220 research outputs found

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed

    The evolution of sedimentary systems on Mars, and implications for climate in the Hesperian-Amazonian epochs

    Get PDF
    Alluvial deposits within Martian impact craters are sensitive morphologic records of modification by liquid water, and can help constrain past climate conditions. This study explores the evolution of Late Hesperian-Amazonian-age sedimentary deposits within two craters, Mojave and Eberswalde. For Mojave crater, the evolution of intracrater alluvial fan systems and the climatic context are poorly understood. Analysis of stratigraphic relationships between the fans and crater infill suggests that precipitation which formed the systems was temporally closely associated with the impact process. Regional mapping of youthful fluvial features within a ~300 km radius of Mojave supports a genetic link between the impact event and precipitation, due to dense clustering around the crater. Analysis of five additional Late Hesperian-Amazonian craters, which also contain evidence for catchment-fan formation by precipitation, shows similar clustering of fluvial activity. Two mechanisms of water production are suggested to have formed the features observed: (a) localised impact-induced precipitation due to impact plume-related atmospheric effects, and (b) a regional snowpack which melted locally due to impact-induced heating. Eberswalde crater contains multiple sedimentary systems sourced from channels which breach the crater rim, and the depositional system as a whole is poorly understood. Mapping of rocks with differing characteristics within the second largest depositional system, and reconstruction of stratigraphic architecture, shows that the deposit records backstepping of putative deltaic lobe sedimentary bodies. The observed sedimentary architecture is best explained by a net transgression, likely caused by lake level rise through time. This behaviour is not recorded within the best-studied and largest Eberswalde deposit likely due to subsequent burial by progradational lobes. In addition, planform evolution of sinuous channels within the largest Eberswalde deposit is investigated, and mapped chute cutoffs are suggested as implying that overbank flooding occurred.Open Acces

    Standardization Definition Document

    Get PDF
    The objective of this document is the definition of a set of cartographic and technical standards and directions to be used, adapted or -in minor form -established for GMAP. Standards proposed and mentioned in the present documents include geologic and cartographic aspects. Some of the proposed directions and standards are initial ones that are planned to be refined and/or updated throughout the Europlanet H2024RI project, to be used within the VA activities and for future sustainable European planetarymapping efforts beyond the RI.The state of the art and relevant documents are included, as well as process-specific and body-specific best practice and exemplary published cases. The approaches for two-dimensional mapping and three-dimensional geologic mapping and modelling are introduced, as well as the range of non-standard map types that are envisaged within GMAP activities. Mapping review directions are indicated, as well data sharing, distribution and discovery.Proposed standards, best practice, andtools are based on existing ones or on additional or new developments and adaptations.Appendices are included and point to either individual developments or external resources and tools that will be maintained throughout the duration of the research infrastructure, and beyond it, through sustainability.The present document is going to be a live document permanently accessible on the GMAP wiki and periodically updated in form of a deliverable

    Rover and Telerobotics Technology Program

    Get PDF
    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs

    SSERVI Annual Report: Year 4

    Get PDF
    The SSERVI Central Office forms the organizational, administrative and collaborative hub for the domestic and international teams, and is responsible for advocacy and ensuring the long-term health and relevance of the Institute. SSERVI has increased the cross-talk between NASAs space and human exploration programs, which is one of our primary goals. We bring multidisciplinary teams together to address fundamental and strategic questions pertinent to future human space exploration, and the results from that research are the primary products of the institute. The team and international partnership reports contain summaries of 2017 research accomplishments. Here we present the 2017 accomplishments by the SSERVI Central Office that focus on: 1) Supporting Our Teams, 2) Community Building, 3) Managing the Solar System Treks Portal (SSTP), and 4) Public Engagement

    The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Get PDF
    The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials

    Planetary Science Informatics and Data Analytics Conference : April 24–26, 2018, St. Louis, Missouri

    Get PDF
    The PSIDA conference provides a forum to discuss approaches, challenges, and applications of informatics and data analytics technologies and capabilities in planetary science.Institutional Support NASA Planetary Data System Geosciences, Lunar and Planetary Institute.Chairs Tom Stein, Washington University, St. Louis, USA, Dan Crichton, Jet Propulsion Laboratory, Pasadena, USA ; Program Committee Alphan Altinok, Jet Propulsion Laboratory, Pasadena, USA … [and 8 others]PARTIAL CONTENTS: ESA Planetary Science Archive Architecture and Data Management--SPICE for ESA Planetary Missions--VESPA: Enlarging the Virtual Observatory to Planetary Science--SeaBIRD: A Flexible and Intuitive Planetary Datamining Infrastructure--Model-Driven Development for PDS4 Software and Services--The Need for a Planetary Spatial Data Clearinghouse--The Relationship Between Planetary Spatial Data Infrastructure and the Planetary Data System--Update on the NASA-USGS Planetary Spatial Data Infrastructure Inter-Agency Agreement--MoonDB - A Data System for Analytical Data of Lunar Samples--Large-Scale Numerical Simulations of Planetary Interiors--Scalable Data Processing with the LROC Processing Pipelines--PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations

    Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return

    Get PDF
    Geological processes, including impact cratering, are fundamental throughout rocky bodies in the solar system. Studies of terrestrial impact structures, like the Ries impact structure, Germany, have informed on impact cratering processes – e.g., early hot, hydrous degassing, autometamorphism, and recrystallization/devitrification of impact glass – and products – e.g., impact melt rocks and breccias comprised of clay minerals. Yet, clay minerals of authigenic impact origin remain understudied and their formation processes poorly-understood. This thesis details the characterization of impact-generated clay minerals at Ries, showing that compositionally diverse, abundant Al/Fe/Mg smectite clays formed through these processes in thin melt-bearing breccia deposits of the ejecta, as well as at depth. The inherent complexity of smectites – their formation, type, structure, and composition – makes their provenance difficult to discern; these factors may explain why impact-generated and altered materials, which comprise an appreciable volume and extent of Mars’ ancient Noachian crust, are not generally recognized as a source of the enigmatic clays that are ubiquitous in those regions. Clay minerals can provide a defining window into a planet’s geologic and climatic past as an indicator of water availability and geochemistry; the presence of clay minerals on Mars has been used to support the hypothesis of climatically “warm, wet” ancient conditions. Yet, climate modeling of Early Mars suggests that the likely nature of the climate was not conducive to long-term aqueous activity. We suggest that the omission of impact-generated materials in current models of Mars clay mineral formation leaves a fundamental gap in our understanding of Noachian crustal materials – materials that were continually recycled and completely transformed on a global scale over millennia on Mars. The opportunity to investigate clay-bearing impactites and strata-bound clay minerals will be presented to the upcoming NASA Mars 2020 and ESA ExoMars rovers; this thesis offers caution in assigning clay mineral provenance until samples are returned to Earth from these missions. We furthermore suggest a methodological approach to augment current rover-based exploration frameworks to characterize potential impact-origin. Discerning clay species and provenance – and acknowledging the implications of that provenance – is central to understanding the geologic context of Mars, and thus its past climatic conditions and habitability potential
    corecore