66 research outputs found

    Physical Layer Approach for Securing RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is a contactless, automatic identification wireless technology primarily used for identifying and tracking of objects, goods and humans. RFID is not only limited to identification and tracking applications. This proliferating wireless technology has been deployed in numerous securities sensitive applications e.g. access control, e-passports, contactless payments, driver license, transport ticking and health cards. RFID inherits all the security and privacy problems that are related to wireless technology and in addition to those that are specific to RFID systems. The security and privacy protection schemes proposed in literature for wireless devices are mostly secured through symmetric/asymmetric keys encryption/decryption and hash functions. The security of all these cryptographic algorithms depends on computationally complex problems that are hard to compute using available resources. However, these algorithms require cryptographic operations on RFID tags which contradict the low cost demand of RFID tags. Due to limited number of logic gates in tags, i.e., 5K-10K, these methods are not practical. Much research effort has done in attempt to solve consumer's privacy and security problem. Solutions that prevent clandestine inventory are mostly application layer techniques. To solve this problem, a new RFID physical layer scheme has been proposed namely Direct Sequence Backscatter Encryption (DSB Enc). The proposed scheme uses level generator to produce different levels before transmitting the signal to the tag. The tag response to the signal sent by the reader using backscatter communications on the same signal which looks random to the eavesdropper. Therefore eavesdropper cannot extract the information from reader to tag and tag to reader communication using passive eavesdropping. As reader knows the different generated levels added to the carrier signal, it can remove the levels and retrieve the tag's messages. We proposed a lightweight, low-cost and practically secure physical layer security to the RFID system, for a supply chain processing application, without increasing the computational power and tag's cost. The proposed scheme was validated by simulations on GNU Radio and experimentation using SDR and a WISP tag. Our implementation and experimental results validate that DSB Enc is secure against passive eavesdropping, replay and relay attacks. It provides better results in the presence of AWGN channel.1 yea

    Implementation vulnerabilities in general quantum cryptography

    Full text link
    Quantum cryptography is information-theoretically secure owing to its solid basis in quantum mechanics. However, generally, initial implementations with practical imperfections might open loopholes, allowing an eavesdropper to compromise the security of a quantum cryptographic system. This has been shown to happen for quantum key distribution (QKD). Here we apply experience from implementation security of QKD to several other quantum cryptographic primitives. We survey quantum digital signatures, quantum secret sharing, source-independent quantum random number generation, quantum secure direct communication, and blind quantum computing. We propose how the eavesdropper could in principle exploit the loopholes to violate assumptions in these protocols, breaking their security properties. Applicable countermeasures are also discussed. It is important to consider potential implementation security issues early in protocol design, to shorten the path to future applications.Comment: 13 pages, 8 figure

    Wireless sensor data security

    Get PDF
    Wireless Sensor Network (WSNs) is a network of sensors deployed in places unsuitable for human beings and where constant monitoring is required. They work with low power, low cost smart devices having limited computing resources. They have a crucial role to play in battle surveillance, border control and infrastructure protection. Keeping in view the precious data they transmit, their security from active or passive attacks is very crucial. We came to know about LOCK model implementing novel Distributed Key Management Exclusion Basis (EBS) System is very efficient in providing with Network Security. Keeping in view the importance of Data Security we preferred to secure WSN data through Public Key Encryption methods like RSA. We also discussed and implemented Elliptic Curve Cryptography (ECC) and its advantages over RSA. However our novel Spiral Encryption Technique implemented along with ECC algorithm, has shown how it helped in making the transmitted message more secure and less informative for the eavesdropper

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Air to ground quantum key distribution

    Get PDF

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore