30 research outputs found

    TCP-Aware Backpressure Routing and Scheduling

    Full text link
    In this work, we explore the performance of backpressure routing and scheduling for TCP flows over wireless networks. TCP and backpressure are not compatible due to a mismatch between the congestion control mechanism of TCP and the queue size based routing and scheduling of the backpressure framework. We propose a TCP-aware backpressure routing and scheduling that takes into account the behavior of TCP flows. TCP-aware backpressure (i) provides throughput optimality guarantees in the Lyapunov optimization framework, (ii) gracefully combines TCP and backpressure without making any changes to the TCP protocol, (iii) improves the throughput of TCP flows significantly, and (iv) provides fairness across competing TCP flows

    Contribution to the traffc engineering in wireless mesh networks

    Get PDF
    Premi extraordinari doctorat UPC curs 2019-2020, àmbit d’Enginyeria de les TICNowadays, we live in a modern society in which people and devices are interconnected anywhere and anytime. Under this premise, both the infrastructure and the services offered have evolved and diversified in a drastic way. In fact, many of these services are transported in decentralized networks. Among them, Wireless mesh networks are decentralized networks that have been widely studied in different research areas such as community networks, public safety and surveillance. Wireless mesh networks have been also studied and evaluated in the Smart Grid scenario. Smart Grids are a new paradigm in which the electricity network is no longer focused only on the generation, distribution and transport of electricity to subscribers. Now, it is a robust network that includes a data communication network. The associated data network is divided in different subnetworks. This thesis is mainly focused on the improvement of the performance of one of those subnetworks, the so-called Smart Grid Neighborhood Area Network. Several applications are transmitted between the users and the control center. In general, upstream communication involves tasks such as meter reading, billing data or electricity consumption, while downstream communication allows the smart grid to take actions in different network situations such as power peaks or emergency situations. In the first part, the work is focused on improving the routing mechanism. To do this, a multipath routing mechanism is proposed, where the traffics that are most important are transmitted over the best communication links. In order to improve even more the benefits obtained, a multichannel scheme is proposed to separate both control traffic and data traffic, and use the less congested channels to transmit the most priority traffic types.Smart Grids offer many services and some of them are very demanding in terms of QoS. Besides, infrastructure failures, attacks and high congestion situations can greatly reduce the network performance. Therefore, the network must be able to offer a minimum QoS to the most priority applications handling some traffic control techniques. With this goal in mind, in this thesis some congestion control mechanisms are also proposed. In the first of these mechanisms, the decision of whether a packet should be retransmitted or not is made in a distributed and independent way by each one of the network nodes, depending on the network conditions that the node itself is observing. This mechanism considers again the existence of traffics with different priorities, so that, less priority traffic has a higher probability of being discarded. Furthermore, an emergency system is coupled to the congestion control mechanism. With this strategy, the NAN is able to take global actions (in a short time) to face anomalous situations.In a Smart grid scenario, the nodes are static and each of them transmits upstream data flows to the data concentrator. Therefore, depending on their geographical location, some nodes may be more favored than others. Besides, some nodes can monopolize the network resources if they are not regulated. For this reason, in this thesis another distributed solution is proposed that runs in each node. The objective here is to provide a fair distribution of network resources regardless of the geographical position and the transmission rate. The last contribution is focused on the application of machine learning techniques to obtain again a better performance of the data networks under study. In this sense, a new congestion control mechanism is proposed, which, like the previous ones, provides different quality of service to data flows with different priorities. For this, a complete framework is proposed, including the generation, preprocessing and evaluation of the data necessary for the training of the machine learning algorithms that will be used. The proposal is also implemented and evaluated in the Smart Grid NANs environmentAvui dia, vivim en una societat en què les persones i els dispositius estan interconnectats en qualsevol lloc i en qualsevol moment. Sota aquesta premissa, la infraestructura com els serveis oferts han evolucionat i diversificat de manera dràstica. De fet, molts d'aquests serveis s'envien en xarxes descentralitzades. Entre elles, les xarxes de malla sense fils són xarxes descentralitzades que han estat àmpliament estudiades en diferents àrees com xarxes comunitàries, seguretat pública i vigilància. Les xarxes de malla sense fils també s'han estudiat i avaluat en les xarxes elèctriques intel·ligents. Aquestes xarxes són un nou paradigma on la xarxa elèctrica ja no es centra només en la generació, distribució i transport d'electricitat als subscriptors. Ara, és una xarxa robusta que inclou una xarxa de comunicació de dades. La xarxa de dades associada es divideix en diferents subxarxes. Aquesta tesi se centra a millorar el rendiment d'una d'aquestes subxarxes, l'anomenada xarxa d'àrea de veïnatge de les xarxes elèctriques intel·ligents. Diverses aplicacions s'envien entre els usuaris i el centre de control. En general, la comunicació de pujada implica la lectura de mesuradors, dades de facturació o consum elèctric, mentre que la comunicació de baixada permet que la xarxa intel·ligent prengui mesures davant diferents situacions, com pics d'energia o d'emergència. La primera part de la feina es centra a millorar el mecanisme d'enrutament. Per això, es proposa un mecanisme de múltiples rutes, on els tràfics més prioritaris s'envien a través dels millors enllaços de comunicació. A més, es proposa un esquema multicanal per separar el tràfic de control del de dades, i utilitzar els canals menys congestionats per enviar les dades més prioritàries.Les xarxes elèctriques intel·ligents ofereixen molts serveis i alguns són exigents en termes de qualitat de servei (QoS). A més, les falles d'infraestructura, els atacs i les situacions d'alta congestió poden reduir el seu rendiment. Per tant, la xarxa ha d'oferir una QoS mínima a les aplicacions més prioritàries mitjançant algunes tècniques de control de tràfic. Amb aquest objectiu, en aquesta tesi també es proposen alguns mecanismes de control de congestió. En el primer d'aquests mecanismes, cada node de forma distribuïda i independent, decideix si un paquet s¿ha de retransmetre o no depenent de les condicions de la xarxa que el mateix node està observant. Aquest mecanisme considera novament tràfics amb diferents prioritats, de manera que, el tràfic menys prioritari té una major probabilitat de ser descartat. A més, un sistema d'emergència està acoblat amb el mecanisme de control de congestió. Amb això, la xarxa pot prendre accions globals (en poc temps) per enfrontar situacions anòmales.A les xarxes elèctriques intel·ligents, els nodes són fixos i cadascun envia dades a un concentrador de dades. Per tant, depenent de la seva ubicació geogràfica, alguns nodes poden ser més afavorits que altres. A més, alguns nodes poden monopolitzar els recursos de xarxa si no són regulats. A causa d'això, en aquesta tesi es proposa una altra solució distribuïda que s'executa en cada node. L'objectiu és proveir una distribució justa dels recursos de la xarxa, independent de la posició geogràfica i la velocitat de transmissió. L'última contribució es centra en l'aplicació de tècniques d'aprenentatge automàtic per obtenir de nou un millor rendiment de les xarxes de dades en estudi. En aquest sentit, es proposa un nou mecanisme de control de congestió que, a l'igual que els anteriors, proveeix diferent qualitat de servei d'acord amb la prioritat de les dades. Per això, es proposa un sistema, que inclou la generació, el processament i l'avaluació de les dades necessàries per a l'entrenament dels algoritmes d'aprenentatge que s'utilitzaran. La proposta també s'implementa i avalua a l'entorn de les xarxes elèctriques intel·ligents en l'entorn de Smart Grid NANsHoy en día, vivimos en una sociedad moderna en la que las personas y los dispositivos están interconectados en cualquier lugar y en cualquier momento. Bajo esta premisa, tanto la infraestructura como los servicios ofrecidos han evolucionado y diversificado de manera drástica. De hecho, muchos de estos servicios se transportan en diferentes tipos de redes. Las redes descentralizadas (o sin infraestructura) se están utilizando ampliamente para soportar estos servicios. Permiten una mayor accesibilidad para los usuarios debido a una gran cantidad de ventajas. Por ejemplo, la creación automática, la configuración automática, la instalación fácil en áreas de difícil acceso, mantenimiento y escalabilidad hacen que este tipo de redes sean atractivas para los proveedores de servicios. Entre ellas, las redes de malla inalámbricas son redes descentralizadas que han sido ampliamente estudiadas en diferentes áreas de investigación, como redes comunitarias, escenarios de desastres, seguridad pública y vigilancia. Además, estos tipos de red son más estructurados que las redes ad hoc inalámbricas tradicionales y, por lo tanto, pueden admitir protocolos más complejos. Las redes de malla inalámbricas también se han estudiado y evaluado en el escenario de redes eléctricas inteligentes. Las redes eléctricas inteligentes son un nuevo paradigma en el que se abordan las infraestructuras tradicionales de transporte de electricidad. En este contexto, la red eléctrica ya no se centra solo en la generación, distribución y transporte de electricidad a los suscriptores. Ahora, es una red robusta que incluye una red de comunicación de datos. El objetivo de tener una red de comunicación de datos junto con la eléctrica es proporcionar un servicio eficiente desde el centro de control al usuario, así como dar retroalimentación sobre el correcto funcionamiento de las redes de electricidad y datos al centro de control. Como la infraestructura de transporte eléctrico, la red de datos asociada se divide en diferentes subredes. Esta tesis se centra principalmente en la mejora del rendimiento de una de esas subredes, la llamada red de área de vecindad de las redes electrices inteligentes. Las contribuciones se centran en mejorar el enrutamiento de datos, proporcionando una diferenciación del tráfico con la provisión de calidad de servicio (QoS), mecanismos de control de congestión, un sistema de emergencia que trata situaciones anómalas de la red y una distribución justa de los recursos de la red. Varias aplicaciones se transmiten desde los usuarios al centro de control, así como desde el centro de control hacia los usuarios. En general, la comunicación hacia el centro de control implica tareas como la lectura de medidores, los datos de facturación o el consumo de electricidad, mientras que la comunicación hacia los suscriptores permite que la red eléctrica inteligente tome medidas en diferentes situaciones de la red, como picos de energía o situaciones de emergencia. En la primera parte de la tesis, el trabajo se centra en mejorar el mecanismo de enrutamiento. Para hacer esto, se propone un mecanismo de enrutamiento de múltiples rutas, donde los tráficos que son más importantes se transmite a través de los mejores enlaces de comunicación, mientras que los tráficos de menor prioridad se transmiten a través de las rutas con menos reputación (menos métrica de enrutamiento). Para mejorar aun más los beneficios obtenidos, se propone un esquema multicanal para separar tanto el tráfico de control como el tráfico de datos, y utilizar los canales menos congestionados para transmitir los tipos de tráfico más prioritarios. Las redes eléctricas inteligentes ofrecen muchos servicios y algunos de ellos son muy exigentes en términos de QoS. Por lo tanto, las fallas de infraestructura, los ataques y las situaciones de alta congestión pueden reducir en gran medida el rendimiento de la red. Para enfrentar estos problemas, la red debe poder ofrecer una calidad de servicio mínima a las aplicaciones más prioritarias mediante algunas técnicas de control de tráfico. Con este objetivo en mente, en esta tesis también se proponen algunos mecanismos de control de congestión. En el primero de estos mecanismos, cada uno de los nodos de la red decide de manera distribuida e independiente si un paquete debe o no ser retransmitido, dependiendo de las condiciones de la red (principalmente la utilización promedio del canal y la ocupación de los buffers) que el nodo mismo está observando. Es decir, un nodo intermedio puede descartar directamente un paquete de datos si observa que el canal de transmisión se está utilizando por encima de un cierto umbral. Este mecanismo considera nuevamente la existencia de tráficos con diferentes prioridades, de modo que, el tráfico menos prioritario tiene una mayor probabilidad de ser descartado. Además, un sistema de emergencia está acoplado al mecanismo de control de congestión. Con esta estrategia, la NAN puede tomar acciones globales (en poco tiempo) para enfrentar situaciones anómalas, lo que proporciona aún más probabilidad de transmisión para tráficos con mayores requisitos de QoS. Con este fin, también se propone una señalización de emergencia que puede activarse automática o manualmente. Una distribución justa de los recursos de la red también es un campo de investigación importante en las redes eléctricas inteligentes. Tenga en cuenta que, en este escenario, los nodos son estáticos y cada uno de ellos transmite flujos de datos hacia al concentrador de datos. Por lo tanto, dependiendo de su ubicación geográfica, algunos nodos pueden ser más favorecidos que otros. Además, algunos nodos pueden monopolizar los recursos de la red si no están regulados. Por esta razón, en esta tesis se propone otro algoritmo de control de congestión distribuido que se ejecuta en cada nodo. El objetivo aquí es proporcionar una distribución justa de los recursos de la red, independientemente de la posición geográfica y la velocidad de transmisión. Es decir, todos los nodos tendrán las mismas oportunidades para transmitir sus datos al centro de control. La solución propuesta es independiente de la red, mac y capas físicas. La última contribución realizada con esta tesis se centra en la aplicación de técnicas de aprendizaje automático para obtener nuevamente un mejor rendimiento de las redes de datos en estudio. En este sentido, se propone un nuevo mecanismo de control de congestión que, al igual que los anteriores, proporciona diferente calidad de servicio a los flujos de datos con diferentes prioridades. Para esto, se propone un marco completo, que incluye la generación, el preprocesamiento y la evaluación de los datos necesarios para la capacitación de los algoritmos de aprendizaje automático que se utilizarán. La propuesta también se implementa y evalúa en el entorno de Smart Grid NANs.Award-winningPostprint (published version

    Self-organized backpressure routing for the wireless mesh backhaul of small cells

    Get PDF
    The ever increasing demand for wireless data services has given a starring role to dense small cell (SC) deployments for mobile networks, as increasing frequency re-use by reducing cell size has historically been the most effective and simple way to increase capacity. Such densification entails challenges at the Transport Network Layer (TNL), which carries packets throughout the network, since hard-wired deployments of small cells prove to be cost-unfeasible and inflexible in some scenarios. The goal of this thesis is, precisely, to provide cost-effective and dynamic solutions for the TNL that drastically improve the performance of dense and semi-planned SC deployments. One approach to decrease costs and augment the dynamicity at the TNL is the creation of a wireless mesh backhaul amongst SCs to carry control and data plane traffic towards/from the core network. Unfortunately, these lowcost SC deployments preclude the use of current TNL routing approaches such as Multiprotocol Label Switching Traffic Profile (MPLS-TP), which was originally designed for hard-wired SC deployments. In particular, one of the main problems is that these schemes are unable to provide an even network resource consumption, which in wireless environments can lead to a substantial degradation of key network performance metrics for Mobile Network Operators. The equivalent of distributing load across resources in SC deployments is making better use of available paths, and so exploiting the capacity offered by the wireless mesh backhaul formed amongst SCs. To tackle such uneven consumption of network resources, this thesis presents the design, implementation, and extensive evaluation of a self-organized backpressure routing protocol explicitly designed for the wireless mesh backhaul formed amongst the wireless links of SCs. Whilst backpressure routing in theory promises throughput optimality, its implementation complexity introduces several concerns, such as scalability, large end-to-end latencies, and centralization of all the network state. To address these issues, we present a throughput suboptimal yet scalable, decentralized, low-overhead, and low-complexity backpressure routing scheme. More specifically, the contributions in this thesis can be summarized as follows: We formulate the routing problem for the wireless mesh backhaul from a stochastic network optimization perspective, and solve the network optimization problem using the Lyapunov-driftplus-penalty method. The Lyapunov drift refers to the difference of queue backlogs in the network between different time instants, whereas the penalty refers to the routing cost incurred by some network utility parameter to optimize. In our case, this parameter is based on minimizing the length of the path taken by packets to reach their intended destination. Rather than building routing tables, we leverage geolocation information as a key component to complement the minimization of the Lyapunov drift in a decentralized way. In fact, we observed that the combination of both components helps to mitigate backpressure limitations (e.g., scalability,centralization, and large end-to-end latencies). The drift-plus-penalty method uses a tunable optimization parameter that weight the relative importance of queue drift and routing cost. We find evidence that, in fact, this optimization parameter impacts the overall network performance. In light of this observation, we propose a self-organized controller based on locally available information and in the current packet being routed to tune such an optimization parameter under dynamic traffic demands. Thus, the goal of this heuristically built controller is to maintain the best trade-off between the Lyapunov drift and the penalty function to take into account the dynamic nature of semi-planned SC deployments. We propose low complexity heuristics to address problems that appear under different wireless mesh backhaul scenarios and conditions..

    Contribution to the traffc engineering in wireless mesh networks

    Get PDF
    Nowadays, we live in a modern society in which people and devices are interconnected anywhere and anytime. Under this premise, both the infrastructure and the services offered have evolved and diversified in a drastic way. In fact, many of these services are transported in decentralized networks. Among them, Wireless mesh networks are decentralized networks that have been widely studied in different research areas such as community networks, public safety and surveillance. Wireless mesh networks have been also studied and evaluated in the Smart Grid scenario. Smart Grids are a new paradigm in which the electricity network is no longer focused only on the generation, distribution and transport of electricity to subscribers. Now, it is a robust network that includes a data communication network. The associated data network is divided in different subnetworks. This thesis is mainly focused on the improvement of the performance of one of those subnetworks, the so-called Smart Grid Neighborhood Area Network. Several applications are transmitted between the users and the control center. In general, upstream communication involves tasks such as meter reading, billing data or electricity consumption, while downstream communication allows the smart grid to take actions in different network situations such as power peaks or emergency situations. In the first part, the work is focused on improving the routing mechanism. To do this, a multipath routing mechanism is proposed, where the traffics that are most important are transmitted over the best communication links. In order to improve even more the benefits obtained, a multichannel scheme is proposed to separate both control traffic and data traffic, and use the less congested channels to transmit the most priority traffic types.Smart Grids offer many services and some of them are very demanding in terms of QoS. Besides, infrastructure failures, attacks and high congestion situations can greatly reduce the network performance. Therefore, the network must be able to offer a minimum QoS to the most priority applications handling some traffic control techniques. With this goal in mind, in this thesis some congestion control mechanisms are also proposed. In the first of these mechanisms, the decision of whether a packet should be retransmitted or not is made in a distributed and independent way by each one of the network nodes, depending on the network conditions that the node itself is observing. This mechanism considers again the existence of traffics with different priorities, so that, less priority traffic has a higher probability of being discarded. Furthermore, an emergency system is coupled to the congestion control mechanism. With this strategy, the NAN is able to take global actions (in a short time) to face anomalous situations.In a Smart grid scenario, the nodes are static and each of them transmits upstream data flows to the data concentrator. Therefore, depending on their geographical location, some nodes may be more favored than others. Besides, some nodes can monopolize the network resources if they are not regulated. For this reason, in this thesis another distributed solution is proposed that runs in each node. The objective here is to provide a fair distribution of network resources regardless of the geographical position and the transmission rate. The last contribution is focused on the application of machine learning techniques to obtain again a better performance of the data networks under study. In this sense, a new congestion control mechanism is proposed, which, like the previous ones, provides different quality of service to data flows with different priorities. For this, a complete framework is proposed, including the generation, preprocessing and evaluation of the data necessary for the training of the machine learning algorithms that will be used. The proposal is also implemented and evaluated in the Smart Grid NANs environmentAvui dia, vivim en una societat en què les persones i els dispositius estan interconnectats en qualsevol lloc i en qualsevol moment. Sota aquesta premissa, la infraestructura com els serveis oferts han evolucionat i diversificat de manera dràstica. De fet, molts d'aquests serveis s'envien en xarxes descentralitzades. Entre elles, les xarxes de malla sense fils són xarxes descentralitzades que han estat àmpliament estudiades en diferents àrees com xarxes comunitàries, seguretat pública i vigilància. Les xarxes de malla sense fils també s'han estudiat i avaluat en les xarxes elèctriques intel·ligents. Aquestes xarxes són un nou paradigma on la xarxa elèctrica ja no es centra només en la generació, distribució i transport d'electricitat als subscriptors. Ara, és una xarxa robusta que inclou una xarxa de comunicació de dades. La xarxa de dades associada es divideix en diferents subxarxes. Aquesta tesi se centra a millorar el rendiment d'una d'aquestes subxarxes, l'anomenada xarxa d'àrea de veïnatge de les xarxes elèctriques intel·ligents. Diverses aplicacions s'envien entre els usuaris i el centre de control. En general, la comunicació de pujada implica la lectura de mesuradors, dades de facturació o consum elèctric, mentre que la comunicació de baixada permet que la xarxa intel·ligent prengui mesures davant diferents situacions, com pics d'energia o d'emergència. La primera part de la feina es centra a millorar el mecanisme d'enrutament. Per això, es proposa un mecanisme de múltiples rutes, on els tràfics més prioritaris s'envien a través dels millors enllaços de comunicació. A més, es proposa un esquema multicanal per separar el tràfic de control del de dades, i utilitzar els canals menys congestionats per enviar les dades més prioritàries.Les xarxes elèctriques intel·ligents ofereixen molts serveis i alguns són exigents en termes de qualitat de servei (QoS). A més, les falles d'infraestructura, els atacs i les situacions d'alta congestió poden reduir el seu rendiment. Per tant, la xarxa ha d'oferir una QoS mínima a les aplicacions més prioritàries mitjançant algunes tècniques de control de tràfic. Amb aquest objectiu, en aquesta tesi també es proposen alguns mecanismes de control de congestió. En el primer d'aquests mecanismes, cada node de forma distribuïda i independent, decideix si un paquet s¿ha de retransmetre o no depenent de les condicions de la xarxa que el mateix node està observant. Aquest mecanisme considera novament tràfics amb diferents prioritats, de manera que, el tràfic menys prioritari té una major probabilitat de ser descartat. A més, un sistema d'emergència està acoblat amb el mecanisme de control de congestió. Amb això, la xarxa pot prendre accions globals (en poc temps) per enfrontar situacions anòmales.A les xarxes elèctriques intel·ligents, els nodes són fixos i cadascun envia dades a un concentrador de dades. Per tant, depenent de la seva ubicació geogràfica, alguns nodes poden ser més afavorits que altres. A més, alguns nodes poden monopolitzar els recursos de xarxa si no són regulats. A causa d'això, en aquesta tesi es proposa una altra solució distribuïda que s'executa en cada node. L'objectiu és proveir una distribució justa dels recursos de la xarxa, independent de la posició geogràfica i la velocitat de transmissió. L'última contribució es centra en l'aplicació de tècniques d'aprenentatge automàtic per obtenir de nou un millor rendiment de les xarxes de dades en estudi. En aquest sentit, es proposa un nou mecanisme de control de congestió que, a l'igual que els anteriors, proveeix diferent qualitat de servei d'acord amb la prioritat de les dades. Per això, es proposa un sistema, que inclou la generació, el processament i l'avaluació de les dades necessàries per a l'entrenament dels algoritmes d'aprenentatge que s'utilitzaran. La proposta també s'implementa i avalua a l'entorn de les xarxes elèctriques intel·ligents en l'entorn de Smart Grid NANsHoy en día, vivimos en una sociedad moderna en la que las personas y los dispositivos están interconectados en cualquier lugar y en cualquier momento. Bajo esta premisa, tanto la infraestructura como los servicios ofrecidos han evolucionado y diversificado de manera drástica. De hecho, muchos de estos servicios se transportan en diferentes tipos de redes. Las redes descentralizadas (o sin infraestructura) se están utilizando ampliamente para soportar estos servicios. Permiten una mayor accesibilidad para los usuarios debido a una gran cantidad de ventajas. Por ejemplo, la creación automática, la configuración automática, la instalación fácil en áreas de difícil acceso, mantenimiento y escalabilidad hacen que este tipo de redes sean atractivas para los proveedores de servicios. Entre ellas, las redes de malla inalámbricas son redes descentralizadas que han sido ampliamente estudiadas en diferentes áreas de investigación, como redes comunitarias, escenarios de desastres, seguridad pública y vigilancia. Además, estos tipos de red son más estructurados que las redes ad hoc inalámbricas tradicionales y, por lo tanto, pueden admitir protocolos más complejos. Las redes de malla inalámbricas también se han estudiado y evaluado en el escenario de redes eléctricas inteligentes. Las redes eléctricas inteligentes son un nuevo paradigma en el que se abordan las infraestructuras tradicionales de transporte de electricidad. En este contexto, la red eléctrica ya no se centra solo en la generación, distribución y transporte de electricidad a los suscriptores. Ahora, es una red robusta que incluye una red de comunicación de datos. El objetivo de tener una red de comunicación de datos junto con la eléctrica es proporcionar un servicio eficiente desde el centro de control al usuario, así como dar retroalimentación sobre el correcto funcionamiento de las redes de electricidad y datos al centro de control. Como la infraestructura de transporte eléctrico, la red de datos asociada se divide en diferentes subredes. Esta tesis se centra principalmente en la mejora del rendimiento de una de esas subredes, la llamada red de área de vecindad de las redes electrices inteligentes. Las contribuciones se centran en mejorar el enrutamiento de datos, proporcionando una diferenciación del tráfico con la provisión de calidad de servicio (QoS), mecanismos de control de congestión, un sistema de emergencia que trata situaciones anómalas de la red y una distribución justa de los recursos de la red. Varias aplicaciones se transmiten desde los usuarios al centro de control, así como desde el centro de control hacia los usuarios. En general, la comunicación hacia el centro de control implica tareas como la lectura de medidores, los datos de facturación o el consumo de electricidad, mientras que la comunicación hacia los suscriptores permite que la red eléctrica inteligente tome medidas en diferentes situaciones de la red, como picos de energía o situaciones de emergencia. En la primera parte de la tesis, el trabajo se centra en mejorar el mecanismo de enrutamiento. Para hacer esto, se propone un mecanismo de enrutamiento de múltiples rutas, donde los tráficos que son más importantes se transmite a través de los mejores enlaces de comunicación, mientras que los tráficos de menor prioridad se transmiten a través de las rutas con menos reputación (menos métrica de enrutamiento). Para mejorar aun más los beneficios obtenidos, se propone un esquema multicanal para separar tanto el tráfico de control como el tráfico de datos, y utilizar los canales menos congestionados para transmitir los tipos de tráfico más prioritarios. Las redes eléctricas inteligentes ofrecen muchos servicios y algunos de ellos son muy exigentes en términos de QoS. Por lo tanto, las fallas de infraestructura, los ataques y las situaciones de alta congestión pueden reducir en gran medida el rendimiento de la red. Para enfrentar estos problemas, la red debe poder ofrecer una calidad de servicio mínima a las aplicaciones más prioritarias mediante algunas técnicas de control de tráfico. Con este objetivo en mente, en esta tesis también se proponen algunos mecanismos de control de congestión. En el primero de estos mecanismos, cada uno de los nodos de la red decide de manera distribuida e independiente si un paquete debe o no ser retransmitido, dependiendo de las condiciones de la red (principalmente la utilización promedio del canal y la ocupación de los buffers) que el nodo mismo está observando. Es decir, un nodo intermedio puede descartar directamente un paquete de datos si observa que el canal de transmisión se está utilizando por encima de un cierto umbral. Este mecanismo considera nuevamente la existencia de tráficos con diferentes prioridades, de modo que, el tráfico menos prioritario tiene una mayor probabilidad de ser descartado. Además, un sistema de emergencia está acoplado al mecanismo de control de congestión. Con esta estrategia, la NAN puede tomar acciones globales (en poco tiempo) para enfrentar situaciones anómalas, lo que proporciona aún más probabilidad de transmisión para tráficos con mayores requisitos de QoS. Con este fin, también se propone una señalización de emergencia que puede activarse automática o manualmente. Una distribución justa de los recursos de la red también es un campo de investigación importante en las redes eléctricas inteligentes. Tenga en cuenta que, en este escenario, los nodos son estáticos y cada uno de ellos transmite flujos de datos hacia al concentrador de datos. Por lo tanto, dependiendo de su ubicación geográfica, algunos nodos pueden ser más favorecidos que otros. Además, algunos nodos pueden monopolizar los recursos de la red si no están regulados. Por esta razón, en esta tesis se propone otro algoritmo de control de congestión distribuido que se ejecuta en cada nodo. El objetivo aquí es proporcionar una distribución justa de los recursos de la red, independientemente de la posición geográfica y la velocidad de transmisión. Es decir, todos los nodos tendrán las mismas oportunidades para transmitir sus datos al centro de control. La solución propuesta es independiente de la red, mac y capas físicas. La última contribución realizada con esta tesis se centra en la aplicación de técnicas de aprendizaje automático para obtener nuevamente un mejor rendimiento de las redes de datos en estudio. En este sentido, se propone un nuevo mecanismo de control de congestión que, al igual que los anteriores, proporciona diferente calidad de servicio a los flujos de datos con diferentes prioridades. Para esto, se propone un marco completo, que incluye la generación, el preprocesamiento y la evaluación de los datos necesarios para la capacitación de los algoritmos de aprendizaje automático que se utilizarán. La propuesta también se implementa y evalúa en el entorno de Smart Grid NANs

    P-MR: Backpressure Routing for the Heterogeneous Multi-Radio Backhaul of Small Cells

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dense small cell (SC) deployments are expected to help handling the explosive growth of mobile data usage. However, the backhaul of these deployments will face several challenges where point-to-point (PTP) and point-to-multi point (PMP) wireless technologies will be combined forming multi point-to-multipoint (MP2MP) wireless mesh backhauls. In this context, routing and load balancing solutions will be of key importance to maximize the use of wireless backhaul resources. This paper presents Backpressure for Multi-Radio (BP-MR), a distributed routing and load balancing protocol specifically designed for heterogeneous MP2MP wireless mesh backhauls. The backhaul is heterogeneous in the sense that each node may embed a different number of diverse wireless interfaces. BP-MR introduces a two-stage routing process to appropriately handle Head-of-Line blocking issues that appear in such multi-radio environments. We validate these improvements with ns-3 simulations under different network conditions. As a consequence of an improved wireless link usage efficiency, results show improvements in through put of up to 34% and in latency of up to one order of magnitude with respect to state-of-the-art approaches.Postprint (author's final draft

    Improvements to end-to-end performance of low-power wireless networks

    Get PDF
    Over the last decades, wireless technologies have become an important part of our daily lives. A plentitude of new types of networks based on wireless technologies have emerged, often replacing wired solutions. In this development, not only the number and the types of devices equipped with wireless transceivers have significantly increased, also the variety of wireless technologies has grown considerably. Moreover, Internet access for wireless devices has paved the way for a large variety of new private, business, and research applications. Great efforts have been made by the research community and the industry to develop standards, specifications, and communication protocols for networks of constrained devices, we refer to as Wireless Sensor Networks (WSNs). The Institute of Electrical and Electronics Engineers (IEEE) defined the 802.15.4 standard for Personal Area Networks (PANs). With the introduction of an adaptation layer which makes IEEE 802.15.4 networks IPv6-capable, interconnecting billions of constrained devices has become possible and is expected to become a reality in the near future. The vision that embraces the idea of interweaving Internet technology with any type of smart objects, such as wearable devices or sensors of a WSN, is called the Internet of Things (IoT). The main goal of this thesis is the improvement of the performance of low-power wireless networks. Given the wide scope of application scenarios and networking solutions proposed for such networks, the development and optimization of communication protocols for wireless low-power devices is a challenging task: The hardware restrictions of constrained devices, specific application scenarios that may vary from one network to another, and the integration of WSNs into the IoT require new approaches to the design and evaluation of communication protocols. To face these challenges and to find solutions for them, research needs to be carried out. Mechanisms and parameter settings of communication protocol stacks for WSNs that are crucial to the network performance need to be identified, optimized, and complemented by adding new ones. The first contribution of this thesis is the improvement of end-to-end performance for IEEE 802.15.4-based PANs, where default parameter settings of common communication protocols are analyzed and evaluated with regard to their impact on the network performance. Physical evaluations are carried out in a large testbed, addressing the important question of whether the default and allowed range settings defined for common communication protocols are efficient or whether alternative settings may yield a better performance. The second contribution of this thesis is the improvement of end-to-end performance for ZigBee wireless HA networks. ZigBee is an important standard for low-power wireless networks and the investigations carried out address the crucial lack of investigation the ZigBee HA performance evaluations through physical experiments and potential ways to improve the network performance based on these experiments. Eventually, this thesis focuses on the improvement of the congestion control (CC) mechanism applied by the Constrained Application Protocol (CoAP) used in IoT communications. For the handling of the possible congestion in the IoT produced by the plethora of the devices and/or link errors innate to low-power radio communications, the default CC mechanism it lacks an advanced CC algorithm. Given CoAP's high relevance for IoT communications, an advanced CC algorithm should be capable of adapting to these particularities of IoT communications. This thesis contributes to this topic with the design and optimization of the CoAP Advanced Congestion Control/Simple (CoCoA) protocol, an advanced CC mechanism for CoAP.The investigations of advanced CC mechanisms for CoAP involve extensive performance evaluations in simulated networks and physical experiments in real testbeds using different communication technologies.En les últimes dècades, les tecnologies sense fils s'han convertit en una part important de la nostra vida quotidiana. Una àmplia varietat de nous tipus de xarxes basades en tecnologies sense fils han sorgit, sovint reemplaçant solucions cablejades. En aquest desenvolupament, no només el nombre i els tipus de dispositius equipats amb transceptors sense fils han augmentat significativament, també la varietat de tecnologies sense fils ha crescut de manera considerable. D'altra banda, l'accés a Internet per als dispositius sense fils ha donat pas a una gran varietat de noves aplicacions privades, comercials i d'investigació. La comunitat científica i la indústria han fet grans esforços per desenvolupar normes, especificacions i protocols de comunicació per a xarxes de sensors sense fils (WSNs). L'Institut d'Enginyeria Elèctrica i Electrònica (IEEE) defineix l'estàndard 802.15.4 per a xarxes d'àrea personal (PAN). Amb la introducció d'una capa d'adaptació que possibilita les IEEE 802.15.4 xarxes compatibles amb IPv6, la interconnexió de milers de milions de dispositius restringits s'ha fet possible. La idea d'entreteixir la tecnologia d'Internet amb qualsevol tipus d'objectes intel·ligents, com els dispositius o sensors d'una WSN és coneguda com la Internet de les Coses (IoT). L'objectiu principal d'aquesta tesi és la millora del rendiment de les WSNs. Donada l'àmplia gamma d'escenaris d'aplicacions i solucions de xarxes proposats per a aquest tipus de xarxes, el desenvolupament i l'optimització dels protocols de comunicació per a dispositius de WSNs és una tasca difícil: les limitacions de capacitats dels dispositius restringits, escenaris d'aplicació específics que poden variar d'una xarxa a l'altra, i la integració de les WSNs a la IoT requereixen nous enfocaments per al disseny i avaluació de protocols de comunicació. Cal identificar mecanismes i configuracions de paràmetres de les piles de protocols de comunicació per a WSNs que són elementals per al rendiment de la xarxa, optimitzar-los, i complementar-los amb l'addició d'altres de nous. La primera contribució d'aquesta tesi és la millora del rendiment extrem a extrem per PANs basat en IEEE 802.15.4, on s'analitza la configuració de paràmetres que es fan servir per defecte en protocols de comunicació comuns i s'avalua el seu impacte en el rendiment de la xarxa. Avaluacions físiques en una xarxa de sensors permeten fer front a la important qüestió de si els valors estàndards dels paràmetres són eficients o si ajustant-los es pot proporcionar un millor rendiment. La segona contribució d'aquesta tesi és l'optimització del rendiment extrem a extrem de xarxes ZigBee domòtiques (HA) sense fils. ZigBee és un estàndard important per a WSNs. Els estudis duts a terme cobreixen la important falta d'investigació d'avaluacions de rendiment de xarxes HA de ZigBee mitjançant experiments físics i mostrant formes per millorar el rendiment de la xarxa en base d'aquests experiments. Finalment, aquesta tesi es centra en la millora del mecanisme bàsic de control de congestió (CC) aplicada pel Constrained Application Protocol (CoAP) utilitzat en les comunicacions de la IoT. És necessari un algoritme de CC avançat per al control de la possible congestió en la IoT produïda per la plètora de dispositius i/o errors d'enllaç naturals per a les comunicacions de ràdio de baixa potencia. Donada l'alta rellevància de CoAP per a les comunicacions en la IoT, un algoritme CC avançat ha de ser capaç d'adaptar-se a les particularitats de les comunicacions de la IoT. Aquesta tesi contribueix al problema amb el disseny i l'optimització Control de Congestió Avançat / Simple del CoAP (CoCoA), un mecanisme de CC avançat per CoAP. Les investigacions de mecanismes de CC avançats per CoAP impliquen avaluacions extenses en xarxes simulades i experiments físics en xarxes reals utilitzant diferents tecnologies de comunicacions

    Experimental analysis of WiMAX and meshed Wi-Fi quality of service

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA indústria das telecomunicações tem sofrido uma evolução enorme nosúltimos anos. Tanto em termos de comunicações sem fios, como em termos deligações de banda larga, assistiu-se a uma adesão massiva por parte domercado, o que se traduziu num crescimento enorme, já que a tecnologia temque estar um passo à frente da procura, de forma a suprir as carências dosconsumidores. Assim, a evolução persegue um objectivo claro: possibilidadede possuir conectividade de banda larga em qualquer lugar e instante. Nestecontexto, aparecem as tecnologias WiMAX (Worldwide Interoperability forMicrowave Access) e WI-FI em Malha como possibilidades para atingir estefim. O tema desta dissertação incide no estudo das tecnologias de WiMAX e WI-FIem Malha, mais concretamente no estudo da Qualidade de Serviço (QoS)providenciada pelas normas IEEE 802.16 e IEEE 802.11s para serviços deVoIP e VoD. Esta tese apresenta a arquitectura desenvolvida para a correcta integração deQoS para serviços em tempo real no acesso à banda larga sem fios depróxima geração. De seguida, apresenta testes efectuados com osequipamentos disponíveis de WiMAX e WI-FI em Malha, de forma a mostrar ocorrecto comportamento da atribuição extremo-a-extremo de QoS nos cenáriosescolhidos com serviços em tempo real, bem como os efeitos da mobilidade natecnologia WI-FI em Malha. ABSTRACT: The telecommunication industry has suffered a massive evolution throughoutpast years. In terms of wireless communications, as well as broadbandconnections, we’ve seen a massive adoption by the market, which conductedinto an enormous growth, since the technology must always be one step aheadof the demand, in order to be to fulfill the needs of the consumers. Therefore,the evolution pursues one clear goal: the possibility to establish a broadbandconnection anywhere and anytime. In this context, the WiMAX (WorldwideInteroperability for Microwave Access) and Meshed WI-FI technologies appearas possibilities to reach this goal. The subject of this thesis is the study of both the WiMAX and Meshed WI-FItechnologies, and more concretely the study of the QoS provided by theIEEE802.16 and IEEE 802.11s standards to VoIP and VoD services. This thesis presents the architecture developed to provide the correctintegration of QoS for real-media traffic in next generation broadband wirelessaccess. It presents tests carried out with the available WiMAX and Meshed WI-FI equipments, to show the correct behavior in the attribution of end-to-endQoS in selected scenarios with real-time services, as well as mobility effects onWI-FI Wireless Mesh technology

    Techniques for mitigating congestion in wireless sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2005.Includes bibliographical references (p. 99-105).Network congestion occurs when offered traffic load exceeds available capacity at any point in a network. In wireless sensor networks, congestion causes overall channel quality to degrade and loss rates to rise, leads to buffer drops and increased delays (as in wired networks), and tends to be grossly unfair toward nodes whose data has to traverse a larger number of radio hops. Congestion control in wired networks is usually done using end-to-end and network-layer mechanisms acting in concert. However, this approach does not solve the problem in wireless networks because concurrent radio transmissions on different "links" interact with and affect each other, and because radio channel quality shows high variability over multiple time-scales. In this thesis, we examine three techniques that span different layers of the traditional protocol stack: hop-by-hop flow control, rate limiting source traffic when transit traffic is present, and a prioritized medium access control (MAC) protocol. We implement these techniques and present experimental results from a 55-node in-building wireless sensor network. We demonstrate that the combination of these techniques can improve network efficiency by a factor of three under realistic workloads.by Bret Warren Hull.S.M

    Network coded wireless architecture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 183-197).Wireless mesh networks promise cheap Internet access, easy deployment, and extended range. In their current form, however, these networks suffer from both limited throughput and low reliability; hence they cannot meet the demands of applications such as file sharing, high definition video, and gaming. Motivated by these problems, we explore an alternative design that addresses these challenges. This dissertation presents a network coded architecture that significantly improves throughput and reliability. It makes a simple yet fundamental switch in network design: instead of routers just storing and forwarding received packets, they mix (or code) packets' content before forwarding. We show through practical systems how routers can exploit this new functionality to harness the intrinsic characteristics of the wireless medium to improve performance. We develop three systems; each reveals a different benefit of our network coded design. COPE observes that wireless broadcast naturally creates an overlap in packets received across routers, and develops a new network coding algorithm to exploit this overlap to deliver the same data in fewer transmissions, thereby improving throughput. ANC pushes network coding to the signal level, showing how to exploit strategic interference to correctly deliver data from concurrent senders, further increasing throughput. Finally, MIXIT presents a symbol-level network code that exploits wireless spatial diversity, forwarding correct symbols even if they are contained in corrupted packets to provide high throughput reliable transfers. The contributions of this dissertation are multifold. First, it builds a strong connection between the theory of network coding and wireless system design. Specifically, the systems presented in this dissertation were the first to show that network coding can be cleanly integrated into the wireless network stack to deliver practical and measurable gains. The work also presents novel algorithms that enrich the theory of network coding, extending it to operate over multiple unicast flows, analog signals, and soft-information.(cont.) Second, we present prototype implementations and testbed evaluations of our systems. Our results show that network coding delivers large performance gains ranging from a few percent to several-fold depending on the traffic mix and the topology. Finally, this work makes a clear departure from conventional network design. Research in wireless networks has largely proceeded in isolation, with the electrical engineers focusing on the physical and lower layers, while the computer scientists worked up from the network layer, with the packet being the only interface. This dissertation pokes a hole in this contract, disposing of artificial abstractions such as indivisible packets and point-to-point links in favor of a more natural abstraction that allows the network and the lower layers to collaborate on the common objectives of improving throughput and reliability using network coding as the building block. At the same time, the design maintains desirable properties such as being distributed, low-complexity, implementable, and integrable with the rest of the network stack.by Sachin Rajsekhar Katti.Ph.D
    corecore