow resuming the execution from the original loca-
tion of the exception. Exception handling is an old technique [Goodenough, 1975].
Many modern programming languages like C++ [Schilling, 1998], Java [Gupta et al.,
2000] and C# [Petzold, 2010] support exception handling mechanisms. There are two
commonly used techniques to implement exception handling: stack unwinding and
stack cutting [Ramsey and Peyton Jones, 2000]. When an exception is thrown, stack
unwinding will unwind the stack frames to search for the corresponding exception
handler. On the other hand, stack cutting will search a list of registered exception
handlers. Languages like Java and C++ use try and catch blocks for exception han-
dling. When an exception is thrown, the key steps of Handling the exception are as
follows: 1) mapping program context (i.e. program counter), through which an ex-
ception is thrown to the corresponding try block; 2) filtering the exception as there
can be more than one handler (catch block) for the try block; and 3) searching for
the try blocks of caller methods if the correct catch block is not found.

2.4.2.6 Return Barriers

The return barrier mechanism was first used by Hölzle et al. [1992] in the context
of debugging optimized code, to allow lazy dynamic deoptimization of the stack. A
return barrier, like a write barrier, allows the runtime to intercept a common event
(using dynamic code patching), and (conditionally) interpose special semantics. In
the case of a write barrier, a runtime typically interposes itself on pointer field up-
dates, conditionally remembering updates of pointers in certain conditions. On the
other hand, a return barrier interposes special semantics upon the return from a
method (which corresponds to the popping of a stack frame). One use of return
barrier [Yuasa et al., 2002] is to consistently divide the scanning of the stack (at the
begining of a “single” GC cycle) into multiple steps each of which scans a fixed, small
number of stack frames in order to reduce the GC pause time.
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2.4.3 Jikes RVM

Jikes RVM is an open source Java virtual machine (JVM), originally known as Jalapeño,
and developed at IBM research [Alpern et al., 2000]. It is a high performance JVM,
which also provides a flexible open testbed to prototype virtual machine technologies
and experiment with a large variety of design alternatives. Some of the key features
of Jikes RVM, which influenced our decision to use it in this thesis is are described
below.

2.4.3.1 A Metacircular JVM

Most JVMs implement their runtime services in ‘native code’ i.e. a non-Java lan-
guage such as C, C++ or assembler. One of the unique characteristics of Jikes RVM
is that it is a metacircular JVM — a Java VM written in Java. Other metacircular
VM implementations include: Maxine [Wimmer et al., 2013], Squawk [Simon and
Cifuentes, 2005], PyPy [Rigo and Pedroni, 2006] and Klein [Ungar et al., 2005]. There
are several benefits of writing a JVM in Java. A number of complex processes per-
formed by a JVM can be better expressed in Java, which offers features such as
type safety, garbage collection and exception handling. Metacircularity also removes
the impedance mismatch between application and runtime code, which can pro-
vide a significant performance advantages [Alpern et al., 2000]. When the language
impedance mismatch is removed, the frequently executed runtime services (such as
object allocations) can be inlined and optimized into user code, producing a better
optimized code.

2.4.3.2 Support for Low-level Programming

Implementing a VM in a high level language like Java has several benefits but it can
create difficulties when there is a need to do low-level programming. Examples of
low-level programming include access to memory layout, machine register usage, or
the ability to access hardware-specific features such as special machine instructions.
Fortunately, Jikes RVM has a rich framework, org.vmmagic, that allows high-level
low-level programming in Java [Frampton et al., 2009]. It is able to do this by pro-
viding type-system extensions and semantic extensions. Type-system extension is
achieved by using two mechanisms: a) the concept of raw storage (@RawStorage
annotation) which allows user to associate a type with a raw chunk of backing
data of specified size (byte or architectural width word); and b) unboxed types
(@Unboxed annotation), which are treated like Java primitive types (rather than an
object) and hence allocated only on the stack. Semantic extension is also provided in
two ways: a) through intrinsic functions, allowing special semantics in Java, for exam-
ple @Intrinsic(LOAD_BYTE) for loading memory from an address; and b) through
semantic regimes, which allow certain static scopes to operate under a regime of al-
tered semantics such as unchecked memory operations, turning on and off bounds
check etc.
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2.4.3.3 Highly Optimized Compilers

Jikes RVM follows a compile-only approach. In the first pass, all the methods are
compiled by a fast but non-optimizing compiler, called the baseline compiler. The
baseline compiler produces code slightly better than the interpreted code. Next is the
JIT compiler (Section 2.4.2.2), which employees an Adaptive Optimization System
(AOS) to decide when to recompile a method and to what optimization level [Arnold
et al., 2000]. The AOS drives recompilation decisions based on the estimated cost and
benefit of compiling each method. The AOS in Jikes RVM uses the OSR mechanism
for transferring execution from one version of compiled code to another. The OSR
is high performance and has a relatively simple implementation in Jikes RVM [Fink
and Qian, 2003]. The implementation of OSR helped the evolution of novel ideas
discussed in further chapters of this thesis.

2.4.3.4 Light-weight Locking Mechanism

High-level languages like Java allow objects to serve as a lock at any time (using
the synchronized statement). This can prove disadvantageous to the runtime, since
extra space must be allocated by the runtime to hold the lock for each object. The
other issue is the overhead of lock and unlock operations which require expensive
compare-and-swap operations, especially if they are very frequent. Several tech-
niques have been devised in this area to improve locking performance [Bacon et al.,
1998; Onodera and Kawachiya, 1999; Kawachiya et al., 2002]. Thin locks is one such
technique, where the space overhead of the lock is reduced by using bits in the object
header as a lock. Biased locking is another technique, which avoids the need for CAS
operations by ‘biasing’ the lock to an ‘owner’ thread. Jikes RVM implements thin
locks and a refinement of bias locks called as Fine-Grain Adaptive Bias Locks (FA-
BLE) [Pizlo et al., 2011]. This adaptive technique can automatically decide at runtime
whether to invoke bias or thin mode locking.

Locks play an integral role in the implementation of any scheduling techniques.
The light-weight locking implementation in Jikes RVM supports a low overhead im-
plementation of novel ideas developed in this thesis.

2.5 Summary

This chapter introduces key background material. We provide an introduction to
work-stealing task parallelism, together with a detailed implementation oriented
overview of X10, Habanero-Java and Java ForkJoin. We further discussed the con-
current object-oriented programming model, which provides necessary background
for Chapter 6. This chapter also discusses managed runtime environments and Jikes
RVM. This discussion covers managed runtime features that are extensively used in
the following chapters.

Before we move to the heart of this thesis and its primary contributions, we first
give an overview of our experimental methodology, in the next chapter.



Chapter 3

Experimental Methodology

This chapter describes the benchmarks, Java Virtual Machines, compilers, work-
stealing implementations, operating system, hardware, and performance measure-
ment methodologies used in this thesis. To maintain coherency in experimental
methodology across different chapters, a common set of benchmarks, workloads,
measurements and machine is especially chosen for this thesis. For this reason, this
methodology differs slightly from that used in the published work [Kumar et al.,
2012, 2014b,a].

3.1 Benchmarks

The following methodological choices prescribe the choice of benchmarks. (1) Fine-
grained task structures: Coarser granularity of parallel tasks is not an effective ap-
proach for achieving load balancing in the face of large scale hardware parallelism.
Due to this, the benchmarks used in this thesis are intentionally selected with fairly
fine-grained task structures. This also helps analyzing and reducing sequential over-
heads of work-stealing. (2) Higher steal frequency: Dynamic overheads of work-
stealing are more evident in benchmarks having higher steal frequency. This also
governs the choice of some of the benchmarks used in this thesis. (3) Large code base:
To evaluate productivity and performance of parallelism in real world problems,
three of the benchmarks used in this thesis comprise of large codebases. All of the
benchmarks are available at http://cs.anu.edu.au/~vivek/phd-thesis/.

Fib A simple recursive computation of 40th Fibonacci number. This benchmark is a
commonly used micro-benchmark for task scheduling overhead, as the problem
is embarrassingly parallel and the amount of computation done within each
task is trivial. The version used here is adopted from the X10 distribution [IBM
Research, 2012].

Integrate Recursively calculate the area under a curve for the polynomial function
x3 + x in the range 0 <= x <= 1000. This benchmark is similar in spirit to
Fibonacci, but each task contains an order of magnitude more work. Adopted
from the X10 distribution [IBM Research, 2012].
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Jacobi Iterative mesh relaxation with barriers: 10 steps of nearest neighbor averag-
ing on 1024 ⇥ 1024 matrices of doubles (based on an algorithm taken from the
Java ForkJoin framework [Lea, 2000]).

NQueens The classic N-queens problem where 12 queens are placed on a 12 ⇥ 12
board such that no piece could move to take another in a single move (based
on an algorithm from the Barcelona OpenMP Tasks Suite [Duran et al., 2009]).

Matmul Matrix multiplication of 1024⇥ 1024 matrices of doubles (based on an algo-
rithm taken from the Java ForkJoin framework [Lea, 2000]).

FFT This is a Cooley-Tukey Fast Fourier Transform algorithm (adopted from Ci-
lk [Frigo et al., 1998a]). Input size is 1024 ⇥ 1024.

CilkSort A divide and conquer variant of mergesort (adopted from Cilk [Frigo et al.,
1998a]) for sorting 10 million integers. It begins by dividing an array of ele-
ments in half and sorting each half. It then merges the two sorted halves back
together but in a divide-and-conquer approach.

Barnes-Hut A n-body algorithm to calculate gravitational forces acting on a galactic
cluster of 100000 bodies (adopted from the lonestar benchmark suite [Kulkarni
et al., 2009]).

UTS The unbalanced tree search benchmark designed by Olivier et al. [2007]. Tree
type used is T2.

LUD Decomposition of 1024 ⇥ 1024 matrices of doubles (based on algorithm from
Cilk [Frigo et al., 1998a]).

The following set of benchmarks are used in Chapter 6 for evaluating parallelism
in real world problems. These benchmarks are adopted from SourceForge projects.

lusearch-fix This is from the Java DaCapo benchmark suite [Blackburn et al., 2006]. It
uses Apache lucene [Apache Lucene, 2008] to do a text search of keywords over
a corpus of data comprising the works of Shakespeare and the King James Bible.
The version of lusearch used here fixes a pathological allocation bug [Yang
et al., 2011]. The study of lusearch-fix also includes the core packages of lucene
version 2.4.1, which lusearch-fix depends upon. Lucene is an open source Java
project, which provides Java-based indexing and search technology, as well as
spell checking, hit highlighting and advanced analysis/tokenization capabili-
ties. Lucene is a very widely used search library. The default implementation
of lusearch-fix uses explicit Java threading for parallelism.

jMetal This stands for Metaheuristic Algorithms in Java, and it is an object-oriented
Java-based framework aimed at multi-objective optimization with metaheuris-
tic techniques [Nebro and Durillo, 2013; Durillo and Nebro, 2011; Durillo et al.,
2010]. It provides several sets of classes which can be used as the building
blocks of multi-objective techniques. The jMetal website shows more than
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8000 downloads of this project to date. The default implementation is not en-
tirely multi-threaded and offers parallelism for couple of their algorithms. The
default implementation of jMetal uses java.util.concurrent.Executer and
Java threads for parallelism.

JTransforms This is a multithreaded FFT library written in Java [Wendykier, 2011]
and provides several types of FFT transformations. There are a few open source
projects which use JTransforms internally. Currently the download counter for
JTransforms is more than 9000. This library offers 8 benchmarks, which is used
for the performance comparison. For parallelism the default implementation
of JTransforms uses java.util.concurrent.Future.

3.1.1 Serial Elision

For each of the benchmarks described above, we also created a serial elision [Frigo,
2007] version. This is a version of the code with all the work-stealing keywords
removed. A serial elision in our case is the vanilla Java code, which does not involve
any code that expresses parallelism or synchronizations.

3.2 Software Platform

X10 Release 2.2.2.2, svn revision 23688. The latest revision is not used because
the work-stealing implementation for the managed X10 (Java backend) is bro-
ken. Native X10 (C++ backend) runtime is build with flags -DOPTIMIZE=true
-DNO_CHECKS=true -DDISABLE_GC=true. To build the managed X10 run-
time, the flag -DDISABLE_GC is not used. Benchmarks are compiled with op-
tions -WORK_STEALING -O -NO_CHECKS. With native X10, benchmarks are
linked with the thread-caching malloc memory allocator of the Google perfor-
mance tools [Ghemawat and Menage, 2009]. This evaluation strategy is similar
to that used by Tardieu et al. [2012].

ForkJoin Java ForkJoin work-stealing framework [Lea, 2000]. Version 1.7.0.

Habanero-Java Version 1.3.1. Benchmarks used in this thesis did not compile with
the adaptive policy of Habanero-Java [Guo et al., 2010]. Hence, they were built
with both work-first and help-first policies [Guo et al., 2009] but the execution
time is reported for the policy, which performs best for a particular benchmark.

Jikes RVM Version 3.1.3 with the production build. The command line arguments
used are: -Xms1024M -X:gc:variableSizeHeap=false -X:gc:threads=1.

OpenJDK 64-Bit Server VM (build 20.0-b12, mixed mode). The command line ar-
gument used is: -Xmx1024M.

JastAdd This is an implementation of an extensible compiler for Java [Ekman and
Hedin, 2007]. The compiler consists of basic modules for Java 1.4, and extension
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modules for Java 1.5 and Java 7. There are several open source projects which
use JastAdd internally (for example Soot [Vallée-Rai et al., 1999; Sable McGill,
2012]).

Operating System Ubuntu 12.04.3 LTS.

3.3 Hardware Platform

To maintain coherency across experiments, all the experiments were performed on
a dual-socket machine with two Intel Xeon E5-2450 Sandy Bridge processors. Each
processor has eight cores running at 2.10 GHz sharing a 20 MB L3 cache. The machine
was configured with 47 GB of memory.

To ensure the robustness of the experimental results, we have also verified our
findings on several other machines.

3.4 Measurements

For each benchmark, twenty invocations are executed, with fifteen iterations per
invocation where each iteration performed the kernel of the benchmark. The final
iterations are reported, along with a 95% confidence interval based on a Student t-
test. For performance comparison on Jikes RVM, only the mutator time is reported.
This is to eliminate garbage collection scalability as a factor in the experiments. For
validating the results with OpenJDK, absolute execution time is used.



Chapter 4

Sequential Overheads of
Work-Stealing

Recall from Section 2.2.2.2 (page 8) that work-stealing is a very efficiently strategy
for distributing work in a parallel system. However, work-stealing scheduling incurs
some form of sequential overheads as a necessary side effect of enabling dynamic
task parallelism. This overhead is seen as the increase in single-core execution time
due to transformations to expose parallelism. This chapter quantifies and analyzes
the sources of the sequential overheads for a work-stealing scheduler. To reduce these
overheads, two substantially more efficient designs are proposed and evaluated.

This chapter is structured as follows. Section 4.2 describes the motivation for this
work. Section 4.3 discusses the approach taken towards reducing the sequential over-
heads of work-stealing. Section 4.4 describes the implementation of two new efficient
work-stealing designs developed in this chapter. Section 4.6 provides an overview
of various work-stealing implementations, which relates to the contributions in this
chapter. Finally, Section 4.5 evaluates our novel work-stealing implementations.

This chapter describes work published as “Work-stealing Without the Baggage” [Ku-
mar, Frampton, Blackburn, Grove, and Tardieu, 2012].

4.1 Introduction

This chapter identifies the key sources of sequential overheads in work-stealing sched-
ulers and presents two significant refinements to their implementation. The two de-
signs proposed in this chapter exploits the runtime mechanisms already available
within managed runtimes, namely: a) the yieldpoint mechanism (Section 2.4.2.1,
page 18), b) on-stack-replacement (Section 2.4.2.3, page 19), c) dynamic code-patching
(Section 2.4.2.4, page 19), and d) support for exception delivery (Section 2.4.2.5,
page 20). We use Jikes RVM (Section 2.4.3, page 21) infrastructure to implement our
ideas and have empirically assessed them using both a language-based work steal-
ing scheduler, X10 (Section 2.2.1.1, page 6), Habanero-Java (Section 2.2.1.2, page 7),
and a library-based framework, Java ForkJoin (Section 2.3.6, page 17). The results
are also validated with OpenJDK. Compared to serial elision (Section 3.1.1, page 25),
the fastest design proposed in this chapter shows a sequential overhead of just 10%.

27
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By contrast, X10 has 195% overhead, Habanero-Java has 448% overhead and Java
ForkJoin has 124% overhead.

The principal contributions in this chapter are as follows: a) a detailed study of
the sources of overhead in an existing work-stealing implementation; b) two new
designs for work-stealing that leverage mechanisms that exist within modern JVMs;
c) an evaluation using a set of benchmarks ported to run in X10, Habanero-Java, Java
ForkJoin framework, and the serial elision; and d) performance results that shows
that the sequential overhead from a work-stealing implementation can be almost
removed. These contributions give further impetus to work-stealing as a model for
effectively utilizing increasingly available hardware parallelism.

4.2 Motivating Analysis

Work-stealing is a very promising mechanism for exploiting software parallelism,
but it can bring with it formidable overheads to the simple serial elision case (Sec-
tion 3.1.1, page 25). These overheads make the task of the programmer challenging
because they must use work-stealing judiciously so as to extract maximum paral-
lelism without incurring crippling sequential overheads. To shed light on this and
further motivate the new designs, we now: 1) identify and measure the sequential
overheads imposed by existing work-stealing runtimes, and 2) measure the dynamic
steal ratio across a range of well-known parallel benchmarks (Section 3.1, page 23),
showing that unstolen tasks are by far the common case. The ten benchmarks used
in this analysis are ported to X10, Habanero-Java, Java ForkJoin, and serial elision.

4.2.1 Sequential Overheads

In order to measure sequential overheads, we take three popular work-stealing run-
times (X10DefaultWS—default work-stealing implementation in managed X10, Hab-
anero-Java, and Java ForkJoin) and execute each of them on Jikes RVM and OpenJDK
with a single worker. No stealing can occur in this case, so the runtime support
for stealing is entirely redundant to this set of experiments. This artificial situation
allows us to selectively leave out aspects of the runtime support, providing an oppor-
tunity to analyze the overheads due to work-stealing in more detail. As a baseline
we use the serial elision version of each benchmark and execute them both on Jikes
RVM and OpenJDK. Figures 4.1(a) and 4.1(b) shows the result of this analysis. The
results show that the work-stealing runtimes incurs serious sequential overheads.
This overhead is nearly similar across both Jikes RVM and OpenJDK. The geomean
on Jikes RVM is: 195% for X10DefaultWS, 448% for Habanero-Java and 124% for Java
ForkJoin. On OpenJDK, it is: 245% for X10DefaultWS, 462% for Habanero-Java, and
106% for Java ForkJoin.

We have identified three major sources, which significantly contribute to this high
sequential overhead. Two are closely related to the overheads identified in the Sec-
tion 2.3 (page 11), namely initiation and state management. The final overheads
relate to code restructuring and other changes necessary to support work-stealing.
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^ We were unable to run Barnes-Hut on X10DefaultWS.

Figure 4.1: Sequential overheads in work-stealing runtimes. Y-axis value 1.0 represents the
execution of serial elision and anything above that is an overhead. Benchmarks not having
any sequential overheads do not appear in the figure.



30 Sequential Overheads of Work-Stealing

 1

 2

 4

 8

 16

Fib Integrate

Jacobi

NQueens

LUD
min

max
mean

geomean

S
e

q
u

e
n

tia
l O

ve
rh

e
a

d
s

X10DefaultWS

X10DefaultWS (No Deque)

X10DefaultWS (No Deque, No Context)

ForkJoin

ForkJoin (No Deque)

Figure 4.2: Work-stealing runtime consists of 3 different phase: initiation, state manage-
ment and code-restructuring (termination). Initiation overhead in X10DefaultWS is the dif-
ference between X10DefaultWS and X10DefaultWS (No Deque), whereas in ForkJoin its
the difference between ForkJoin and ForkJoin (No Deque). State management overhead
in X10DefaultWS is the difference between X10DefaultWS (No Deque) and X10DefaultWS
(No Deque, No Context). In ForkJoin, this is the value of ForkJoin (No Deque). Code-
restructuring overhead is encountered only in X10 and this is represented by the value of
X10DefaultWS (No Deque, No Context).

Initiation. The deque is an obvious source of overhead for the victim, which must
use synchronized operations to perform work (even when nothing is stolen). This
overhead may be a significant problem for programs with fine-grained concurrency.
To measure this overhead, we took the X10DefaultWS and Java ForkJoin work-stealing
runtimes and measured single worker performance with all deque operations re-
moved. (Recall from Section 2.3 (page 11) that the deque manages pending work,
so the strictly sequential case of a single worker, it is entirely redundant.) We did
not include Habanero-Java in this analysis because the Habanero-Java compiler and
the runtime are not open sourced. Also, to perform this analysis, we have to hand
modify the generated code from X10DefaultWS compiler. This is a daunting task
for complex benchmarks because of the heavy code transformations. For this rea-
son, we use only 5 benchmarks in the following analysis. We have performed this
experiment only on Jikes RVM. The results are shown as X10DefaultWS (No Deque)
and ForkJoin (No Deque) in Figure 4.2. This figure only shows the values, which are
greater than 1.0. These results show that the deque accounts for just over 20% and
40% of all sequential overheads for X10DefaultWS and ForkJoin respectively.

State Management. As discussed in Section 2.2.2.2 (page 8), work-stealing runtimes
typically allocate state objects to allow sharing and movement of execution state be-
tween tasks. In pure Java, these objects must be heap allocated, leading to significant
overheads. In addition to the direct cost of allocation and garbage collection, these
objects may also be chained together, and may limit compiler optimizations. Fig-
ure 4.2 shows the overhead of allocating these state objects in the X10DefaultWS Java
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work-stealing runtime by removing their allocation in a system that already had the
deques removed. In this case all values are passed on the stack, and no copying was
required because only a single worker exists. This is shown as X10DefaultWS (No
Deque, No Context) in Figure 4.2. We did not need to perform a similar experiment
for ForkJoin, as it would reduce to the serial elision case (and thus would show zero
overhead). We can see that the allocation of these state objects is a very significant
cost, averaging just under half of the total overhead.

Code Restructuring. In order to support the stealing of tasks, the runtime must
generate entrypoints with which the thief can resume execution. This is typically
performed by splitting up methods for the different finish and async. This code
restructuring accounts for part of the performance gap between X10DefaultWS (No
Deque, No Context) and serial elision. In effect, this overhead includes all overheads
due to X10-to-Java compilation, of which only a subset would be necessary to support
work-stealing.

Habanero-Java was not included in this analysis, but similar to X10DefaultWS and
ForkJoin, Habanero-Java too relies on: a) separate task deque per worker for initia-
tion; b) heap allocation of program state for state management; and c) finish-async
code restructuring similar to X10DefaultWS. This approach adds to the sequential
overheads and is visible in Figure 4.1(a).

4.2.2 Steal Ratio

Work-stealing algorithms aim to ensure that sufficient tasks are created to keep all
processors busy. In practice, however, much of this potential parallelism is not real-
ized, due to other activities or a reduced availability of parallelism. Consequently it
may be the case that most tasks are consumed locally. Clearly the number of stolen
tasks is bounded by the total number of tasks, but the fraction of tasks actually stolen
(the steal ratio) is an important component in determining if, and how, cost should be
traded off between all tasks and stolen tasks.

We performed a study to understand the steal ratios across the range of our
benchmarks. We instrumented X10DefaultWS and Java ForkJoin work-stealing run-
times to measure both the total number of tasks produced (executed async blocks in
X10, and fork() calls in ForkJoin) as well as total number of tasks stolen. We show
the measured ratio in Figure 4.3.

It is clear from the figure that stealing is generally uncommon and in many
cases extremely rare. A single steal may move substantial work (consider divide-
and-conquer algorithms). Because of this, relatively few steals may address a load
imbalance. Although LUD has steal ratio that approaches one in ten, for all other
benchmarks the ratio is between one in a hundred and one in a million. This result
shows that steals are generally uncommon and suggests that eagerly preparing for a
steal is likely to be an inefficient strategy.
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Figure 4.3: Steals to task ratio for each benchmark on different work-stealing runtimes. A
low ratio is always preferred to ensure that sufficient tasks are created to keep all processors
busy.
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4.3 Approach

As discussed in Section 2.2.2.2 (page 8), for work-stealing to function correctly we
must be able to 1) identify a task to be stolen, 2) provide sufficient context to allow a
thief to execute a stolen task, and 3) reintegrate state due to computation performed
by a thief back into the victim’s execution context.

Each of these operations is only required for tasks that are actually stolen, and as
we saw in Section 4.2.2, steal ratios for many programs are close to zero. The perfor-
mance of unstolen tasks is therefore critical to overall performance. In this chapter, we
try to push the limits as to what aspects of the above functions can be deferred until
a steal occurs, moving them off the critical path of unstolen tasks. Our particular
approach is to leverage advanced facilities that exist within the implementation of a
modern managed runtime.

4.3.1 Scalability Concerns

A simple measure of the success of a parallelization construct is scalability. Of course
one way to ‘improve’ scalability is to enhance the parallel case at the expense of the
base sequential case. In practice, this is what happens with existing work-stealing
frameworks, which involve substantial overheads in the sequential case. By corollary,
our approach of moving overhead off the common sequential case (to be absorbed
at steal time by the thief) will reduce the apparent scalability. In our evaluation we
express scalability for all systems as speedup relative to the serial elision base case,
sidestepping this pitfall by focusing instead on overall performance. Our argument
is that scalability is a means to improved overall performance, not an end in and of
itself. The question then becomes, is it possible to build a system that aggressively
defers steal-related work, and what is the actual cost tradeoff of doing so.

4.3.2 Techniques

Our approach is based on several basic techniques, each described in more detail in
the context of the implementations discussed in the following section.

1. We use the victim’s execution stack as an implicit deque.

2. We modify the runtime to extract execution state directly from the victim’s
stack and registers.

3. We dynamically switch the victim to slow versions of code to reduce coordina-
tion overhead.

We are unaware of any previous work that uses either of the first two approaches,
and due to the support of a managed runtime, we are able to perform the third more
aggressively than prior work, and with reduced overhead in the common case.
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4.4 Implementation

We have implemented and evaluated two work-stealing runtimes, X10OffStackWS: a
modification of the default X10 work-stealing runtime for JVMs, and X10TryCatchWS:
a simple runtime implementation on plain Java. Both implementations support the
X10 finish-async model of execution. Our X10TryCatchWS runtime is targeted by
the X10 compiler.

This section describes each of our work stealing runtime implementations in
terms of the work-stealing requirements we enumerated in Section 2.3 (page 11):
initiation, state management, and termination.

4.4.1 Runtime Supported X10OffStackWS

4.4.1.1 Initiation

One of the key insights behind the X10OffStackWS design is that we can avoid main-
taining an explicit deque by using existing runtime mechanisms to extract the in-
formation from the worker’s call stack. This approach eliminates the significant
overhead of managing an explicit deque, but requires alternative mechanisms to
synchronize the victim and thief, and to manage the set of stealable tasks.

Stack as an implicit deque. In our system the deque is implicitly stored within
the worker’s call stack. The X10 compiler transforms each X10 async body into a
separate Java method (as it does normally). We attach @IsAsync annotations to these
methods, and @HasContinuation annotations to all methods that call async (and
thus have continuations). A stealable continuation is identified by a caller–callee pair
with a caller marked @HasContinuation and a callee marked @IsAsync. The tail
of the deque corresponds to the top of the worker’s stack. Each worker maintains
a stealFrame pointer, which points to the head of the deque and is managed as
described below. The body of the deque is the set of all stealable frames between the
top of the stack and the frame marked by stealFrame. Any worker thread with a
non-null stealFrame field is a potential victim.

Victim–Thief handshake. Once a thief finds a potential victim, it uses the runtime’s
existing yieldpoint mechanism to force the victim to yield—the victim is stopped
while the steal is performed. The yieldpoint mechanism is used extensively within
the runtime to support key features, including exact garbage collection, biased lock-
ing, and adaptive optimization. Reusing this mechanism allows us to add the hooks
to stop the victim without any additional overhead. Note that between the point at
which a thief attempts a steal, and the point the victim–thief handshake begins, it is
possible that a task may no longer be available to steal. We measured the frequency
of such failed steal attempts in our evaluation at around 2-10%.
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Maintaining stealFrame. Recall that stealFrame is the pointer to the head of the
implicit deque. Workers and thieves maintain stealFrame cooperatively. When a
worker starts executing a task, stealFrame is null, signifying that there is nothing
available to steal. When a worker wants to add a task to its (implicit) deque, it
first checks stealFrame. If stealFrame is null, then the implicit deque is empty
so stealFrame is updated to point to the new task, which is now the head of the
(implicit) deque. If stealFrame is already set, then the new task is not the head
so stealFrame is left unmodified. stealFrame must also be updated as tasks are
removed. A worker must clear stealFrame when it consumes the head. A thief
updates stealFrame during a steal to either point to the next stealable continuation,
or null if no other stealable continuation exists.

Ensuring atomicity. A worker detects that a continuation it expected to return to
has been stolen by checking if stealFrame has been set to null. In this case there is
no work left locally, and the worker becomes a thief and searches for other work to
execute.

4.4.1.2 State Management

When a task is stolen, the thief must take with it sufficient state to run the task
within the thief’s own context. This includes all local variables used by the stolen
task. In our running example, it is just the parameter n, which is used on line 9
of Figure 2.3(a). In the X10OffStackWS system, we perform lazy state extraction,
extracting the state from the victim thread only when a steal occurs.

Extracting state off the stack. We extract state from the victim stack into the heap
so that the thief may access the state while the victim continues to execute. Because
the victim is stopped during a steal, we are trivially able to duplicate its complete
execution state down to the steal point, including the stack and registers. At this
point the victim may resume execution. The thief then extracts the state out of the
duplicate stack for each stolen continuation. It does this by unwinding the duplicate
stack whilst a copyingStates flag is set, which causes reflectively generated code
to be executed for each frame. The reflective code captures local state for the frame
and interns it in a linked list of heap objects, one object per frame. At this point all
necessary victim state has been captured and the thief may commence execution.

The principal difference between our approach and the default X10 mechanism is
that we perform state extraction lazily, only when an effective steal occurs. Compared
to the X10 Java backend, our lazy approach avoids a large amount of heap allocation.
The X10 C++ backend also has an approach which delays the allocation, but not the
use of state objects, by initially allocating them on the stack and only lazily moving
them to the heap when a steal occurs [Tardieu et al., 2012]. In the common case our
approach avoids state extraction and allocation altogether.
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Executing stolen tasks. Once state has been extracted, the thief executes against
its heap-interned duplicate stack. The thief executes specially generated ‘slow’ ver-
sions of the continuations, which access the heap rather than the call stack for local
variables. This is essentially identical to the X10DefaultWS implementation.

4.4.1.3 Termination

Control must only return from a finish context when all tasks within the context
have terminated. To support this, each thread has a singly linked list with a node
for each finish context that the thread is executing. Each dynamic finish context
has a unique node shared by all threads running in that context. These nodes form
a tree structure, with a root node for the finish context that represents the entire
program. In X10OffStackWS, four important pieces of information are saved at each
finish node:

• A linked list of stolen states.

• Frame pointers that identify where it was stolen from the victim, and where it
is now running in the thief.

• A synchronized count of the number of active workers (initially 2 for the thief
and victim).

• An object for storing partial results.

To ensure termination, when each thread leaves the finish context they decre-
ment the synchronized count. The thread that drops the count to zero is responsible
for executing the continuation of the finish context. The nodes are also used as
the point for communicating any data that is required to be made available after the
finish.

4.4.2 X10TryCatchWS Java implementation

Our X10TryCatchWS implementation is more radical. Our principal goal was to
understand just how far we could reduce sequential overheads. To do this we started
with plain Java and built a basic work-stealing framework upon it. We have modified
the X10 compiler to compile to X10TryCatchWS. Thus X10TryCatchWS represents a
new backend for work-stealing. Because we express X10TryCatchWS directly in plain
Java code, it is straightforward to make direct comparisons with Java ForkJoin and
serial elision.

4.4.2.1 Leveraging Exception Handling Support

In Java, the programmer may wrap sections of code in try blocks, and provide
catch blocks to handle particular types of runtime exceptions. When an exception
is thrown within the context of a try block for which there is a catch block that
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matches the exception’s type, control is transferred to the start of the catch block.
Exceptions propagate up the call stack until a matching catch block is found, or if no
matching block is found the thread is terminated. To support exception handling, the
runtime must maintain a table with entries that map the instruction address range of
a try block to the instruction address for the catch block, annotated by the type of
exception that can be handled.

Exception handling is designed to allow for the graceful handling of errors. Be-
cause exceptions are important and potentially expensive, JVM implementers have
invested heavily in optimizing the mechanisms. Our insight is to leverage these op-
timized mechanisms to efficiently implement the peculiar control flow requirements
of work-stealing. We can avoid much of the expense generally associated with ex-
ception handling as we never generate a user-level stack trace; we do not require this
trace for work-stealing (we only need the VM-level stack walk).

Our X10TryCatchWS system annotates async and finish blocks by wrapping
them with try/catch blocks with special work-stealing exceptions as shown in Fig-
ure 4.4. We can then leverage the exception handling support within the runtime
and runtime compilers to generate exception table entries to support work stealing.
These allow the X10TryCatchWS runtime to walk the stack and identify all async
and finish contexts within which a thread is executing. The role of each exception
type, and how the information is used in the runtime are described in more detail
over the following sections.

4.4.2.2 Initiation

As in the X10OffStackWS implementation, X10TryCatchWS avoids maintaining an
explicit deque. The key difference between the implementations is that in X10TryC-
atchWS we use marker try/catch blocks, not method annotations, to communicate
the current deque state to the work-stealing runtime. Instead of identifying a con-
tinuation by a pair of methods using a frame pointer, we use a combination of the
frame pointer and the offset of a specific catch block. We use the same thief-initiated
handshake for synchronization between the victim and the thief.

Stack as an implicit deque. X10TryCatchWS maintains a steal flag for each worker
thread that indicates that its deque may have work available to steal. The steal flag is
set as the first action within an async (see line 6 in Figure 4.4). The steal flag is cleared
when the worker or a thief determines that there is no more work to steal. As with
X10OffStackWS, the tail of the task deque corresponds to the top of the call stack.
The list of continuations (from newest to oldest) is established by walking the set
of catch blocks that wrap the current execution state. We walk this list by running
a modified version of the runtime’s exception delivery code, searching for catch
blocks that handle WS.Continuation exceptions. As we find entries, we simulate
advancing into the catch block and repeat the search for exception handlers again,
finding successively older continuations. Each worker has a stealToken that acts as
a head for the deque. The stealToken indicates the point at which the continuation
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1 int fib(n) {
2 if (n < 2) return 1;
3 int a,b;
4 try {
5 try {
6 WS.setFlag();
7 a = fib(n-1);
8 WS.join();
9 } catch (WS.JoinFirst j) {

10 j.addFinishData(0, a);
11 WS.completeStolen();
12 } catch (WS.Continuation c) {
13 // entry point for thief
14 }
15 b = fib(n-2);
16 WS.finish();
17 } catch (WS.FinishFirst f) {
18 f.addFinishData(1, b);
19 WS.completeFinish();
20 } catch (WS.Finish f) {
21 for(WS.FinishData fd: f.data) {
22 if (f.key == 0) a = fd.value;
23 if (f.key == 1) b = fd.value;
24 }
25 }
26 return a + b;
27 }

Figure 4.4: Pseudocode for the transformation of fib(n) from X10 (Figure 2.3(a), page 12)
into X10TryCatchWS. We have modified the default X10 compiler to automatically generate
the code to support X10TryCatchWS.
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of that worker has been stolen. Any continuations discovered after that point do not
belong to that worker, and must therefore not be stolen from it.

Ensuring atomicity. Atomicity is guaranteed through the use of the stealToken,
which acts as a roadblock for the worker and thieves to prevent either running or
stealing continuations past that point. We saw above how the stealToken is used
during the steal operation. To ensure that the victim does not run the continuation
again, each async ends with a call to WS.join(). This call is responsible for checking
whether the continuation has been stolen. This requires checking whether the frame
pointer and catch block offset for the stealToken match the innermost continuation
for that async, which is discovered using modified exception delivery code. When a
steal is performed, the thief must also steal the stealToken from the victim thread,
and place a new stealToken on the victim to prevent it from executing the stolen
continuation.

4.4.2.3 State Management

In X10TryCatchWS, state is acquired by the thief through duplicating the entire ex-
ecution state of the victim thread, including the stack and register state. Unlike in
X10OffStackWS, the state is not extracted to the heap, but is used directly. No ad-
ditional resume method is required for the entrypoint; execution can be transferred
to the appropriate continuation point by delivering a WS.Continuation exception.
The exception delivery code must be slightly different, because the exception must
be delivered to the correct handler (it is not always the innermost exception handler
for WS.Continuation that is correct).

Merging local variable state. While providing the correct state to start the con-
tinuation is made easy, X10TryCatchWS does not have a resume mode to fall back
on where local variable state is all stored on the heap. This complicates merging
the results of each of the tasks because the system must merge the local variables
held by multiple copies of the same frame. In the Fibonacci example, the value of
a is set within the async, while the value of b is set in the continuation. After the
finish, both a and b must be set to ensure that the correct value is returned. At
the end of each async or finish block there is a call to a runtime support method
(WS.join() or WS.finish()). When these methods are called, two conditions are
checked: 1) a steal has occurred within the appropriate finish block, and 2) the pro-
grammer has defined a catch block (WS.Join or WS.FinishFirst respectively) to
save results. If both conditions are met, control is returned to the catch block by
throwing an exception, allowing the code to provide local variable values with calls
to addFinishData(key, value). Each key represents a local variable: in our exam-
ple key 0 maps to a and 1 maps to b. The last task to finish executing within the
finish can then access all of these provided values, ensuring that all results are set
correctly.
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4.4.2.4 Termination

Termination is handled in a similar way to X10OffStackWS. A node is lazily created
for each finish context in which a task is stolen. This node maintains an atomic
count of the number of active tasks in the finish context, and provides a location
for local variable state to be passed between threads, as described in the previous
section. When a thread decrements the atomic count to zero, it becomes responsible
for running the continuation of the finish context. The X10TryCatchWS runtime
will deliver a WS.Finish exception at the appropriate point, allowing the thread to
extract local variable state and continue out from the finish. This may also update
the thread’s stealToken, if the last thread to finish execution was not the thread
running the end of the finish body. When this occurs, that thread runs the body of
any WS.FinishFirst handler to communicate local variables, deposits its stealToken
in the finish node, and searches for other work to complete.

4.4.2.5 Optimizing Runtime Support Calls

Within the X10TryCatchWS runtime, there are many calls to various WS methods. In
the common case where no steal has occurred, only the call to WS.setFlag() needs
to be executed. The call to WS.join() is only required if the continuation for the
enclosing async has been stolen. Similarly, the call to WS.finish() is only required
if at least one steal has occurred within that finish context. To avoid sequential
overhead in the common case, we generate special fast versions of methods with
these calls, where compiled code for the calls to these methods are overwritten by
NOP instructions. This makes it simple for us to transfer execution between these
methods as required, without requiring any additional exception handling tables for
the fast version of the code. Both fast and slow versions of the code always make calls
to fast versions. We also force calls to WS.setFlag() to be inlined by the optimizing
compiler, which on our Intel target reduces to a simple store instruction.

Excluding indirect changes in compilation due to the presence of the try/catch
blocks, the only sequential overhead in X10TryCatchWS is the execution of
WS.setFlag(), and some additional NOP instructions.

4.5 Results

We start by measuring the sequential overhead of each of the systems before eval-
uating overall performance, including speedup. We then examine the effect of the
different approaches on memory management overheads. We finish by measuring
steal ratios and failed steal attempts for each benchmark using the modified systems.

For four of the ten benchmarks we manually generated the code to target the
X10OffStackWS runtime (we did not implement automatic codegen support for
X10OffStackWS). The remaining six benchmarks are significantly more complicated
and we did not perform the manual code translation required for X10OffStackWS.
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Figure 4.5: Sequential overheads in work-stealing runtimes. Y-axis value 1.0 represents the
execution of serial elision and anything above that is an overhead. Benchmarks not having
any sequential overheads do not appear in the figure.

Also, we don’t have results of Barnes-Hut over X10DefaultWS because its execution
failed.

Almost all of the benchmarks make extensive use of arrays. While the Habanero-
Java, ForkJoin and serial elision versions of the benchmarks use Java arrays directly,
the X10 compiler is not currently able to optimize X10 array operations directly into
Java array operations, but does so through a wrapper with get/set routines. To un-
derstand the significance of this overhead, we also measure a system that we call
JavaTryCatchWS, which uses try-catch work-stealing but operates directly on Java
arrays without X10. As mentioned in Section 3.4 (page 26), for performance compar-
ison of different runtimes on Jikes RVM, we report the mutator time only.

4.5.1 Sequential Overhead

Our primary focus in this chapter is the reduction of sequential overheads as a means
of improving overall throughput. Using the same methodology as in Section 4.2.1,
we restrict the work-stealing runtimes so that they only use a single worker thread
and then compare their performance to the serial elision version of the program.

Figure 4.5 shows the sequential overhead of the X10DefaultWS, Habanero-Java,
ForkJoin, our two optimized implementations (X10OffStackWS and X10TryCatchWS),
and the JavaTryCatchWS system that uses regular Java arrays.

For Fib the sequential overheads for X10DefaultWS, Habanero-Java and ForkJoin
are as high as 15⇥, 72⇥ and 9⇥ respectively. On average X10OffStackWS eliminates
more than half of the sequential overheads of X10DefaultWS and performs slightly
better than ForkJoin but significantly better than Habanero-Java. The X10TryCatchWS
implementation has the sequential overhead of 40% (geomean). However, this also
includes the overhead of X10 array accesses. The JavaTryCatchWS implementation,
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has consistently low sequential overheads across all benchmarks (geomean as just
10%).

4.5.2 Work Stealing Performance

Figure 4.6 shows the speedup relative to serial elision for each of the benchmarks and
runtimes on our 16 core machine. Note that we only measure four of ten benchmarks
for X10OffStackWS (because no automatic codegen support for X10OffStackWS) and
do not measure Barnes-Hut for X10DefaultWS. These results clearly illustrate that the
sequential overheads of work-stealing are the dominant factor in overall program
performance. The results for the JavaTryCatchWS runtime are extremely promis-
ing. Even in extreme examples of fine-grained concurrency like Fib and Integrate it is
able to outperform the serial elision of the program at 2 cores and deliver a signif-
icant speedup at 16 cores (10⇥ and 8.5⇥ respectively). Despite exhibiting excellent
scalability, neither X10DefaultWS, Habanero-Java or ForkJoin are able to overcome
their larger sequential overheads and show significant performance improvements
over the serial elision code for Fib or Integrate even when using all 16 cores. The
differences between the runtimes are less dramatic on the other eight benchmarks,
but the overall trend holds 1. All three runtimes (X10DefaultWS, Habanero-Java and
ForkJoin) show reasonable levels of scalability, but the lower sequential overheads of
JavaTryCatchWS and X10OffStackWS result in better overall performance.

To increase the confidence in our results, we also compared overall performance
with NativeX10WS (X10 with C++ backend), Habanero-Java, X10DefaultWS and
ForkJoin running on OpenJDK. Figure 4.7 shows the result of this experiment. Here
we show the speedup over the absolute execution time (not just mutator time) of sin-
gle threaded JavaTryCatchWS. In most cases, the running time for JavaTryCatchWS
is very competitive, particularly as the number of threads is increased 2.

4.5.3 Memory Management Overheads

A significant source of performance improvement is due to the fact that X10OffStackWS
dramatically reduces the number of heap-allocated frame objects, and JavaTryCatchWS

1 In Figure 4.6(i), X10TryCatchWS performs better than JavaTryCatchWS. This is true even for sin-
gle worker thread, where X10TryCatchWS is around 62% faster than JavaTryCatchWS. We have found
that on Jikes RVM the serial elision version of UTS implemented in X10, is around 60% faster (X10 on
Java backend) than the serial elision implemented directly in Java. However, we did not notice this on
OpenJDK where X10 performed similar to Java. This suggests some pathology in the underlying VM,
which is independent of our work stealing implementations. In Figure 4.6(j), Habanero-Java outper-
forms JavaTryCatchWS, whereas ForkJoin performs nearly identical to JavaTryCatchWS. Figure 4.3(a)
shows that LUD has a high steal ratio (10% at 16 cores). From Figure 4.5 we can also see that LUD has
almost zero sequential overhead in Habanero-Java and ForkJoin. This situation, where the sequential
overhead is already zero and major percentage of tasks are stolen, would not benefit significantly from
our approach. But we can see that JavaTryCatchWS is still competitive.

2 A notable exception is LUD where the JavaTryCatchWS implementation is significantly slower than
Habanero-Java and ForkJoin. The Jikes RVM results in Figure 4.6(j) show that this slowdown affects
all Jikes RVM configurations, not just JavaTryCatchWS, suggesting pathology in the underlying VM,
which is independent of our work stealing implementations.
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Figure 4.6: (Cont.) Speedup relative to serial elision version of each benchmark on Jikes
RVM. Y-axis value 1.0 denotes the execution of serial elision. Y-axis values greater than 1.0
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Figure 4.8: Fraction of time spent performing garbage collection work in different bench-
marks. Memory management overhead in JavaTryCatchWS is very similar to that required
in serial elision version. X10TryCatchWS and X10OffStackWS operates on X10 arrays rather
than Java arrays. This results in relatively extra memory management overhead in these two
runtimes as compared to JavaTryCatchWS.

removes them altogether. Figure 4.8 shows the fraction of time spent performing
garbage collection for each of the systems measured. As expected, X10OffStackWS
and JavaTryCatchWS have significantly lower memory management overheads than
the other work-stealing runtimes. There is still measurable time spent in garbage col-
lection for the NQueens, UTS and Barnes-Hut benchmarks, but this is the case even
for the serial elision versions of these benchmarks. Across all programs the garbage
collection fraction is less than 12%. Note that the garbage collection fraction does
not include the potentially significant cost of object allocation during application ex-
ecution. To ensure our performance improvements were not due to poor collector
performance in Jikes RVM, we also measured the Java based systems on OpenJDK,
and saw that the collection time fraction was similar, and we know from previous
work [Yang et al., 2011] that the allocation performance of Jikes RVM is highly com-
petitive.

4.5.4 Steal Ratios

To ensure that our modifications did not dramatically affect behavior, we also mea-
sured the steal ratios for our optimized systems. The results in Figure 4.9(a) for
X10OffStackWS do not differ significantly to those for the original system in Fig-
ure 4.3(a). The steal ratio for X10TryCatchWS is between the steal ratios for the other
two systems and is shown in Figure 4.9(b). We also measured the frequency at which
steal attempts failed (due to either another thief or the victim winning the race to start
that continuation). Figure 4.10(b) and Figure 4.10(a) show the failed steal attempts
for JavaTryCatchWS and X10OffStackWS respectively. In general, the fraction of steal
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Figure 4.9: Steals to task ratio for X10OffStackWS and X10TryCatchWS. A low ratio is always
preferred to ensure that sufficient tasks are created to keep all processors busy.
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Figure 4.10: Seal failure rates for X10OffStackWS and X10TryCatchWS. This is the ratio of
total failed steal attempts and total successful steals. Steal attempts may fail due to either
another thief or the victim winning the race to start that continuation.
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failures is less than 13%, only rising above this figure for some of the benchmarks.

4.6 Related work

4.6.1 Languages versus Libraries

Work-stealing has been made available to the programmer as libraries or as part of
languages. Java ForkJoin framework, Intel’s Threading Building Blocks [Reinders,
2007], PFunc [Kambadur et al., 2009], and Microsoft’s Task Parallel Library [Leijen
et al., 2009] are all examples of libraries that implement work-stealing. Users write
explicit calls to the library to parallelize their computation, as in Figure 2.3(c). X10,
Habanero-Java and the Cilk-5 runtime [Frigo et al., 1998a] on the other hand are
all examples of direct language support for work-stealing (as in Figures 2.3(a) and
2.3(b)). In principle, a language supported work-stealing implementation has more
opportunities for optimization because it can bind to and leverage internal runtime
mechanisms that are not visible to a library implementation. Conversely, library
implementations have the pragmatic advantage of being applicable to pre-existing
languages.

4.6.2 Work-stealing Deques

Cilk introduced the concept of the THE protocol [Frigo et al., 1998a] to manage the
deque. Actions by the worker on the tail of the deque contribute to sequential over-
head, while actions by the thieves on the head of the deque contribute only to non-
critical-path overhead. Almost all modern work-stealing schedulers follow this ap-
proach. We do not take this approach. Instead we observe that steals are infrequent
and force the victim to yield when a steal occurs. Although this implies that the
victim does some steal-related work, it only does so when a steal occurs. As long
as the steal ratios are relatively modest the gain in overall system performance from
our approach results in better scalability than the traditional approach.

Some prior studies also reuse the execution stack as an implicit deque. Strumpen
[1998] is the oldest in this category. They use a C language based implementation
and employ both implicit and regular deques. Thieves only have access to the reg-
ular deques. Victims delay the pushing of heap allocated task on regular deque
until an unsuccessful steal attempt happens. When a victim detects a failed steal,
it unrolls its execution stack (extracting variables from stack and registers), creat-
ing several heap allocated tasks and then pushing them to its regular deque. The
whole of C stack of the victim is restored from the just filled regular deque to resume
the computation of victim. This study only uses Fib benchmark for its evaluation.
Across variety of processor architectures, the sequential overhead in Fib ranges be-
tween 28% and 113% for implicit deques. Similar to Strumpen [1998], [Taura et al.,
1999; Umatani et al., 2003; Hiraishi et al., 2009] also uses execution stack as an im-
plicit deque. StackThreads/MP [Taura et al., 1999] employs an assembly language
postprocessor to achieve portability across unmodified GNU C compiler. Thieves can
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walk victim’s execution stack using frame pointers. The implementation is evaluated
using several benchmarks ported from Cilk distribution. The sequential overheads
in each benchmark are very negligible. However, StackThreads/MP does not seem
to outperform the parallel performance of regular deques. Its parallel performance
across all the benchmarks is very comparable with Cilk, which uses heap allocated
tasks and regular deques. The other drawbacks in StackThreads/MP are the lack of
support for dynamically-scoped synchronization (e.g., finish construct in X10) and
inability to return values from threads. Umatani et al. [2003] aims to address the
drawbacks in StackThreads/MP. It provides a Java based fork/join style program-
ming model. The implementation consists of a Java-to-C translator and a runtime
system in C. Similar to Strumpen [1998], it employs both implicit and regular de-
ques. Thieves send steal request to victims and wait for response instead of directly
operating on the regular deque. Unlike Strumpen [1998], the whole of C stack is not
rebuilt from the regular deque in [Umatani et al., 2003]. The victim simply employes
the regular deque as a list of continuation from which the frames can be popped.
This implementation also allows dynamically scoped synchronization as well as Java
style reentrant synchronization blocks. However, this implementation is evaluated
only using Fib and Matmul benchmarks, where the sequential overhead is found to
be 136% and 25% respectively. Parallel performance of Fib becomes better than Cilk
at higher worker count. However, parallel performance of Matmul remains compa-
rable with Cilk. Tascell [Hiraishi et al., 2009] is the latest implementation that does
not use regular deques. It is an extended C language where programmers can write
parallel program using Tascell’s parallel constructs. It uses inner functions to imple-
ment backtracing and avoid stack walk of victim’s execution stack. A nested function
is the function defined inside another function, in places where variable definitions
are allowed. Its evaluation creates a lexical closure accompanying the creation-time
environment, and indirect calls to it provide stack access. When a victim receives
a steal request, it spawns a task by temporarily backtracing and restoring its oldest
task-spawnable state. As the actual tasks are created only when steals are requested,
Tascell avoids the cost of deque management. Tascell uses several benchmarks for
evaluation. However, the sequential overheads can still be as high as 148% (Fib). For
NQueens the sequential overhead was 53%. The parallel performance of Tascell is
always better than Cilk for all the benchmarks.

Our approach shares some similarity with previously discussed approaches. The
fundamental insight is the same: work-stealing overheads can be significantly re-
duced by deferring operations that most other work-stealing systems perform ea-
gerly. The biggest difference in our approach is: we abstain from reinventing the
wheel and rely on highly optimized features already prevalent in modern JVMs.
Apart from providing portability this also helps us achieve significantly better per-
formance over the traditional approaches. We use a wide variety of benchmarks to
demonstrate the superiority of our implementation. Fib is considered to demonstrate
the worst-case performance of work-stealing implementations, as the tasks in Fib do
not do any real computation other than wickedly launching several sub-tasks. Even
with Fib, the sequential overhead on JavaTryCatchWS is just 29%. For Matmul and
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NQueens (being used by prior work), the sequential overhead on JavaTryCatchWS is
8% and 10%, respectively.

4.6.3 Harnessing Rich Features of a Managed Runtime

Managed runtimes provide many sophisticated features (Section 2.4.2, page 18),
which are not usually available in a low-level language implementation. A key run-
time feature we use in our work is on-stack replacement (Section 2.4.2.3, page 19),
which is already employed in Jikes RVM for speculative optimizations and adaptive
multi-level compilation. To support on-stack replacement, Jikes RVM’s compilers
generate machine code mapping information for selected program points that enable
extraction of the Java-level program state from the machine registers and thread stack
and the transfer of this state to newly created stack frames. X10TryCatchWS and
X10OffStackWS runtimes described in this chapter, uses these existing mechanisms
inside Jikes RVM to walk a victim’s Java thread stack and extract all the program
state. The thief uses this to establish the necessary context for it to be able to execute
stolen work.

The C++ implementation of X10 performs speculative stack allocation [Tardieu
et al., 2012]. The victim starts by allocating the frames on a stack. The thief is
responsible for copying the stolen frames from the victim’s stack to the heap. This
is not possible in the Java X10 implementation since Java does not support stack
allocation. However we are able to leverage the runtime’s stack walking mechanism
to achieve an even simpler result—the thread state is not preprocessed. There are no
frame objects on either the stack or the heap. Instead, by using the virtual machine’s
internal thread stack walking capability, the state is directly extracted from the stack
when a steal occur. The approach used in this chapter radically lowers the memory
management load of work-stealing. We are not aware of such functionality in any
work-stealing scheduler.

4.7 Summary

This chapter first showed the extent of sequential overheads associated with work-
stealing in well-known implementations such as, X10, Habanero-Java and ForkJoin.
We demonstrate that stealing is generally uncommon and hence, take the approach
of moving the overheads from the common case to the rare case. We propose two
new designs, which leverage advanced facilities that exist within the implementation
of a modern managed runtime. The fastest design was able to reduce the sequen-
tial overhead to just 10%. By contrast, X10 has the sequential overhead of 195%,
Habanero-Java has 448% and ForkJoin has 124% overhead. We performed exten-
sive performance analysis of the new designs and demonstrated that the approach
followed is extremely effective at reducing sequential overheads and also without
affecting the scalability. While the size of the benefit depends on the nature of the
benchmark, in the cases where there was no significant benefit, importantly it also
does not negatively affect performance.
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In the next chapter, we focus on the dynamic overheads of work-stealing. These
are the overheads, which increases with parallelism.
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Chapter 5

Dynamic Overheads of
Work-Stealing

The previous chapter attacks the problem of sequential overheads in work-stealing;
those that manifest independent of the level of actual parallelism. This chapter ex-
plores the problem of dynamic overheads in work-stealing; those that manifest as
steal rates grow, and are thus most evident when parallelism is greatest. To address
the dynamic overhead, this chapter follows the trail of previous chapter and reuses
rich features of modern managed runtimes to further refine the high performance
JavaTryCatchWS work-stealing framework.

The chapter is structured as follows: Section 5.2 discusses the motivation for this
work. Section 5.3 explains the design of the new system. Section 5.4 evaluates the
performance of this new design. Finally, Section 5.5 provides an overview of related
work.

This chapter describes work in a paper currently under review “Friendly Barriers:
Efficient Work-Stealing With Return Barriers” [Kumar, Blackburn, and Grove, 2014b].

5.1 Introduction

This chapter identifies the dynamic overheads in work-stealing implementations.
Our analysis correlates this overhead with increasing parallelism, which is an im-
portant factor in the modern hardware.

Our work-stealing runtime, JavaTryCatchWS, which was introduced in the previ-
ous chapter (Section 4.4.2, page 36) almost completely removes the sequential over-
heads and achieves both good scalability and good absolute performance. In this
chapter, we use this high performance work-stealing runtime as the baseline system
to assess our ideas.

Recall from Section 4.4.2.2 (page 37) that in JavaTryCatchWS, when a thief at-
tempts to steal a task, it first requests the runtime to stop the victim so that it may
safely walk the victim’s execution stack. If the thief finds a steal-able task, it dupli-
cates the victim’s stack before allowing the victim to resume. The thief then runs a
modified version of the runtime’s exception delivery code to start the stolen task.

61
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We identify the interruption of the victim as a contributor to dynamic overheads,
at every steal attempt. In this chapter, we first evaluate this source of overhead and
then develop a new design on top of JavaTryCatchWS. This design uses a return
barrier (Section 2.4.2.6, page 20), which reduces the time spent scanning the victim’s
execution stack. By using this design, we are able to reduce the dynamic overhead
by around 50% and achieve overall performance improvements of as much as 20%.

The principal contributions of this chapter are as follows: a) a detailed study
of the dynamic costs of work-stealing — costs associated with stealing work from
victims; b) an approach for reducing this overhead; and c) an evaluation of this new
design against the baseline JavaTryCatchWS runtime from previous chapter.

We now conduct a quantitative analysis to characterize the dynamic overheads of
work-stealing.

5.2 Motivating Analysis

The principal sequential costs in work-stealing relate to organizing normal compu-
tation in such a way as to facilitate movement of a task to another thread if a steal
should happen to occur. On the other hand, the principal cost in the dynamic case
lies in synchronizing victim and thief threads at the time of a steal to ensure that the
thief is able to take the victim’s work without tripping upon each other.

JavaTryCatchWS leveraged Jikes RVM’s yieldpoint mechanism to yield the victim
while each steal took place. The yieldpoint mechanism (Section 2.4.2.1, page 18) is
designed precisely for preemption of threads and has been highly optimized. When
a thief initiates a steal, it sets a yield bit in the victim’s runtime state. The next time
the victim executes a yieldpoint, it will see the yield bit and yield to the thief. The
JVM’s JIT compiler injects yieldpoints on method prologues and loop back edges,
tightly bounding the time it takes the victim to yield. Notwithstanding the efficiency
of the yieldpoint mechanism, this approach nonetheless requires the victim to yield
for the duration of the steal, whether or not the steal is successful.

To shed light on the dynamic costs due to stealing and further motivate our
design, we now measure 1) the steal rate (steals/msec), and 2) the overhead imposed
by the steal mechanism upon the victims. Since Chapter 4’s JavaTryCatchWS is our
baseline system here, we call it DefaultWS for the remainder of this chapter.

5.2.1 Steal Rate

The steal ratio is a common metric (Figure 5.1(a)) but is only one dimension of steal
overheads. We also measure the steal rate (steals per millisecond), which is shown
in Figure 5.1(b). This steal rate is calculated by dividing the total number of steals
by the benchmark execution time. This indicates how frequently we are forcing the
victim to execute the yieldpoint.

From Figure 5.1(a), we notice that the steal ratio for Jacobi and Barnes-Hut at
16 threads is as low as 0.0004 and 0.0002 respectively. However, their steal rate
(Figure 5.1(b)) are as high as 34 and 29 steals per millisecond respectively, with the
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Figure 5.1: Steal statistics for DefaultWS show that steal ratio and steal rate can significantly
differ across benchmarks. Jacobi and Barnes-Hut exhibit a low steal ratio at 16 threads, but
shows a high steal rate with same number of threads.
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Figure 5.2: The dynamic overhead of DefaultWS is strongly correlated with the steal rate
(Figure 5.1(b)). Jacobi has the highest steal rate and it has the highest dynamic overhead.

same number of threads. This result shows that even a benchmark with a very low
steal ratio can have a very high steal rate. In our next study we will explore how
high steal rates can affect the overall performance of the benchmarks.

5.2.2 Steal Overhead

In this study, we measure the cost of steals as imposed upon the victim by the thief.
We measure this by calculating the percentage of CPU cycles lost by the victim while
waiting for the thief to release it from the yieldpoint. For measuring the CPU cycles
utilized by the work-stealing threads, we use hardware performance counters. We
use the time stamp counter (TSC) [Intel Corporation, 1997] for measuring the cycles
lost by the victim waiting to be released from yieldpoint. These cycles are summed
for all the steals over the benchmark execution. The result in Figure 5.2 is calculated
by dividing these cycles by total program execution cycles obtained from hardware
performance counters as mentioned above.

By comparing this overhead, seen in Figure 5.2, with the steal rate in Figure 5.1(b),
we can see that higher steal rates correlate with higher overheads. The six benchmark,
which have noticeable dynamic overheads are: Jacobi, Barnes-Hut, LUD, FFT, CilkSort
and Integrate. The steal overhead is as much as 11.2% (Jacobi with 16 threads). The
remaining four benchmarks (Fib, NQueens, Matmul and UTS) have very small dy-
namic overheads (less than 0.6%). This study clearly shows that forcing the victim
to wait inside a yieldpoint at every steal is not an efficient strategy, especially for
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benchmarks with high steal rates.

5.3 Design and Implementation

The previous sections identified the problem of dynamic overhead in a work-stealing
runtime, highlighting the inefficiency of forcing the victim to wait inside a yieldpoint
each time an attempt is made to steal work from it. We approach the problem by
using a return barrier (Section 2.4.2.6, page 20), to ‘protect’ the victim from any thief,
which may be performing a steal lower down on the victim’s stack. The insight is
that the cost of the barrier is only incurred each time the victim unwinds past the
barrier. So long as the victim remains above the protected frame, it sees no cost at
all, and yet is fully protected from any thief stealing work lower down on the stack.

We now discuss the design and implementation of our return barrier, and the
modifications made to DefaultWS.

5.3.1 Return Barrier Implementation

We use a return barrier to ‘protect’ the victim from stumbling upon an active thief.
We do this by installing a return barrier above the stealable frames, allowing the
victim to ignore all steal activity that occurs below the frame in which the barrier is
installed. Only when the frame above the return barrier is unwound does the victim
need to consider the possibility of an active thief.

A naive implementation of a return barrier would require some (modest) code
to be executed upon every return, just as a write barrier is typically executed upon
every pointer update. Instead we use an approach similar to that of Yuasa [Yuasa
et al., 2002], where they used a return barrier to pause for garbage collection. We
hijack the return address for a given frame, redirecting it to point to a special return
barrier trampoline method, remembering the original return address in a separate
data structure. When the affected frame is unwound, the return takes execution to
our trampoline method rather than the caller of the returning frame. The trampoline
method executes the return barrier semantics (which may include re-installing the
return barrier at a lower frame), before returning to the correct calling frame (whose
address was remembered in a side data structure). This barrier has absolutely no
overhead in the common case, and only incurs a modest cost when the frame targeted
by the return barrier is unwound.

We can use the return barrier trampoline to protect the victim from active thieves
— ensuring that the victim never unwinds to a frame a thief is actively stealing. We
now discuss the general process of stealing work before detailing how we use the
return barrier to perform efficient work stealing.

5.3.2 Overview of Conventional Steal Process

Before describing our return barrier-based implementation, we outline the steps used
to perform a steal in the DefaultWS implementation. In this process the thief steals
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the oldest unstolen continuation from the victim.

1. The thief initiates a steal.

2. The victim yields execution at the next yieldpoint.

3. The thief performs a walk of the victim’s stack to find the oldest unstolen con-
tinuation frame.

4. The thief adjusts the return addresses of the callee of the stolen continuation to
ensure the unstolen callee is correctly joined with the stolen continuation upon
return.

5. The thief copies the frame of the stolen continuation and those of each of its
callers onto a secondary stack in the following steps:

• The thief links the copied frame on the secondary stack.

• The thief scans callee frames to capture any references pertinent to the
stolen frames. This is necessary due to a callee-save calling conventions
used by many compilers.

6. The victim resumes execution.

7. The thief throws a special exception, which has the effect of resuming its exe-
cution on the secondary stack (which is now its primary stack).

Notice that the victim must yield to the thief throughout steps 2 to 6. We now
discuss how the return barrier can be used to avoid such yields when possible.

5.3.3 Installing the First Return Barrier

Figure 5.3(a) depicts a typical snapshot of a victim’s execution stack. The stack frames
with stealable continuations are marked with a ‘*’ in this figure. The newly executed
methods occupy the stack frame slots on the top of the execution stack. Each stack
frame is recognized with the help of a frame pointer. The value stored inside this
pointer is the frame pointer of the last executed method. The other information of
interest to us is the return address, which holds the address where the control should
be transferred after unwinding to the caller frame.

Once the thief has decided to rob this victim, it first checks whether a return
barrier is already installed on the victim’s execution stack. If it discovers that there is
no return barrier installed, the thief then stops the victim by forcing it to execute
the yieldpoint mechanism (steal step 2). Once the victim has stopped, the thief
starts walking the stack frames to identify the oldest unstolen continuation (steal
step 3). In our example, the oldest unstolen continuation frame A. However, before
the thief reaches frame A, it notices that the first (newest) available continuation is
D. It installs a return barrier to intercept the return from method E to D. The return
address and return frame pointer in E is hijacked by the return barrier trampoline.
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The return address stored in E is changed to that of the return barrier trampoline
method. Figure 5.3(b) depicts the victim’s modified execution stack.

The victim holds two boolean fields stealInProgress and safeToUnwindBarrier, which
are now marked as true and false respectively by the thief. The flag stealInProgress is
marked as false at the end of steal step 5, whereas safeToUnwindBarrier is marked true
at the end of steal step 3. After installing the return barrier, the thief creates a clone
of the entire stack of the victim and then allows the victim to continue. The victim
continues the rest of its computation (frame E), oblivious to the activity of the thief,
while the thief proceeds further with the stack walk in steal step 3. However, the
thief now switches to the cloned stack of the victim.

5.3.4 Synchronization Between Thief and Victim During Steal Process

When the victim finishes executing method E, it returns via the trampoline method
of the return barrier. It checks whether safeToUnwindBarrier is true. In this example,
we assume it’s still false.

Apart from the above two boolean flags, the victim also has a fixed size address
array (we used size 20) to store frame pointers of its unstolen continuations. During
the stack walk up to frame A, the thief updates the victim’s frame pointer address
array with the frame pointers of C and B (unstolen continuations). However, in
reality there could be some unstealable frames in between stealable frames D–A. To
make the description simpler, we have chosen this layout. In cases where there are
more continuations than the victim’s address array size, the thief starts inserting the
surplus addresses from the middle index. After completing steal step 3, the thief
marks the flag safeToUnwindBarrier as true. The victim is now ready to unwind to
frame D.

There are situations when the frame D is the only unstolen continuation remain-
ing on victim’s stack. In this case the flag safeToUnwindBarrier will be marked as true
only at the end of steal step 5. In this case, the victim cannot continue in parallel to
the steal procedure so must wait on a condition variable until stealInProgress is false.

5.3.5 Victim Moves the Return Barrier

In our running example, the victim is now inside the return barrier trampoline
method. The thief has finished steal step 3 and marked safeToUnwindBarrier as true.
Frame C is the first frame pointer inside victim’s frame pointer address array. The
victim changes the position of the return barrier and re-installs on frame C. After
this the victim safely unwinds to frame D and starts execution of the method D.
Figure 5.3(c) shows this newly modified stack frame of the victim. It keeps on chang-
ing the return barrier position until the last available frame pointer in its address
array. Once the steal is complete, the thief sets the victim’s field stealInProgress to
false and signals the victim. The victim is now ready to branch to join its part of the
computation and become a thief itself.
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Hence, the return barrier allows the victim to continue its computation in parallel
to the thief’s steal steps 3–5.

5.3.6 Stealing From a Victim with Return Barrier Pre-installed

Once installed, the return barrier removes the need for the yieldpoint mechanism in
the steal step 2. Any thief that attempts to steal from a stack with the return barrier
installed simply marks the victim’s field stealInProgress as true and continues the rest
of the steal steps 3– 5 concurrently with the victim’s computation. The thief uses the
cloned stack of the victim (from the previous thief) to complete the rest of its steal
phases. We call this type of steal a free steal. There is no overhead imposed on the
victim (unless the victim waits inside trampoline).

5.4 Results

We begin our evaluation of return barriers by measuring the reduction in dynamic
overhead before evaluating the overall performance gain. We call our new system
ReturnBarrierWS in all further discussions below.

5.4.1 Dynamic Overhead

We measure the dynamic overhead of work stealing in both the DefaultWS imple-
mentation and ReturnBarrierWS implementation, which uses the return-barrier. Our
methodology remains the same as that used in Section 5.2.2; we use the TSC to accu-
rately measure the cycles spent waiting for steals and express that as a percentage of
total execution time.

Figure 5.4 shows the dynamic overhead in both systems as a function of the
number of worker threads. The results show that return barrier is very effective in
reducing the dynamic overhead across all benchmarks, especially as the parallelism
increases. For the benchmarks which have high steal rates (Figure 5.1(b)), the re-
duction in dynamic overhead with 16 threads is as follows: Jacobi by 29% (i.e. from
11.2% to 8%), in LUD by 24%, in Barnes-Hut by 30%, in FFT by 40%, in CilkSort by
46% and in Integrate by 30%. Similar trends hold even in the other four benchmarks,
which have low steal rates.

Now we explore how the use of the return barrier affects total steal. Figure 5.5
compares the total number of steals in ReturnBarrierWS relative to those in De-
faultWS. Values above 1.0 represent a higher number of steals in ReturnBarrierWS
than DefaultWS, and vice versa. We observe from this figure that with the excep-
tion of CilkSort (at all thread counts) and Barnes-Hut (low thread counts), all other
benchmarks exhibit similar number of steals in both systems. The higher number of
steals at low thread counts in Barnes-Hut show up in Figure 5.4(h) as nullifying the
return barrier advantage. On the other hand, the 15% reduction in steals in CilkSort
is consistent with the good result seen in Figure 5.4(g). From these results, it can be
seen that return barrier does not drastically change the total number of steals from
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Figure 5.6: Overhead of executing return barrier in victims. Barnes-Hut has the highest
overhead because of the high number of steals during its execution.

our baseline DefaultWS and also consistently reduces the dynamic overhead in all
benchmarks.

5.4.2 Overhead of Executing Return Barrier

We now examine the cost to each thread of using the return barrier. Recall that this
cost is only encountered when the stack unwinds to the point where a trampoline is
installed. The trampoline is executed and it will: a) either re-install itself on the next
unstolen continuation frame further down before returning to the hijacked frame;
or b) wait on a condition lock if there are no more unstolen continuations left and
the steal is still in progress. We measure this overhead by using a high-resolution
timer and timing the time spent performing this operation. Figure 5.6 shows this
overhead as a percentage of total program execution. With sixteen worker threads,
the maximum overhead is around 0.95% in Jacobi and the minimum is 0.02% in
NQueens. However, Barnes-Hut shows an overhead of 0.7% even with just 3 threads.

Figure 5.5(b), shows that Barnes-Hut has the highest number of steals. Even with
just three threads, there are around 95000 steals, whereas the next closest, LUD, has
just 8000 steals. More steals means more frequent trampoline visits by victims. This
combined with a shallow stack (Section 5.4.3) leads to Barnes-Hut showing the highest
overhead for the return barrier (max 1.1%).
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5.4.3 Free Steals From Return Barrier

Recall from Section 5.3.6 that return barriers allow thieves to perform some steals
for free. Figure 5.7 shows the percentage of steals that are free. UTS, CilkSort and
NQueens have the maximum number of free steals. As the thread count increases,
the percentage of free steels for these benchmarks converge close to 30%. Barnes-Hut,
LUD and Matmul have the lowest percentage (3.5%, 1.5% and 1.4% respectively).

A higher free steal count reflects the return barrier staying longer on the victim’s
stack. This tends to reflect the depth of the victim’s stack. A shallow stack will mean
that the victim will tend to more often unwound past the return barrier, meaning that
the thief tends to more often require the victim to execute the yieldpoint mechanism.
This reduces opportunities for the return barrier to reduce the dynamic overhead.
Figure 5.4 supports this conjecture. Barnes-Hut, LUD and Matmul benefit the least,
whereas UTS, CilkSort and NQueens benefit the most.
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5.4.4 Overall Work-Stealing Performance

The goal of this work was to reduce dynamic overheads, which are naturally most
evident when the level of parallelism is high. Now we explore how the use of the
return barrier affects overall performance when the number of threads grows to 16.

Figure 5.8 shows performance relative to DefaultWS for each of the benchmarks
on our 16 core machine. The time with n worker threads in ReturnBarrierWS is
normalized to the time for same n worker threads in DefaultWS. Anything above
1.0 is a benefit. We can expect benefits at high steal rates, which also happens as
parallelism increases. Jacobi reaches the 10% mark with 13 threads. With 16 threads,
Jacobi is 13% faster and FFT is 20% faster. CilkSort gets a maximum benefit of 5% (15
threads), whereas Integrate gets a maximum benefit of 6% (12 threads). For most of
the other benchmarks the benefit is below 2% and is not significant.

The absence of a performance improvement in LUD and Barnes-Hut is despite the
fact that their maximum dynamic overheads (close to 6%) are even higher than that
of FFT (3.5%). The reason for this is little improvement in their dynamic overheads
due to the presence of a shallow stack (Section 5.4.3). On the other hand, the re-
maining four benchmarks (Fib, NQueens, Matmul and UTS) already have very low
dynamic overhead in DefaultWS (Section 5.2.2). This results in no significant benefit
in performance even by reducing their dynamic overhead by a significant factor.

5.5 Related Work

5.5.1 Stealing overheads

In our work-stealing implementation, we steal only one task at a time as in X10,
Habanero-Java, ForkJoin and Cilk etc. Though stealing one task at a time has been
shown to be sufficient to optimize computation along the ‘critical path’ to within a
constant factor [Arora et al., 1998; Blumofe and Leiserson, 1999], several authors have
argued that the scheme can be improved by allowing multiple tasks to be stolen at
a time [Berenbrink et al., 2003; Dinan et al., 2009]. Dinan et al. [2009] demonstrate
that a ‘steal-half’ policy gave the best performance in their distributed setting. Steal-
ing multiple tasks in a distributed setting has proven to be better in several other
studies [Mitzenmacher, 1998; Lüling and Monien, 1993; Rudolph et al., 1991]. Cong
et al. [2008] explore the idea of adaptive task batching for irregular graph algorithms.
The thieves steal a batch of tasks at a time, where the batch size is determined adap-
tively. Several other authors have also argued that stealing multiple tasks works best
in irregular algorithms [Sanchez et al., 2010; Acar et al., 2013; Hoffmann and Rauber,
2011; Hendler and Shavit, 2002].

These studies show that stealing multiple tasks is better in two cases: a) when
performing work-stealing over a distributed setting, where the cost of stealing from
remote node is substantial and hence stealing multiple tasks amortizes the commu-
nication overhead; and b) in irregular problems, such as depth-first-search algorithm,
that do not fit into the divide-and-conquer model. However, not all the workloads are
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irregular in design nor do all follow the divide-and-conquer style algorithm, where
the steal one approach always works better in a non-distributed setting. Though
we have targeted divide-and-conquer style algorithms, our insight of using a return
barrier to reduce the cost of stealing will perform well in irregular algorithms as well.

As described in Section 4.6 (page 56), JavaTryCatchWS (our baseline system)
shares some similarity with Umatani et al. [2003]. Our return barrier implementa-
tion, ReturnBarrierWS also shares a similarity with that implementation. In Umatani
et al.’s system, when the victim’s stack is empty, it tries to get an unstolen heap frame
from its deque. This transition between stack to deque imitates a return barrier. For
the first steal, victim required synchronization and then again while fetching a heap
allocated frame. However, we use explicit return barriers as we treat the victim’s
execution stack as its implicit deque.

5.5.2 Return barriers

The return barrier mechanism was first used in [Hölzle et al., 1992] in the context of
debugging optimized code, to allow lazy dynamic deoptimization of the stack. It has
also been used in various garbage collector algorithms [Yuasa et al., 2002; Saiki et al.,
2005; Kliot et al., 2009]. Return barriers give Yuasa [1990] better realtime properties.
In this work, we exploit the return barrier mechanism to optimize the steal process.
To our knowledge, return barriers have not been applied to work-stealing until now.

5.6 Summary

This chapter further refines the high performance work-stealing framework Java-
TryCatchWS, which we proposed in the previous chapter for reducing the sequential
overheads of work-stealing. In this chapter, we identify the dynamic overheads of
work-stealing; those that increase with parallelism. Our evaluations suggest that
steal rate plays an important factor in determining the dynamic overheads. The
higher the steal rate, the higher is the dynamic overhead. We show that the highly
efficient yieldpoint mechanism to achieve synchronization between thief and victim
in JavaTryCatchWS leads to overheads at higher steal frequencies. This is because of
frequently stopping the victim to perform steal. We address this issue by exploiting
the idea of a low overhead return barrier. This new design reduces the dynamic over-
head by around 50% and achieves overall performance improvements of as much as
20%. Our design not only reduces the dynamic overhead across all benchmarks, but
also never negatively affects performance.

In the next chapter we design a high productivity parallel programming environ-
ment for naively achieving data-race free parallelism. To achieve scalability we use
the JavaTryCatchWS work-stealing framework and for ensuring data safety we use a
data-centric concurrency control mechanism.



Chapter 6

Performance and Productivity via
Data-Centric Atomicity and
Work-Stealing

The previous two chapters identified the sequential and dynamic overheads in work-
stealing runtime and introduced a high performance work-stealing framework – Ja-
vaTryCatchWS, which has very low overheads. This chapter presents an easy to use,
small set of annotations to the Java programming language for achieving data-race
free parallelism in real world problems, which otherwise is a monolithic exercise in
large code-bases. The annotations developed in this chapter significantly lower the
syntactic overhead of exposing parallelism and achieving data safety from concur-
rency.

This chapter is structured as follows: Section 6.2 discusses the motivation and
performs motivational analysis. Section 6.3 explains the design and implementation
of the new system. Section 6.4 discusses the improvements to productivity and per-
formance from this new system and finally Section 6.5 provides an overview of the
related work.

6.1 Introduction

Common programming models using threads impose significant complexity to or-
ganize code into multiple threads of control and to manage the balance of work
amongst threads to ensure good utilization of multiple cores. Much research has
been focused on developing programming models in which programmers simply
annotate portions of work that may be done concurrently and allow the system to
determine how the work can be executed efficiently and correctly. Concurrent object-
oriented models such as ICC++ (Section 2.2.3, page 9) have combined fine-grained
elective concurrency and object-oriented concurrency control in an effort to address
these issues.

Models such as those offered by ICC++ provide flexibility for programmers but
impose two major implementation challenges: a) object-oriented concurrency con-
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trol can have high overheads if the programmer uses naively with extensive object-
level locking; and b) potential concurrency annotations encourage a fine-grained
division of work that would impose a great overhead if implemented directly as
OS-level threads. To address these challenges we take a two fold approach: a) we
use the data-centric programmer-declared consistency requirements from AJ (Sec-
tion 2.2.3.1, page 10) to achieve concurrency control; and b) we use JavaTryCatchWS
work-stealing framework to efficiently handle fine-grained parallelism.

The principal contribution in this chapter is a new system, which by drawing to-
gether these two techniques, allows the application programmer to conveniently and
succinctly expose the parallelism inherent in their program in a main-stream object-
oriented language. We develop a set of five annotations in the Java programming
language to express parallelism and data-centric concurrency control. We further de-
sign a new system, which can translate this expression of parallelism into a form that
can be efficiently executed by the JavaTryCatchWS work-stealing framework. To eval-
uate this new system, we modify three large existing parallel Java workloads. The
results of this evaluation show that the proposed annotations allow software paral-
lelism to be expressed concisely and that once expressed as fine grained parallel work
units, the runtime can effectively exploit the hardware parallelism offered by modern
multicore processors. Compared to Java’s conventional object-oriented concurrency
primitives, our annotations-based approach significantly lowers the syntactic over-
head, and delivers significant performance and scalability improvements, of 40% –
53%.

6.2 Motivation and Motivating Analysis

Java has gained huge popularity over the last decade and has become one of the
most widely used languages [Meyerovich and Rabkin, 2013]. However, mainstream
languages such as Java do not provide support for parallel programming that is both
easy to use and efficient. Expressing parallelism with either threads or with ex-
tensions such as Java’s concurrent utilities has a significant syntactic overhead with
respect to the serial elision (Section 3.1.1, page 25) version of the same code. In addi-
tion to the syntactic imposition, there is a substantial cognitive load associated with
ensuring correctness of parallel code. This becomes a monolithic exercise in a large
code-base, which may have dependencies spanning multiple classes. Vaziri et al.
introduced the idea of data-centric concurrency control in Java, which significantly
reduces the programming effort in managing concurrency issues [Vaziri et al., 2006].
Later, Dolby et al. [2012] extended this idea and evaluated against a large number of
real world benchmarks. Their implementation was implemented via IDE-integrated
refactoring of Java classes with data-centric annotations provided within Java com-
ments. However, their implementation was limited to applications that use explicit
Java threading.

With respect to parallel efficiency, work-stealing has gained lot of popularity be-
cause it relieves the programmer from using explicit threading and worrying about



§6.2 Motivation and Motivating Analysis 83

All Code Parallel Portion
Synchronized Parallel LOC

Benchmark Files Blocks Files Regions Files Overhead

lusearch-fix 332 351 41 4 2 25%
jMetal 335 11 5 6 7 15%

JTransforms 44 0 0 372 24 16%

Table 6.1: Expressing parallelism in conventional Java has a major impact on how programs
are written. For each of our three benchmarks we show, from left to right: a) the total number
of class files; b) the total number of synchronized blocks and methods; c) the total number
of files containing the synchronized keyword; d) the number of code fragments that express
parallelism; e) the number of files containing explicitly parallel code; and f) the lines-of-code
(LOC) overhead due to parallelism constructs within this code.

load-balancing. Java concurrent utilities provide an Executer interface, which uses
Java ForkJoin work-stealing internally. However, to use these utilities the program-
mer must significantly modify the serial elision version of the code. Alternatively, the
new breed of high-level languages like X10 (Section 2.2.1.1, page 6), aim to improve
programmer productivity by providing built-in language constructs for expressing
parallelism (e.g. the finish-async idiom). These constructs are translated from se-
quential code to parallel code via compiler transformations. Languages like X10 are
currently not yet in the mainstream. Moreover, as observed in Chapter 4, current
implementations of work-stealing for managed languages incur serious overheads.

Our approach, which we describe in Section 6.3, is to improve both produc-
tivity and performance by combining the data-centric programming model offered
by Dolby et al. [2012] with the fine-grained work stealing made efficient by Java-
TryCatchWS.

We start our motivating analysis with Table 6.1, which provides a basic evaluation
of the syntactic load of different approaches to race-free parallelism. Because our
goal is to show productivity with performance, we have targeted three benchmarks
with large codebases that addresses real world problems (lusearch-fix, jMetal and
JTransforms; Section 3.1 (page 23)). We view syntactic overhead as an indicator of
ease of programming and thus productivity. The three leftmost columns provide
statistics with respect to the entire code base for each benchmark, showing the total
number of files and the prevalence of the synchronized keyword.

From Table 6.1, lusearch-fix has the largest number of synchronized blocks/meth-
ods. jMetal provides parallel implementation for only a subset of its code, hence the
total number of synchronized is only 11. On the other hand, JTransforms provides
a lock free parallel implementation, which is rare among real world benchmarks.
Among the files included in lusearch-fix, two are the core of the benchmark which ex-
plicitly consider parallel execution of queries, while the remaining 330 are the Lucene
library (Section 3.1 (page 23)), which account for 349 out of the 351 synchronized
calls. When writing large libraries like this, programmers must keep track of all
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fields that are prone to data races. Missing any of them may be disastrous. Similarly,
overuse of synchronized keywords is also undesirable as it will hamper parallel
performance.

The three rightmost columns of Table 6.1 are with respect to the portion of the
benchmark that is explicitly concerned with parallelism. In the case of lusearch-fix
and jMetal, only a small portion of the code base is explicitly concerned with parallel
execution. For example, in lusearch-fix there are just two classes which are concerned
with the parallel distribution of work for a query. Of course the remaining 330
classes were written with concurrency in mind, so we see that there are many uses
of the synchronized keyword in that non-parallel portion of the codebase. On the
other hand, JTransforms has a large number of classes concerned with parallel work
distribution. The LOC overhead is calculated by serializing the parallel portion of
the benchmark. We do this by removing all parallel constructs. We then measure the
LOC overhead by comparing parallel and serial versions of the code. For example, in
lusearch-fix, the serial version has 448 LOC while the parallel version 601 LOC, which
is a 25% overhead.

Table 6.1 shows that the maximum number of parallel code blocks occur inside
JTransforms, followed by jMetal and lusearch-fix. JTransforms completely relies on
java.util.concurrent.Future interfaces, whereas jMetal uses both Java threads
and java.util.concurrent.Executer interface. lusearch-fix only uses explicit thread-
ing. For using either work-stealing via java.util.concurrent.* or explicit thread-
ing the programmer has to modify their serial elision code. The total percentage
of extra code added to the serial elision version is an indicator of the parallel pro-
gramming effort. From Table 6.1, we can observe that it ranges between 15% to 25%
among our three benchmarks. The effort expended on parallelization varies among
benchmarks, but for benchmarks like JTransforms, where there are 372 parallel blocks,
introducing parallelism requires very significant code changes and is a daunting task
for the programmer.

This study shows that to achieve parallelism in a large code base, serious pro-
gramming effort is required. Ensuring atomicity further adds to programmer’s pain.

6.3 Design and Implementation

The previous section identified shortcomings in current implementations of modern
high-level language such as Java with respect to both concurrency control and the
expression of parallelism. Data-centric concurrency control annotations as used in
the AJ language provide an elegant solution for concurrency control and have been
demonstrated to be very effective [Dolby et al., 2012]. However, AJ is limited to
programs that use explicit Java threading to express parallelism, which leaves the
programmer with the significant burden of efficiently balancing work on modern
multicore hardware. On the other hand work-stealing offers a means of express-
ing parallelism that carries a lower syntactic load which may improve programmer
productivity, as well as offering high performance and natural load-balancing.
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Our contribution is to identify the principal benefits of JavaTryCatchWS work-
stealing framework and data-centric concurrency control respectively, and then bring
those together into a single, simple framework within Java that combines data-centric
concurrency control with the high performance work-stealing implementation. We
call this language AJWS — Atomic Java with Work-Stealing.

We now discuss the design and implementation of AJWS.

6.3.1 Annotations in AJWS

AJWS provides three annotations for data-centric concurrency control and two an-
notations for expressing parallelism with work-stealing. The five annotations are as
following:

@AtomicSet(a) This annotation declares a new atomic set, a, just as ‘atomicset a’
does in AJ.

@Atomic(a) i This annotation identifies i as a member of atomic set a. This anno-
tation may be applied to: a) variable declarations, b) parameter declarations,
and c) return types. This annotation subsumes the roles of AJ’s ‘atomic(a)’
and ‘unifor(a)’ annotations.

@AliasAtomicSet(a=this.b) This annotation aliases set b to a, just as the ‘|a=this.b|’
annotation does in AJ.

@Steal{S1; S2; ...} This annotation declares that statements S1, S2, ... may be
executed in parallel. The current implementation of AJWS limits statements
to method calls and for loops. Methods are each executed as stealable con-
tinuations and for loops are decomposed into parallel for loops, with each
iteration executed as a continuation. This provides similar semantics to async
in X10 (Figure 2.3(a), page 12).

@SyncSteal{...} This annotation provides synchronization for parallel execution;
all continuations declared (via @Steal) within the block must complete before
any thread leaves the @SyncSteal. This is very similar to finish in X10 (Fig-
ure 2.3(a), page 12).

Before we dive into the implementation details, we first use Figure 6.1 to show a
sample of code written in AJWS. The example demonstrates the common case of for
loop parallelism. In this example, the programmer has used the @Steal annotation
in line 17 to identify that the iterations of the loop in lines 19 to 22 may be executed in
parallel. Every for loop iteration will perform some computation by calling method
something() (line 19). This method returns an integer value containing the result
of the computation. If the return value is not zero, the status counter within class
Sample will be incremented by calling the method inc() (line 21). However, this
increment should be performed atomically. To achieve this, the declaration of field
status is annotated as a member of the atomic set a using the @Atomic annotation
(line 3). The atomic set a is declared in line 2 via the @AtomicSet(a) annotation.
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1 public class Sample {
2 @Atomicset(a);
3 @Atomic(a) private int status;
4 public int get() {
5 return status;
6 }
7 private void inc() {
8 status++;
9 }

10 private int something() {
11 int res=0;
12 // do something
13 return res;
14 }
15 public void compute(int size) {
16 @SyncSteal {
17 @Steal {
18 for(int i=0; i<size; i++) {
19 int res = something();
20 if(res != 0) {
21 inc();
22 }
23 }
24 }
25 }
26 }
27 public static void main(String[] args) {
28 Sample s = new Sample();
29 s.compute(100);
30 System.out.println("Status="+s.get());
31 }
32 }

Figure 6.1: Sample code written in AJWS, showing a simple example of for loop parallelism.



§6.3 Design and Implementation 87

1 public class Sample implements atomicsets.Atomic {
2 private int status;
3 protected final OrderedLock locka;
4 public final OrderedLock getLockFora() {
5 return locka;
6 }
7 public final OrderedLock getLock() {
8 return this.getLockFora();
9 }

10 public Sample() {
11 this(new OrderedLock());
12 }
13 public Sample(OrderedLock a) {
14 super();
15 locka = a;
16 }
17 public int get(){
18 synchronized(locka) {
19 return status;
20 }
21 }
22 public int get_internal(){
23 return status;
24 }
25 private void inc(){
26 synchronized(locka) {
27 status++;
28 }
29 }
30 private void inc_internal(){
31 status++;
32 }
33 private int something(){
34 int res;
35 // do something
36 return res;
37 }
38 private int something_internal(){
39 int res = 0;
40 // do something
41 return res;
42 }

43 public void compute(int size){
44 try {
45 dcFor(0, size, 1, size);
46 Runtime.finish();
47 } catch(ExceptionFinish ff) {}
48 }
49 private void dcFor(int lower,int upper,
50 int slice, int size) {
51 final int threads = Runtime.threads;
52 if (slice >> 2 < threads) {
53 int var0 = lower + upper >> 1;
54 int var1 = slice << 1;
55 try {
56 Runtime.continuationAvailable();
57 dcFor(lower, var0, var1, size);
58 Runtime.checkIfContinuationStolen();
59 }
60 catch (ExceptionEntryThief t){}
61 dcFor(var0, upper, var1, size);
62 } else {
63 for (int i=lower; i<upper; i++) {
64 int res = something();
65 if(res != 0) {
66 inc();
67 }
68 }
69 }
70 }
71 public static void main(String[] args){
72 Sample s = new Sample();
73 s.compute(100);
74 System.out.println("Status="+s.get());
75 }
76 /* end of class Sample */

Figure 6.2: AJWS compiles AJWS code to vanilla Java, much like JavaTryCatchWS. The code
above shows the vanilla Java translation of the AJWS example from Figure 6.1.
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AJWS translates the annotated Java code to vanilla Java in much the same way
that JavaTryCatchWS does, producing a very efficient work-stealing implementation.
The translated Java code from this source is shown in Figure 6.2. We have inten-
tionally selected the for loop parallelism in this example because it is perhaps the
most important expression of parallelism. We found that all our benchmarks have
the for loop parallelism only. We will use these two figures to help understand our
implementation, which we now explain below.

6.3.2 Translating AJWS to Java

Dolby et al. [2012] performed translation from AJ to Java using Eclipse refactor-
ing [Petito, 2007]. The data-centric annotations were expressed as Java comments
in the program, which were translated to Java by launching the refactoring via the
Eclipse IDE. However, this implementation has some shortcomings, notably: a) ex-
pressing AJ annotations as Java comments is not as expressive as standard annota-
tions provided by Java; and b) AJ is dependent on Eclipse and a heavy refactoring
process. Due to these shortcomings we take an alternative approach for translating
AJWS to vanilla Java.

We use JastAdd [Ekman and Hedin, 2007], an extensible Java compiler to perform
the translation of AJWS to vanilla Java. The benefits of using JastAdd are: a) AJWS
annotations can be expressed as standard Java annotations; b) JastAdd provides an
easy to use interface for extending the Java programming language, making the im-
plementation of AJWS fairly straightforward; and c) AJWS can be straightforwardly
integrated into build processes, allowing AJWS to be used in large codebases easily
(Section 6.3.3). We will now discuss how we have used JastAdd to support AJWS.

6.3.2.1 Translating Concurrency Control Annotations to Java

The semantics of AJWS concurrency control are very close to those of AJ (Sec-
tion 2.2.3.1, page 10), so we follow a similar pattern in performing our rewrites,
although we use a quite different framework. We perform the Java rewrite [Ek-
man, 2004] via various AST classes in JastAdd, such as, VariableDeclaration,
MethodAccess, Block, ClassDeclaration, TypeDeclaration, MethodDeclaration
and ConstructorDeclaration. During the parsing phase, we maintain a list of
atomic sets declared in each class. As in AJ, AJWS is currently limited to one atomic
set per class and all of its subclasses. The OrderedLock object (Figure 6.2, lines 3–9)
and constructor declarations (Figure 6.2, lines 10–16) are generated just as in AJ.

To generate a method declaration an analysis is first performed to find whether
there are any atomic fields in the method’s body. If there is an atomic access, then
two versions of the method are generated (Figure 6.2, lines 17–24), a synchronized
version and a lock-free version, which has the _internal suffix, following Dolby et
al.’s naming. The unsynchronized _internal version of the method always calls an
_internal version of any method.

When generating the default (synchronized) version of the method, unlike AJ,
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our implementation must allow the method to perform work-stealing. The default
version of this method will try wrapping statements inside synchronized blocks.
This method might call some other method which has work-stealing annotations. In
that case only a non-_internal version of that method is called and also without
any synchronized block (Figure 6.2, line 66). We assume that when the programmer
uses a work-stealing annotation they understand that the entire parallel code block
can never be performed atomically. In the case of non-work-stealing methods, the
default version of our method will start the scope of synchronized block the first
time it encounters a statement having any atomic access (Figure 6.2, line 26). It then
performs an analysis to check how many more statements are dependent on this
same type of atomic access. The scope of the synchronized block is closed as soon
as the last statement (having atomic access) is reached from the previous analysis
(Figure 6.2, line 28).

We suspend the work-stealing on a victim for the duration it is executing the
critical-section (code within synchronized block). The reason for this approach is:
(a) it does not makes sense to create a continuation within a synchronized block;
and (b) we assume that the synchronized code block is not compute intensive and
takes only few cycles to complete. Hence, in AJWS the victim turn-off work-stealing
as soon as it enters a synchronized block. The work-stealing is turn-on once the
victim is outside the synchronized block. The only drawback in this approach is
starvation of thieves when this victim has continuations in his caller frames (not
belonging to current synchronized scope). In our benchmarks, the synchronized
blocks are very small (mostly counter update codes) and hence completes quickly.

6.3.2.2 Translating Work-Stealing Annotations to Java

The work-stealing code block in our example involves a for loop (Figure 6.1, lines 18).
From our real world benchmarks we found that they all use only for loop paral-
lelism. For this, they either generate explicit threads or use Java concurrent utilities.
In either case they have to divide the load of the for loop equally among the total
threads. This is inefficient, both in terms of productivity and load-balancing. We bor-
row ideas from the implementation of work-stealing in X10 from Tardieu et al. [2012]
and use a divide and conquer style dcFor method corresponding to this for loop
(Figure 6.2, line 45). This dcFor method finally uses JavaTryCatchWS (Figure 6.2,
lines 44–47 and lines 55–60). This dcFor is valid only for basic for loops. If the
increment of variable i++ is performed in some other way, then this dcFor would
fail. Hence, for those cases JavaTryCatchWS is used without converting the for loop
to dcFor method. From our experience with our benchmarks, we found that all of
them use this basic looping only, so are amenable to this transformation.

6.3.3 Build Integration

Using JastAdd gives us the benefit of AJWS being integrated into standard build tools
such as Ant. Before javac is invoked, we use JastAdd to translate AJWS to Java. The
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Default Work-Stealing Annotations
Benchmark Files Regions o/h Files Regions o/h

lusearch-fix 2 4 25% 5 9 3%
jMetal 7 6 15% 28 34 2%

JTransforms 24 372 16% 24 276 3%

Table 6.2: The syntactic overhead of using AJWS’s work-stealing annotations to express
parallelism. For both default and work-stealing implementations, we show the number of
affected files, the number of affected code blocks and the overhead in lines of code. For all
three benchmarks, parallelism can be expressed substantially more succinctly using work-
stealing.

JastAdd translation can be trivially parallelized. Since AJWS may have been used
in several files in a large project, we have parallelized the AJWS translation. We use
a script, which calculates the set of files in the project that use our annotations. It
performs parallel translation, as the translation of files are not dependent on each
other. Finally the translated files can be compiled using javac. This makes the
integration of AJWS into large projects straightforward.

6.4 Results

We now evaluate both the programmatic and performance impact of AJWS. We begin
the evaluation by measuring the reduction in programming effort, first with respect
to parallelism, then with respect to atomicity. We evaluate the performance impact by
first measuring the sequential overhead (i.e. the increase in single-core execution time
due to transformations to expose parallelism), and then by measuring the parallel
performance of AJWS.

6.4.1 Programmer Effort

We start our evaluation by measuring the syntactic overhead associated with AJWS
compared to existing alternatives for Java. In each case we use the same methodology
as we used in our motivating analysis (Section 6.2), measuring the number of lines of
code required to correctly express parallelism and concurrency control respectively,
using serial elision as a baseline.

6.4.1.1 Expressing Parallelism

To explore how parallelism is expressed, we evaluate the syntactic overhead of using
our work-stealing annotations to express parallelism and compare to the default im-
plementation of parallelism, and serial elision versions of each benchmark. Table 6.2
shows that in terms of lines of code, the programmatic impact of using work stealing
to express parallelism is about one fifth that of the default implementations.
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Default Data-Centric Concurrency Annotations
Benchmark Syncs Files @AtomicSet @Atomic @AliasAtomic Total Files

lusearch-fix 351 41 35 17 95 147 43
jMetal 11 5 3 1 8 12 6

JTransforms – – – – – – –

Table 6.3: The syntactic overhead of using AJWS’s data-centric annotations on our three
benchmarks. JTransforms is lock-free, so there is no overhead for either approach. For jMetal
there is a very small increase in lines of code, and for lusearch-fix, the overhead in lines of
code is about half that of the default which uses the synchronized keyword.

In both lusearch-fix and jMetal, we have introduced parallelism in more places
than the default implementation of the benchmarks. We modified lusearch-fix to
use parallelism at five extra places inside Lucene while jMetal has been parallelized
at 28 more places than its default implementations. JTransforms is already heavily
parallelized in its default implementation. We removed some parallelism as we found
some computations were too small to be parallelized. Irrespective of this, we used
our work-stealing annotations at 276 places in JTransforms. Despite this heavy usage,
the average overhead in lines of code for using the work-stealing annotations in all
our benchmarks is just 3%.

6.4.1.2 Concurrency Control

We now turn to concurrency control and look at the impact of moving from Java’s
use of locks and critical sections via the synchronized keyword to our annotations,
which implement data-centric concurrency control. Table 6.3 shows the metrics for
code changes related to the data centric annotations. Because JTransforms implements
a lock-free algorithm, it does not use any explicit concurrency control mechanisms.

In lusearch-fix we needed only half as many data-centric annotations as the num-
ber of synchronized statements used in the default implementation. Usage of each
of the three data-centric annotations is explained in Section 2.2.3.1 (page 10). We
found one file in Lucene had 87 occurrences of synchronized keyword; almost ev-
ery method was synchronized. However, with our implementation this file required
just one @AtomicSet annotation for entire class. Our compiler can understand this
hint and generate a synchronized version of any method that accesses any of the
class fields. Not all classes are build like this, so in other cases we use @Atomic an-
notations as well. Lucene is a big project and has several interdependencies among
files. We use @AliasAtomic annotations at 95 places to ensure we don’t try acquiring
locks from other classes unnecessarily.

Recall that we introduced parallelism in more places than the default implemen-
tation. This does not affect lusearch-fix, but does slightly affect jMetal. To ensure
concurrent access to shared data, we had to use annotations at more places. Due to
this jMetal has one extra concurrency annotation.
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Figure 6.3: The sequential overheads associated with parallelism. Error bars indicate 95%
confidence intervals. For lusearch-fix, the cost of introducing parallelism is around 7-8% for
both the default Java implementation and AJWS. For jMetal, the performance overhead of
introducing parallelism is around 50% for the default implementation and 20% for AJWS.
We did not observe any performance overhead associated with parallelism in JTransforms.

6.4.2 Performance Evaluation

We now turn to performance evaluation. We first consider the sequential overhead,
which measures the performance impact of adding parallelism to a program, evalu-
ated by executing the parallel program with just a single thread and comparing it to
the serial elision version of the program. We then consider parallel performance, where
we evaluate the scalability of parallel programs, comparing AJWS with default imple-
mentations of parallelism. As in previous chapters, we wanted to eliminate memory
management as a primary consideration to ensure our evaluation focused on the
parallelism of the application rather than the scalability of the GC. Hence, we report
mutator time only in all the performance related measurements.

6.4.2.1 Sequential Overhead

To evaluate the sequential overheads in AJWS, we use the same methodology as
in Section 4.2.1 (page 28). Figure 6.3 shows the sequential overhead for each of
our benchmarks. Y-axis values greater than 1.0 show this overhead. Our AJWS
enjoys a low sequential overhead, like JavaTryCatchWS (Section 4.5.1, page 41), which
it builds upon. JTransforms did not have any sequential overhead in either of the
systems, hence it does not show up in the figure.
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1 Collection<Callable<Task>> task_list = new ArrayList<Callable<Task>>();
2 // create fixed thread pool
3 ExecutorService executor = Executors.newFixedThreadPool(total_threads) ;
4 for (int i = 0; i < total_tasks; i++) {
5 task_i = new Task(); // allocate task
6 task_list.add(task_i); // grow task list
7 }
8 executor.invokeAll(task_list); // submit tasks to the thread pool

(a) Parallelism in jMetal. Here tasks are eagerly created. It is the job of the Java
ForkJoin work-stealing runtime to ensure proper task scheduling. Task initiation
and state management (Section 4.2.1, page 28) adds to the sequential overhead.

1 Future<?>[] futures = new Future[total_threads];
2 for (int i = 0; i < total_threads; i++) {
3 futures[i] = ConcurrencyUtils.submit(new Runnable() {
4 public void run() {
5 // divide total work among each thread
6 }
7 });
8 }

(b) Parallelism in JTransforms. Here the parallelism is more like a threading ap-
proach. Total number of asynchronous tasks created depends on the available
thread pool size. This approach will have almost zero sequential overheads.

Figure 6.4: Pseudocode showing the style of parallelism in default implementations of jMetal
and JTransforms.

Benchmark Default AJWS

lusearch-fix 2 2
jMetal 5 4

JTransforms 372 276

Table 6.4: Use of parallel regions that are exercised during execution of each of the bench-
marks. For lusearch-fix and jMetal, this is substantially lower than the total number of parallel
regions in the benchmark code bases (compare to Table 6.2), while for JTransforms, the number
is slightly reduced.

JTransforms has an extremely large number of parallel regions but still it does not
encounter any sequential overhead. To understand this we look to Figure 6.4. This
figure shows the style of parallelism in default implementations of jMetal and JTrans-
forms. jMetal (Figure 6.4(a)) takes the approach of dividing the entire computation
into small tasks. These tasks are submitted to the Java ForkJoin thread pool via the
ExecutorService interface in Java 7. Recall from Section 4.2.1 (page 28), that this
approach encounters sequential overhead due to task initiation and state manage-
ment. However, JTransforms (Figure 6.4(b)) does not eagerly divide the computation
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into small tasks. It divides the computation equally among the available threads. In
Figure 6.3, the default implementation of JTransforms has been executed with only
one thread, hence it performs similar to the serial elision. Despite the zero sequential
overhead, this approach to harnessing parallelism in default JTransforms suffers in
scalability (discussed in next section).

6.4.2.2 Parallel Performance

We now examine the parallel performance of AJWS. In Table 6.2, we identified the
syntactic overhead of parallelism constructs on the entire code base of each of the
three benchmarks we evaluate. In Table 6.4 we list the number of parallel regions
within the portion of each codebase that is actually exercised when executing the
benchmark, for both the default implementation and AJWS.

In Figure 6.5 we show the speedup of each benchmark in both the systems against
their serial elision version, as the number of available cores increases from one to six-
teen. In each case AJWS delivers substantially better performance than default Java
implementations, and better scalability. It is important to remember that in the case
of lusearch-fix and jMetal, the default implementation is a mature, well tuned paral-
lel Java implementation (default implementation of JTransforms being the exception,
which is discussed at the end of this section).

The AJWS implementation of lusearch-fix achieves a maximum speedup of 8.5⇥
as compared to a maximum of 5.2⇥ in the default implementation. To determine
whether our concurrency control annotations were hampering performance, we also
measure the speedup of the JavaTryCatchWS version of lusearch-fix. The performance
and speedup of this implementation is similar to AJWS, demonstrating that concur-
rency annotations do not hamper the performance.

We were unable to run the default implementation of jMetal beyond 11 threads.
This benchmark does not have a high degree of parallelism and hence we do not see
any speedup benefit beyond 7 threads. jMetal achieves a maximum speedup of 4.5⇥
in AJWS as compared to 3⇥ in the default implementation. JTransforms shows very
interesting results. The default implementation does not scale at all. With AJWS,
JTransforms does exhibit modest speedup. It is able to achieve a maximum speedup
of 2.4⇥ against 1.1⇥ in the default implementation.

To achieve parallelism using explicit threading, the programmer is required to
divide the entire workload among the available threads at the program launch (e.g.
lusearch-fix). However, when some threads finish their work sooner than others, they
will be starved. This does not happen in a work-stealing implementation as they
aim to ensure that sufficient tasks are created to keep all threads busy. However,
in practice only a few of these tasks are actually stolen. A low ratio of total tasks
stolen to total tasks created (the steal ratio) is highly desirable to ensure proper load-
balancing. Figure 6.6 shows the steal ratio for our benchmarks on AJWS. It is very
clear that AJWS also ensures a low steal ratio for almost all the benchmarks and rang-
ing between 0.003 (lusearch-fix with 2 threads) to 0.341 (JTransforms with 16 threads).
The steal ratio in JTransforms is on the higher side, which suggests — very limited
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Figure 6.5: (Cont.) Speedup over serial elision version for both the Default and AJWS imple-
mentations. Only lusearch-fix is also evaluated over JavaTryCatchWS to determine whether
our concurrency control annotations were hampering performance.
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A higher steal ratio in JTransforms suggests the presence of very limited amount of paral-
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§6.5 Related Work 97

parallelism in its parallel regions. Due to this and a threading-like approach for par-
allelism (Figure 6.4(b)) there is no speedup in default implementation of JTransforms
(Figure 6.5(b)).

6.5 Related Work

Attempting to create systems that provide a high-level interface to parallelism has a
long history that predates current hardware trends. The actor model [Agha, 1986]
was instantiated in many languages, such as the ABCL [Yonezawa, 1990] family, and
there have been numerous efforts to blend object-oriented features with parallelism
(see, for instance, this survey that covers just C++ [Wilson, 1996]). This work has
received new impetus due to increasing hardware parallelism, giving rise to recent
high-level languages like X10 (Section 2.2.1.1, page 6) and Chapel [Chamberlain et al.,
2007]. However, while some of these languages attempted to interoperate with ex-
isting languages, they have not become mainstream. In contrast, the focus in this
chapter has been on defining a small set of extensions for parallelism and synchro-
nization that exist in a mainstream language, leveraging both existing code and also
existing runtime mechanisms with minimal change.

Habanero-Java (Section 2.2.1.2, page 7), which was evolved from early versions
of X10, shares some commonality with AJWS. Both Habanero-Java and AJWS use
work-stealing for task parallelism. However, as we saw in Chapter 4, Habanero-
Java work-stealing has serious sequential overheads and hence does not perform
as good as JavaTryCatchWS work-stealing. Habanero-Java also differs significantly
in its handling of concurrency control. Habanero-Java programs can either use
java.util.concurrent.locks or the isolated construct to ensure atomicity. This
is similar to atomic and when constructs in the X10 language [Saraswat et al., 2011].
However, just like synchronized, these need to be explicitly inserted in all necessary
portions of code by the programmer, by strong contrast to the data-centric synchro-
nization of AJ and AJWS.

Recently, Habanero-Java introduced a unified concurrent programming model,
which combines the Actor model [Agha, 1986] with the finish-async task paral-
lelism [Imam and Sarkar, 2012]. Their proposed model aims to combine the no-
shared mutable state and the event-driven philosophy of the Actor model with the
divide-and-conquer approach of the finish-async model. The key idea in an Actor
model is to encapsulate mutable states and use asynchronous messaging to coordi-
nate activities among Actors (the central entity, which determines how computation
proceeds). However, an Actor model suffers overheads for: a) message delivery;
and b) contention on the mailbox (a shared resource). This was observed by Imam
et. al. [Imam and Sarkar, 2012], although their implementation is much faster than
other Java based Actor frameworks such as Akka [Akka Team, 2013], Jetlang [Rettig,
2013] and Kilim [Srinivasan and Mycroft, 2008]. Habanero-Java also provides a dy-
namic data-race detector tool [Raman et al., 2012] which can be used to determine
correctness.
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We rely on compile time decisions to discover data-races and generate atomic
blocks. This ensures no runtime overhead to discover and rectify data-races. Combin-
ing this approach with a high performance implementation of work-stealing further
promises both performance and productivity.

6.6 Summary

Despite their huge popularity, mainstream languages like Java lag in terms of produc-
tivity and performance in the face of large scale parallelism. This chapter discusses
this issue in details by evaluating three well matured open sourced benchmarks,
which are also having a large codebase. We propose a small set of five annotations in
Java programming language. Our new system, AJWS described in this chapter, trans-
lates these annotations from a regular sequential Java program into a parallel pro-
gram that uses data-centric concurrency and JavaTryCatchWS work-stealing frame-
work. We evaluate this system against the default implementation of each bench-
mark. The results demonstrate that these five annotations are extremely effective
in reducing the syntactic overhead of parallel and concurrent constructs, enhancing
programmer productivity, an important consideration given current hardware trends.
The results also show that JavaTryCatchWS work-stealing can significantly boost per-
formance relative to existing parallel Java implementations in the face of increasing
core counts.



Chapter 7

Conclusion

Development costs and increasing hardware complexities have pushed the software
community away from low-level programming languages towards high-level lan-
guages. These languages generally use a managed runtime to achieve portability
and productivity over different hardware. However, while these managed languages
abstract over hardware complexity, their performance is significantly low and will
not improve greatly unless they are able to exploit increasing hardware parallelism.

This thesis explores the challenge of achieving high performance parallelism in
managed languages, and harnessing rich features of modern managed runtimes,
together with alterations to language design, to solve this challenge.

We present a quantitative analysis of the performance of the work-stealing schedul-
ing technique, a popular approach for exploiting software parallelism on parallel
hardware. We show that the substantial sequential and dynamic overheads of work-
stealing can be greatly mitigated by exploiting and repurposing runtime mechanisms
already available within managed runtimes.

We identify three key components that contribute to the sequential overheads
of work-stealing, namely, a) initiation, b) state management, and c) termination of
parallel tasks. To address these sources of overheads, we implemented two efficient
work-stealing designs using key features from Java virtual machine such as: the
yieldpoint mechanism, dynamic code-patching, on-stack replacement, and exception
handling support. Using these techniques, the fastest design developed in this the-
sis has a sequential overhead of just 10%, as compared to 195% in X10, 448% in
Habanero-Java and 124% in Java ForkJoin.

We identify that despite the efficiency of the yieldpoint mechanism, it could lead
to dynamic overheads in work-stealing. This is because of frequent synchronizations
between victim and thief. To lower this overhead, we exploited the idea of a low
overhead return barrier to approximately halve the dynamic overhead and achieve
overall performance improvements of as much as 20%.

The above work was done in X10, which is not yet a mainstream language. To
ease the use of this highly efficient work-stealing framework in Java programming
language, we developed a set of five Java annotations. These annotations facilitate
translation of a regular sequential Java program into a parallel program that uses
data-centric concurrency and our low overhead work-stealing framework. Our eval-
uation of this system against real world problems demonstrates that these five an-
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notations are extremely effective in reducing the syntactic overhead of parallel and
concurrent constructs, enhancing programmer productivity, an important considera-
tion given the current hardware trend. Further, the performance results of this new
system shows significant benefits relative to conventional approaches.

In combination, these contributions demonstrate that the wealth of research in-
vested in the evolution of modern managed runtimes for achieving productivity and
performance is a fruitful and exciting source of engineering opportunities. The in-
sights developed in this thesis provides further hope to those pursuing the ambitious
goal of ‘abstracting without guilt’ in the face of challenging hardware changes.

7.1 Future Work

The following sections focus on future directions that may significantly further im-
prove the performance of our high performance work-stealing framework JavaTry-
CatchWS (Chapters 4 and 5).

7.1.1 Adaptive work-stealing

We have observed that in several benchmarks, the frequency of steals shoots up
when the execution is nearing completion. In a divide-n-conquer approach the initial
tasks are the ones with the maximum computations. The computation size gradually
reduces as the program execution advances. Because of this, the worker threads very
quickly finish the computation from the stolen task, and frequently become a thief.
This implies that the maximum dynamic overhead is encountered during the last
stages of program execution.

A promising approach to address this situation is using an adaptive work-stealing
strategy. This adaptive approach will use a conventional style of work-stealing when
the dynamic overhead shoots up and the JavaTryCatchWS style for the remaining
execution. However, to achieve this the following changes would be required: a)
Changes to code transformation: The AJWS compiler would need to be modified so that
it can generate two versions of the code. One version would support the conventional
work-stealing and the other would support JavaTryCatchWS work-stealing; and b)
Changes to runtime: The runtime should be intelligent enough to decide when to
trigger the switch from one style of work-stealing to another. One possibility is to
constantly measure the CPU cycles required to finish a stolen task and the cycles
required for stealing. When the cycles required to steal consistently exceeds the
cycles required to execute the task, the switch can be triggered. This way, we would
be able to harness the benefits of the conventional work-stealing approach and the
JavaTryCatchWS framework.

7.1.2 Utilizing slow path of thief for VM services

Current implementations of garbage collection and JIT compilation are not tuned to
work-stealing runtimes. They may stop the worker threads in the midst of some
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computation. As we know, in work-stealing when a thief runs out of work, it will
start searching for next victim. This phase is not on the fast path of program execu-
tion. One possibility to keep would-be thief busy would be to task them with other
works, such as thread local garbage collection [Marlow and Peyton Jones, 2011; Jones
and King, 2005] or JIT compilation. This would avoid stopping the victim thread and
speed the program execution.

7.1.3 Steal-N work-stealing

Several papers have argued that stealing multiple tasks works best for irregular al-
gorithms [Dinan et al., 2009; Cong et al., 2008; jai Min et al., 2011]. Stealing multiple
tasks from victim’s stack is very easy in JavaTryCatchWS. This is because we simply
do a plain execution stack copy to steal task from victim. The overhead to steal-N
tasks is similar to that of stealing one task. Hence, a similar evaluation for irregular
benchmarks with JavaTryCatchWS would be very interesting.

7.1.4 Task Prioritization

Benchmarks (such as Barnes-Hut) could be composed of several types of tasks. Some
tasks (or methods) may be computationally more expensive than others. JavaTryC-
atchWS currently performs randomized work-stealing, just like X10, Habanero-Java
and Java ForkJoin. It randomly selects a victim and steals the task. However, this
randomized approach could be replaced with a task priority approach. The JVM
runtime knows which methods (i.e. tasks) are frequently executed (i.e. hot). Methods,
which are frequently executed may imply a smaller computation. One such example
is a parallel for loop, where the iterations may call another set of parallel tasks. In
this case, it might be best to steal the for loop iterations than the forked parallel
tasks from the iterations. The thief can query the JVM to find the hotness of methods
and can prioritize their steals accordingly.
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Appendix A

Jikes RVM Modifications for
JavaTryCatchWS

We have modified Jikes RVM to implement JavaTryCatchWS. This appendix contains
a short description of all the relevant changes. We describe these modifications by
relating it to the implementation details in this thesis.

A.1 Basic Infrastructure

a) org.jikesrvm.CommandLineArgs — We have added new command line argu-
ments in this class to support the execution of JavaTryCatchWS (e.g., -Xws:procs to
specify the total number of workers).
b) org.jikesrvm.scheduler.MainThread.run() — We modify this method to sup-
port the launch of work-stealing workers prior to the execution of the user main
method.
c) org.jikesrvm.runtime.Entrypoints — This class contains the declaration of
fields and methods of the virtual machine, which is required by the compiler-generated
machine code or the C runtime code. We declare the work-stealing methods/fields
(e.g., WS.join and WS.finish) in this class that falls into this category.

A.2 Leveraging Exception Handling Support (Section 4.4.2.1)

a) org.jikesrvm.classloader.RVMType — This class is the base of the Java type
system. We declare work-stealing related special exceptions in this class (e.g., WS.
Continuation and WS.Finish).
b) org.jikesrvm.scheduler.WS — We added this new class to implement public
methods in JavaTryCatchWS (methods accessible from the user code). This class also
contains the class declaration of the above exceptions.
b) org.jikesrvm.classloader.TypeReference — This class represents the refer-
ence in a class file to some type (class, primitive or array). We declare the references
to the above exception classes in this class.
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A.3 Initiation (Section 4.4.2.2)

a) org.jikesrvm.scheduler.WS.searchForWork() — We implemented this method
for the thief to find a potential victim.
b) org.jikesrvm.scheduler.WS.setFlag() — This method is used by the victim
for setting the steal flag.
c) org.jikesrvm.scheduler.RVMThread.beginPairHandshake() — Several Jikes
RVM services (e.g., J.I.T. and garbage collection) use this method. In JavaTryCatchWS,
a thief use this method to initiate the handshake with the victim. This method blocks
until the victim has yielded.
d) org.jikesrvm.scheduler.RVMThread.endPairHandshake() — This method is
used to end the thief and victim handshake.

A.4 State Management (Section 4.4.2.3)

a) org.jikesrvm.scheduler.RVMThread.wsFindSteal() — We implemented this
method to enable the thief to stack walk victim’s stack, and find the oldest continua-
tion available for stealing; and the enclosing finish for this continuation.
b) org.jikesrvm.compilers.common.CompiledMethod — This abstract class repre-
sents a method, which has been compiled into machine code by one of the compilers
in Jikes RVM. It stores the offset of instructions in the compiled machine code for the
said method. This offset is changed by the thief every time it steals a continuation
(pointing to catch block for the exception WS.JoinFirst). We added another field
in this class, which represents this new offset. Aforementioned is always NULL by
default.
c) org.jikesrvm.scheduler.WS.installJoinInstructions() — We implemented
this method for the thief to install the above-mentioned offset.
d) org.jikesrvm.scheduler.StackFrameCopier.copyStack() — We implemented
this method to enable the thief to copy stack frames from the victimâĂŹs stack to its
stack.
e) org.jikesrvm.mm.mminterface.GCMapIteratorGroup.copyRegisterValues()
— We implemented this method to copy the general purpose registers from the vic-
tim to the thief.
f) org.jikesrvm.scheduler.StackFrameCopier.processFrameAndUpdateThread()
— We implemented this method to scan the copied stack frame and fix the object
pointers.
g) org.jikesrvm.scheduler.RVMThread.wsCompleteJoinInternal() — We im-
plemented this method to enable a victim to save its results in case of stolen con-
tinuation.
h) org.jikesrvm.scheduler.WS.finish() — We implemented this for the finish
functionality and merging of computation results from the thief and the victim.
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A.5 Termination (Section 4.4.2.4)

a) org.jikesrvm.scheduler.WS.incFinish()/decFinish() — We implemented
these methods to atomically increment/decrement the finish counter.

A.6 Return Barrier Implementation (Section 5.3.1)

a) org.jikesrvm.ia32.OutOfLineMachineCode
.generateStackTrampolineBridgeInstructions() — This method performs the
stack trampoline bridge for implementing a return barrier.
b) org.jikesrvm.scheduler.RVMThread.returnBarrier() — This method is exe-
cuted when the callee frame returns to the caller frame, which has been hijacked by
the return barrier mechanism.
c) org.jikesrvm.scheduler.RVMThread.wsStealInternal_retbarrier() — This
method is similar to org.jikesrvm.scheduler.RVMThread.wsStealInternal but
we implemented this to support the case of return barriers.
d) org.jikesrvm.scheduler.RVMThread.wsFindSteal_retBarrier() — This method
is similar to org.jikesrvm.scheduler.RVMThread.wsFindSteal but we implemented
this to support the case of return barriers.
e) org.jikesrvm.runtime.RuntimeEntrypoints.deliverException() — This method
is used by the Jikes RVM to deliver an exception to the current Java thread. We mod-
ified this to a) disable return barrier while delivering runtime exception; b) branch
into the correct method if a join instruction is installed for a frame stolen by a thief.

A.7 Installing the First Return Barrier (Section 5.3.3)

a) org.jikesrvm.scheduler.RVMThread.wsCloneVictimStack() — We implemented
this to allow the thief to clone the victim’s stack, before installing the return barrier
on this victim for the first time.
b) org.jikesrvm.scheduler.RVMThread.wsInstallStackTrampolineBridge() —
This method installs the stack trampoline bridge at a given frame. It will hijack that
frame, saving the hijacked return address and callee frame pointer in thread-local
state to allow the execution of the hijacked frame later.

A.8 Synchronization Between Thief and Victim During Steal
Process (Section 5.3.4)

a) org.jikesrvm.scheduler.RVMThread.returnBarrier_internal() — This is the
kernel, which the victim executes after branching into the method returnBarrier().
b) org.jikesrvm.scheduler.RVMThread.wsUnlockFromReturnBarrier() — We im-
plemented this method to synchronize between a thief and the victim, whenever the
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victim is waiting inside the return barrier. Thief uses this method to signal the wait-
ing victim.

A.9 Victim Moves the Return Barrier (Section 5.3.5)

a) org.jikesrvm.scheduler.RVMThread.deInstallStackTrampoline() — This method
is used to remove the return barrier from the victim’s stack.
b) org.jikesrvm.scheduler.RVMThread.resetTramoplineInfo() — This method
reinitializes the data-structures when a return barrier is removed from the victim’s
stack.
c) org.jikesrvm.scheduler.RVMThread.getHijackedReturnAddress() — This method
returns the real (hijacked) return address of a frame that has been hijacked by the
stack trampoline.

A.10 Stealing From a Victim with Return Barrier Pre-installed
(Section 5.3.6)

a) org.jikesrvm.mm.mmtk.ScanThread.scanThread() — This is a very important
method in Jikes RVM. It supports the scanning of thread stacks for object references
during garbage collections. We have modified this method to support return barriers.
While performing work-stealing with return barrier, thieves create a clone of victim’s
thread stack. This cloned stack contains references to live objects as long as the victim
has return barrier installed on its main stack. Hence, while performing garbage
collections, we need to scan both cloned stack and main stack so that we do not loose
references to live objects. If only main stack were scanned, some of the live objects
may appear dead and will be collected leading to inconsistencies. We modified this
method to compute the roots by scanning both the cloned and main stack, as long as
the return barrier is installed on the victim’s main stack.

A.11 Disabling work-stealing within a synchronized code block
(Section 6.3.2.1)

a) org.jikesrvm.scheduler.WS.pauseStealOnThread() — We implemented this
method to disable work-stealing on the current thread. This method is executed by
the victim whenever it executes synchronized statements.
b) org.jikesrvm.scheduler.WS.resumeStealOnThread() — We implemented this
to enable work-stealing on the current thread. It is executed by the victim as soon as
it finishes the execution of synchronized statements.
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