595 research outputs found

    The practical limits of MASH Delta-Sigma Modulators designed to maintain very long controllable sequence lengths for structured tone mitigation

    Get PDF
    The delta-sigma modulator (DSM) is an essential block for a Fractional-N (FN) frequency synthesizers and is used for generating the fractional part of the division ratio. Digital DSMs (DDSM) with rational input and rational initial conditions can be thought as Finite State Machines (FSM) and they always produce finite length sequences in accordance with the applied input. To provide smooth quantization noise power distribution (tone free) and to get rid of structured tones, the modulator should complete its cycle and return to initial starting state. This method is called maintaining controllable sequence length. In this paper, the practicality of this method will be investigated for DDSMs composed of up to 5th order MASH 1-1-1-1-1 structures by considering lock time requirements of the synthesizers designed for wireless transceiver applications such as GSM900, DCS-1800, UMTS(WCDMA),WLAN, ZigBee and Bluetooth

    A reconfigurable radio-frequency converter IC in 0.18 µm CMOS

    Get PDF
    This work presents a reconfigurable RF converter for DVB-T television applications using triple-play over GPON. The system takes the DVB-T input, a wavelength division multiplexing (WDM) signal with spectral inversion in the range from 47 MHz to 1000 MHz, up-converts its frequency to the band-pass of a highly selective surface-acoustic wave (SAW) filter centered at 1.3 GHz, and then down-converts it so that it is compatible with the antenna input of conventional television sets. The designed RF converter incorporates two pairs of frequency synthesizer and mixer, based, respectively, on an integer-N phase-locked loop (PLL) with two LC-tank VCOs with 128 coarse tuning bands in the range from 1.35 GHz to 2.7 GHz, and a double-balanced Gilbert cell, modified for better impedance matching and improved linearity. It is fed with regulated supplies compensated in temperature and programmed by an I2 C interface operating on five 16-bit registers. This work presents the experimental characterization of the whole system plus selected cells for stand-alone testing, which have been fabricated in a 0.18 µm CMOS process

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    Design and implementation of frequency synthesizers for 3-10 ghz mulitband ofdm uwb communication

    Get PDF
    The allocation of frequency spectrum by the FCC for Ultra Wideband (UWB) communications in the 3.1-10.6 GHz has paved the path for very high data rate Gb/s wireless communications. Frequency synthesis in these communication systems involves great challenges such as high frequency and wideband operation in addition to stringent requirements on frequency hopping time and coexistence with other wireless standards. This research proposes frequency generation schemes for such radio systems and their integrated implementations in silicon based technologies. Special emphasis is placed on efficient frequency planning and other system level considerations for building compact and practical systems for carrier frequency generation in an integrated UWB radio. This work proposes a frequency band plan for multiband OFDM based UWB radios in the 3.1-10.6 GHz range. Based on this frequency plan, two 11-band frequency synthesizers are designed, implemented and tested making them one of the first frequency synthesizers for UWB covering 78% of the licensed spectrum. The circuits are implemented in 0.25µm SiGe BiCMOS and the architectures are based on a single VCO at a fixed frequency followed by an array of dividers, multiplexers and single sideband (SSB) mixers to generate the 11 required bands in quadrature with fast hopping in much less than 9.5 ns. One of the synthesizers is integrated and tested as part of a 3-10 GHz packaged receiver. It draws 80 mA current from a 2.5 V supply and occupies an area of 2.25 mm2. Finally, an architecture for a UWB synthesizer is proposed that is based on a single multiband quadrature VCO, a programmable integer divider with 50% duty cycle and a single sideband mixer. A frequency band plan is proposed that greatly relaxes the tuning range requirement of the multiband VCO and leads to a very digitally intensive architecture for wideband frequency synthesis suitable for implementation in deep submicron CMOS processes. A design in 130nm CMOS occupies less than 1 mm2 while consuming 90 mW. This architecture provides an efficient solution in terms of area and power consumption with very low complexity

    Design and Analysis of Charge Pump and Loop Filter for Wideband PLL

    Get PDF
    The growing market for wireless applications demands low-cost low-power system-on-chip (SOC) transceiver systems. The frequency synthesizer, used as local oscillator, is one of the most critical building blocks in any integrated transceiver sys-tem. As the demand of low-power low-voltage cost-effective high frequency system increases, design is getting more and more challenging. Due to the high level of integration, digital CMOS process is most favorable for SOC design but it increases the design challenges for RF circuits. This research work is carried out on the design and implementation of low-power low-noise low-cost frequency synthesizer in 0.18μmepi-digital CMOS process. A new scheme has been used to linearize the VCO output frequency versus tuning voltage characteristic, which reduces the VCO gain. Jitter modeling in cadence has been discussed

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd
    corecore