1,453 research outputs found

    Controller Synthesis of Multi-Axial Robotic System Used for Wearable Devices

    Get PDF
    Wearable devices are commonly used in different fields to help improving performance of movements for different groups of users. The long-term goal of this study is to develop a low-cost assistive robotic device that allows patients to perform rehabilitation activities independently and reproduces natural movement to help stroke patients and elderly adults in their daily activities while moving their arms. In the past few decades, various types of wearable robotic devices have been developed to assist different physical movements. Among different types of actuators, the twisted-string actuation system is one of those that has advantages of light-weight, low cost, and great portability. In this study, a dual twisted-string actuator is used to drive the joints of the prototype assistive robotic device. To compensate the asynchronous movement caused by nonlinear factors, a hybrid controller that combines fuzzy logic rules and linear PID control algorithm was adopted to compensate for both tracking and synchronization of the two actuators.;In order to validate the performance of proposed controllers, the robotic device was driven by an xPC Target machine with additional embedded controllers for different data acquisition tasks. The controllers were fine tuned to eliminate the inaccuracy of tracking and synchronization caused by disturbance and asynchronous movements of both actuators. As a result, the synthesized controller can provide a high precision when tracking simple actual human movements

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    A reconfigurable, tendon-based haptic interface for research into human-environment interactions

    Get PDF
    Human reaction to external stimuli can be investigated in a comprehensive way by using a versatile virtual-reality setup involving multiple display technologies. It is apparent that versatility remains a main challenge when human reactions are examined through the use of haptic interfaces as the interfaces must be able to cope with the entire range of diverse movements and forces/torques a human subject produces. To address the versatility challenge, we have developed a large-scale reconfigurable tendon-based haptic interface which can be adapted to a large variety of task dynamics and is integrated into a Cave Automatic Virtual Environment (CAVE). To prove the versatility of the haptic interface, two tasks, incorporating once the force and once the velocity extrema of a human subject's extremities, were implemented: a simulator with 3-DOF highly dynamic force feedback and a 3-DOF setup optimized to perform dynamic movements. In addition, a 6-DOF platform capable of lifting a human subject off the ground was realized. For these three applications, a position controller was implemented, adapted to each task, and tested. In the controller tests with highly different, task-specific trajectories, the three robot configurations fulfilled the demands on the application-specific accuracy which illustrates and confirms the versatility of the developed haptic interfac

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    Mechatronic Design of a Lower Limb Exoskeleton

    Get PDF
    This chapter presents a lower limb exoskeleton mechatronic design. The design aims to be used as a walking support device focused on patients who suffer of partial lower body paralysis due to spine injuries or caused by a stroke. First, the mechanical design is presented and the results are validated through dynamical simulations performed in Autodesk Inventor and MATLAB. Second, a communication network design is proposed in order to establish a secure and fast data link between sensors, actuators, and microprocessors. Finally, patient‐exoskeleton system interaction is presented and detailed. Movement generation is performed by means of digital signal processing techniques applied to electromyography (EMG) and electrocardiography (EEG) signals. Such interaction system design is tested and evaluated in MATLAB whose results are presented and explained. A proposal of real‐time supervisory control is also presented as a part of the integration of every component of the exoskeleton

    CONTROL OF A POWERED ANKLE-FOOT PROSTHESIS: FROM PERCEPTION TO IMPEDANCE MODULATION

    Get PDF
    Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary work on environment perception, a vision system was developed that can estimate the ground profileslope and height. The desired prosthesis impedance dynamics is was defined as the dynamics mechanical impedance of a healthy ankle; , therefore,which required the a system identification methodof the human ankle was developed. Simulations showed the inertia parameters of a rigid bodymockup foot can be estimated. Further experiments will show the accuracy of environment perception and of the impedance estimation

    A mechatronic leg replica to benchmark human-exoskeleton physical interactions

    Get PDF
    : Evaluating human-exoskeleton interaction typically requires experiments with human subjects, which raises safety issues and entails time-consuming testing procedures. This paper presents a mechatronic replica of a human leg, which was designed to quantify physical interaction dynamics between exoskeletons and human limbs without the need for human testing. In the first part of this work, we present the mechanical, electronic, sensory system and software solutions integrated in our leg replica prototype. In the second part, we used the leg replica to test its interaction with two types of commercially available wearable devices, i.e. an active full leg exoskeleton and a passive knee orthosis. We ran basic test examples to demonstrate the functioning and benchmarking potential of the leg replica to assess the effects of joint misalignments on force transmission. The integrated force sensors embedded in the leg replica detected higher interaction forces in the misaligned scenario in comparison to the aligned one, in both active and passive modalities. The small standard deviation of force measurements across cycles demonstrates the potential of the leg replica as a standard test method for reproducible studies of human-exoskeleton physical interaction

    Technical developments of functional electrical stimulation to restore gait functions : sensing, control strategies, and current commercial systems

    Get PDF
    The work presents a review on the technological advancements of functional electrical stimulation (FES) neuroprostheses to restore gait walking over the last decades. The aim of an FES intervention is to functionally restore and rehabilitate individuals with motor disorders, such as stroke, spinal cord injury, multiple sclerosis, and others. The technique has been applied for widespread practical use for several years due to the rapid development of micro- and nano-technology. This technical review covers neuroprostheses developed within academia and currently available on the market. These systems are thoroughly analyzed and discussed with particular emphasis on the sensing techniques and control strategies. In the last part, a combination of FES technology and exoskeletons is presented as an emerging solution to overcome the drawbacks of current FES-based neuroprostheses, and recommendations on future research direction are suggeste

    A new Constant Pushing Force Device for human walking analysis

    Get PDF
    Walking mechanics has been studied for a long time, being essentially simple but nevertheless including quite tricky aspects. During walking, muscular forces are needed to support body weight and accelerate the body, thereby requiring a metabolic demand. In this paper, a new Constant Pushing Force Device (CPFD) is presented. Based on a novel actuation concept, the device is totally passive and is used to apply a constant force to the pelvis of a subject walking on a treadmill. The device is a serial manipulator featuring springs that provide gravity balancing to the device and exert a constant force regardless of the pelvis motion during walking. This is obtained using only two extension springs and no auxiliary links, unlike existing designs. A first experiment was carried out on a healthy subject to experimentally validate the device and assess the effect of the external force on gait kinematics and timing. Results show that the device was capable of exerting an approximately constant pushing force, whose action affected subject’s cadence and the motion of the hip and ankle joints
    corecore