4,089 research outputs found

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Possibilistic compositions and state functions: application to the order promising process for perishables

    Full text link
    "This is an Author's Accepted Manuscript of an article published in Grillo, H., M.M.E. Alemany, A. Ortiz, and B. De Baets. 2019. Possibilistic Compositions and State Functions: Application to the Order Promising Process for Perishables. International Journal of Production Research 57 (22). Informa UK Limited: 7006 31. doi:10.1080/00207543.2019.1574039, available online at: https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1574039"[EN] In this paper, we propose the concepts of the composition of possibilistic variables and state functions. While in conventional compositional data analysis, the interdependent components of a deterministic vector must add up to a specific quantity, we consider such components as possibilistic variables. The concept of state function is intended to describe the state of a dynamic variable over time. If a state function is used to model decay in time, it is called the ageing function. We present a practical implementation of our concepts through the development of a model for a supply chain planning problem, specifically the order promising process for perishables. We use the composition of possibilistic variables to model the existence of different non-homogeneous products in a lot (sub-lots with lack of homogeneity in the product), and the ageing function to establish a shelf life-based pricing policy. To maintain a reasonable complexity and computational efficiency, we propose the procedure to obtain an equivalent interval representation based on alpha -cuts, allowing to include both concepts by means of linear mathematical programming. Practical experiments were conducted based on data of a Spanish supply chain dedicated to pack and distribute oranges and tangerines. The results validated the functionality of both, the compositions of possibilistic variables and ageing functions, showing also a very good performance in terms of the interpretation of a real problem with a good computational performance.We would also thank Dr. José De Jesús Arias García for useful discussions during the development of this work. This research has been supported by the Ministry of Science, Technology and Telecommunications, government of Costa Rica (MICITT), through the Program of Innovation and Human Capital for Competitiveness (PINN) (contract number PED-019-2015-1). We acknowledge the partial support of the project 691249, RUCAPS: Enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems , funded by the European Union s research and innovation programme under the H2020 Marie Skłodowska-Curie Actions.Grillo-Espinoza, H.; Alemany Díaz, MDM.; Ortiz Bas, Á.; De Baets, B. (2019). Possibilistic compositions and state functions: application to the order promising process for perishables. International Journal of Production Research. 57(22):7006-7031. https://doi.org/10.1080/00207543.2019.1574039S700670315722Grillo, H., M. Alemany, and A. Ortiz. 2016b. Modelling Pricing Policy Based on Shelf-Life of Non-Homogeneous Available-To-Promise in Fruit Supply Chains, 608–617. doi:10.1007/978-3-319-45390-3_52Steglich, M., and T. Schleiff. 2010. “CMPL: Coliop Mathematical Programming Language.” Technische Hochschule Wildau. doi:10.15771/978-3-00-031701-9

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control

    Get PDF
    We propose a two-stage, on-line signal control strategy for dynamic networks using a linear decision rule (LDR) approach and a distributionally robust optimization (DRO) technique. The first (off-line) stage formulates a LDR that maps real-time traffic data to optimal signal control policies. A DRO problem is solved to optimize the on-line performance of the LDR in the presence of uncertainties associated with the observed traffic states and ambiguity in their underlying distribution functions. We employ a data-driven calibration of the uncertainty set, which takes into account historical traffic data. The second (on-line) stage implements a very efficient linear decision rule whose performance is guaranteed by the off-line computation. We test the proposed signal control procedure in a simulation environment that is informed by actual traffic data obtained in Glasgow, and demonstrate its full potential in on-line operation and deployability on realistic networks, as well as its effectiveness in improving traffic
    corecore