696 research outputs found

    Design and implementation of a dual-input single-output photovoltaic converter

    Get PDF
    In many solar inverters, a dc/dc converter is mainly located between the solar arrays and the inverter. This study presents an enhanced maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems that drives solar array voltages to track a reference value and decreases fluctuations and oscillations in PV voltage. Different from the previously presented methods, a novel MPPT method is proposed that ensures tracking accuracy by considering output voltage in addition to input voltage and currents. The proposed method detects dI/dV variations, compares the output voltage with the desired reference to shift operation mode and refreshes step size. The digital filtering, enhanced PI, and perturb-and-observe (P&O) tracking features of the proposed MPPT method make it robust to mitigate source fluctuations and sensitivity to partial shading based oscillations. In order to validate the success of the proposed method, a test rig has been installed with dual boost converters. The performance improvements have been verified by both simulation and experimental results that are compared to InCon and P&O MPPT methods. It is also confirmed by experimental results that the proposed MPPT method provides robust control capability in terms of tracking the reference voltage and rejecting the effects of various shading situations on solar arrays

    Analysis and Design of Solar Photo voltaic Grid Connected Inverter

    Get PDF
    This paper presents common mode voltage analysis of single phase grid connected photovoltaic inverter. Many researchers proposed different grid tie inverters for applications like domestic powering, street lighting, water pumping, cooling and heating applications, however traditional grid tie PV inverter uses either a line frequency or a high frequency transformer between the inverter and grid but losses will increase in the network leading to reduced efficiency of the system. In order to increase the efficiency, with reduced size and cost of the system, the effective solution is to remove the isolation transformer. But common mode (CM) ground leakage current due to parasitic capacitance between the PV panels and the ground making the system unreliable. The common mode current reduces the efficiency of power conversion stage, affects the quality of grid current, deteriorate the electric magnetic compatibility and give rise to the safety threats. In order to eliminate the common mode leakage current in Transformerless PV systm two control algorithms of multi-carrier pwm are implemented and compared for performance analysis.The shoot-through issue that is encountered by traditional voltage source inverter is analyzed for enhanced system reliability. These control algorithms are compared for common mode voltage and THD comparisons. The proposed system is designed using MATLAB/SIMULINK software for analysis

    Analysis, Design, and Control of a Single-Phase Single-Stage Grid-Connected Transformerless Solar Inverter

    Get PDF
    As energy utilization is increasing with the rise in the world’s power demand, the traditional energy sources are depleting at a high pace. It has led to attention drawn towards inexhaustible energy resources. There is a huge augmentation in the power generation from renewable energy sources (RES) like wind, solar, hydropower, biomass, etc. to reduce the stress on conventional energy sources like fossil fuels, oil, gas, etc. There has been a steep increase in interest for wind and solar energy systems. PV energy has been growing swiftly in the past two decades which made it most demanded power generation system based on RES. This worldwide requirement for solar energy has led to an immense amount of innovation and development in the Photovoltaic (PV) market. The Conventional grid-connected PV inverter was either with DC/DC converter or without DC/DC converter. These inverters were isolated using a transformer either on the grid (AC) side as a low-frequency transformer or as a high-frequency transformer on the DC side. Elimination of the transformer leads to a galvanic connection between the grid and PV module. This gives rise to the flow of leakage current which is disastrous for the system when it exceeds a specific value. Thus, minimization of this leakage current after the removal of the transformer has been an interesting topic explored by many researchers. Many topologies have been proposed targeting reduction in this leakage current either by 1.) Directly connecting the PV negative with neutral of utility grid or 2.) Disconnecting the PV panel side from AC side. This generally involved addition of more switches or diodes or supplementary branches to disconnect during the freewheeling period. Generally, the above-mentioned ways lead to a reduction in efficiency due to increased losses or complex circuitry. The motivation of this thesis is to design a transformerless inverter for single-phase PV grid-tied system with a smaller number of devices and still has minimum ground current. It discusses the prevailing inverter topologies in detail and then explains the modes of operation of the proposed inverter. A simple control strategy has been derived and passive elements of the inverter are designed. The simulation results presented have validated the theoretical claims. The experimental results which are similar to simulation results are evidence that the proposed topology is suitable for PV grid-tied systems. Also, the dynamic modeling of the inverter has been done to derive the plant transfer function. Then, the Proportional Resonant (PR) controller has been designed to ensure the flow of sinusoidal current into the grid with zero steady-state error and constant sinusoidal grid voltage irrespective of load change. The simulation and experimental results achieved high performance which makes this topology successful and promising for grid-tied PV systems

    Development Of Multistage Cuk Converter For Pv Voltage Regulation.

    Get PDF
    Tesis ini mengemukakan reka bentuk pengubah SPMS untuk aplikasi berkuasa rendah.Litar penukar adalah berdasarkan topologi CUK yang secara asasnya ialah kombinasi topologi penukar “buck” dan “boost”. This thesis presents the design of a transformerless SMPS for low power applications. The converter circuit is based on CUK topology which is basically a combination of buck and boost converter topologies

    Hardware Approach To Mitigate The Effects Of Module Mismatch In A Grid-Connected Photovoltaic System: A Review

    Get PDF
    This study reviews the hardware approach to mitigate the effects of module mismatch in a grid-connected photovoltaic (PV) system. Unlike software solutions, i.e. the maximum power tracking algorithm, hardware techniques are well suited to enhance energy yield because of their inherent ability to extract energy from the mismatched module. Despite the extra cost of the additional circuitry, hardware techniques have recently gained popularity because of their long-term financial benefits. Notwithstanding the growing interest in this topic, review papers that provide updates on the technological developments of the three main hardware solutions, namely micro inverter,DC power optimizer, and energy recovery circuits, are lacking. This is in contrast to software solutions, which have had a considerable number of reputable reviews. Thus, a comprehensive review paper is appropriate at this juncture to provide up-to-date information on the latest topologies, highlight their merits/drawbacks, and evaluate their comparative performance

    Hybrid Transformerless PV Converters with Low Leakage Currents:Analysis and Configuration

    Get PDF
    Abstract This paper proposes a hybrid transformerless photovoltaic (PV) converter with simultaneous AC and DC outputs. It is specifically suitable for residential PV systems due to its high efficiency, versatility and flexibility, while maintaining lower leakage currents. The proposed converter is configured by replacing the control switch of the boost converter with a transformerless voltage‐source inverter (VSI), enabling multiple outputs. In addition, a symmetrical boost inductor is adopted to clamp the common‐mode voltage as a constant, resulting in low leakage currents. To illustrate the configuration principle, a hybrid converter with a highly efficient and reliable inverter concept (HERIC) as the VSI is exemplified. Besides, the dedicated modulation scheme for the proposed converter is detailed to achieve low leakage currents, reactive power injection and high efficiency. Furthermore, as the shoot‐through state of inverter legs is allowable for the proposed converter, i.e. no need to add dead time, the reliability and power quality of the proposed converter can be improved. Simulations and experimental tests are performed on an example hybrid converter (with an HERIC as the VSI) to validate the analysis

    Analysis and Modeling of Transformerless Photovoltaic Inverter Systems

    Get PDF

    Bipolar DC output fed grounded DC-AC converter for photovoltaic application

    Get PDF
    Introduction. In recent years the usage of electricity has increased tremendously as the electrical needs and loads got increased. Hence the researchers focused on the electricity generation from renewable sources in order to promote sustainable green environment. Owing to the lesser cost and more reliable high efficiency system with reduced use of equipments became prominent for the grid connected photovoltaic single phase systems. The novelty of this proposed converters are to reduce total power loss and to analyze the performance of the converter under various modulation index and to have lesser harmonics using sinusoidal pulse width modulation technique for both T-type and F-type inverter. Interest of the work is to merge two DC-DC converters which have same output voltage in order to have transformer less utilization of power. This has given pathway to develop a new DC-DC converter network by merging the common input nodes of CUK and SEPIC converter. Purpose. This similar structure of both converters made it easy to combine the input stages of and to get bipolar output. Methods. Here we can get bipolar output without the utilization of transformer which minimizes the overall size of the proposed system. In this paper, a combined CUK-SEPIC based grid connected transformerless inverter for photovoltaic application is suggested. Results. The suggested converter is simulated using MATLAB and the results were discussed. Further the circuit is extended with a 1 kW F-type inverter to demonstrate grid connection of the converter. Practical value. This converter can be implemented for photovoltaic applications for obtaining the bipolar DC output from the DC source.Вступ. В останні роки використання електроенергії значно зросло, оскільки потреби в електроенергії та навантаження збільшились. Тому дослідники зосередилися на виробництві електроенергії з відновлюваних джерел, щоб сприяти стійкому зеленому середовищу. Через меншу вартість та більш надійну високоефективну систему зі зменшеним використанням обладнання набули популярності фотоелектричні однофазні системи, підключені до мережі. Новизна пропонованих перетворювачів полягає у зниженні загальних втрат потужності та аналізі характеристик перетворювача при різних індексах модуляції, а також у зменшенні гармонік з використанням методу широтно-імпульсної модуляції синусоїдального типу для інверторів як Т-типу, так і F-типу. Інтерес роботи полягає в об'єднанні двох перетворювачів постійного струму з однаковою вихідною напругою, щоб мати менше використання потужності трансформатора. Це дозволило розробити нову мережу перетворювачів постійного струму шляхом об'єднання загальних вхідних вузлів перетворювача CUK та SEPIC. Мета. Подібна структура обох перетворювачів дозволила легко поєднати вхідні каскади та отримати біполярний вихідний сигнал. Методи. Тут ми можемо отримати біполярний вихід без використання трансформатора, що мінімізує загальний розмір пропонованої системи. У цій статті пропонується комбінований безтрансформаторний інвертор на основі CUK-SEPIC, підключений до мережі, для фотоелектричних застосувань. Результати. Пропонований перетворювач моделюється за допомогою MATLAB, результати обговорюються. Далі схема розширена інвертором F-типу потужністю 1 кВт, щоб продемонструвати підключення перетворювача до мережі. Практична цінність. Цей перетворювач може бути реалізований для фотоелектричних застосувань для отримання біполярного виходу постійного струму джерела постійного струму

    Bipolar DC output fed grounded DC-AC converter for photovoltaic application

    Get PDF
    Introduction. In recent years the usage of electricity has increased tremendously as the electrical needs and loads got increased. Hence the researchers focused on the electricity generation from renewable sources in order to promote sustainable green environment. Owing to the lesser cost and more reliable high efficiency system with reduced use of equipments became prominent for the grid connected photovoltaic single phase systems. The novelty of this proposed converters are to reduce total power loss and to analyze the performance of the converter under various modulation index and to have lesser harmonics using sinusoidal pulse width modulation technique for both T-type and F-type inverter. Interest of the work is to merge two DC-DC converters which have same output voltage in order to have transformer less utilization of power. This has given pathway to develop a new DC-DC converter network by merging the common input nodes of CUK and SEPIC converter. Purpose. This similar structure of both converters made it easy to combine the input stages of and to get bipolar output. Methods. Here we can get bipolar output without the utilization of transformer which minimizes the overall size of the proposed system. In this paper, a combined CUK-SEPIC based grid connected transformerless inverter for photovoltaic application is suggested. Results. The suggested converter is simulated using MATLAB and the results were discussed. Further the circuit is extended with a 1 kW F-type inverter to demonstrate grid connection of the converter. Practical value. This converter can be implemented for photovoltaic applications for obtaining the bipolar DC output from the DC source.Вступ. В останні роки використання електроенергії значно зросло, оскільки потреби в електроенергії та навантаження збільшились. Тому дослідники зосередилися на виробництві електроенергії з відновлюваних джерел, щоб сприяти стійкому зеленому середовищу. Через меншу вартість та більш надійну високоефективну систему зі зменшеним використанням обладнання набули популярності фотоелектричні однофазні системи, підключені до мережі. Новизна пропонованих перетворювачів полягає у зниженні загальних втрат потужності та аналізі характеристик перетворювача при різних індексах модуляції, а також у зменшенні гармонік з використанням методу широтно-імпульсної модуляції синусоїдального типу для інверторів як Т-типу, так і F-типу. Інтерес роботи полягає в об'єднанні двох перетворювачів постійного струму з однаковою вихідною напругою, щоб мати менше використання потужності трансформатора. Це дозволило розробити нову мережу перетворювачів постійного струму шляхом об'єднання загальних вхідних вузлів перетворювача CUK та SEPIC. Мета. Подібна структура обох перетворювачів дозволила легко поєднати вхідні каскади та отримати біполярний вихідний сигнал. Методи. Тут ми можемо отримати біполярний вихід без використання трансформатора, що мінімізує загальний розмір пропонованої системи. У цій статті пропонується комбінований безтрансформаторний інвертор на основі CUK-SEPIC, підключений до мережі, для фотоелектричних застосувань. Результати. Пропонований перетворювач моделюється за допомогою MATLAB, результати обговорюються. Далі схема розширена інвертором F-типу потужністю 1 кВт, щоб продемонструвати підключення перетворювача до мережі. Практична цінність. Цей перетворювач може бути реалізований для фотоелектричних застосувань для отримання біполярного виходу постійного струму джерела постійного струму
    corecore