82,398 research outputs found

    EUPHORIA: End-User Construction of Direct Manipulation User Interfaces for Distributed Applications

    Get PDF
    The Programmers\u27 Playground is a software library and run-time system for creating distributed multimedia applications from collections of reusable software moduels. This paper presents the design and implementation of EUPHORIA, Playground\u27s user interface management system. Implemented as a Playground module, EUPHORIA allows end-users to create direct manipulation graphical user interfaces (GUIs) exclusively through the use of a graphics editor. No programming is required. At run-time, attributes of the GUI state can be exposed and connected to external Playground modules, allowing the user to vosualize and directly manipulate state information in remote Playground modules. Features of EUPHORIA include real-time direct manipulation graphics, constraint-based editing and visualization, imaginary alignment objects, user-definable types, and user-definable widgets with alternative representations

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Visualization designs for constraint logic programming

    Get PDF
    We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed

    An Integrated Development Environment for Declarative Multi-Paradigm Programming

    Full text link
    In this paper we present CIDER (Curry Integrated Development EnviRonment), an analysis and programming environment for the declarative multi-paradigm language Curry. CIDER is a graphical environment to support the development of Curry programs by providing integrated tools for the analysis and visualization of programs. CIDER is completely implemented in Curry using libraries for GUI programming (based on Tcl/Tk) and meta-programming. An important aspect of our environment is the possible adaptation of the development environment to other declarative source languages (e.g., Prolog or Haskell) and the extensibility w.r.t. new analysis methods. To support the latter feature, the lazy evaluation strategy of the underlying implementation language Curry becomes quite useful.Comment: In A. Kusalik (ed), proceedings of the Eleventh International Workshop on Logic Programming Environments (WLPE'01), December 1, 2001, Paphos, Cyprus. cs.PL/011104

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    Tools for Search Tree Visualization: The APT Tool

    Get PDF
    The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached
    • …
    corecore