22,599 research outputs found

    Smart Power Grid Synchronization With Fault Tolerant Nonlinear Estimation

    Get PDF
    Effective real-time state estimation is essential for smart grid synchronization, as electricity demand continues to grow, and renewable energy resources increase their penetration into the grid. In order to provide a more reliable state estimation technique to address the problem of bad data in the PMU-based power synchronization, this paper presents a novel nonlinear estimation framework to dynamically track frequency, voltage magnitudes and phase angles. Instead of directly analyzing in abc coordinate frame, symmetrical component transformation is employed to separate the positive, negative, and zero sequence networks. Then, Clarke\u27s transformation is used to transform the sequence networks into the αβ stationary coordinate frame, which leads to system model formulation. A novel fault tolerant extended Kalman filter based real-time estimation framework is proposed for smart grid synchronization with noisy bad data measurements. Computer simulation studies have demonstrated that the proposed fault tolerant extended Kalman filter (FTEKF) provides more accurate voltage synchronization results than the extended Kalman filter (EKF). The proposed approach has been implemented with dSPACE DS1103 and National Instruments CompactRIO hardware platforms. Computer simulation and hardware instrumentation results have shown the potential applications of FTEKF in smart grid synchronization

    On harmonic emission assessment : a discriminative approach

    Get PDF

    Refining a Phase Vocoder for Vocal Modulation

    Get PDF
    Vocal harmonies are a highly sought-after effect in the music industry, as they allow singers to portray more emotion and meaning through their voices. The chords one hears when listening to nearly any modern song are constructed through common ratios of frequencies (e.g., the recipe for a major triad is 4:5:6). Currently, vocal melodies are only readily obtainable through a few methods, including backup singers, looper-effects systems, and post-process overdubbing. The issue with these is that there is currently no publicly-available code that allows solo-artists to modulate input audio to whatever chord structure is desired while maintaining the same duration and timbre in the successive layers. This thesis plans to address this issue using the phase vocoder method. If this modulation technique is successful, this could revolutionize the way vocalists perform. The introduction of real-time self harmonization would allow artists to have access to emphasized lyrical phrases and vocals without needing to hire and train backup vocalists. This phase vocoder would also allow for more vocal improvisation, as the individual would only need to know how to harmonize with themselves and would thus not be relying on interpreting how backup vocalists plan on moving the melody when creating more spontaneously

    Simplified Second-Order Generalized Integrator - Frequency-Locked Loop

    Get PDF
    Second-Order Generalized Integrator –Frequency-Locked Loop (SOGI-FLL) is a popular technique available in the grid synchronization literature. This technique uses gain normalization in the frequency locked-loop. This increases the computational complex-ity. In this paper, we propose an alternative imple-mentation to reduce the computational complexity of the SOGI-FLL. The proposed implementation modifies mainly the frequency locked-loop part and requires normalized voltage measurement. dSPACE 1104 board-based hardware implementation shows that the proposed implementation executes 20 % faster than the standard implementation. This could be very beneficial for high switching frequency application e.g. ≥ 1 MHz. In ad-dition to the nominal frequency case, multiresonant implementation is also proposed to tackle grid harmonics using a simpler harmonic decoupling network. Small signal dynamical modeling and tuning are performed for both implementations. Dynamical equivalence is also established between the two implementations. Experimental comparative analysis demonstrates similar or better performance (depending on test scenarios) with respect to the standard implementation of the SOGI-FL

    General Formalism for Evaluating the Impact of Phase Noise on Bloch Vector Rotations

    Full text link
    Quantum manipulation protocols for quantum sensors and quantum computation often require many single qubit rotations. However, the impact of phase noise in the field that performs the qubit rotations is often neglected or treated only for special cases. We present a general framework for calculating the impact of phase noise on the state of a qubit, as described by its equivalent Bloch vector. The analysis applies to any Bloch vector orientation, and any rotation axis azimuthal angle for both a single pulse, and pulse sequences. Experimental examples are presented for several special cases. We apply the analysis to commonly used composite π\pi-pulse sequences: CORPSE, SCROFULOUS, and BB1, used to suppress static amplitude and detuning errors, and also to spin echo sequences. We expect the formalism presented will help guide the development and evaluation of future quantum manipulation protocols.Comment: 12 pages, 6 figures, submitted to PR
    corecore