18,367 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Case Study - IPv6 based building automation solution integration into an IPv4 Network Service Provider infrastructure

    Get PDF
    The case study presents a case study describing an Internet Protocol (IP) version 6 (v6) introduction to an IPv4 Internet Service Provider (ISP) network infrastructure. The case study driver is an ISP willing to introduce a new “killer” service related to Internet of Things (IoT) style building automation. The provider and cooperation of third party companies specialized in building automation will provide the service. The ISP has to deliver the network access layer and to accommodate the building automation solution traffic throughout its network infrastructure. The third party companies are system integrators and building automation solution vendors. IPv6 is suitable for such solutions due to the following reasons. The operator can’t accommodate large number of IPv4 embedded devices in its current network due to the lack of address space and the fact that many of those will need clear 2 way IP communication channel. The Authors propose a strategy for IPv6 introduction into operator infrastructure based on the current network architecture present service portfolio and several transition mechanisms. The strategy has been applied in laboratory with setup close enough to the current operator’s network. The criterion for a successful experiment is full two-way IPv6 application layer connectivity between the IPv6 server and the IPv6 Internet of Things (IoT) cloud

    Voice recognition system for Massey University Smarthouse : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering at Massey University

    Get PDF
    The concept of a smarthouse aims to integrate technology into houses to a level where most daily tasks are automated and to provide comfort, safety and entertainment to the house residents. The concept is mainly aimed at the elderly population to improve their quality of life. In order to maintain a natural medium of communication, the house employs a speech recognition system capable of analysing spoken language, and extracting commands from it. This project focuses on the development and evaluation of a windows application developed with a high level programming language which incorporates speech recognition technology by utilising a commercial speech recognition engine. The speech recognition system acts as a hub within the Smarthouse to receive and delegate user commands to different switching and control systems. Initial trails were built using Dragon Naturally Speaking as the recognition engine. However that proved inappropriate for use in the Smarthouse project as it is speaker dependent and requires each user to train it with his/her own voice. The application now utilizes the Microsoft Speech Application Programming Interface (SAPI), a software layer which sits between applications and speech engines and the Microsoft Speech Recognition Engine, which is freely distributed with some Microsoft products. Although Dragon Naturally Speaking offers better recognition for dictation, MS engine can be optimized using Context Free Grammar (CFG) to give enhanced recognition in the intended application. The application is designed to be speaker independent and can handle continuous speech. It connects to a database oriented expert system to carry out full conversations with the users. Audible prompts and confirmations are achieved through speech synthesis using any SAPI compliant text to speech engine. Other developments focused on designing a telephony system using Microsoft Telephony Application Programming Interface (TAPI). This allows the house to be remotely controlled from anywhere in the world. House residents will be able to call their house from any part of the world and regardless of their location, the house will be able to respond to and fulfil their commands
    • 

    corecore