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Abstract: 
Effective real-time state estimation is essential for smart grid synchronization, as electricity demand continues 
to grow, and renewable energy resources increase their penetration into the grid. In order to provide a more 
reliable state estimation technique to address the problem of bad data in the PMU-based power 
synchronization, this paper presents a novel nonlinear estimation framework to dynamically track frequency, 
voltage magnitudes and phase angles. Instead of directly analyzing in abc coordinate frame, symmetrical 
component transformation is employed to separate the positive, negative, and zero sequence networks. Then, 
Clarke's transformation is used to transform the sequence networks into the 𝛼𝛼𝛼𝛼 stationary coordinate frame, 
which leads to system model formulation. A novel fault tolerant extended Kalman filter based real-time 
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estimation framework is proposed for smart grid synchronization with noisy bad data measurements. Computer 
simulation studies have demonstrated that the proposed fault tolerant extended Kalman filter (FTEKF) provides 
more accurate voltage synchronization results than the extended Kalman filter (EKF). The proposed approach 
has been implemented with dSPACE DS1103 and National Instruments CompactRIO hardware platforms. 
Computer simulation and hardware instrumentation results have shown the potential applications of FTEKF in 
smart grid synchronization. 
 

SECTION I. 
Introduction 
With the widespread deployment of renewable energy generations, smart load controls, energy storages, 
plug-in hybrid electric vehicles and other new challenges presented by the requirement of smart grid, 
innovative changes to our existing power infrastructures are essential. New technologies including smart 
meters (SMs), big data, wireless telecommunication protocols, and phasor measurement units (PMUs) are 
all the key elements of smart grid. This evolution will lead to stochastic operating behaviors and dynamic 
nature of the grid. Meanwhile, in order to address the social, economical and environmental challenges, 
such as the growing electricity demand and green house effect, governments have developed ambitious 
public policy goals. For an instance, the state of California is aiming at producing 33% of its energy from 
renewable energy resources by the year 2020. The number of distributed power generation systems (DPGS) 
rapidly increases, due to the necessity of producing more renewable and sustainable electrical energy.1 
Grid synchronization with high accuracy is a critical requirement for the proper control of grid connected 
converters, and DPGS. Without accurate grid synchronization, our utility network may face instability or 
even black-out. 

The purpose of this work is to develop a new real-time computing framework of power system state 
information, including frequency, voltage magnitude and phase angle. The positive sequence phase angle 
and voltage magnitude are used in energy management systems (EMS) to dynamically turn on/off the 
distributed energy resources in active distribution networks (ADN), and therefore to control the active and 
reactive power flow, and to achieve other specific operation objectives between DGs and the grid.2 

A vast of power grid synchronization approaches have been reported in literature.3–4,5 These prior-art 
synchronization methods can be broadly categorized as follows: 

a) Mathematical analysis methods are based on signal processing techniques, such as the discrete 
Fourier transform (DFT) or Hilbert transform (HT) analysis. Digital microprocessors are commonly 
used for implementing the numerical processing, thus the sampling rate is strictly required. 

b) Zero-crossing method is relatively easy to achieve and design; however, it is very sensitive to grid 
voltage distortions such as harmonics, notches. Therefore, zero-crossing method is not very reliable 
in practical applications.6,7 

c) Phase-Locked Loop (PLL) based synchronization techniques can implement a fast and accurate 
phase and frequency detection for balanced three-phase voltages.8–9,10,11,12,13,14,15 The synchronous 
reference frame phase-locked loop (SRF-PLL), also known as 𝑑𝑑𝑑𝑑-PLL, is the most widely used 
method in grid connected systems.8 Based on Park's transformation, a three-phase voltage vector is 
transformed from 𝑎𝑎𝑎𝑎𝑎𝑎 coordinate frame to 𝑑𝑑𝑑𝑑 coordinate frame. 𝑑𝑑-axis component contains the 



information about phase angle error and d-axis component is the voltage amplitude in steady state. 
Though SFR-PLL with low bandwidth shows good performance under balanced voltage condition, it 
has slow response during transient condition, and is quite sensitive to frequency fluctuation and 
unbalanced voltages. Several other PLL methods have been developed to improve the performance 
of SFR-PLL. The fixed-reference-frame PLL (FRF-PLL) proposed in9 does not require transformation 
of variables into the synchronous frame coordinates. In,10 an observer design is developed to 
enhance the PLL performance using the pole placement technique. UH-PLL proposed in11 includes a 
harmonic compensation mechanism to alleviate the effect of harmonic distortion, by using both of 
the positive and negative sequences in stationary coordinates of the fundamental and harmonic 
components. In,12 the second dq transformation memory phase delay PLL (SMPD-PLL) is proposed 

to enhance the performance. Several selected major PLL synchronization methods, including 
𝑇𝑇
4

delay 
PLL, inverse Park's transform PLL (IPT-PLL), enhanced PLL (EPLL), multiple-complex coefficient-filter-
based PLL (MCCF-PLL), multiple reference frame-based PLL (MRF-PLL), second order generalized 
integrator-based PLL (SOGI-PLL) and multi-harmonic decoupling cell PLL (MHDC-PLL), have been 
implemented for grid-connected inverter systems, and compared in terms of accuracy, dynamic 
response, harmonic immunity, etc. in.13–14,15 However, improper modeling parameters, PLL time 
delays, severe unbalanced voltages, large harmonics, and the low frequency dynamic effect caused 
by the coupling of PLL and network impedance may result in a potential converter and generator 
instability issue. 

d) Recent advancements on grid synchronization techniques are mostly based on the state estimation 
approaches, which was first proposed in.16 and 17 The weighted least square (WLS) estimation is the 
conventional method for static state estimation, which is discussed thoroughly in.18 A unified survey 
of the hierarchical WLS methods for large scale electric power system can be found in.19 In,20 a 
parallel algorithm is used, based on border virtual measurements, overlapping subsystems, and the 
auxiliary problem principle. Reference21 presents an application of a parallel algorithm for power 
system state estimation with a minimal amount of modification required to existing state 
estimators. In decentralized state estimation,22 the information exchange reduces to the state 
variables of border buses and no processing by a central coordinator is needed. 
Reference23 presents a distributed method for control centers to monitor the operating condition of 
a power network with a Kaczmarz (row-projection) type of estimator, which exhibits finite time 
convergence towards the exact solution and can be used to compute WLS to a linear power system 
model. 

 
Many SE methods have already been studied to incorporate the conventional supervisory control and data 
acquisition (SCADA) system and advanced measurement technologies such as phasor measurement units 
(PMU). The hierarchical scheme for distributed state estimation using synchronization phasor 
measurements is first introduced in.24 References25 and 26 further improve this method by considering a large 
number of tie lines among subsystems. In,25 a two-step algorithm is proposed, which incorporates the 
phasor measurements and the results of the traditional phasor measurements in a post processing linear 
estimator, proving the same results as the nonlinear algorithm. A method for sequentially handling the 
conventional and PMU measurements in a two-stage procedure is proposed in.28 Reference29 presents a 
two-step state estimation method based on measurements provided by PMU and SCADA system. At the 
first step, a linear state estimator is formulated using only synchronized phasor measurements provided by 
PMU. At the second step, the estimated voltage phasors from the first step and the SCADA measurements 
are simultaneously processed by a conventional nonlinear estimator to determine the whole system state. 



In,30 and 31 different formulations of nonlinear SE methods, considering the phasor measurements and the 
state vectors in either rectangular or polar coordinates are discussed and compared. Free reference bus 
hybrid estimators are suggested in.32 Recent development involving corrupted data and poorly 
synchronized data in PMUs are discussed in.33–34,35,36,37 

State estimation results are consistent as long as the measurement data provided to the estimation 
algorithm are correct. The measurements contain a certain amount of error which can be of two types, 
either a small statistically “well-behaved” error due to instrument inaccuracy, interference, miscalibration, 
etc. (disturbance and noise) or a large unpredictable error due to some sort of partial or total failure of the 
telemetering system, faulty signal sensing, electromagnetic interferences, system delays, transients, etc. 
(bad data). The error introduced by the measurement disturbance and noise is comparable with the 
uncertainty of most of the operational constraints (e.g., transmission line overloads), against which the 
results of the estimation will be checked. Therefore high filtering capacity is not a necessary requirement of 
the estimator. However, bad data may lead to measurements whose errors are larger than an acceptable 
bound compatible with the accuracy of both metering and communication systems, which can seriously 
distort the results of the estimation, producing completely unreliable state estimates.39,40 Some of them are 
easy to be identified and eliminate by using simple plausible checks, however, most bad data are not 
immediately detectable and are directly fed into the state estimator, which is not designed to cope with 
such additional errors. For the above mentioned reasons, a real time state estimator (RTSE) deployed in 
practical applications, must be able to detect and eliminate efficiently faulty measurements, keep good 
track of the state of the power system in the presence of noisy bad data measurements. Considerable 
research have been reported on this topic, see for instance41–42,43 and references therein. 

Recent advancements in computing and phasor technologies make real-time dynamic state estimation 
possible with high-speed time-synchronized data provided by phasor measurement units (PMU). However, 
bad data in PMU measurements may greatly degrade the power quality, or even cause severe damages to 
the entire power systems. In order to provide more reliable dynamic state estimation addressing the 
problem of bad data in the PMU-based power system synchronization,44–45,46 this paper presents a novel 
fault tolerant extended Kalman filter for smart grid synchronization, which can provide enhanced tracking 
of power system state information comparing with the performances with extended Kalman filter (EKF). 
Although EKF may converge for state estimation, and have decent accuracy, our studies show that the 
proposed fault tolerant extended Kalman filter can provide more accurate prediction with smaller mean 
square error (MSE). In order to deal with unbalanced voltages, we apply symmetrical component 
transformation to separate the positive, negative, and zero sequence networks. Then, Clarke's 
transformation is applied to transform abc coordinate frame quantities into αβ stationary coordinate 
frame, which leads to smart grid synchronization system model formulation. After that, the fault tolerant 
extended Kalman filter (FTEKF) is proposed and derived. The nonlinear estimators EKF and FTEKF are 
applied to estimate the frequency, voltage magnitudes and phase angles. Furthermore, computer 
simulations show better performance of FTEKF estimation in the presence of unbalanced voltages, bad 
data, and external disturbances. Last but not the least, the proposed FTEKF has been successfully 
implemented with dSPACE and CompactRIO hardware-in-the-loop system. 
 
The paper is organized as follows: First, the problem formulation is investigated in Section II. Then, the 
state space models for the smart grid synchronization is derived in Section III. After 
that, Section IV presents nonlinear estimation of the extended Kalman filter and the proposed fault tolerant 



extended Kalman filter (FTEKF). In Section V, the positive sequence voltage magnitude and phase angle 
computation is discussed. Computer simulation results are provided in Section VIto compare the 
performance of EKF and FTEKF nonlinear estimation. Moreover, Section VII briefly summarizes the 
hardware implementation of FTEKF. Based on computer simulation studies and hardware implementation, 
conclusion is reached in Section VIII. 

The following notation is used in this work: 𝑣𝑣(𝑡𝑡) and 𝑣𝑣(𝑘𝑘) denotes the continuous and discrete time 
voltage respectively. 𝑉𝑉 denotes the Root Mean Square (RMS) value of voltage. 𝑉𝑉 is the voltage phasor. 𝑥𝑥 ∈
𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛denotes n-dimensional real vector with norm ∥ 𝑥𝑥 ∥= (𝑥𝑥𝑇𝑇𝑥𝑥)1/2 where (⋅)𝑇𝑇  indicates matrix 
transpose. 𝐴𝐴 ≥ 0 for a symmetric matrix denotes a positive semi-definite matrix. 𝑃𝑃 denotes the covariance 
matrix. 𝑥𝑥 is the mean value for 𝑥𝑥.𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎(⋅) is the probability of an event. 𝐸𝐸(𝑥𝑥) = 𝑥𝑥 is the 
mean/expectation value of a random variable 𝑥𝑥. 𝑥𝑥 ∼ (𝑥𝑥,𝑋𝑋) denotes a random variable 𝑥𝑥 with arbitrary 
distribution with mean 𝑥𝑥 and covariance 𝑋𝑋. 𝛿𝛿𝑘𝑘−𝑗𝑗 is the Kronecker delta function; that is, 𝛿𝛿𝑘𝑘−𝑗𝑗 =
1 when 𝑘𝑘 = 𝑗𝑗; and 𝛿𝛿𝑘𝑘−𝑗𝑗 = 0 when 𝑘𝑘 ≠ 𝑗𝑗. Let 𝐴𝐴 and 𝐵𝐵 be 𝑛𝑛 × 𝑚𝑚 matrices, the Hadamard product 
of 𝐴𝐴 and 𝐵𝐵 is denoted by 𝐴𝐴⊗𝐵𝐵, and is defined as [𝐴𝐴⊗𝐵𝐵]𝑖𝑖,𝑗𝑗 = [𝐴𝐴]𝑖𝑖𝑗𝑗[𝐵𝐵]𝑖𝑖𝑗𝑗  for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚. 
Matrix form of Rayleigh's inequality is also used in the derivation of this work, which can be stated as: for 
𝑋𝑋 = 𝑋𝑋𝑇𝑇 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛×𝑛𝑛 and 𝑌𝑌 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑚𝑚×𝑛𝑛, the matrix inequality 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛(𝑋𝑋)𝑌𝑌𝑌𝑌𝑇𝑇 ≤ 𝑌𝑌𝑋𝑋𝑌𝑌𝑇𝑇 ≤
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)𝑌𝑌𝑌𝑌𝑇𝑇holds. 
 

SECTION II. 
Problem Formulation 
The general form of three-phase electrical power grid voltages can be expressed as49,50 

𝑣𝑣𝑚𝑚(𝑡𝑡) = √2𝑉𝑉𝑚𝑚cos (𝜔𝜔𝑡𝑡 + 𝜙𝜙𝑚𝑚)
𝑣𝑣𝑏𝑏(𝑡𝑡) = √2𝑉𝑉𝑏𝑏cos (𝜔𝜔𝑡𝑡 + 𝜙𝜙𝑏𝑏)
𝑣𝑣𝑐𝑐(𝑡𝑡) = √2𝑉𝑉𝑐𝑐cos (𝜔𝜔𝑡𝑡 + 𝜙𝜙𝑐𝑐)

 (1) 

 

where 𝑣𝑣𝑚𝑚(𝑡𝑡), 𝑣𝑣𝑏𝑏(𝑡𝑡),𝑣𝑣𝑐𝑐(𝑡𝑡) are the instantaneous unbalanced three phase voltages; 𝑡𝑡 is time in 
seconds; 𝜔𝜔 is electrical angular frequency in rad/s. 𝑉𝑉𝑖𝑖 and 𝜙𝜙𝑖𝑖(𝑖𝑖 = 𝑎𝑎, 𝑎𝑎, 𝑎𝑎) are the corresponding root mean 
square (RMS) voltage amplitudes and phase angles. It is worthwhile mentioning that the three phase 
voltages are not necessarily balanced, so they may not have the same magnitude, nor the phase angle 
difference of 120°. 

The discrete-time three phase voltages with external disturbances and noises can be obtained from (1) as 

𝑣𝑣𝑚𝑚(𝑘𝑘) = √2𝑉𝑉𝑚𝑚cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑚𝑚)
𝑣𝑣𝑏𝑏(𝑘𝑘) = √2𝑉𝑉𝑏𝑏cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑏𝑏)
𝑣𝑣𝑐𝑐(𝑘𝑘) = √2𝑉𝑉𝑐𝑐cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑐𝑐)

 (2) 
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where 𝑘𝑘 is the sampling instant 𝑘𝑘 = 0,1,2,3, …. For sampling period 𝜔𝜔, 𝑥𝑥(𝑘𝑘) = 𝑥𝑥(𝑘𝑘𝜔𝜔) equals the 
magnitude of 𝑥𝑥(𝑡𝑡) at the 𝑘𝑘th sampling instant. The grid frequency and sampling frequency are considered 
to be 60 Hz, 2400 Hz, respectively in our case. 

Denote 𝑣𝑣(𝑘𝑘) = [𝑣𝑣𝑚𝑚(𝑘𝑘), 𝑣𝑣𝑏𝑏(𝑘𝑘), 𝑣𝑣𝑐𝑐(𝑘𝑘)]𝑇𝑇  as the three-phase voltage vector. According to symmetrical 
component transformation (Fortescue's transformation), three phase voltages can be expressed in term of 
positive, negative, and zero sequence voltages47,48 
 

𝑣𝑣(𝑘𝑘) = 𝑣𝑣0(𝑘𝑘) + 𝑣𝑣𝑝𝑝(𝑘𝑘) + 𝑣𝑣𝑛𝑛(𝑘𝑘) (3) 

where 𝑣𝑣(𝑘𝑘) represents the instantaneous three phase voltages, and 𝑣𝑣𝑖𝑖(𝑖𝑖 = 0, 𝑝𝑝,𝑛𝑛) denote the zero, 
positive, and negative sequence voltages 

𝑣𝑣𝑝𝑝(𝑘𝑘) = √2𝑉𝑉𝑝𝑝[𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑝𝑝), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑝𝑝 − 120𝑜𝑜), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑝𝑝 + 120𝑜𝑜)]𝑇𝑇

𝑣𝑣𝑛𝑛(𝑘𝑘) = √2𝑉𝑉𝑛𝑛[𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑛𝑛), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑛𝑛 + 120𝑜𝑜), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃𝑛𝑛 − 120𝑜𝑜)]𝑇𝑇

𝑣𝑣0(𝑘𝑘) = √2𝑉𝑉0[𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃0), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃0), 𝑎𝑎𝑃𝑃𝑐𝑐(𝜃𝜃0)]𝑇𝑇
 (4) 

 

where 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖(𝑘𝑘) = 𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑖𝑖for 𝑖𝑖 = (𝑝𝑝,𝑛𝑛, 0), which are the positive, negative and zero sequence 
phase angles, respectively. A fast and precise detection of the positive sequence of grid voltage is a critical 
step of controlling the connection of DGs to power grid. 

Based on symmetrical component transformation, the abc coordinate frame three-phase voltage phasors 
can be separated to the positive, negative, and zero sequence phasors. 
 

�
𝑉𝑉𝑚𝑚
𝑉𝑉𝑏𝑏
𝑉𝑉𝑐𝑐

� = �
1 1 1
1 𝑎𝑎2 𝑎𝑎
1 𝑎𝑎 𝑎𝑎2

� �
𝑉𝑉0
𝑉𝑉𝑝𝑝
𝑉𝑉𝑛𝑛

� (5) 

where 𝑉𝑉𝑖𝑖 for 𝑖𝑖 = (0,𝑝𝑝,𝑛𝑛) are zero, positive, and negative sequence voltage phasors, and 𝑎𝑎 = 1∠120∘. 

Applying Clarke's transformation, we can transform abc coordinate frame voltage phasors to 
stationary 𝛼𝛼𝛼𝛼 coordinate frame voltage phasors. 
 

�
𝑉𝑉𝛼𝛼
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3
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2
− 1

2

0 √3
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� �
𝑉𝑉𝑚𝑚
𝑉𝑉𝑏𝑏
𝑉𝑉𝑐𝑐

� 6) 

Using (5) and (6), we get 
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�
𝑉𝑉𝛼𝛼
𝑉𝑉𝛽𝛽
� = � 1 1

−𝑗𝑗 𝑗𝑗 ][
𝑉𝑉𝑝𝑝
𝑉𝑉𝑛𝑛
�  (7) 

Voltage phasors (7) can be expressed as discrete-time instantaneous voltages 𝑣𝑣𝛼𝛼(𝑘𝑘) and 𝑣𝑣𝛽𝛽(𝑘𝑘) as follows 
 

𝑣𝑣𝛼𝛼(𝑘𝑘) = √2𝑉𝑉𝑝𝑝cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑝𝑝) + √2𝑉𝑉𝑛𝑛cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑛𝑛)
= √2(𝑉𝑉𝑝𝑝cos 𝜙𝜙𝑝𝑝 + 𝑉𝑉𝑛𝑛cos 𝜙𝜙𝑛𝑛)cos 𝜔𝜔𝑘𝑘𝜔𝜔 −
√2(𝑉𝑉𝑝𝑝sin 𝜙𝜙𝑝𝑝 + 𝑉𝑉𝑛𝑛sin 𝜙𝜙𝑛𝑛)sin 𝜔𝜔𝑘𝑘𝜔𝜔
= √2𝑉𝑉𝛼𝛼cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝛼𝛼)

𝑣𝑣𝛽𝛽(𝑘𝑘) = √2𝑉𝑉𝑝𝑝sin (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑝𝑝) − √2𝑉𝑉𝑛𝑛sin (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝑛𝑛)
= √2(𝑉𝑉𝑝𝑝cos 𝜙𝜙𝑝𝑝 − 𝑉𝑉𝑛𝑛cos 𝜙𝜙𝑛𝑛)sin 𝜔𝜔𝑘𝑘𝜔𝜔 +
√2(𝑉𝑉𝑝𝑝sin 𝜙𝜙𝑝𝑝 − 𝑉𝑉𝑛𝑛sin 𝜙𝜙𝑛𝑛)cos 𝜔𝜔𝑘𝑘𝜔𝜔
= √2𝑉𝑉𝛼𝛼cos (𝜔𝜔𝑘𝑘𝜔𝜔 + 𝜙𝜙𝛽𝛽)

 (8)(9) 

 

Note that zero sequence quantities in (7) are zeros after applying Clarke's transformation. 

SECTION III. 
State Space System Dynamics 
Based on (8) and (9), and applying the discretization process with sampling period 𝜔𝜔, the state space 
variables of grid voltage synchronization are chosen as follows 
 

𝑥𝑥1(𝑘𝑘) = √2𝑉𝑉𝛼𝛼cos (𝑘𝑘𝜔𝜔𝜔𝜔 + 𝜙𝜙𝛼𝛼)
𝑥𝑥2(𝑘𝑘) = √2𝑉𝑉𝛼𝛼sin (𝑘𝑘𝜔𝜔𝜔𝜔 + 𝜙𝜙𝛼𝛼)
𝑥𝑥3(𝑘𝑘) = √2𝑉𝑉𝛽𝛽cos (𝑘𝑘𝜔𝜔𝜔𝜔 + 𝜙𝜙𝛽𝛽)
𝑥𝑥4(𝑘𝑘) = √2𝑉𝑉𝛽𝛽sin (𝑘𝑘𝜔𝜔𝜔𝜔 + 𝜙𝜙𝛽𝛽)
𝑥𝑥5(𝑘𝑘) = 𝜔𝜔

 (10) 

 
Denote 𝑡𝑡 = 𝑘𝑘𝜔𝜔 and 𝜔𝜔 = 1/𝑓𝑓𝑠𝑠, where 𝜔𝜔 is sampling time and 𝑓𝑓𝑠𝑠  is sampling frequency. From (10), we 
formulate the system model as follows 
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𝑥𝑥1(𝑘𝑘 + 1) = 𝑥𝑥1(𝑘𝑘)cos (𝑥𝑥5(𝑘𝑘))− 𝑥𝑥2(𝑘𝑘)sin (𝑥𝑥5(𝑘𝑘))
𝑥𝑥2(𝑘𝑘 + 1) = 𝑥𝑥1(𝑘𝑘)sin (𝑥𝑥5(𝑘𝑘)) + 𝑥𝑥2(𝑘𝑘)cos (𝑥𝑥5(𝑘𝑘))
𝑥𝑥3(𝑘𝑘 + 1) = 𝑥𝑥3(𝑘𝑘)cos (𝑥𝑥5(𝑘𝑘)) − 𝑥𝑥4(𝑘𝑘)sin (𝑥𝑥5(𝑘𝑘))
𝑥𝑥4(𝑘𝑘 + 1) = 𝑥𝑥3(𝑘𝑘)sin (𝑥𝑥5(𝑘𝑘)) + 𝑥𝑥4(𝑘𝑘)cos (𝑥𝑥5(𝑘𝑘))
𝑥𝑥5(𝑘𝑘 + 1) = 𝑥𝑥5(𝑘𝑘)

 (11) 

Note that the system/process noise is assumed to be zero in (11). The measurement equations are defined 
as 

𝑦𝑦1(𝑘𝑘) = 𝑥𝑥1(𝑘𝑘) + 𝑤𝑤1(𝑘𝑘)
𝑦𝑦2(𝑘𝑘) = 𝑥𝑥3(𝑘𝑘) + 𝑤𝑤2(𝑘𝑘) (12) 

where 𝑤𝑤1(𝑘𝑘) and 𝑤𝑤2(𝑘𝑘) are considered to be external disturbances. 

SECTION IV. 
Computation of the Positive Sequence Voltage Magnitude and Phase Angle 
 
Taking matrix inverse of (7), we have 

�
𝑉𝑉𝑝𝑝
𝑉𝑉𝑛𝑛
� = 1

2
�1 𝑗𝑗
1 −𝑗𝑗][

𝑉𝑉𝛼𝛼
𝑉𝑉𝛽𝛽
�  (13) 

Expanding the first row of the phasor matrix (13) and applying Euler's Identity, we get the positive voltage 
phasor 

𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑝𝑝∠𝜃𝜃𝑝𝑝 = 1
2

(𝑉𝑉𝛼𝛼 + 𝑗𝑗𝑉𝑉𝛽𝛽)
= 0.5[(𝑉𝑉𝛼𝛼𝑎𝑎𝑃𝑃𝑐𝑐𝜃𝜃𝛼𝛼 − 𝑉𝑉𝛽𝛽𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃𝛽𝛽) + 𝑗𝑗(𝑉𝑉𝛼𝛼𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃𝛼𝛼 + 𝑉𝑉𝛽𝛽𝑎𝑎𝑃𝑃𝑐𝑐𝜃𝜃𝛽𝛽)] (14) 

Therefore, the positive sequence voltage magnitude and phase angle can be obtained as follows49 

𝜃𝜃𝑝𝑝 = 𝑡𝑡𝑎𝑎𝑛𝑛−1 𝑉𝑉𝛼𝛼𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝛼𝛼)+𝑉𝑉𝛽𝛽𝑐𝑐𝑜𝑜𝑠𝑠(𝜃𝜃𝛽𝛽)
𝑉𝑉𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠(𝜃𝜃𝛼𝛼)−𝑉𝑉𝛽𝛽𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝛽𝛽)

𝑉𝑉𝑝𝑝 = 1
2�(𝑉𝑉𝛼𝛼𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃𝛼𝛼 + 𝑉𝑉𝛽𝛽𝑎𝑎𝑃𝑃𝑐𝑐𝜃𝜃𝛽𝛽)2 + (𝑉𝑉𝛼𝛼𝑎𝑎𝑃𝑃𝑐𝑐𝜃𝜃𝛼𝛼 − 𝑉𝑉𝛽𝛽𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃𝛽𝛽)2 (15)(16) 

At every time step 𝑘𝑘, based on the state estimate, we have the estimated positive sequence voltage 
magnitude and phase angle 
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𝜃𝜃
^
𝑝𝑝(𝑘𝑘) = 𝑡𝑡𝑎𝑎𝑛𝑛−1 𝑚𝑚

^
2(𝑘𝑘)+𝑚𝑚

^
3(𝑘𝑘)

𝑚𝑚
^
1(𝑘𝑘)−𝑚𝑚

^
4(𝑘𝑘)

𝑉𝑉
^
𝑝𝑝(𝑘𝑘) = 1

2
�(𝑥𝑥

^
2(𝑘𝑘) + 𝑥𝑥

^
3(𝑘𝑘))2 + (𝑥𝑥

^
1(𝑘𝑘) − 𝑥𝑥

^
4(𝑘𝑘))2

 (17)(18) 

SECTION V. 
Nonlinear Estimation 
A. Extended Kalman Filter 
Consider the discrete time nonlinear power system dynamics and measurement equation given as follows 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑣𝑣𝑘𝑘)
𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) (19) 

The extended Kalman filter is applied to estimate the frequency, voltage amplitudes and phase angles. EKF 
state estimation consists two steps: time update and measurement update.51,52 Define the following 
Jacobian matrices 

𝐴𝐴𝑘𝑘 = ∂𝑓𝑓
∂𝑚𝑚

|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘
,𝐹𝐹𝑘𝑘 = ∂𝑓𝑓

∂𝑣𝑣
|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘

𝐶𝐶𝑘𝑘 = ∂ℎ
∂𝑚𝑚

|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘
,𝐺𝐺𝑘𝑘 = ∂ℎ

∂𝑤𝑤
|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘

 (20) 

 

For time update, we need to compute the priori covariance and priori state estimate 

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐴𝐴𝑘𝑘−1𝑇𝑇 + 𝐹𝐹𝑘𝑘−1𝑉𝑉𝑘𝑘−1𝐹𝐹𝑘𝑘−1𝑇𝑇

𝑥𝑥
^
𝑘𝑘
− = 𝑓𝑓𝑘𝑘−1(𝑥𝑥

^
𝑘𝑘−1
+ ,𝑢𝑢𝑘𝑘−1, 0)

 (21)(22) 

 

where 𝑉𝑉𝑘𝑘  is the covariance matrix of process noise at time step 𝑘𝑘. We neglect the process noise, so the 

second term in (21) is zero. 𝑥𝑥
^− is the priori state estimate and 𝑃𝑃𝑘𝑘− is priori covariance matrix. Based on the 

grid synchronization model (11), 𝐴𝐴 can be defined by a 5 × 5 matrix as 

𝐴𝐴 =

⎝

⎜
⎛

cos 𝑥𝑥5 −sin 𝑥𝑥5 0 0 𝐴𝐴15
sin 𝑥𝑥5 cos 𝑥𝑥5 0 0 𝐴𝐴25

0 0 cos 𝑥𝑥5 −sin 𝑥𝑥5 𝐴𝐴35
0 0 sin 𝑥𝑥5 cos 𝑥𝑥5 𝐴𝐴45
0 0 0 0 1 ⎠

⎟
⎞

 (23) 
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where 

𝐴𝐴15 = −𝑥𝑥1𝑐𝑐𝑖𝑖𝑛𝑛𝑥𝑥5 − 𝑥𝑥2cos 𝑥𝑥5
𝐴𝐴25 = 𝑥𝑥1cos 𝑥𝑥5 − 𝑥𝑥2sin 𝑥𝑥5
𝐴𝐴35 = −𝑥𝑥3sin 𝑥𝑥5 − 𝑥𝑥4cos 𝑥𝑥5
𝐴𝐴45 = 𝑥𝑥3cos 𝑥𝑥5 − 𝑥𝑥4sin 𝑥𝑥5

 

The measurement update can be summarized as 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐶𝐶𝑘𝑘𝑇𝑇(𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘−𝐶𝐶𝑘𝑘𝑇𝑇 + 𝐺𝐺𝑘𝑘𝑊𝑊𝑘𝑘𝐺𝐺𝑘𝑘𝑇𝑇)−1

𝑥𝑥
^
𝑘𝑘
+ = 𝑥𝑥

^
𝑘𝑘
− + 𝐾𝐾𝑘𝑘[𝑦𝑦𝑘𝑘 − ℎ𝑘𝑘(𝑥𝑥

^−, 0)]
𝑃𝑃𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐶𝐶𝑘𝑘)𝑃𝑃𝑘𝑘−

 (24)(25)(26) 

 

where 𝑥𝑥
^
𝑘𝑘
+ is posteriori state estimate; 𝑃𝑃𝑘𝑘+ is posteriori covariance matrix. Based on the measurement 

equation (12), 𝐶𝐶𝑘𝑘  can be computed as 

𝐶𝐶𝑘𝑘 = (1 0 0 0 0
0 0 1 0 0) (27) 

B. Fault Tolerant Extended Kalman Filter 
In order to provide a more reliable and effective state estimation of power systems against various bad 
data, disturbances and noises, we propose the locally unbiased, resilient, minimum variance state 
estimator, the fault tolerant extended Kalman filter (FTEKF), for nonlinear power system process and 
measurement equations (11) and (12). It means that the state estimator is unbiased for small error values, 
has robustness against gain perturbations, and achieves minimum value for an upper bound on the 
estimation error covariance. 

Consider the discrete-time nonlinear stochastic power system process and measurement equations as 
follows 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑣𝑣𝑘𝑘

𝑦𝑦𝑘𝑘 =

⎝

⎛

𝑦𝑦𝑘𝑘1

𝑦𝑦𝑘𝑘2
⋮
𝑦𝑦𝑘𝑘
𝑝𝑝⎠

⎞ =

⎝

⎛

𝛾𝛾𝑘𝑘1ℎ1(𝑥𝑥𝑘𝑘) + 𝑤𝑤𝑘𝑘1

𝛾𝛾𝑘𝑘2ℎ2(𝑥𝑥𝑘𝑘) + 𝑤𝑤𝑘𝑘2
⋮

𝛾𝛾𝑘𝑘
𝑝𝑝ℎ𝑝𝑝(𝑥𝑥𝑘𝑘) + 𝑤𝑤𝑘𝑘

𝑝𝑝⎠

⎞  (28) 

where 

𝑥𝑥𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 state vector 
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𝑣𝑣𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛  system noise 

𝑦𝑦𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑝𝑝 measurement vector 

𝑤𝑤𝑘𝑘𝑖𝑖 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 measurement noise in each phasor measurement unit and wk=[w1k,w2k,…,wpk]T 

𝑓𝑓, ℎ differentiable non-linear vector functions 

The mean of initial state 𝑥𝑥0 is 𝐸𝐸[𝑥𝑥0] = 𝑥𝑥0 and covariance of initial state 𝑥𝑥0 is 𝑋𝑋0 = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥0)(𝑥𝑥0 −
𝑥𝑥0)𝑇𝑇]. The noise processes, 𝑣𝑣𝑘𝑘  and 𝑤𝑤𝑘𝑘, are white, zero mean, uncorrelated with each other and with 𝑥𝑥0, 
and have covariance 𝑉𝑉𝑘𝑘  and 𝑊𝑊𝑘𝑘, respectively. 
 

𝑣𝑣𝑘𝑘 ∼ (0,𝑉𝑉𝑘𝑘),𝑤𝑤𝑘𝑘 ∼ (0,𝑊𝑊𝑘𝑘),
𝐸𝐸[𝑣𝑣𝑘𝑘𝑣𝑣𝑗𝑗𝑇𝑇] = 𝑉𝑉𝑘𝑘𝛿𝛿𝑘𝑘−𝑗𝑗 ,𝐸𝐸[𝑤𝑤𝑘𝑘𝑤𝑤𝑗𝑗𝑇𝑇] = 𝑊𝑊𝑘𝑘𝛿𝛿𝑘𝑘−𝑗𝑗 ,
𝐸𝐸[𝑣𝑣𝑘𝑘𝑤𝑤𝑗𝑗𝑇𝑇] = 0,𝐸𝐸[𝑣𝑣𝑘𝑘𝑥𝑥0𝑇𝑇] = 0,𝐸𝐸[𝑤𝑤𝑘𝑘𝑥𝑥0𝑇𝑇] = 0

 (29) 

The scalar binary Bernoulli distributed random variables 𝛾𝛾𝑘𝑘𝑖𝑖  are with mean 𝜋𝜋𝑖𝑖  and variance 𝜋𝜋𝑖𝑖(1 −
𝜋𝜋𝑖𝑖) whose possible outcomes 0, 1 are defined as 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎�𝛾𝛾𝑘𝑘𝑖𝑖 = 1� = 𝜋𝜋𝑖𝑖and 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎(𝛾𝛾𝑘𝑘𝑖𝑖 = 0) = 1 − 𝜋𝜋𝑖𝑖. The 
formulation involves hard measurement failures, where the PMU either works properly or bad data occurs. 
 
Denote the measurement vector of 𝑝𝑝 phasor measurement units at 𝑦𝑦(𝑘𝑘) = [𝑦𝑦1(𝑘𝑘),𝑦𝑦2(𝑘𝑘), … , 𝑦𝑦𝑝𝑝(𝑘𝑘)]𝑇𝑇, 

and the measurement estimate vector at 𝑡𝑡 = 𝑘𝑘𝜔𝜔 as 𝑦𝑦
^

(𝑘𝑘) = [𝑦𝑦
^1(𝑘𝑘), 𝑦𝑦

^2(𝑘𝑘), … ,𝑦𝑦
^𝑝𝑝(𝑘𝑘)]𝑇𝑇. Let 𝑃𝑃𝑖𝑖(𝑘𝑘) be 

the 𝑖𝑖th component of residual vector defined by the difference between the ith PMU 

measurement 𝑦𝑦𝑖𝑖(𝑘𝑘) and the corresponding estimated measurement 𝑦𝑦
^ 𝑖𝑖(𝑘𝑘). 

 

𝑃𝑃(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦
^

(𝑘𝑘) ≅ 𝐶𝐶𝑘𝑘[𝑥𝑥(𝑘𝑘) − 𝑥𝑥
^

(𝑘𝑘)] + 𝑤𝑤(𝑘𝑘) (30) 

It is known that 𝑃𝑃𝑖𝑖(𝑘𝑘) is approximately a white Gaussian process with zero mean and covariance 
matrix 𝜎𝜎𝑟𝑟2(𝑘𝑘) given by 

𝜎𝜎𝑟𝑟2(𝑘𝑘) = 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇 + 𝑊𝑊𝑘𝑘  (31) 

where 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇 is the error covariance of 𝐶𝐶𝑘𝑘[𝑥𝑥(𝑘𝑘) − 𝑥𝑥
^

(𝑘𝑘)], and 𝑊𝑊𝑘𝑘  is the measurement noise covariance 
of 𝑤𝑤(𝑘𝑘). The sets of received and estimated measurements are mutually independent. 

Define the normalized residual vector 𝑃𝑃𝑁𝑁(𝑘𝑘), at time step 𝑘𝑘.𝜎𝜎𝑟𝑟𝑖𝑖(𝑘𝑘) is the ith diagonal element of standard 

deviation matrix �𝜎𝜎𝑟𝑟2(𝑘𝑘). The components of vector 𝑃𝑃 are normalized and submitted to the following 
statistical validation: 
 

𝑃𝑃𝑁𝑁𝑖𝑖 (𝑘𝑘) = 𝑟𝑟𝑖𝑖(𝑘𝑘)
𝜎𝜎𝑟𝑟𝑖𝑖(𝑘𝑘)

 (32) 



If |𝑃𝑃𝑁𝑁𝑖𝑖 (𝑘𝑘)| ≤ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 and the measurement is compatible with the accuracy of both metering and 
communication systems, we assume that the ith PMU works properly at time step k, i.e., 𝛾𝛾𝑘𝑘𝑖𝑖 = 1. 
If |𝑃𝑃𝑁𝑁𝑖𝑖 (𝑘𝑘)| > 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵, or the measurement is not compatible with the accuracy of both metering and 
communication systems, we consider that bad data occurs at the ith PMU, i.e., 𝛾𝛾𝑘𝑘𝑖𝑖 = 0. The 
threshold 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 is determined by the test confidence, i.e., the detection threshold for the test can be 
set to 3 with a 99.72% confidence level.38 Note that the detection threshold value determines the test 
confidence level. If the detection threshold adopted for normalized residual test is 2, then the confidence 
level is 94.46%. If the detection threshold is 2.5, then the confidence level is 98.76%. Typical bad data 
measurement detection threshold 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 is set to 3, which is used for our application. Therefore, if 
the normalized residue exceeds 3, then the corresponding measurement can be flagged for elimination. A 
simplified pseudo-algorithm that summarizes this process is provided in Algorithm 1. 
 
Algorithm 1 Bad Data Detection 
Require: acceptable threshold 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 

1. Procedure Bad Data Detection 
2. for every sampling time step k do 
3. Obtain measurements 𝑦𝑦(𝑘𝑘) = [𝑦𝑦1(𝑘𝑘), … . , 𝑦𝑦𝑝𝑝(𝑘𝑘)]𝑇𝑇  
4. at time 𝑡𝑡 = 𝑘𝑘𝜔𝜔, for each PMU index 𝑖𝑖 (𝑖𝑖 = 1 → 𝑝𝑝) 

5. Compute 𝑃𝑃(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) − 𝑦𝑦
^

(𝑘𝑘) 
6. Compute standard deviation of residual 𝜎𝜎𝑟𝑟(𝑘𝑘) 

7. Compute the normalized residual 𝑃𝑃𝑁𝑁(𝑘𝑘) = 𝑟𝑟(𝑘𝑘)
𝜎𝜎𝑟𝑟(𝑘𝑘)

 

8. if �𝑃𝑃𝑁𝑁𝑖𝑖 (𝑘𝑘)� ≤ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵then, 
9. 𝑦𝑦𝑖𝑖(𝑘𝑘) = dynamic d ata, 
10. Assume 𝛾𝛾𝑘𝑘𝑖𝑖 = 1 

 
11. end if 

 
12. if �𝑃𝑃𝑁𝑁𝑖𝑖 (𝑘𝑘)� > 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝐵𝐵 then, 
13. 𝑦𝑦𝑖𝑖(𝑘𝑘) = bad d ata, 
14. Assume 𝛾𝛾𝑘𝑘𝑖𝑖 = 0 
15. end if 

16. end for 

17. end procedure 

By denoting 

Γ𝑘𝑘 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑[𝛾𝛾𝑘𝑘1, 𝛾𝛾𝑘𝑘2, … , 𝛾𝛾𝑘𝑘
𝑝𝑝]

ℎ(𝑥𝑥𝑘𝑘) = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑[ℎ1(𝑥𝑥𝑘𝑘),ℎ2(𝑥𝑥𝑘𝑘), … ,ℎ𝑝𝑝(𝑥𝑥𝑘𝑘)]
 (33)(34) 



the measurement equation can be written as 

𝑦𝑦𝑘𝑘 = Γ𝑘𝑘ℎ(𝑥𝑥𝑘𝑘) + 𝑤𝑤𝑘𝑘  (35) 

Our goal is to estimate the state vector 𝑥𝑥𝑘𝑘  based on our knowledge of system dynamics and the availability 
of the noisy measurement 𝑦𝑦𝑘𝑘  under the effect of sensor failures. The following discrete time nonlinear 
Luenberger observer is considered in this work. 
 

𝑥𝑥
^
𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥

^
𝑘𝑘) + (𝐾𝐾𝑘𝑘 + ∆𝑘𝑘)(𝑦𝑦𝑘𝑘 − Γ𝑘𝑘ℎ(𝑥𝑥

^
𝑘𝑘)) (36) 

Although the filter gain should be 𝐾𝐾𝑘𝑘, due to computational or tuning uncertainties, it is erroneously 
implemented as 𝐾𝐾𝑘𝑘 + ∆𝑘𝑘. The term Γ𝑘𝑘 is defined as 
 

Γ𝑘𝑘 = 𝐸𝐸[Γ𝑘𝑘] = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑[𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑝𝑝] (37) 

𝐾𝐾𝑘𝑘 is the feedback gain with additive uncertainty ∆𝑘𝑘. The uncertainty ∆𝑘𝑘, is assumed to have zero mean, 
bounded second moment and be uncorrelated with initial state, process and measurement noises, i.e., 
 

𝐸𝐸[∆𝑘𝑘∆𝑘𝑘𝑇𝑇] ≤ 𝛿𝛿𝐼𝐼,𝐸𝐸[∆𝑘𝑘𝑇𝑇𝑥𝑥0] = 0,𝐸𝐸[∆𝑘𝑘𝑇𝑇𝑣𝑣𝑘𝑘] = 0,𝐸𝐸[∆𝑘𝑘𝑤𝑤𝑘𝑘] = 0 (38) 

Theorem 1 
The fault tolerant extended Kalman filter is defined as follows: 

1. Initialization 

𝑥𝑥
^
0 = 𝐸𝐸[𝑥𝑥0]

𝑃𝑃0 = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥
^
0)(𝑥𝑥0 − 𝑥𝑥

^
0)𝑇𝑇]

 (39) 

2. Computation of Jacobian matrices 

𝐴𝐴𝑘𝑘 = ∂𝑓𝑓
∂𝑚𝑚

|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘

,𝐶𝐶𝑘𝑘 = ∂ℎ
∂𝑚𝑚

|
𝑚𝑚=𝑚𝑚

^
𝑘𝑘

 (40) 

3. For time steps 𝑘𝑘 = 1,2,3, …, the estimator propagates by calculating the feedback gain 

𝐾𝐾𝑘𝑘𝑜𝑜 = (𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

)[Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

+

Υ⊗ (ℎ(𝑥𝑥
^
𝑘𝑘)ℎ𝑇𝑇(𝑥𝑥

^
𝑘𝑘) + 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇) + 𝑊𝑊𝑘𝑘]−1

 (41) 

from an upper bound on the local estimation error co variance 



𝑃𝑃𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑉𝑉𝑘𝑘 + 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚{Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

+ 𝑊𝑊𝑘𝑘 +

Υ⊗ (ℎ(𝑥𝑥
^
𝑘𝑘)ℎ𝑇𝑇(𝑥𝑥

^
𝑘𝑘) + 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇)}𝛿𝛿𝐼𝐼

−(𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

)[Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

+

Υ⊗ (ℎ(𝑥𝑥
^
𝑘𝑘)ℎ𝑇𝑇(𝑥𝑥

^
𝑘𝑘) + 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇) + 𝑊𝑊𝑘𝑘]−1(Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇)

 (42) 

to be used in updating the state estimate as 

𝑥𝑥
^
𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥

^
𝑘𝑘) + (𝐾𝐾𝑘𝑘𝑜𝑜 + ∆𝑘𝑘) �𝑦𝑦𝑘𝑘 − Γ𝑘𝑘ℎ(𝑥𝑥

^
𝑘𝑘)� (43) 

where 

Υ = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑[𝜋𝜋1(1 − 𝜋𝜋1),𝜋𝜋2(1 − 𝜋𝜋2), … ,𝜋𝜋𝑝𝑝(1 − 𝜋𝜋𝑝𝑝)]

= �

𝜋𝜋1(1− 𝜋𝜋1) 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝜋𝜋𝑝𝑝(1 − 𝜋𝜋𝑝𝑝)

�
 (44) 

Proof 
The proof of this theorem can be found in.53 Note that the upper bound covariance in (42) is obtained 
based on Rayleigh's inequality. It can shown that EKF is a special case of the proposed FTEKF, when there 
are no measurement failures. ■ 
 

Remark 1 
As a limiting case, if we have no perturbations on the estimator gain, i.e., 𝛿𝛿 = 0, then the following 
estimator can be derived following a similar procedure to the previously given. In this case, the robust 
optimal feedback gain is 
 

𝐾𝐾𝑘𝑘𝑜𝑜 = (𝐴𝐴𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

)[Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

+

Υ⊗ (ℎ(𝑥𝑥
^
𝑘𝑘)ℎ𝑇𝑇(𝑥𝑥

^
𝑘𝑘) + 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇) + 𝑊𝑊𝑘𝑘]−1

 (45) 

The bound on the minimum error covariance equation is 

𝑃𝑃𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑉𝑉𝑘𝑘 − (𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

)[Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇Γ𝑘𝑘
𝑇𝑇

+

Υ⊗ (ℎ(𝑥𝑥
^
𝑘𝑘)ℎ𝑇𝑇(𝑥𝑥

^
𝑘𝑘) + 𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐶𝐶𝑘𝑘𝑇𝑇) + 𝑊𝑊𝑘𝑘]−1(Γ𝑘𝑘𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇)  (46) 

and the state estimate is updated as 

https://ieeexplore.ieee.org/document/#deqn42


𝑥𝑥
^
𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥

^
𝑘𝑘) + 𝐾𝐾𝑘𝑘𝑜𝑜(𝑦𝑦𝑘𝑘 − Γ𝑘𝑘ℎ(𝑥𝑥

^
𝑘𝑘)) (47) 

Remark 2 
As a more limiting case, if we further neglect the effect of bad data or sensor faults, i.e., 𝛾𝛾𝑘𝑘𝑖𝑖 = 1 for all 
sensors at all time, then Γ𝑘𝑘  becomes identity matrix and Υ becomes zero matrix. Clearly, the extended 
Kalman filter is obtained as a special case of the proposed fault tolerant extended Kalman filter. 
 

SECTION VI. 
Computer Simulation Results 
In Section VI, we compare the performance of the extended Kalman filter (EKF) and the fault tolerant 
extended Kalman filter (FTEKF) with computer simulations. The average root-mean-square deviation 
comparison is provided. The sampling frequency is chosen as 2400 Hz. [1,1.2,0.8]𝑇𝑇, and [0,𝜋𝜋/3,−2𝜋𝜋/
3]𝑇𝑇  are chosen as the initial amplitudes, and initial phase angles of the unbalanced three phase voltages, 
respectively. The additive white Gaussian noise (AWGN) with zero mean and unity matrix covariance is used 
for simulating measurement noise. 
 
Figs. 1 and 2 show the noisy bad data corrupted measurements. In Fig. 1, the probability of bad data 
reception in measurement signal 𝑦𝑦1 is 50%. In Fig. 2, the probability of bad data reception in measure 
signal 𝑦𝑦2 is 20%. Therefore, we can calculate 
 

Γ𝑘𝑘 = �0.5 0
0 0.8� ,Υ = �0.25 0

0 0.16� (48) 

Based on these matrices, we can obtain the state estimates using (41), (42), (43). We have performed a 
number of EKF and FTEKF state estimation experiments applied to grid synchronization. Figs. 3–7 illustrate 
the fault tolerant extended Kalman filter accurately tracks the five state variables, while EKF fails to 
converge to the real state trajectories due to the severe nonlinearity cased by bad data. Since EKF uses first 
order linearization to update the mean of state and the covariance of estimation error, it will fail to 
converge for high nonlinearity. 

In Fig. 8, the performance metric we used to evaluate EKF and FTEKF is the root-mean-square deviation  

https://ieeexplore.ieee.org/document/#deqn41
https://ieeexplore.ieee.org/document/#deqn42
https://ieeexplore.ieee.org/document/#deqn43


(RMSD),  
Fig. 1. Measurement y1.  

 

Fig. 2. Measurement y2. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/7593404/7390327/7390327-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/7593404/7390327/7390327-fig-1-source-large.gif


 

Fig. 3. The first state variable comparison.  

 
Fig. 4. The second state variable estimation comparison. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/59/7593404/7390327/7390327-fig-4-source-large.gif
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Fig. 5. The third state variable estimation comparison. 

 

Fig. 6. The fourth state variable estimation comparison. 



 

Fig. 7. The fifth state variable estimation comparison. 

which is given by 

𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 =
�� (𝑥𝑥

 �𝑘𝑘 − 𝑥𝑥𝑘𝑘)2
𝑛𝑛

𝑘𝑘=1
𝑛𝑛  

where n is the number of time steps. 



 

Fig. 8. Average estimation error comparison. 

To provide a quantitative view of the performance comparison, Table I shows the RMSD comparison of the 
two approaches. 

Table I RMSD comparison 

 

According to the results shown in Table I, at the beginning of the time (from 0 to 50 msec), EKF shows 
slightly smaller estimation errors than FTEKF. After the first 50 msec, FTEKF effectively tracks the real state 
trajectories, while EKF fails to converge. By the end of the simulation at 300 msec, the average root-mean-
square deviation (RMSD) (averaged over 20 experiments with different initial state estimates) for FTEKF is 
less than 0.0191, comparing with EKF RMSD of 0.4621. Due to the intense nonlinearity caused by bad data, 



EKF is not able to provide reliable state estimates, while FTEKF shows fast convergence speed and small 
estimation error. 

It should also be noted that it takes about 80 ms as shown in Figs. 1 and 3, for FTEKF to track the real state 
signal accurately. Fig. 8 also shows that for the first 50 ms, the FTEKF RMSD values are slightly larger in 
comparison with EKF. Also, in the first 50 msec from Table I, FTEKF shows slightly more RMSD than EKF. The 
reason is that the FTEKF estimation covariance (42) is the upper bound of estimation error covariance 
matrix, which is obtained by applying Rayleigh's inequality.53 At the beginning of estimation, the FTEKF 
estimation error covariance (42) would be larger than the EKF error covariance, since FTEKF covariance 
matrix takes sensor measurement failures into account. As time increase, both of the state estimates and 
covariance converge to the real state values precisely through time iterations of FTEKF. Therefore, after a 
short period of time (about 60 msec), FTEKF effectively tracks to the real state signal, while EKF fails. 

Finally, the positive sequence phase angle estimate from FTEKF is shown in Fig. 9. Note that only the 
positive sequence phase angle estimate from FTEKF is compared to the real positive sequence phase angle 
trajectory, since FTEKF can provide phase angle estimate effectively, while EKF estimation fails. Note the 
discontinuities of the FTEKF estimates (on the red curves in Fig. 9) are due to the bad data effect. 

 
Fig. 9. Positive sequence phase angle estimate with FTEKF. 

https://ieeexplore.ieee.org/document/#deqn42
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Fig. 10. Structure of An Interconnected Renewable Energy System (RES) with Real Time State Estimator 
(RTSE).15 

Results are clearly encouraging based on the averages over experiments, we may conclude the fault 
tolerant extended Kalman filter shows good estimation accuracy in the presence of bad data, external 
disturbances and noises. 

SECTION VII. 
Hardware Implementation 
The proposed fault tolerant extended Kalman filter (FTEKF) has also been implemented with National 
Instruments CompactRIO and dSPACE DS1103 hardware platforms Fig. 10. The operation of the 
interconnected renewable energy sources (RES) is achieved by controlling the grid side converter (GSC), 
which is ensured by accurate synchronization through real time state estimator (RTSE).15 The renewable 
energy system (RES) controller is implemented with dSPACE DS1103 platform, with PowerPC 750GX 
microprocessor runs at 1 GHz. dSPACE based RES controller can dynamically control the switching of IGBT 
converters to connect or disconnect distributed generation systems (DG) from or to the power grid. 
Moreover, real-time state estimator (RTSE) fault tolerant extended Kalman filter algorithm is implemented 
on the CompactRIO cRIO-9024 platform. The FTEKF RTSE is based on the detection of the phase angle and 
amplitude of the positive sequence grid voltage (17), (18) at the point of common coupling (PCC). Real-time 
CompactRIO computes and sends the positive sequence information to dSPACE RES controller. 

As shown in Fig. 11, NI 9225 simultaneous analog input module serves as the interface between 
CompactRIO real time controller and external three phase voltages. The incoming three-phase voltages are 
connected to three input channels of NI 9225, and the outputs of NI 9225 are fed to the CompactRIO 
system. In Fig. 12, the three phase voltages are acquired and displayed in LabVIEW front panel. Note that, 
after the step-down power transformer stage, the three phase voltage signals acquired by NI 9225 
are 12.694∠0∘, 12.978∠− 119.59∘, and 13.078∠120.41∘∘ all at 60.00 Hz. The RMS voltage 
comparison is also shown in Fig. 12. 
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Fig. 11. RTSE hardware implementation. 

 
Fig. 12. Real time voltage measurement. 

Based on our proposed approach, the estimated state trajectories with FTEKF (shown in blue curves) 
effectively track the state trajectories (shown in red curves) in Fig. 13 in real time. Hardware-in-the-loop 
CompactRIO system indicates that the positive sequence voltage 𝑉𝑉𝑝𝑝 = 12.8085∠13.034∘, while the 
negative sequence component is insignificant. Based on the positive sequence voltage information, dSPACE 
system can dynamically control the switching of IGBT converters to connect or disconnect distributed 
generation systems (DG) from or to the power grid. This real-time hardware platform has demonstrated the 
efficacy of the proposed approach. 
 



 
Fig. 13. Real time state estimation with fault tolerant extended Kalman filter. 

SECTION VIII. 
Conclusion 
Accurate voltage synchronization under bad data, fault and distorted voltages conditions is a critical 
concern for properly controlling electrical energy transfer between a distributed power generation system 
(DPGS) and the grid. This paper have presented a novel fault tolerant extended Kalman filter (FTEKF) with 
the applications in smart power grid synchronization. We have derived the state space system and 
measurement equations based on Clarke's transformation and symmetrical component transformation. 
The extended Kalman filter and the fault tolerant extended Kalman filter have been employed to track the 
frequency, voltage amplitudes and phase angles for unbalanced three phase voltages with noisy bad data 
measurements. With the state estimates, the positive sequence phase angle and voltage magnitude can be 
obtained, which can be used in the energy management systems (EMS) to turn on/off the distributed 
sources in active distribution networks (ADNs), and therefore to control the active and reactive power flow, 
and to achieve other specific operation objectives between DGs and the grid. The computer simulation 
results indicate that FTEKF provides better accuracy than EKF, with similar computational complexity and 
running time. The proposed FTEKF approach has also been implemented with the dSPACE DS1103 and 
National Instruments CompactRIO hardware platforms to provide real-time grid synchronization. The 
impact on the accuracy improvement of the FTEKF RTSE over EKF has been shown to be major, in the view 
of similar computational complexity. The proposed fault tolerant extended Kalman filter is suitable for RTSE 
applications in the smart power grid synchronization applications. 
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Definitions 
 
𝑓𝑓,ℎ 
differentiable non-linear vector functions 
  
𝑣𝑣𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 
system noise 
  
𝑤𝑤𝑘𝑘𝑖𝑖 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 
measurement noise in each phasor measurement unit and 𝑤𝑤𝑘𝑘 = [𝑤𝑤𝑘𝑘1,𝑤𝑤𝑘𝑘2, … ,𝑤𝑤𝑘𝑘

𝑝𝑝]𝑇𝑇 
  
𝑥𝑥𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛 
state vector 
  
𝑦𝑦𝑘𝑘 ∈ 𝑚𝑚𝑎𝑎𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑝𝑝 
measurement vector 
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	Abstract:
	Effective real-time state estimation is essential for smart grid synchronization, as electricity demand continues to grow, and renewable energy resources increase their penetration into the grid. In order to provide a more reliable state estimation technique to address the problem of bad data in the PMU-based power synchronization, this paper presents a novel nonlinear estimation framework to dynamically track frequency, voltage magnitudes and phase angles. Instead of directly analyzing in abc coordinate frame, symmetrical component transformation is employed to separate the positive, negative, and zero sequence networks. Then, Clarke's transformation is used to transform the sequence networks into the 𝛼𝛽 stationary coordinate frame, which leads to system model formulation. A novel fault tolerant extended Kalman filter based real-time estimation framework is proposed for smart grid synchronization with noisy bad data measurements. Computer simulation studies have demonstrated that the proposed fault tolerant extended Kalman filter (FTEKF) provides more accurate voltage synchronization results than the extended Kalman filter (EKF). The proposed approach has been implemented with dSPACE DS1103 and National Instruments CompactRIO hardware platforms. Computer simulation and hardware instrumentation results have shown the potential applications of FTEKF in smart grid synchronization.
	SECTION I.
	Introduction

	With the widespread deployment of renewable energy generations, smart load controls, energy storages, plug-in hybrid electric vehicles and other new challenges presented by the requirement of smart grid, innovative changes to our existing power infrastructures are essential. New technologies including smart meters (SMs), big data, wireless telecommunication protocols, and phasor measurement units (PMUs) are all the key elements of smart grid. This evolution will lead to stochastic operating behaviors and dynamic nature of the grid. Meanwhile, in order to address the social, economical and environmental challenges, such as the growing electricity demand and green house effect, governments have developed ambitious public policy goals. For an instance, the state of California is aiming at producing 33% of its energy from renewable energy resources by the year 2020. The number of distributed power generation systems (DPGS) rapidly increases, due to the necessity of producing more renewable and sustainable electrical energy.1 Grid synchronization with high accuracy is a critical requirement for the proper control of grid connected converters, and DPGS. Without accurate grid synchronization, our utility network may face instability or even black-out.
	The purpose of this work is to develop a new real-time computing framework of power system state information, including frequency, voltage magnitude and phase angle. The positive sequence phase angle and voltage magnitude are used in energy management systems (EMS) to dynamically turn on/off the distributed energy resources in active distribution networks (ADN), and therefore to control the active and reactive power flow, and to achieve other specific operation objectives between DGs and the grid.2
	A vast of power grid synchronization approaches have been reported in literature.3–4,5 These prior-art synchronization methods can be broadly categorized as follows:
	a) Mathematical analysis methods are based on signal processing techniques, such as the discrete Fourier transform (DFT) or Hilbert transform (HT) analysis. Digital microprocessors are commonly used for implementing the numerical processing, thus the sampling rate is strictly required.
	b) Zero-crossing method is relatively easy to achieve and design; however, it is very sensitive to grid voltage distortions such as harmonics, notches. Therefore, zero-crossing method is not very reliable in practical applications.6,7
	c) Phase-Locked Loop (PLL) based synchronization techniques can implement a fast and accurate phase and frequency detection for balanced three-phase voltages.8–9,10,11,12,13,14,15 The synchronous reference frame phase-locked loop (SRF-PLL), also known as 𝑑𝑞-PLL, is the most widely used method in grid connected systems.8 Based on Park's transformation, a three-phase voltage vector is transformed from 𝑎𝑏𝑐 coordinate frame to 𝑑𝑞 coordinate frame. 𝑞-axis component contains the information about phase angle error and d-axis component is the voltage amplitude in steady state. Though SFR-PLL with low bandwidth shows good performance under balanced voltage condition, it has slow response during transient condition, and is quite sensitive to frequency fluctuation and unbalanced voltages. Several other PLL methods have been developed to improve the performance of SFR-PLL. The fixed-reference-frame PLL (FRF-PLL) proposed in9 does not require transformation of variables into the synchronous frame coordinates. In,10 an observer design is developed to enhance the PLL performance using the pole placement technique. UH-PLL proposed in11 includes a harmonic compensation mechanism to alleviate the effect of harmonic distortion, by using both of the positive and negative sequences in stationary coordinates of the fundamental and harmonic components. In,12 the second dq transformation memory phase delay PLL (SMPD-PLL) is proposed to enhance the performance. Several selected major PLL synchronization methods, including 𝑇4delay PLL, inverse Park's transform PLL (IPT-PLL), enhanced PLL (EPLL), multiple-complex coefficient-filter-based PLL (MCCF-PLL), multiple reference frame-based PLL (MRF-PLL), second order generalized integrator-based PLL (SOGI-PLL) and multi-harmonic decoupling cell PLL (MHDC-PLL), have been implemented for grid-connected inverter systems, and compared in terms of accuracy, dynamic response, harmonic immunity, etc. in.13–14,15 However, improper modeling parameters, PLL time delays, severe unbalanced voltages, large harmonics, and the low frequency dynamic effect caused by the coupling of PLL and network impedance may result in a potential converter and generator instability issue.
	d) Recent advancements on grid synchronization techniques are mostly based on the state estimation approaches, which was first proposed in.16 and 17 The weighted least square (WLS) estimation is the conventional method for static state estimation, which is discussed thoroughly in.18 A unified survey of the hierarchical WLS methods for large scale electric power system can be found in.19 In,20 a parallel algorithm is used, based on border virtual measurements, overlapping subsystems, and the auxiliary problem principle. Reference21 presents an application of a parallel algorithm for power system state estimation with a minimal amount of modification required to existing state estimators. In decentralized state estimation,22 the information exchange reduces to the state variables of border buses and no processing by a central coordinator is needed. Reference23 presents a distributed method for control centers to monitor the operating condition of a power network with a Kaczmarz (row-projection) type of estimator, which exhibits finite time convergence towards the exact solution and can be used to compute WLS to a linear power system model.
	Many SE methods have already been studied to incorporate the conventional supervisory control and data acquisition (SCADA) system and advanced measurement technologies such as phasor measurement units (PMU). The hierarchical scheme for distributed state estimation using synchronization phasor measurements is first introduced in.24 References25 and 26 further improve this method by considering a large number of tie lines among subsystems. In,25 a two-step algorithm is proposed, which incorporates the phasor measurements and the results of the traditional phasor measurements in a post processing linear estimator, proving the same results as the nonlinear algorithm. A method for sequentially handling the conventional and PMU measurements in a two-stage procedure is proposed in.28 Reference29 presents a two-step state estimation method based on measurements provided by PMU and SCADA system. At the first step, a linear state estimator is formulated using only synchronized phasor measurements provided by PMU. At the second step, the estimated voltage phasors from the first step and the SCADA measurements are simultaneously processed by a conventional nonlinear estimator to determine the whole system state. In,30 and 31 different formulations of nonlinear SE methods, considering the phasor measurements and the state vectors in either rectangular or polar coordinates are discussed and compared. Free reference bus hybrid estimators are suggested in.32 Recent development involving corrupted data and poorly synchronized data in PMUs are discussed in.33–34,35,36,37
	State estimation results are consistent as long as the measurement data provided to the estimation algorithm are correct. The measurements contain a certain amount of error which can be of two types, either a small statistically “well-behaved” error due to instrument inaccuracy, interference, miscalibration, etc. (disturbance and noise) or a large unpredictable error due to some sort of partial or total failure of the telemetering system, faulty signal sensing, electromagnetic interferences, system delays, transients, etc. (bad data). The error introduced by the measurement disturbance and noise is comparable with the uncertainty of most of the operational constraints (e.g., transmission line overloads), against which the results of the estimation will be checked. Therefore high filtering capacity is not a necessary requirement of the estimator. However, bad data may lead to measurements whose errors are larger than an acceptable bound compatible with the accuracy of both metering and communication systems, which can seriously distort the results of the estimation, producing completely unreliable state estimates.39,40 Some of them are easy to be identified and eliminate by using simple plausible checks, however, most bad data are not immediately detectable and are directly fed into the state estimator, which is not designed to cope with such additional errors. For the above mentioned reasons, a real time state estimator (RTSE) deployed in practical applications, must be able to detect and eliminate efficiently faulty measurements, keep good track of the state of the power system in the presence of noisy bad data measurements. Considerable research have been reported on this topic, see for instance41–42,43 and references therein.
	Recent advancements in computing and phasor technologies make real-time dynamic state estimation possible with high-speed time-synchronized data provided by phasor measurement units (PMU). However, bad data in PMU measurements may greatly degrade the power quality, or even cause severe damages to the entire power systems. In order to provide more reliable dynamic state estimation addressing the problem of bad data in the PMU-based power system synchronization,44–45,46 this paper presents a novel fault tolerant extended Kalman filter for smart grid synchronization, which can provide enhanced tracking of power system state information comparing with the performances with extended Kalman filter (EKF). Although EKF may converge for state estimation, and have decent accuracy, our studies show that the proposed fault tolerant extended Kalman filter can provide more accurate prediction with smaller mean square error (MSE). In order to deal with unbalanced voltages, we apply symmetrical component transformation to separate the positive, negative, and zero sequence networks. Then, Clarke's transformation is applied to transform abc coordinate frame quantities into αβ stationary coordinate frame, which leads to smart grid synchronization system model formulation. After that, the fault tolerant extended Kalman filter (FTEKF) is proposed and derived. The nonlinear estimators EKF and FTEKF are applied to estimate the frequency, voltage magnitudes and phase angles. Furthermore, computer simulations show better performance of FTEKF estimation in the presence of unbalanced voltages, bad data, and external disturbances. Last but not the least, the proposed FTEKF has been successfully implemented with dSPACE and CompactRIO hardware-in-the-loop system.
	The paper is organized as follows: First, the problem formulation is investigated in Section II. Then, the state space models for the smart grid synchronization is derived in Section III. After that, Section IV presents nonlinear estimation of the extended Kalman filter and the proposed fault tolerant extended Kalman filter (FTEKF). In Section V, the positive sequence voltage magnitude and phase angle computation is discussed. Computer simulation results are provided in Section VIto compare the performance of EKF and FTEKF nonlinear estimation. Moreover, Section VII briefly summarizes the hardware implementation of FTEKF. Based on computer simulation studies and hardware implementation, conclusion is reached in Section VIII.
	The following notation is used in this work: 𝑣(𝑡) and 𝑣(𝑘) denotes the continuous and discrete time voltage respectively. 𝑉 denotes the Root Mean Square (RMS) value of voltage. 𝑉 is the voltage phasor. 𝑥∈𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑅𝑛denotes n-dimensional real vector with norm ∥𝑥∥=(𝑥𝑇𝑥)1/2 where (⋅)𝑇 indicates matrix transpose. 𝐴≥0 for a symmetric matrix denotes a positive semi-definite matrix. 𝑃 denotes the covariance matrix. 𝑥 is the mean value for 𝑥.𝑃𝑟𝑜𝑏(⋅) is the probability of an event. 𝐸(𝑥)=𝑥 is the mean/expectation value of a random variable 𝑥.𝑥∼(𝑥,𝑋) denotes a random variable 𝑥 with arbitrary distribution with mean 𝑥 and covariance 𝑋.𝛿𝑘−𝑗 is the Kronecker delta function; that is, 𝛿𝑘−𝑗=1 when 𝑘=𝑗; and 𝛿𝑘−𝑗=0 when 𝑘≠𝑗. Let 𝐴 and 𝐵 be 𝑛×𝑚 matrices, the Hadamard product of 𝐴 and 𝐵 is denoted by 𝐴⊗𝐵, and is defined as [𝐴⊗𝐵]𝑖,𝑗=[𝐴]𝑖𝑗[𝐵]𝑖𝑗 for 1≤𝑖≤𝑛,1≤𝑗≤𝑚. Matrix form of Rayleigh's inequality is also used in the derivation of this work, which can be stated as: for 𝑋=𝑋𝑇∈𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑅𝑛×𝑛 and 𝑌∈𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑅𝑚×𝑛, the matrix inequality 𝜆𝑚𝑖𝑛𝑋𝑌𝑌𝑇≤𝑌𝑋𝑌𝑇≤𝜆𝑚𝑎𝑥𝑋𝑌𝑌𝑇holds.
	SECTION II.
	Problem Formulation

	The general form of three-phase electrical power grid voltages can be expressed as49,50
	𝑣𝑎(𝑡)=2𝑉𝑎cos(𝜔𝑡+𝜙𝑎)𝑣𝑏(𝑡)=2𝑉𝑏cos(𝜔𝑡+𝜙𝑏)𝑣𝑐(𝑡)=2𝑉𝑐cos(𝜔𝑡+𝜙𝑐) (1)
	where 𝑣𝑎(𝑡),𝑣𝑏(𝑡),𝑣𝑐(𝑡) are the instantaneous unbalanced three phase voltages; 𝑡 is time in seconds; 𝜔 is electrical angular frequency in rad/s. 𝑉𝑖 and 𝜙𝑖(𝑖=𝑎,𝑏,𝑐) are the corresponding root mean square (RMS) voltage amplitudes and phase angles. It is worthwhile mentioning that the three phase voltages are not necessarily balanced, so they may not have the same magnitude, nor the phase angle difference of 120°.
	The discrete-time three phase voltages with external disturbances and noises can be obtained from (1) as
	𝑣𝑎(𝑘)=2𝑉𝑎cos(𝜔𝑘𝑇+𝜙𝑎)𝑣𝑏(𝑘)=2𝑉𝑏cos(𝜔𝑘𝑇+𝜙𝑏)𝑣𝑐(𝑘)=2𝑉𝑐cos(𝜔𝑘𝑇+𝜙𝑐) (2)
	where 𝑘 is the sampling instant 𝑘=0,1,2,3,…. For sampling period 𝑇,𝑥(𝑘)=𝑥(𝑘𝑇) equals the magnitude of 𝑥(𝑡) at the 𝑘th sampling instant. The grid frequency and sampling frequency are considered to be 60 Hz, 2400 Hz, respectively in our case.
	Denote 𝑣(𝑘)=[𝑣𝑎(𝑘),𝑣𝑏(𝑘),𝑣𝑐(𝑘)]𝑇 as the three-phase voltage vector. According to symmetrical component transformation (Fortescue's transformation), three phase voltages can be expressed in term of positive, negative, and zero sequence voltages47,48
	𝑣(𝑘)=𝑣0(𝑘)+𝑣𝑝(𝑘)+𝑣𝑛(𝑘) (3)
	where 𝑣(𝑘) represents the instantaneous three phase voltages, and 𝑣𝑖(𝑖=0,𝑝,𝑛) denote the zero, positive, and negative sequence voltages
	𝑣𝑝(𝑘)=2𝑉𝑝[𝑐𝑜𝑠(𝜃𝑝),𝑐𝑜𝑠(𝜃𝑝−120𝑜),𝑐𝑜𝑠(𝜃𝑝+120𝑜)]𝑇𝑣𝑛(𝑘)=2𝑉𝑛[𝑐𝑜𝑠(𝜃𝑛),𝑐𝑜𝑠(𝜃𝑛+120𝑜),𝑐𝑜𝑠(𝜃𝑛−120𝑜)]𝑇𝑣0(𝑘)=2𝑉0[𝑐𝑜𝑠(𝜃0),𝑐𝑜𝑠(𝜃0),𝑐𝑜𝑠(𝜃0)]𝑇 (4)
	where 𝜃𝑖=𝜃𝑖𝑘=𝜔𝑘𝑇+𝜙𝑖for 𝑖=(𝑝,𝑛,0), which are the positive, negative and zero sequence phase angles, respectively. A fast and precise detection of the positive sequence of grid voltage is a critical step of controlling the connection of DGs to power grid.
	Based on symmetrical component transformation, the abc coordinate frame three-phase voltage phasors can be separated to the positive, negative, and zero sequence phasors.
	𝑉𝑎𝑉𝑏𝑉𝑐=1111𝑎2𝑎1𝑎𝑎2𝑉0𝑉𝑝𝑉𝑛 (5)
	where 𝑉𝑖 for 𝑖=(0,𝑝,𝑛) are zero, positive, and negative sequence voltage phasors, and 𝑎=1∠120∘.
	Applying Clarke's transformation, we can transform abc coordinate frame voltage phasors to stationary 𝛼𝛽 coordinate frame voltage phasors.
	𝑉𝛼𝑉𝛽=231−12−12032−32𝑉𝑎𝑉𝑏𝑉𝑐 6)
	Using (5) and (6), we get
	𝑉𝛼𝑉𝛽=11−𝑗𝑗][𝑉𝑝𝑉𝑛  (7)
	Voltage phasors (7) can be expressed as discrete-time instantaneous voltages 𝑣𝛼(𝑘) and 𝑣𝛽(𝑘) as follows
	𝑣𝛼(𝑘)=2𝑉𝑝cos(𝜔𝑘𝑇+𝜙𝑝)+2𝑉𝑛cos(𝜔𝑘𝑇+𝜙𝑛)=2(𝑉𝑝cos𝜙𝑝+𝑉𝑛cos𝜙𝑛)cos𝜔𝑘𝑇−2(𝑉𝑝sin𝜙𝑝+𝑉𝑛sin𝜙𝑛)sin𝜔𝑘𝑇=2𝑉𝛼cos(𝜔𝑘𝑇+𝜙𝛼)𝑣𝛽(𝑘)=2𝑉𝑝sin(𝜔𝑘𝑇+𝜙𝑝)−2𝑉𝑛sin(𝜔𝑘𝑇+𝜙𝑛)=2(𝑉𝑝cos𝜙𝑝−𝑉𝑛cos𝜙𝑛)sin𝜔𝑘𝑇+2(𝑉𝑝sin𝜙𝑝−𝑉𝑛sin𝜙𝑛)cos𝜔𝑘𝑇=2𝑉𝛼cos(𝜔𝑘𝑇+𝜙𝛽) (8)(9)
	Note that zero sequence quantities in (7) are zeros after applying Clarke's transformation.
	SECTION III.
	State Space System Dynamics

	Based on (8) and (9), and applying the discretization process with sampling period 𝑇, the state space variables of grid voltage synchronization are chosen as follows
	𝑥1(𝑘)=2𝑉𝛼cos(𝑘𝜔𝑇+𝜙𝛼)𝑥2(𝑘)=2𝑉𝛼sin(𝑘𝜔𝑇+𝜙𝛼)𝑥3(𝑘)=2𝑉𝛽cos(𝑘𝜔𝑇+𝜙𝛽)𝑥4(𝑘)=2𝑉𝛽sin(𝑘𝜔𝑇+𝜙𝛽)𝑥5(𝑘)=𝜔 (10)
	Denote 𝑡=𝑘𝑇 and 𝑇=1/𝑓𝑠, where 𝑇 is sampling time and 𝑓𝑠 is sampling frequency. From (10), we formulate the system model as follows
	𝑥1(𝑘+1)=𝑥1(𝑘)cos(𝑥5(𝑘))−𝑥2(𝑘)sin(𝑥5(𝑘))𝑥2(𝑘+1)=𝑥1(𝑘)sin(𝑥5(𝑘))+𝑥2(𝑘)cos(𝑥5(𝑘))𝑥3(𝑘+1)=𝑥3(𝑘)cos(𝑥5(𝑘))−𝑥4(𝑘)sin(𝑥5(𝑘))𝑥4(𝑘+1)=𝑥3(𝑘)sin(𝑥5(𝑘))+𝑥4(𝑘)cos(𝑥5(𝑘))𝑥5(𝑘+1)=𝑥5(𝑘) (11)
	Note that the system/process noise is assumed to be zero in (11). The measurement equations are defined as
	𝑦1(𝑘)=𝑥1(𝑘)+𝑤1(𝑘)𝑦2(𝑘)=𝑥3(𝑘)+𝑤2(𝑘) (12)
	where 𝑤1(𝑘) and 𝑤2(𝑘) are considered to be external disturbances.
	SECTION IV.
	Computation of the Positive Sequence Voltage Magnitude and Phase Angle

	Taking matrix inverse of (7), we have
	𝑉𝑝𝑉𝑛=121𝑗1−𝑗][𝑉𝛼𝑉𝛽  (13)
	Expanding the first row of the phasor matrix (13) and applying Euler's Identity, we get the positive voltage phasor
	𝑉𝑝=𝑉𝑝∠𝜃𝑝=12(𝑉𝛼+𝑗𝑉𝛽)=0.5[(𝑉𝛼𝑐𝑜𝑠𝜃𝛼−𝑉𝛽𝑠𝑖𝑛𝜃𝛽)+𝑗(𝑉𝛼𝑠𝑖𝑛𝜃𝛼+𝑉𝛽𝑐𝑜𝑠𝜃𝛽)] (14)
	Therefore, the positive sequence voltage magnitude and phase angle can be obtained as follows49
	𝜃𝑝=𝑡𝑎𝑛−1𝑉𝛼𝑠𝑖𝑛(𝜃𝛼)+𝑉𝛽𝑐𝑜𝑠(𝜃𝛽)𝑉𝛼𝑐𝑜𝑠(𝜃𝛼)−𝑉𝛽𝑠𝑖𝑛(𝜃𝛽)𝑉𝑝=12(𝑉𝛼𝑠𝑖𝑛𝜃𝛼+𝑉𝛽𝑐𝑜𝑠𝜃𝛽)2+(𝑉𝛼𝑐𝑜𝑠𝜃𝛼−𝑉𝛽𝑠𝑖𝑛𝜃𝛽)2 (15)(16)
	At every time step 𝑘, based on the state estimate, we have the estimated positive sequence voltage magnitude and phase angle
	𝜃^𝑝(𝑘)=𝑡𝑎𝑛−1𝑥^2(𝑘)+𝑥^3(𝑘)𝑥^1(𝑘)−𝑥^4(𝑘)𝑉^𝑝(𝑘)=12(𝑥^2(𝑘)+𝑥^3(𝑘))2+(𝑥^1(𝑘)−𝑥^4(𝑘))2 (17)(18)
	SECTION V.
	Nonlinear Estimation
	A. Extended Kalman Filter
	B. Fault Tolerant Extended Kalman Filter
	Algorithm 1 Bad Data Detection
	Theorem 1

	Proof
	Remark 1
	Remark 2

	Consider the discrete time nonlinear power system dynamics and measurement equation given as follows
	𝑥𝑘+1=𝑓(𝑥𝑘,𝑢𝑘,𝑣𝑘)𝑦𝑘=ℎ(𝑥𝑘,𝑢𝑘,𝑤𝑘) (19)
	The extended Kalman filter is applied to estimate the frequency, voltage amplitudes and phase angles. EKF state estimation consists two steps: time update and measurement update.51,52 Define the following Jacobian matrices
	𝐴𝑘=∂𝑓∂𝑥|𝑥=𝑥^𝑘,𝐹𝑘=∂𝑓∂𝑣|𝑥=𝑥^𝑘𝐶𝑘=∂ℎ∂𝑥|𝑥=𝑥^𝑘,𝐺𝑘=∂ℎ∂𝑤|𝑥=𝑥^𝑘 (20)
	For time update, we need to compute the priori covariance and priori state estimate
	𝑃𝑘−=𝐴𝑘−1𝑃𝑘−1+𝐴𝑘−1𝑇+𝐹𝑘−1𝑉𝑘−1𝐹𝑘−1𝑇𝑥^𝑘−=𝑓𝑘−1(𝑥^𝑘−1+,𝑢𝑘−1,0) (21)(22)
	where 𝑉𝑘 is the covariance matrix of process noise at time step 𝑘. We neglect the process noise, so the second term in (21) is zero. 𝑥^− is the priori state estimate and 𝑃𝑘− is priori covariance matrix. Based on the grid synchronization model (11), 𝐴 can be defined by a 5×5 matrix as
	𝐴=cos𝑥5−sin𝑥500𝐴15sin𝑥5cos𝑥500𝐴2500cos𝑥5−sin𝑥5𝐴3500sin𝑥5cos𝑥5𝐴4500001 (23)
	where
	The measurement update can be summarized as
	𝐾𝑘=𝑃𝑘−𝐶𝑘𝑇(𝐶𝑘𝑃𝑘−𝐶𝑘𝑇+𝐺𝑘𝑊𝑘𝐺𝑘𝑇)−1𝑥^𝑘+=𝑥^𝑘−+𝐾𝑘[𝑦𝑘−ℎ𝑘(𝑥^−,0)]𝑃𝑘+=(𝐼−𝐾𝑘𝐶𝑘)𝑃𝑘− (24)(25)(26)
	where 𝑥^𝑘+ is posteriori state estimate; 𝑃𝑘+ is posteriori covariance matrix. Based on the measurement equation (12), 𝐶𝑘 can be computed as
	𝐶𝑘=(1000000100) (27)
	In order to provide a more reliable and effective state estimation of power systems against various bad data, disturbances and noises, we propose the locally unbiased, resilient, minimum variance state estimator, the fault tolerant extended Kalman filter (FTEKF), for nonlinear power system process and measurement equations (11) and (12). It means that the state estimator is unbiased for small error values, has robustness against gain perturbations, and achieves minimum value for an upper bound on the estimation error covariance.
	Consider the discrete-time nonlinear stochastic power system process and measurement equations as follows
	𝑥𝑘+1=𝑓(𝑥𝑘)+𝑣𝑘𝑦𝑘=𝑦𝑘1𝑦𝑘2⋮𝑦𝑘𝑝=𝛾𝑘1ℎ1(𝑥𝑘)+𝑤𝑘1𝛾𝑘2ℎ2(𝑥𝑘)+𝑤𝑘2⋮𝛾𝑘𝑝ℎ𝑝(𝑥𝑘)+𝑤𝑘𝑝  (28)
	where
	state vector
	system noise
	measurement vector
	measurement noise in each phasor measurement unit and wk=[w1k,w2k,…,wpk]T
	differentiable non-linear vector functions
	𝑓,ℎ
	The mean of initial state 𝑥0 is 𝐸𝑥0=𝑥0 and covariance of initial state 𝑥0 is 𝑋0=𝐸[(𝑥0−𝑥0)(𝑥0−𝑥0)𝑇]. The noise processes, 𝑣𝑘 and 𝑤𝑘, are white, zero mean, uncorrelated with each other and with 𝑥0, and have covariance 𝑉𝑘 and 𝑊𝑘, respectively.
	𝑣𝑘∼(0,𝑉𝑘),𝑤𝑘∼(0,𝑊𝑘),𝐸[𝑣𝑘𝑣𝑗𝑇]=𝑉𝑘𝛿𝑘−𝑗,𝐸[𝑤𝑘𝑤𝑗𝑇]=𝑊𝑘𝛿𝑘−𝑗,𝐸[𝑣𝑘𝑤𝑗𝑇]=0,𝐸[𝑣𝑘𝑥0𝑇]=0,𝐸[𝑤𝑘𝑥0𝑇]=0 (29)
	The scalar binary Bernoulli distributed random variables 𝛾𝑘𝑖 are with mean 𝜋𝑖 and variance 𝜋𝑖(1−𝜋𝑖) whose possible outcomes 0, 1 are defined as 𝑃𝑟𝑜𝑏𝛾𝑘𝑖=1=𝜋𝑖and 𝑃𝑟𝑜𝑏(𝛾𝑘𝑖=0)=1−𝜋𝑖. The formulation involves hard measurement failures, where the PMU either works properly or bad data occurs.
	Denote the measurement vector of 𝑝 phasor measurement units at 𝑦(𝑘)=[𝑦1(𝑘),𝑦2(𝑘),…,𝑦𝑝(𝑘)]𝑇, and the measurement estimate vector at 𝑡=𝑘𝑇 as 𝑦^(𝑘)=[𝑦^1(𝑘),𝑦^2(𝑘),…,𝑦^𝑝(𝑘)]𝑇. Let 𝑟𝑖(𝑘) be the 𝑖th component of residual vector defined by the difference between the ith PMU measurement 𝑦𝑖(𝑘) and the corresponding estimated measurement 𝑦^𝑖(𝑘).
	𝑟(𝑘)=𝑦(𝑘)−𝑦^(𝑘)≅𝐶𝑘[𝑥(𝑘)−𝑥^(𝑘)]+𝑤(𝑘) (30)
	It is known that 𝑟𝑖(𝑘) is approximately a white Gaussian process with zero mean and covariance matrix 𝜎𝑟2(𝑘) given by
	𝜎𝑟2(𝑘)=𝐶𝑘𝑃𝑘𝐶𝑘𝑇+𝑊𝑘 (31)
	where 𝐶𝑘𝑃𝑘𝐶𝑘𝑇 is the error covariance of 𝐶𝑘[𝑥(𝑘)−𝑥^(𝑘)], and 𝑊𝑘 is the measurement noise covariance of 𝑤(𝑘). The sets of received and estimated measurements are mutually independent.
	Define the normalized residual vector 𝑟𝑁(𝑘), at time step 𝑘.𝜎𝑟𝑖(𝑘) is the ith diagonal element of standard deviation matrix 𝜎𝑟2(𝑘). The components of vector 𝑟 are normalized and submitted to the following statistical validation:
	𝑟𝑁𝑖(𝑘)=𝑟𝑖(𝑘)𝜎𝑟𝑖(𝑘) (32)
	If |𝑟𝑁𝑖(𝑘)|≤𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵 and the measurement is compatible with the accuracy of both metering and communication systems, we assume that the ith PMU works properly at time step k, i.e., 𝛾𝑘𝑖=1. If |𝑟𝑁𝑖(𝑘)|>𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵, or the measurement is not compatible with the accuracy of both metering and communication systems, we consider that bad data occurs at the ith PMU, i.e., 𝛾𝑘𝑖=0. The threshold 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵 is determined by the test confidence, i.e., the detection threshold for the test can be set to 3 with a 99.72% confidence level.38 Note that the detection threshold value determines the test confidence level. If the detection threshold adopted for normalized residual test is 2, then the confidence level is 94.46%. If the detection threshold is 2.5, then the confidence level is 98.76%. Typical bad data measurement detection threshold 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵 is set to 3, which is used for our application. Therefore, if the normalized residue exceeds 3, then the corresponding measurement can be flagged for elimination. A simplified pseudo-algorithm that summarizes this process is provided in Algorithm 1.
	Require: acceptable threshold 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵
	1. Procedure Bad Data Detection
	2. for every sampling time step k do
	3. Obtain measurements 𝑦(𝑘)=[𝑦1(𝑘),….,𝑦𝑝(𝑘)]𝑇
	4. at time 𝑡=𝑘𝑇, for each PMU index 𝑖 (𝑖=1→𝑝)
	5. Compute 𝑟(𝑘)=𝑦(𝑘)−𝑦^(𝑘)
	6. Compute standard deviation of residual 𝜎𝑟(𝑘)
	7. Compute the normalized residual 𝑟𝑁(𝑘)=𝑟(𝑘)𝜎𝑟(𝑘)
	8. if 𝑟𝑁𝑖𝑘≤𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵then,
	9. 𝑦𝑖(𝑘)=dynamic      data,
	10. Assume 𝛾𝑘𝑖=1
	11. end if
	12. if 𝑟𝑁𝑖𝑘>𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐵 then,
	13. 𝑦𝑖(𝑘)=bad      data,
	14. Assume 𝛾𝑘𝑖=0
	15. end if
	16. end for
	17. end procedure
	By denoting
	the measurement equation can be written as
	𝑦𝑘=Γ𝑘ℎ(𝑥𝑘)+𝑤𝑘 (35)
	Our goal is to estimate the state vector 𝑥𝑘 based on our knowledge of system dynamics and the availability of the noisy measurement 𝑦𝑘 under the effect of sensor failures. The following discrete time nonlinear Luenberger observer is considered in this work.
	𝑥^𝑘+1=𝑓(𝑥^𝑘)+(𝐾𝑘+Δ𝑘)(𝑦𝑘−Γ𝑘ℎ(𝑥^𝑘)) (36)
	Although the filter gain should be 𝐾𝑘, due to computational or tuning uncertainties, it is erroneously implemented as 𝐾𝑘+Δ𝑘. The term Γ𝑘is defined as
	Γ𝑘=𝐸[Γ𝑘]=𝑑𝑖𝑎𝑔[𝜋1,𝜋2,…,𝜋𝑝] (37)
	𝐾𝑘 is the feedback gain with additive uncertainty Δ𝑘. The uncertainty Δ𝑘, is assumed to have zero mean, bounded second moment and be uncorrelated with initial state, process and measurement noises, i.e.,
	𝐸[Δ𝑘Δ𝑘𝑇]≤𝛿𝐼,𝐸[Δ𝑘𝑇𝑥0]=0,𝐸[Δ𝑘𝑇𝑣𝑘]=0,𝐸[Δ𝑘𝑤𝑘]=0 (38)
	The fault tolerant extended Kalman filter is defined as follows:
	1. Initialization
	𝑥^0=𝐸[𝑥0]𝑃0=𝐸[(𝑥0−𝑥^0)(𝑥0−𝑥^0)𝑇] (39)
	2. Computation of Jacobian matrices
	𝐴𝑘=∂𝑓∂𝑥|𝑥=𝑥^𝑘,𝐶𝑘=∂ℎ∂𝑥|𝑥=𝑥^𝑘 (40)
	3. For time steps 𝑘=1,2,3,…, the estimator propagates by calculating the feedback gain
	𝐾𝑘𝑜=(𝐴𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇+Υ⊗(ℎ(𝑥^𝑘)ℎ𝑇(𝑥^𝑘)+𝐶𝑘𝑃𝑘𝐶𝑘𝑇)+𝑊𝑘]−1 (41)
	from an upper bound on the local estimation error co variance
	𝑃𝑘+1=𝐴𝑘𝑃𝑘𝐴𝑘𝑇+𝑉𝑘+𝜆𝑚𝑎𝑥{Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇+𝑊𝑘+Υ⊗(ℎ(𝑥^𝑘)ℎ𝑇(𝑥^𝑘)+𝐶𝑘𝑃𝑘𝐶𝑘𝑇)}𝛿𝐼−(𝐴𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇+Υ⊗(ℎ(𝑥^𝑘)ℎ𝑇(𝑥^𝑘)+𝐶𝑘𝑃𝑘𝐶𝑘𝑇)+𝑊𝑘]−1(Γ𝑘𝐶𝑘𝑃𝑘𝐴𝑘𝑇) (42)
	to be used in updating the state estimate as
	𝑥^𝑘+1=𝑓(𝑥^𝑘)+(𝐾𝑘𝑜+Δ𝑘)𝑦𝑘−Γ𝑘ℎ(𝑥^𝑘) (43)
	where
	Υ=𝑑𝑖𝑎𝑔[𝜋1(1−𝜋1),𝜋2(1−𝜋2),…,𝜋𝑝(1−𝜋𝑝)]=𝜋1(1−𝜋1)0⋯00⋱⋱⋮⋮⋱⋱00⋯0𝜋𝑝(1−𝜋𝑝) (44)
	The proof of this theorem can be found in.53 Note that the upper bound covariance in (42) is obtained based on Rayleigh's inequality. It can shown that EKF is a special case of the proposed FTEKF, when there are no measurement failures. ■
	As a limiting case, if we have no perturbations on the estimator gain, i.e., 𝛿=0, then the following estimator can be derived following a similar procedure to the previously given. In this case, the robust optimal feedback gain is
	𝐾𝑘𝑜=(𝐴𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇+Υ⊗(ℎ(𝑥^𝑘)ℎ𝑇(𝑥^𝑘)+𝐶𝑘𝑃𝑘𝐶𝑘𝑇)+𝑊𝑘]−1 (45)
	The bound on the minimum error covariance equation is
	𝑃𝑘+1=𝐴𝑘𝑃𝑘𝐴𝑘𝑇+𝑉𝑘−(𝐴𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇)[Γ𝑘𝐶𝑘𝑃𝑘𝐶𝑘𝑇Γ𝑘𝑇+Υ⊗(ℎ(𝑥^𝑘)ℎ𝑇(𝑥^𝑘)+𝐶𝑘𝑃𝑘𝐶𝑘𝑇)+𝑊𝑘]−1(Γ𝑘𝐶𝑘𝑃𝑘𝐴𝑘𝑇) (46)
	and the state estimate is updated as
	𝑥^𝑘+1=𝑓(𝑥^𝑘)+𝐾𝑘𝑜(𝑦𝑘−Γ𝑘ℎ(𝑥^𝑘)) (47)
	As a more limiting case, if we further neglect the effect of bad data or sensor faults, i.e., 𝛾𝑘𝑖=1 for all sensors at all time, then Γ𝑘 becomes identity matrix and Υ becomes zero matrix. Clearly, the extended Kalman filter is obtained as a special case of the proposed fault tolerant extended Kalman filter.
	SECTION VI.
	Computer Simulation Results

	In Section VI, we compare the performance of the extended Kalman filter (EKF) and the fault tolerant extended Kalman filter (FTEKF) with computer simulations. The average root-mean-square deviation comparison is provided. The sampling frequency is chosen as 2400 Hz. [1,1.2,0.8]𝑇, and [0,𝜋/3,−2𝜋/3]𝑇 are chosen as the initial amplitudes, and initial phase angles of the unbalanced three phase voltages, respectively. The additive white Gaussian noise (AWGN) with zero mean and unity matrix covariance is used for simulating measurement noise.
	Figs. 1 and 2 show the noisy bad data corrupted measurements. In Fig. 1, the probability of bad data reception in measurement signal 𝑦1 is 50%. In Fig. 2, the probability of bad data reception in measure signal 𝑦2 is 20%. Therefore, we can calculate
	Γ𝑘=0.5000.8,Υ=0.25000.16 (48)
	Based on these matrices, we can obtain the state estimates using (41), (42), (43). We have performed a number of EKF and FTEKF state estimation experiments applied to grid synchronization. Figs. 3–7 illustrate the fault tolerant extended Kalman filter accurately tracks the five state variables, while EKF fails to converge to the real state trajectories due to the severe nonlinearity cased by bad data. Since EKF uses first order linearization to update the mean of state and the covariance of estimation error, it will fail to converge for high nonlinearity.
	In Fig. 8, the performance metric we used to evaluate EKF and FTEKF is the root-mean-square deviation 
	(RMSD),/
	Fig. 1. Measurement y1. 
	/
	Fig. 2. Measurement y2.
	/
	Fig. 3. The first state variable comparison./
	Fig. 4. The second state variable estimation comparison.
	/
	Fig. 5. The third state variable estimation comparison.
	/
	Fig. 6. The fourth state variable estimation comparison.
	/
	Fig. 7. The fifth state variable estimation comparison.
	which is given by
	where n is the number of time steps.
	/
	Fig. 8. Average estimation error comparison.
	To provide a quantitative view of the performance comparison, Table I shows the RMSD comparison of the two approaches.
	Table I RMSD comparison
	/
	According to the results shown in Table I, at the beginning of the time (from 0 to 50 msec), EKF shows slightly smaller estimation errors than FTEKF. After the first 50 msec, FTEKF effectively tracks the real state trajectories, while EKF fails to converge. By the end of the simulation at 300 msec, the average root-mean-square deviation (RMSD) (averaged over 20 experiments with different initial state estimates) for FTEKF is less than 0.0191, comparing with EKF RMSD of 0.4621. Due to the intense nonlinearity caused by bad data, EKF is not able to provide reliable state estimates, while FTEKF shows fast convergence speed and small estimation error.
	It should also be noted that it takes about 80 ms as shown in Figs. 1 and 3, for FTEKF to track the real state signal accurately. Fig. 8 also shows that for the first 50 ms, the FTEKF RMSD values are slightly larger in comparison with EKF. Also, in the first 50 msec from Table I, FTEKF shows slightly more RMSD than EKF. The reason is that the FTEKF estimation covariance (42) is the upper bound of estimation error covariance matrix, which is obtained by applying Rayleigh's inequality.53 At the beginning of estimation, the FTEKF estimation error covariance (42) would be larger than the EKF error covariance, since FTEKF covariance matrix takes sensor measurement failures into account. As time increase, both of the state estimates and covariance converge to the real state values precisely through time iterations of FTEKF. Therefore, after a short period of time (about 60 msec), FTEKF effectively tracks to the real state signal, while EKF fails.
	Finally, the positive sequence phase angle estimate from FTEKF is shown in Fig. 9. Note that only the positive sequence phase angle estimate from FTEKF is compared to the real positive sequence phase angle trajectory, since FTEKF can provide phase angle estimate effectively, while EKF estimation fails. Note the discontinuities of the FTEKF estimates (on the red curves in Fig. 9) are due to the bad data effect.
	/
	Fig. 9. Positive sequence phase angle estimate with FTEKF.
	/
	Fig. 10. Structure of An Interconnected Renewable Energy System (RES) with Real Time State Estimator (RTSE).15
	Results are clearly encouraging based on the averages over experiments, we may conclude the fault tolerant extended Kalman filter shows good estimation accuracy in the presence of bad data, external disturbances and noises.
	SECTION VII.
	Hardware Implementation

	The proposed fault tolerant extended Kalman filter (FTEKF) has also been implemented with National Instruments CompactRIO and dSPACE DS1103 hardware platforms Fig. 10. The operation of the interconnected renewable energy sources (RES) is achieved by controlling the grid side converter (GSC), which is ensured by accurate synchronization through real time state estimator (RTSE).15 The renewable energy system (RES) controller is implemented with dSPACE DS1103 platform, with PowerPC 750GX microprocessor runs at 1 GHz. dSPACE based RES controller can dynamically control the switching of IGBT converters to connect or disconnect distributed generation systems (DG) from or to the power grid. Moreover, real-time state estimator (RTSE) fault tolerant extended Kalman filter algorithm is implemented on the CompactRIO cRIO-9024 platform. The FTEKF RTSE is based on the detection of the phase angle and amplitude of the positive sequence grid voltage (17), (18) at the point of common coupling (PCC). Real-time CompactRIO computes and sends the positive sequence information to dSPACE RES controller.
	As shown in Fig. 11, NI 9225 simultaneous analog input module serves as the interface between CompactRIO real time controller and external three phase voltages. The incoming three-phase voltages are connected to three input channels of NI 9225, and the outputs of NI 9225 are fed to the CompactRIO system. In Fig. 12, the three phase voltages are acquired and displayed in LabVIEW front panel. Note that, after the step-down power transformer stage, the three phase voltage signals acquired by NI 9225 are 12.694∠0∘,12.978∠−119.59∘, and 13.078∠120.41∘∘ all at 60.00 Hz. The RMS voltage comparison is also shown in Fig. 12.
	/
	Fig. 11. RTSE hardware implementation.
	/
	Fig. 12. Real time voltage measurement.
	Based on our proposed approach, the estimated state trajectories with FTEKF (shown in blue curves) effectively track the state trajectories (shown in red curves) in Fig. 13 in real time. Hardware-in-the-loop CompactRIO system indicates that the positive sequence voltage 𝑉𝑝=12.8085∠13.034∘, while the negative sequence component is insignificant. Based on the positive sequence voltage information, dSPACE system can dynamically control the switching of IGBT converters to connect or disconnect distributed generation systems (DG) from or to the power grid. This real-time hardware platform has demonstrated the efficacy of the proposed approach.
	/
	Fig. 13. Real time state estimation with fault tolerant extended Kalman filter.
	SECTION VIII.
	Conclusion

	Accurate voltage synchronization under bad data, fault and distorted voltages conditions is a critical concern for properly controlling electrical energy transfer between a distributed power generation system (DPGS) and the grid. This paper have presented a novel fault tolerant extended Kalman filter (FTEKF) with the applications in smart power grid synchronization. We have derived the state space system and measurement equations based on Clarke's transformation and symmetrical component transformation. The extended Kalman filter and the fault tolerant extended Kalman filter have been employed to track the frequency, voltage amplitudes and phase angles for unbalanced three phase voltages with noisy bad data measurements. With the state estimates, the positive sequence phase angle and voltage magnitude can be obtained, which can be used in the energy management systems (EMS) to turn on/off the distributed sources in active distribution networks (ADNs), and therefore to control the active and reactive power flow, and to achieve other specific operation objectives between DGs and the grid. The computer simulation results indicate that FTEKF provides better accuracy than EKF, with similar computational complexity and running time. The proposed FTEKF approach has also been implemented with the dSPACE DS1103 and National Instruments CompactRIO hardware platforms to provide real-time grid synchronization. The impact on the accuracy improvement of the FTEKF RTSE over EKF has been shown to be major, in the view of similar computational complexity. The proposed fault tolerant extended Kalman filter is suitable for RTSE applications in the smart power grid synchronization applications.
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