52,429 research outputs found

    The design of an indirect method for the human presence monitoring in the intelligent building

    Get PDF
    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (degrees C) and the relative humidity rH(indoor) (%) and the temperature T-outdoor (degrees C) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.Web of Science8art. no. 2

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Healthcare PANs: Personal Area Networks for trauma care and home care

    Get PDF
    The first hour following the trauma is of crucial importance in trauma care. The sooner treatment begins, the better the ultimate outcome for the patient. Generally the initial treatment is handled by paramedical personnel arriving at the site of the accident with an ambulance. There is evidence to show that if the expertise of the on-site paramedic team can be supported by immediate and continuous access to and communication with the expert medical team at the hospital, patient outcomes can be improved. After care also influences the ultimate recovery of the patient. After-treatment follow up often occurs in-hospital in spite of the fact that care at home can offer more advantages and can accelerate recovery. Based on emerging and future wireless communication technologies, in a previous paper [1] we presented an initial vision of two future healthcare settings, supported by applications which we call Virtual Trauma Team and Virtual Homecare Team. The Virtual Trauma Team application involves high quality wireless multimedia communications between ambulance paramedics and the hospital facilitated by paramedic Body Area Networks (BANs) [2] and an ambulance-based Vehicle Area Network (VAN). The VAN supports bi-directional streaming audio and video communication between the ambulance and the hospital even when moving at speed. The clinical motivation for Virtual Trauma Team is to increase survival rates in trauma care. The Virtual Homecare Team application enables homecare coordinated by home nursing services and supported by the patient's PAN which consists of a patient BAN in combination with an ambient intelligent home environment. The homecare PAN provides intelligent monitoring and support functions and the possibility to ad hoc network to the visiting health professionals’ own BANs as well as high quality multimedia communication links to remote members of the virtual team. The motivation for Virtual Homecare Team is to improve quality of life and independence for patients by supporting care at home; the economic motivation is to replace expensive hospital-based care with homecare by virtual teams using wireless technology to support the patient and the carers. In this paper we develop the vision further and focus in particular on the concepts of personal and body area networks

    A Social Internet of Things Smart City Solution for Traffic and Pollution Monitoring in Cagliari

    Get PDF
    In the last years, the smart city paradigm has been deeply studied to support sustainable mobility and to improve human living conditions. In this context, a new smart city based on Social Internet of Things paradigm is presented in this article. Starting from the tracking of all vehicles (that is, private and public) and pedestrians, integrated with air quality measurements (that is, in real time by mobile and fixed sensors), the system aims to improve the viability of the city, both for pedestrian and vehicular users. A monitoring network based on sensors and devices hosted on board in local public transport allows real time monitoring of the most sensitive areas both from traffic congestion and from an environmental point of view. The proposed solution is equipped with an appropriate intelligence that takes into account instantaneous speed, type of traffic, and instantaneous pollution data, allowing to evaluate the congestion and pollution condition in a specific moment. Moreover, specific tools support the decisions of public administration facilitating the identification of the most appropriate actions for the implementation of effective policies relating to mobility. All collected data are elaborated in real time to improve traffic viability suggesting new directions and information to citizens to better organize how to live in the city

    A Social Internet of Things Smart City Solution for Traffic and Pollution Monitoring in Cagliari

    Get PDF
    In the last years, the smart city (SC) paradigm has been deeply studied to support sustainable mobility and to improve human living conditions. In this context, a new SC based on the Social Internet of Things paradigm is presented in this article. Starting from the tracking of all vehicles (that is, private and public) and pedestrians, integrated with air quality measurements (that is, in real time by mobile and fixed sensors), the system aims to improve the viability of the city, both for pedestrian and vehicular users. A monitoring network based on sensors and devices hosted on board in local public transport allows real-time monitoring of the most sensitive areas both from traffic congestion and from an environmental point of view. The proposed solution is equipped with an appropriate intelligence that takes into account instantaneous speed, type of traffic, and instantaneous pollution data, allowing to evaluate the congestion and pollution condition in a specific moment. Moreover, specific tools support the decisions of public administration facilitating the identification of the most appropriate actions for the implementation of effective policies relating to mobility. All collected data are elaborated in real time to improve traffic viability suggesting new directions and information to citizens to better organize how to live in the city
    corecore