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Abstract

Network congestion occurs when offered traffic load exceeds available capacity at any
point in a network. In wireless sensor networks, congestion causes overall channel
quality to degrade and loss rates to rise, leads to buffer drops and increased delays

(as in wired networks), and tends to be grossly unfair toward nodes whose data has
to traverse a larger number of radio hops.

Congestion control in wired networks is usually done using end-to-end and
network-layer mechanisms acting in concert. However, this approach does not solve
the problem in wireless networks because concurrent radio transmissions on different
"links" interact with and affect each other, and because radio channel quality shows
high variability over multiple time-scales. In this thesis, we examine three techniques
that span different layers of the traditional protocol stack: hop-by-hop flow control,
rate limiting source traffic when transit traffic is present, and a prioritized medium
access control (MAC) protocol. We implement these techniques and present experi-
mental results from a 55-node in-building wireless sensor network. We demonstrate
that the combination of these techniques can improve network efficiency by a factor
of three under realistic workloads.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor
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Chapter 1

Introduction

Wireless sensor networks represent a new class of computing infrastructure. By aug-

menting traditional environmental sensors with computational abilities, researchers

have enabled a new form of intelligent environmental monitoring. This ability to do

fine-grained, autonomous sensing has created a new set of system design challenges.

Many emerging sensor networks operate collectively and are composed of small, wire-

less, resource-constrained computers that are designed to analyze and actuate the

environment. More importantly, it is the very fact these networks work in a collab-

orative fashion under harsh conditions that presents many unique challenges when

designing network protocols. This thesis analyzes one of these challenges: congestion

control.

1.1 Wireless sensor networks

Sensor computing systems are designed to cope with a distinct set of challenges that

make them unlike traditional computer systems. These challenges arise from the fact

that sensors are often embedded in the physical world and must operate autonomously.

To illustrate more clearly what defines a sensor network and how such a network differs

from other systems, we present a brief discussion of some of the properties that many

sensor networks exhibit.
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1. Highly distributed: Sensor networks are composed of a large number of indi-

vidual nodes that cooperate to perform a collective task, such as event detec-

tion [451, collaborative filtering [57], or data aggregation [32]. Scalability is one

of the key requirements for any sensor system and designers often target systems

with hundreds or even thousands of nodes.

2. Small form-factor: Nodes must be small enough to unobtrusively monitor the

environment in which they are placed. Today's sensors (e.g., the Crossbow

Mica2 described in Chapter 2 ) are about the size of 2 AA batteries.

3. Wireless: Nodes communicate by forming ad-hoc wireless networks. These

networks consist of dynamic, multi-hop routes, allowing nodes in distant regions

of the sensor network to communicate with each other as well as with access

points.

4. Situated: Sensor networks interface with the physical world. Depending on the

purpose of the network, nodes may be equipped with sensors that detect light,

temperature, sound, acceleration, etc.

5. Unattended: Sensor networks are expected to operate in remote environments

with little human interaction for months or years at a time. Physically interact-

ing with the nodes to reboot them, upgrade software, or change batteries often

is not feasible.

6. Low-power: Sensor nodes are often battery or solar powered and need to operate

continuously for months or years. Due to the current limitations of energy tech-

nologies, sensor network hardware and software must be designed to minimize

energy consumption.

7. Failure tolerant: The environments in which sensors operate are often harsh.

Such factors as humidity, changes in temperature, or human tampering all con-

tribute to node failure. Sensor systems must be designed with the expectation

that some nodes will fail.
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These seven properties provide the intuition for why designing sensor systems is

difficult. Although much research in sensor networking takes many of these design

issues in new directions, the principal challenge when building sensor systems revolves

around simultaneously handling the constraints previously listed. Many of the pro-

tocols and architectures used in today's network systems are not adequate. In this

thesis we will focus on one of these areas, congestion control, and will develop and

analyze several algorithms tailored to wireless sensor networks.

1.2 Wireless sensor networks in practice

Researchers have deployed wireless sensor networks for a variety of applications. Cur-

rently, one of the most prevalent classes of applications is environmental monitoring.

Figure 1-1 depicts the functional components of a hypothetical sensor network de-

ployed to monitor a wildlife habitat. Small, battery-powered, radio-equipped sensor

nodes are placed throughout the environment to monitor such phenomena as pre-

cipitation, temperature, sunlight exposure, or bird nest occupancy. Because these

low-power nodes are dispersed over a large area, each node must act as a router,

helping forward data through a multi-hop network. The sensor readings will eventu-

ally reach an access point, where they can be logged and analyzed by researchers. If

researchers need to interact with the network, these nodes might run a distributed

query processing system called TinyDB [32]. Such a system allows users to interact

with a monitoring network by issuing simple queries that run in real-time on the

network.

One of the earliest large-scale deployments of wireless micro-sensors took place

on Great Duck Island in Maine [47]. Researchers deployed 150 devices in a remote

wilderness to monitor the environmental and nesting conditions of a small sea bird

called a Leach's Storm Petrel. The system utilized a tiered architecture to deliver data

from the sensors in the field to the biologists in the lab. The first tier of the network

consisted of Mica2Dots (described in detail in Chapter 2) that recorded light intensity,

temperature, passive infrared, and humidity. These values were forwarded over a
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Figure 1-1: Pictured above is a schematic view of a hypothetical wireless sensor
network deployed for habitat monitoring. Patches of sensor nodes (bottom) monitor
environmental conditions in the wildlife habitat. These nodes, along with other nodes
from different regions of the habitat (center), transmit their readings using a multi-
hop wireless network. Once the sensor data reach reaches a sensor access point, the
values are stored in a database (top). Users can monitor this data in real-time or look
at historical trends.
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multi-hop network to one of many base stations outfitted with high-gain antennas

and car batteries. The base stations communicated over long-range wireless links

to a laptop in the island's lighthouse. From this laptop, readings would be sent to

a remote database server using a satellite connection. The readings could then be

analyzed by biologists studying the nesting and breeding patterns of the birds.

1.3 Congestion in wireless sensor networks

Provisioning a wireless sensor network so that congestion is a rare event is extremely

difficult. Sensor networks deliver myriad types of traffic, from simple periodic reports

to unpredictable bursts of messages triggered by external events that are being sensed.

Even under a known, periodic traffic pattern and a simple network topology, conges-

tion occurs in wireless sensor networks because radio channels vary in time (often

dramatically) and concurrent data transmissions over different radio "links" interact

with each other, causing channel quality to depend not just on noise, but also on

traffic densities. Moreover, the addition or removal of sensors, or a change in the

report rate can cause previously uncongested parts of the network to become under-

provisioned and congested. Finally, when sensed events cause bursts of messages,

congestion becomes even more likely.

In traditional wired networks and cellular wireless networks, buffer drops and in-

creased delays are the symptoms of congestion. Over the past many years, researchers

have developed a combination of end-to-end rate (window) adaptation and network-

layer dropping or signaling techniques to ensure that such networks can operate with-

out collapsing from congestion. In addition to buffer overflows, a key symptom of

congestion in wireless sensor networks is a degradation in the quality of the radio

channel caused by an increase in the amount of traffic being sent in other parts of

the network. Because radio "links" are not shielded from each other in the same way

that wires or provisioned cellular wireless links are, traffic traversing any given part of

the network has a deleterious impact on channel quality and loss rates in other parts

of the network. Poor and time-varying channel quality, asymmetric communication
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channels, and hidden terminals all make even well-regulated traffic hard to deliver.

In addition, under traffic load, multi-hop wireless sensor networks tend to severely

penalize packets that traverse a larger number of radio hops, leading to large degrees

of unfairness.

While higher level sensor network communication protocols, such as Directed Dif-

fusion [213, PSFQ [51], or RMST [46], can be adapted to limit the amount of conges-

tion generated, there remains a common need for congestion control mechanisms in

each. This thesis posits that congestion control algorithms should be abstracted away

from the applications and data dissemination protocols and moved into the network

layer of wireless sensor networks.

1.4 Contributions

This thesis studies three congestion control techniques that operate at different layers

of the traditional protocol stack, and shows that the adverse effects of network con-

gestion can be greatly alleviated when they operate in concert. The first technique

is hop-by-hop flow control, in which nodes signal local congestion to each other via

backpressure, reducing packet loss rates and preventing the wasteful transmissions of

packets that are only destined to be dropped at the downstream node. The second

technique is a source rate limiting scheme to alleviate the serious unfairness toward

sources that have to traverse a larger number of wireless hops. The third technique

is a prioritized MAC layer that gives a backlogged node priority over non-backlogged

nodes for access to the shared medium, thus avoiding buffer drops. We combine these

techniques into a strategy called Fusion. In isolation, each technique helps somewhat,

but when acting in concert, Fusion dramatically improves network efficiency, fairness,

and channel loss rates. These experimental findings, together with the design details

of the aforementioned mechanisms, are the primary contributions of this thesis.

In developing the techniques, we borrow heavily from previous work. For example,

our hop-by-hop flow control scheme was inspired by work done on wired networks

and by recent work [521 that applies the idea to wireless sensor networks. Our source

24



rate limiting scheme bears some similarity to, and was inspired by, previous work as

well [54]. However, the details of our schemes and their synergistic operation, as well

as a detailed experimental evaluation of these approaches both individually and in

concert, are important novel contributions of this thesis. We evaluate each scheme

in a 55-node indoor wireless sensor network testbed. In our testbed, Fusion improves

efficiency by a factor of three and fairness by a factor of more than two.

In the next chapter we present background information about sensor network

hardware and software, as well as our testbed setup. In Chapter 3 we make the case

for why congestion is undesirable in sensor networks and propose several metrics for

measuring network performance. In Chapter 4 we present several techniques aimed

at mitigating congestion in these networks. In Chapter 5 we study each congestion

control mechanism in isolation and in concert, over different traffic patterns. Finally,

in Chapter 6 we summarize our main results and describe future directions.
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Chapter 2

Background

Before we present the details of congestion (Chapter 3) or how to mitigate its effects

(Chapter 4), we need to understand the types of hardware and software that compose

a sensor network and how these networks operate. In Section 2.1 we survey several

hardware platforms to provide context for our later discussion. Just as important as

the hardware is the software; in Section 2.2 we present an overview of one popular

programming environment for sensor networks, TinyOS. Since many of the results

presented in the later chapters are from a deployed sensor network testbed, we describe

the specifics of this testbed in Section 2.3. Additionally, in that section we describe

the details of radio communication and medium access control in wireless sensor

networks. Finally, since much of this thesis builds on work from a number of areas,

we close this chapter by presenting related work in Section 2.4.

2.1 Sensor network platforms

As with any hardware class, the state-of-the-art platform in sensor networks is a

moving target. This section presents a brief overview of several hardware platforms

that are used to build wireless sensor networks. We focus on micro-sensors available

to the academic research community. Note that we sometimes use the term mote

throughout the rest of this thesis to refer to an individual micro-sensor node. Table 2.1

and Figure 2-1 provide side-by-side comparisons of the platforms presented in this
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Mica Mica2 MicaZ Telos iMote Stargate
CPU Atmel AT- Atmel ATmega 128L TI Intel Intel PXA-

mega 103L MSP430 ARM7 255 XScale
Type 4 MHz, 7.37 MHz, 8 bit 8 MHz, 12 MHz, 400 MHz,

8 bit 16 bit 32 bit 32 bit
RAM 4 KB 2 KB 64 KB 64 MB
ROM 128 KB 60 KB 512 KB 32 MB
Radio TR100 CC100 CC2420 Bluetooth various
Radio 40 Kbps, 38.4Kbps, 250 Kbps, 2.4 GHz 720 Kbps, varies
specs 433/916 315/433/ 2.4 GHz

MHz 915 MHz I
Interface 51-pin Mote connector, serial 12-pin serial, serial, CF,

header, USB, 12C PCMCIA
USB

OS TinyOS Embedded
Linux

Table 2.1: A side-by-side feature comparison of six sensor network platforms.

section. It is important to remember that sensor systems are not a recent development;

the military and industry have been using sensor systems in one form or another for

decades. What separates today's sensors from those of the past is the emphasis on

large-scale, energy-constrained, wireless networks.

2.1.1 Crossbow Mica family

The Mica family of wireless sensor nodes was originally developed at U.C. Berkeley

as a research platform. The technology has since been commercialized by Crossbow

Technology Inc. The Mica family of motes separates sensing and computation into

distinct components. Each node consists of a processing board, which contains the

radio and microcontroller, and one or more data acquisition boards, which may con-

tain one or more sensors (i.e., photocell, thermistor, microphone). The sensor board

connects to the processing board via a double-sided 51-pin connector, which allows

the sensor boards to be stacked. This connector has since become a de facto standard

and is included in many other platforms for compatibility.

The first generation Mica was built around a 4 MHz, 8 bit Atmel ATmega micro-

controller [9]. This low-power RISC processor has 4 KBytes of RAM and 128 KBytes

of read-only flash used to store the program binary. For communication, the Mica uses

a RFM TR1000 [43] radio operating in the 916 MHz band at 40 Kbits/s. The device
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Mica2Dot

MicaZ

iMote
Telos

Stargate

Figure 2-1: Pictured above are the sensor network platforms described in Section 2.1.
The Mica2Dot is about the size of a US quarter while the MicaZ and Telos platforms
are comparable in size to two AA batteries. The iMote's size falls in between that of
the Mica nodes. The Stargate is substantially larger, being about the size of a small
paper-back book. Pictures courtesy of [2, 4, 3]
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is sized to be mounted against two AA batteries and has a battery life that ranges

from weeks to months depending on power management (e.g., using a 1% duty-cycle,

motes often last six months). A 512 KByte flash memory chip provides persistent

storage, although writing to this chip is about as expensive in terms of energy and

time as transmitting over the radio.

The second generation device in this family, the Mica2, upgrades both the proces-

sor and radio. The processor is an Atmel ATmega 128L [10], operating at 7.37 MHz

with 4 KBytes of RAM and 128 KBytes of flash. The radio is a CC1000 [15] oper-

ating at 433 MHz that can transmit at 38.4 Kbits/s. This radio exports a byte-level

interface to the main processor, resulting in a much lower radio overhead than that

TRiOGO, which has a bit-level. The Mica2 also comes in smaller form factor, called

the Mica2Dot, comparable in size to a US quarter, and can be seen in Figure 2-1.

The latest device in the Mica family is the MicaZ. The most notable change for this

version of the product is the upgrade of the radio from the CC1000 to the CC2420 [16].

The CC2420 is 2.4 GHz 802.15.4 [6] ("Zigbee") compliant radio specifically designed

for the sensor network community. This new standard provides guidelines for both

the physical and MAC layers and reduces host processor overhead by exporting a

packet-level interface. Additionally, the CC2420 offers an increase in throughput (250

Kbits/s) without much of an increase in power consumption, allowing developers to

create higher rate applications without a substantial reduction in network lifetime.

Figure 2-1 shows a MicaZ, which retains the form factor of the Mica2.

2.1.2 MoteIV Telos

While the Crossbow Mica family has been embraced by the research community, many

features of its design make it sub-optimal for wide-spread deployment in industrial

settings. The MoteIV Telos [42] was designed from the ground-up to address many

of the shortcomings of the Mica family.

First, Telos nodes do not include the expensive 51-pin Mote connector. Sensors are

integrated directly on the processing board, eliminating the need for a failure-prone

expansion board. Second, engineers at MoteIV designed the Telos platform to be low-
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cost. A node's firmware is downloaded via an inexpensive USB connection rather than

an expensive dedicated programming board. Finally the Telos mote was designed with

power-management in mind. The Texas Instruments MSP430 microcontroller [48]

has a sleep current that is less than the drain rate of an unloaded alkaline battery.

Additionally, the wakeup latency from sleep state is sufficiently small (much lower

than the Mica), making fine-grain power control more effective. Figure 2-1 shows the

physical layout of a Telos node.

2.1.3 Intel Mote

Like Telos, the Intel Mote [26] (iMote) was designed to address many of the deficiencies

of the Mica platform. The hardware engineers at Intel interviewed researchers and

found that they wanted the following improvements: increased CPU processing power,

increased main memory size, improved radio reliability, and a reduction in cost.

The 12 MHz ARM7TDMI processor used in the iMote provides a 4x performance

improvement over the original Mica mote. This chip has substantially more memory,

with 64 KBytes of RAM and 512 KBytes of flash for program and data storage. For

radio communication the iMote uses a Bluetooth [1] radio operating in the 2.4 GHz

band at 720 Kbits/s. The Bluetooth protocol also supports many concurrent channels

using frequency hopping and can operate worldwide without radio license restrictions.

Sensors are attached to the basic processing board via small a on-board connector

that interfaces to the 12C bus. Figure 2-1 depicts an iMote prototype.

2.1.4 Intel Stargate

The Intel Stargate represents an different point in the sensor network design space.

With a substantially larger footprint, the Stargate combines a relatively robust pro-

cessor (an Intel PXA-255 400 MHz XScale processor) with ample amounts of memory

(64 MBytes RAM, 32 MBytes flash). In addition, multiple network technologies (e.g.

802.11, Ethernet, Mote radios) can be supported via a daughter card and associated

PCMCIA slot. This platform is often used as a gateway device for tiered sensor
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network architectures. From a deployment perspective, the main drawback of the

Stargate are its size, energy consumption, and cost. Figure 2-1 shows the Stargate's

main processing board.

2.2 TinyOS

The need for a sensor network specific operating system may not be apparent since

most microcontrollers can be programmed using C. However, interfacing directly with

the hardware can be time-consuming and error prone. More importantly, sensing-

oriented applications need only a subset of the system services present in most modern

operating systems. In addition, sensor systems are potentially useful to a wide range

of disciplines, and consequently, should be very easy to program. Researchers have

proposed many light weight operating systems; the operating system that we chose

for our implementation, due to its extensive support community, is TinyOS 1.1 [29].

TinyOS is a research operating system developed at U.C. Berkeley for embedded

networked sensors. From its inception, TinyOS was designed to be light weight and

modular, allowing the code-base to run a wide range of devices. TinyOS uses an

event-driven programming model layered on top of a stack-based threading system.

Program execution in TinyOS occurs in the context of tasks and hardware events.

Tasks are threads of control that are atomic with respect to other tasks and run

to completion. Because there is no notion of kernel or user space in TinyOS, all

threads run in the same memory space. The operating system schedules tasks using

a simple first-in-first-out (FIFO) queue and are posted by applications to do long

running computation. Hardware events occur as a result of interrupts from such

components as the radio, sensor, or clock. Hardware interrupts can preempt tasks

and are propagated through the OS as events, which may in turn lead to the posting

of additional tasks.

The concurrency model in TinyOS prevents blocking and spin loops. Instead,

programs rely on split-phase execution in which a command is composed of an initial

request, which returns immediately, and a later event, which signals the command's
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completion. This model works well for handling hardware events, but is somewhat

inconvenient for high-level operations.

For example, a simple monitoring application might cycle between sleeping, read-

ing from a sensor, and sending out the reading over the radio. In a programming

environment that allows blocking, all that is needed is a simple while loop with calls

to sleep, sense, and send is all that is needed. Instead, if non-blocking, split-phase

function calls are used, the program logic must be transformed into a state machine.

Each one of the sleep, sense and send function calls would have an event handler that

invokes a next state function. As programs grow in size, split-phase semantics often

lead to code bloat and difficult-to-debug state machines.

However, if programs are truly event-oriented, then the split-phase model has

many advantages. First, applications can easily be thought of as a set of event han-

dlers. Second, this model allows a single stack to service multiple concurrent activities,

reducing RAM requirements. Finally, the threading model in TinyOS requires that

tasks cooperatively multi-task. Split-phase programming lends itself well to this type

of threading, allowing computation between modules to be interposed along event

boundaries.

Programs in TinyOS consist of a graph of components written in NesC [20], which

is a dialect of C designed for building sensor network applications. Each component

defines a set of interfaces that it provides and uses. Interfaces consist of a set of

commands, or down-calls, and a set of event handlers, or up-calls. Additionally, a

fixed-sized stack frame and a set of tasks are associated with each component. Compo-

nents are wired together in a configuration file in which interfaces are connected. This

wiring of components allows for both the fan-in and fan-out of commands and events

(i.e., events are sent to all interfaces wired to handle that event). At compile-time,

only those modules and system services defined in the application's configuration file

are included in the final binary. All memory requirements for a component are stati-

cally determined at compile-time (i.e., the operating system provides no support for

dynamic memory allocation).
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#define TEMPMSG 10

configuration MonitorC {
}
implementation {

components Main, GenericComm , TimerC, Temp, MonitorM;

Main.StdControl -> GenericComm;

Main.StdControl -> TimerC;

Main.StdControl -> MonitorM;

Main.StdControl -> Temp;

MonitorM.Timer -> TimerC.Timer[unique("Timer")];

MonitorM.SendMsg -> GenericComm.SendMsg[TEMPMSG];

MonitorM.ADC -> Temp.TempADC;

}

module MonitorM {
provides interface StdControl;

uses {
interface Timer;

interface SendMsg;
interface ADC;

}
}
implementation {
TOSMsg msg;
bool sendPending = FALSE;
uint16_t temp;

command result-t StdControl.inito) { return SUCCESS; }

command result-t StdControl.start() {
call Timer.start(TIMERREPEAT, 1000);

return SUCCESS;

}

command result-t StdControl.stopo { return SUCCESS; }

task void sendMsgo {
if (!sendPending) {
msg.data[0] = (uint8_t) temp;

msg.data[l] = (uint8-t) (temp >> 8)&Oxff;

sendPending = call SendMsg.send(TOS-BCASTADDR, sizeof(TOSMsg),

&msg);

}
}

event resultt Timer.fired() {
call ADC.getDatao;

return SUCCESS;

}

async event result-t ADC.dataReady(uint16-t data) {
temp = data;
post sendMsgo;

return SUCCESS;

}

event result-t SendMsg.sendDone(TOSMsgPtr pMsg, result-t success) {
sendPending = FALSE;

return SUCCESS;

}
}

Figure 2-2: NesC allows developers to create simple sensor applications by wiring
together components in a conf iguration. The NesC code above is for an application
that periodically reports the ambient temperature.
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Figure 2-2 shows a sample NesC application for monitoring the temperature in a

room. At the top of an application component graph is a configuration that defines

which components are included in the binary and how these components rely on

each other. MonitorC is the top-most configuration for this application and declares

the components that MonitorC needs: Main is a system service that initializes all

components, GenericComm provides the radio stack, TimerC provides periodic events,

Temp provides the interface to read from the temperature sensor, and MonitorM is the

driver that orchestrates the sleeping, sensing, and sending states of the application.

The configuration also creates a mapping between a module that uses an interface,

and a module that provides the interface. For example, MonitorM uses the ADC

interface to obtain a temperature reading. The ADC interface is implemented by the

Temp component; hence, these interfaces are wired together.

MonitorM is a simple driver module for our temperature monitoring application.

The module begins executing when Main calls StdControl. start, initializing a pe-

riodic timer. Every second, a Timer.f ired event will be signaled, causing the node

to read from the temperature line of its ADC. Notice the split-phase semantics of the

ADC interface: a call to ADC.getData is followed by an ADC.dataReady event once

the 10 is complete. After reading the temperature, MonitorM posts a task to send

out a message over the radio containing this value. The sleep-send-sense cycle com-

pletes when the SendMsg. sendDone event is signaled and the node waits for the next

Timer. fired event.

2.3 Testbed

Simulations, although useful for debugging program logic and modeling simple system

dynamics, have many limitations. In particular, simulations of wireless networks

can be quite inaccurate due to the complexities of modeling wireless propagation

and interference. Consequently, a testbed is crucial for establishing the real-world

performance of protocols. To evaluate our congestion control suite, we deployed a

55-node indoor wireless sensor network testbed, as shown in Figure 2-3.
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Figure 2-3: This map of our testbed shows the physical locations of the 55 nodes
deployed over an area of 16,076 square feet on the ninth floor of the Stata Center at
MIT.

36



2.3.1 Physical layout

The sensor network platform we used in our testbed is the Crossbow Mica2. As

described in Section 2.1, a Mica2 node has a 4 MHz, 8 bit microcontroller with

4 KBytes of RAM. Its radio is a CC1000 and can transmit at 38.4 Kbits/s using

Manchester encoding' [40]. As Figure 2-3 shows, we deployed nodes over an area

of 16,076 square feet on the ninth floor of the Gates Tower in the Stata Center at

MIT. There is uniform coverage throughout the floor, except for a higher-than-average

density in the northwest corner of the floor.

In a typical deployment, a host PC would be used to install each node's firmware

one at a time. The nodes would be powered using AA batteries. Statistics would

be logged to flash memory on the node for later retrieval. In an active testbed,

this evaluation model would require developers to spend a substantial amount of time

changing batteries, programming nodes, and retrieving data. Consequently, to reduce

the overhead associated with running a sizable deployment, we attach to each node

a Crossbow MIB600 interface board. Figure 2-4 shows this setup whereby a Mica2 is

attached via an umbilical cable to a MIB600. This so-called "Ethernet programming

board" enables developers to remotely monitor, power, and program an attached

sensor node. The integrated serial programmer and Ethernet connection allows the

testbed to be reprogrammed in under a minute, making sharing the testbed between

many projects efficient. Because the MIB600 provides power to the mote (either

via a wall outlet or power over Ethernet), there is no need to ever replace batteries.

Finally, the Ethernet connection provides a channel through which real-time statistics

and debugging messages can be captured from every node. By having an out-of-band

communication channel, statistics cannot feasibly be stored on the mote (i.e., packet

traces) can be streamed to a central database for processing.

'Manchester encoding is a convention for representing digital data on a transmission link.
A logic 0 is represented using a high to low signal transition and a logic 1 is represented using a
low to high transition. Manchester encoding has the nice property that long periods without clock
transitions are avoided, making the task of clock synchronization much easier. However, because
this scheme doubles the rate at which transitions are made, the encoding is only 50% efficient.
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Figure 2-4: Each node in our testbed consists of a Mica2 sensor node connected to a
MIB600. The MIB600 provides each node with power, an Ethernet backchannel, and
programming capabilities.

Additionally, in order to easily manage and share the testbed between several

research projects, we use a management tool called Motelab [5]. This tool provides

an integrated suite of Java, Perl, and PHP scripts for user management, web-based

scheduling, job management, and centralized data-collection. We made several en-

hancements to Motelab to increase its reliability and flexibility. Reprogramming is

now more resilient to transient network failures and we fixed several bugs in the job

scheduling code. In addition, we added a Perl interface to the job scheduler, allowing

users to programmatically schedule experiments (i.e., a large number of jobs can now

easily be scheduled from a Perl script). Finally, we extended the experiment environ-

ment to automatically generate a set of program binaries from the parameters in a

configuration file (e.g., to test an algorithm over several radio power levels).

38



2.3.2 Routing

Wireless sensor network radios are low-power and have limited transmission range

in an effort to maximize network lifetime. In order to provide connectivity to

geographically-diverse deployments, most wireless sensor networks use a multi-hop

routing protocol in which every node forwards traffic. Several general purpose

ad-hoc routing protocols exist, including Destination-Sequenced Distance Vector

(DSDV) [39], Dynamic Source Routing (DSR) [24], and Ad Hoc On-Demand Distance

Vector Routing (AODV) [38]. Although these routing protocols support arbitrary

point-to-point communication, sensor network communication patterns tend to fall

into two categories: neighborhood-oriented (e.g., link-state protocols) or many-to-one

(e.g., monitoring and archival at a central node).

In our testbed we use a many-to-one topology where all nodes forward readings to

a data collection point called a sensor access point, or SAP. Each node uses a packet

queue of size eightto buffer traffic as it forwards data along a spanning tree rooted at

the SAP. This spanning tree is built using our own implementation of the the DSDV

routing protocol, selected for its simplicity and modest memory footprint.

DSDV is a hop-by-hop distance vector protocol in which nodes maintain a rout-

ing table containing entries for every destination in the network. Each entry in the

routing table contains the destination's identifier, the next hop to reach to the des-

tination, the destination's last heard sequence number, and a metric. The routing

protocol uses sequence numbers to ensure that routes are fresh and metrics to select

between multiple routes for a given destination. Periodically, nodes will broadcast

an advertisement containing their complete routing table. In our implementation,

we only support a single destination (the SAP) because the workloads we analyze in

Chapter 5 do not require arbitrary point-to-point connectivity.

The metric that nodes in our testbed use to choose paths to the SAP is called

ETX [17]. ETX measures the expected number of transmissions required to deliver

data to a destination. The ETX of a link is calculated using the forward and reverse

delivery rates of a link, df and d,:
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1
ETXlink d - d (2.1)

In order to calculate delivery rates for a link, each node monitors the channel and

maintains a neighbor table that records delivery rates. Every packet header transmit-

ted from a given source contains an increasing sequence number. By overhearing a

neighbor's outgoing traffic, a node calculates the delivery rate from that node to itself

based on the gaps in the overheard sequence numbers. Periodically, each node broad-

casts its complete link quality table, allowing nodes in the neighborhood to collect

bi-directional delivery rates for each next hop.

A path's ETX is simply the sum of the ETX values over the links from source

to destination. In our testbed, a node advertises an ETX for the complete path to

the SAP in every DSDV routing beacon. Other nodes in the neighborhood calculate

the end-to-end ETX by adding this advertised ETX to their own a one-hop ETX

calculation for the link to the node that sent out the beacon. The node then selects

a path that minimizes the end-to-end ETX.

2.3.3 Medium access control

Network performance in wireless systems is significantly affected by the medium access

control (MAC) protocol. In our testbed we use an enhanced version of B-MAC [41],

a carrier sense medium access protocol for wireless sensor networks distributed with

TinyOS (our modifications are described in Section 4.4). B-MAC uses clear chan-

nel assessment (CCA) to determine when the channel is idle and it can transmit a

packet. To improve the accuracy of CCA, B-MAC employs automatic gain control for

estimating the noise floor. Automatic gain control operates by periodically sampling

the energy level of the channel when it is idle and feeding those readings into an

exponentially weighted moving average estimator.

In B-MAC, all packet transmissions are preceded by an 18 byte preamble and a

2 byte synchronization sequence. In TinyOS, the default size of a packet is 36 bytes,

bringing the total number of bytes transmitted to 56 bytes. Therefore, the Mica2,
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which operates at 38.4 KBytes/s and uses Manchester encoding, take about 24 ms to

transmit a packet once it gains access to the channel.

B-MAC provides a power saving mechanism called Low Power Listening (LPL).

By periodically sampling the channel and only fully waking-up the node when the

radio detects activity, LPL dramatically increases node lifetime. In order for LPL to

work properly, packet preambles must be as long as the check interval, which ranges

from 10 ms to 1600 ms. In our testbed, for simplicity, we do not use LPL. We leave

a detailed evaluation of the effects of power management on congestion control for

future work.

Per-hop data delivery reliability in B-MAC is improved using link-level acknowl-

edgements. At the end of every successful unicast packet reception an acknowledg-

ment code is sent from the receiver back to the sender. Applications are informed

as to whether or not this acknowledge code was received, allowing them to retrans-

mit if necessary. In our testbed, packets are retransmitted up to three times (i.e, a

maximum of four transmissions per packet).

2.3.4 Radio range

On factor that greatly affects the average neighborhood size (and routing topology)

of our testbed is radio power. Characterizing the size of each node's neighborhood is

difficult because radio signals are time-varying. To characterize neighborhood size, we

measure channel quality between all pairs of nodes in an unloaded network for several

different transmit power levels. Note that we perform this measurement without a

routing protocol or any other network stack modifications. One-by-one, each node

sends a train of broadcast probe packets (without link-level retransmissions). We

define the size of a node's neighborhood N(x) to be the expected number of nodes

that will hear any given transmission. This value can be calculated using Equation 2.2,

where x is any node in the network, PJ is the set of all nodes, and pxy is the probability

node y successfully receives node x's transmission (without any retransmissions).
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Figure 2-5: Neighborhood size (complementary CDF) as computed from Equation 2.2
for different transmit power levels in the 55-node indoor wireless sensor network
testbed depicted in Figure 2-3.
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Figure 2-5 shows node neighborhood sizes in our testbed. Note that the average

neighborhood size increases linearly with an exponential increase in power. For our

experiments, we selected a transmit power level of -10 dBm, which is significantly

lower (by a factor of 10) than the default power level of 0 dBm. By reducing the

default power level, we hope to reduce radio contention and increase spatial reuse

while maintaining a connected network.

2.4 Related work

As mentioned in Chapter 1, much of the work presented in this thesis builds on ideas

from many other researchers. What follows is a brief discussion of some of the work

that most closely relates to congestion control in wireless sensor networks.
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Wan et al. propose Congestion Detection and Avoidance (CODA) [52], a conges-

tion control system for sensor networks. CODA detects congestion by periodically

sampling the channel load and comparing the fraction of time that the channel is

busy to the maximum channel utilization. Maximum channel utilization is calculated

offline using a well-known formula 2 [13] for the capacity of CSMA networks coupled

with platform specific measurements of the channel idle detection delay for the Rene2

mote. The system responds to congestion with a combination of hop-by-hop flow

control and closed-loop regulation. In our work, we experimentally evaluate CODA's

congestion detection mechanism (channel sampling) and one of its congestion mitiga-

tion mechanisms (hop-by-hop flow control). We make all our comparisons in a large

sensor network testbed, expanding on previous small-scale testbed or simulation-based

congestion control studies. We find that when used alone, channel sampling-based

congestion detection performs worse than queue occupancy-based congestion detec-

tion. We also find that augmenting a hop-by-hop flow control mechanism (such as

CODA) with rate limiting is beneficial.

Woo and Culler propose a rate control mechanism [54] that admits traffic into the

network using an additive-increase multiplicative-decrease (AIMD) controller. When

a node overhears that a packet it had previously sent was forwarded, it additively

increases its transmission rate. When it does not hear a previous transmission being

successfully forwarded (presumably after a timeout), it multiplicatively reduces its

transmission rate. We evaluated a similar rate control mechanism. We found that

rate limiting increases fairness, but its benefits to the network (as measured by the

"efficiency" and "fairness" metrics from Chapter 3) are most significant when used in

combination with other congestion control techniques.

Lu et al. propose RAP [30], a real-time communication protocol for sensor net-

works. The network layer of RAP ensures fairness between nodes and improves the

2 CODA uses the following formula to approximate the maximum throughput of a channel using
CSMA:

Smax = (2.3)
1 + 2

where T is the channel idle detection delay in seconds, C is the raw channel bit rate, and L is the
expected number of bits in a data packet.
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ratio of packets that make their latency deadlines. To accomplish this task, RAP pro-

vides support for deadline- and distance-aware packet scheduling. Packets originating

from sources deeper in the network have higher priority than packets originating from

sources close to the sink. While RAP focuses on the network's ability to meet dead-

lines, our work focuses on managing overload and congestion in a sensor network.

Sankarasubramaniam et al. propose ESRT [44], the Event-to-Sink Reliable Trans-

port Protocol. Their system addresses congestion control in the context of reliable

delivery. ESRT attempts to keep a network operating near its optimal load by broad-

casting one-hop control messages to sources from the sink. The consequent assump-

tion is that a data sink can reach all sources via a high-powered one-hop broadcast,

which reduces overall network capacity. In contrast, our hop-by-hop flow control does

not require a high-powered broadcast message to be sent by a sink.

Ee and Bajcsy propose alleviating congestion and achieving fairness in many-to-

one wireless sensor networks through a combination of rate limiting and per-child

queuing in tree-based network topologies [18]. Their rate limiting approach involves

estimating the average rate at which packets can be sent from a node and dividing

that between the total sub tree that a given node supports. Rates are piggy-backed on

the headers of all outgoing packets and nodes overhear each other's traffic, ensuring

that children do not send at a rate exceeding their parent's capacity. Additionally,

the authors propose Epoch-Based Proportional Selection to service per-child queues

to ensure fairness. This rate limiting algorithm could easily be used as part of the

congestion control suite we propose in Chapter 4. However, our proposed method of

source rate limiting requires does not require additional packet headers nor does it

rely per-child queuing.

Yi and Shakkottai propose a fair hop-by-hop congestion control algorithm for

multi-hop wireless networks [59] using cost functions. They build a theoretical model

and provide a simulation-based evaluation of their distributed algorithm. They make

the assumption that simultaneous transmissions can occur over links in the same

radio neighborhood, using orthogonal code division-multiplexing channels. Such ap-

proaches require sophisticated code management algorithms. In the sensor networks
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we analyze, all nodes operate at the same frequency, and hence concurrent successful

transmissions within the same radio neighborhood usually do not occur.

Lemmon et al. study overload in sensor-actuator networks connected by a wired

bus [28]. The key difference between their overload problem and ours is that the

communication network they consider is a shared bus, with no potential for spatial

reuse. Additionally, their sensor nodes do not forward each other's traffic.

Zhao and Govindan conduct a comprehensive study of packet delivery performance

in wireless sensor networks [60]. Their study focuses on the physical and link layers,

evaluating packet loss, packet loss correlations, and link asymmetry. Our study of

congestion complements their work, studying end-to-end performance when sensors

participate in multi-hop routing and congestion avoidance protocols. Our congestion

control algorithms operate in a network with a wide range of link loss rates and

asymmetries, motivated in part by their results.

Woo et al. examine routing in sensor networks [55], studying link estimation and

neighborhood table management in particular. We use these mechanisms in our

network layer implementation to support our congestion control algorithms.

Hop-by-hop flow control protocols have been extensively studied in the context

of ATM and local-area networks [27, 34, 36, 37]. The motivation in these high-

speed networks is to avoid the burst behavior of end-to-end protocols like TCP at

small round-trip times. In sensor networks, hop-by-hop flow control is attractive

because it allows good congestion adaptation without incurring losses or requiring

the expensive end-to-end acknowledgments that are unnecessary for many streams

that don't require TCP-style reliability. Section 3.3 discusses in greater detail why

TCP is not appropriate for wireless sensor networks.
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Chapter 3

The Congestion Problem

Congestion in wireless sensor networks, as in the Internet, can have disastrous conse-

quences. However, the symptoms and causes of congestion in wireless sensor networks

are quite different from the Internet. In wired networks loss typically manifests itself

as buffer drops at internal routers, and protocols such as TCP alleviate congestion.

In wireless networks loss occurs both at transit nodes as well as in the transmission

medium. Moreover, current methods of congestion control are inappropriate for this

domain. In Section 3.1 we investigate the symptoms and quantify the effects of con-

gestion on a wireless sensor network. In Section 3.2 we discuss several reasons for

the degradation in performance. Section 3.3 addresses why TCP, which alleviates

congestion on the Internet, is not an appropriate congestion control mechanism for

sensor networks. Finally, in Section 3.4 we present several metrics to evaluate network

performance that we will use in the remaining chapters.

3.1 Congestion symptoms

This section diagnoses two key symptoms of congestion collapse in wireless sensor

networks. The following results are derived from the indoor Mica2 wireless sensor

network testbed, described in Section 2.3. In this network every node generates data

at a constant rate, which nodes forward over a multi-hop network to a single sink.
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Figure 3-1: The above three plots show the effects of congestion on loss rate, fairness,
and energy consumption for our testbed deployment. The top plot shows channel

and buffer loss rate as a function of per-node offered load. Note how wireless drops

dominate and increase substantially as load increases. The middle plot shows the

percentage of each node's offered load that is received at the sink. As offered load

increases, the network becomes increasingly unfair, with a few nodes delivering the
majority of the traffic. The bottom plot shows network-wide number of bits success-
fully transmitted per unit energy. The energy efficiency of a network declines with

the onset of congestion. 48



As the offered load increases, loss rates quickly increase. Figure 3-1 (top) shows

the network-wide packet loss rates for various offered loads. We separate losses due to

wireless channel errors from losses caused by a lack of buffer space at a sensor node.

We see that channel losses dominate buffer drops and increase quickly with offered

load. This dramatic increase in loss rates is one of the two symptoms of congestion

collapse. Congestion control schemes must decrease the channel loss rate in order to

reduce the number of wasted transmissions.

The second symptom of congestion collapse is the starvation of most of the network

due to traffic from nodes one hop away from the sink. Figure 3-1 (middle) illustrates

this phenomenon. Given a percentage of packets p received from a given node at

the sink, the complementary CDF plots the fraction of sensors that deliver at least p

percent of their data to the sink. We see that as the offered load increases, a decreasing

number of nodes get a disproportionately large portion of bandwidth. For example,

at 2 packets/s, close to 70 percent of the nodes are experience severe starvation and

achieve only 10 percent of their offered load. If we were providing fire protection in

a ten-story building, this network would only provide adequate coverage for the first

three floors. Reducing the number of nodes that achieve less than 10% (or some other

threshold depending on the application) of their offered load is crucial for creating a

usable network.

Congestion collapse has dire consequences for energy efficiency in sensor networks,

as Figure 3-1 (bottom) shows. When offered load increases past the point of conges-

tion, fewer bits can be sent with the same amount of energy. The network wastes

energy transmitting bits from the edge towards the sink, only to be dropped. We

call this phenomenon livelock, defined as the situation in which a network transmits

increasing amounts of traffic that never reach an access point.

3.2 Sources of channel degradation

There are two principal ways in which channel quality degrades in wireless networks:

through the overlapping transmissions of hidden terminals and through an increase
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Figure 3-2: In our network there are two sources of transmission loss: hidden terminals
and interference. The left-hand side of the figure depicts an instance of the hidden

terminal problem involving two senders that cannot hear each other transmit to a
common receiver resulting in a collision. The right-hand side of the figure shows

packet loss due to the additive effects of many distant senders raising the noise floor
and corrupting packet transmissions.

in the noise floor caused by many distant, simultaneous transmissions. We explore

these two problems in the next sections.

3.2.1 Hidden terminals

Hidden terminals occur when two or more transmitting nodes that are outside of

each other's radio reception range share a common receiver. The left-hand side of

Figure 3-2 shows this scenario where the top and bottom nodes are the hidden ter-

minals. If both of the hidden terminals in this figure were to transmit a packet,

the middle node would not receive either packet due to interference caused by the

overlapping transmissions.

The prevalence of hidden terminals in wireless networks depends in part on topol-

ogy. In wireless sensor networks, nodes often communicate with an access point via

a multi-hop spanning tree. Nodes usually select the path to the access point using a

metric derived from link quality. Consequently, levels of the forwarding tree tend to

be based on radio neighborhoods. Often, a node is a hidden terminal with respect to

its grandparent, and sometimes its siblings. It is important to remember that in a

deployed network, the location of a hidden terminal varies with time because a hidden
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Figure 3-3: In tree-based routing topologies hidden terminals naturally occur between
alternating levels of the forwarding tree. In this figure, the bottom node (Level 4) is
a hidden terminal with respect to its grandparent (Level 2). If this node transmits
immediately after its parent forwards a packet-meaning its grandparent is likely be
forwarding as well-a collision will likely occur at the parent.

terminal's existence depends on reception range (which varies with time). Two nodes

connected by a marginal link may be hidden terminals with respect to each another

only part of the time.

Figure 3-3 shows a configuration in which a node risks a collision if it transmits to

its parent when its grandparent is forwarding packets (which the node cannot hear).

Alternating levels of multi-hop forwarding trees are particularly prone to this problem.

Additionally, the susceptibility of a network to hidden terminal collisions is closely

tied to its MAC protocol. Carrier sense multiple access (CSMA) based MAC protocols

are popular in sensor networks due to their simplicity and work-conserving1 properties.

Unfortunately, CSMA MACs are particularly prone to hidden terminals because the

choice of when to send is based on channel conditions at the transmitter rather than

'We use the term work-conserving to describe protocols that allow data to be sent any time the
medium is idle. CSMA is a work-conserving MAC protocol because any node is allowed to transmit
when the channel is idle. TDMA [53] is an example of a non-work-conserving MAC protocol because
a node can only transmit in its assigned slot and idle slots are not redistributed to nodes with data
to send.
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at the receiver, which is where the collision would occur. Higher level mechanisms can

be layered on top of a CSMA MAC to reduce hidden terminal collisions. For example,

every transmission could be preceded by a "virtual carrier sense handshake" [25]. In

this scheme, initially a request to send (RTS) packet is broadcast by the transmitter;

the receiver responds by sending a clear to send (CTS) packet. Once the transmitter

receives a CTS, it begins transmitting the data packet. Other nodes hearing the

CTS do not send until the previously started transmission is completed. Exchanging

RTS/CTS control packets is effective at reducing hidden terminals. However, the

overhead associated with the additional transmissions is only worthwhile if the control

packets are much smaller than the data packets. In sensor networks, where data

packets tend to be small, the exchange of RTS/CTS packets is generally considered

to be too heavy weight of a mechanism to be efficient.

3.2.2 The noise floor

Packet loss also occurs due to interference caused by the aggregate affect of many

distant transmissions. The right-hand side of Figure 3-2 shows this effect graphically.

The noise floor refers to the energy level present on the channel that cannot be

decoded into a packet with a valid CRC. This ambient energy level can be thought

of as the background noise in room. In an empty room, the noise floor is simply the

white noise of the environment. As the room becomes crowded, the aggregate affect

of many people talking makes its increasingly difficult for any two people to hold a

conversation. Likewise, in the wireless domain, the additive effect of many distant

senders can cause the noise floor to rise, making it difficult for a receiver to separate

signal from noise.

Note that this problem differs a hidden terminal collision. With hidden terminals,

transmission zones overlap at a common receiver. In contrast, corruption due to

an increase in the noise floor results from the additive effects of nodes outside the

transmission range.
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Reducing the effects of a rise in the noise floor is difficult because interference is

not caused by any single node. One strategy that attempts to address these issues is

rate limiting, which we explore Chapters 4 and 5.

3.3 Why not TCP?

On the Internet, congestion control is done end-to-end in transport protocols like

TCP or in end-system modules like the Congestion Manager [12]. End-to-end flow

control schemes like TCP are not well-suited to our domain for the following reasons:

1. Congestion detection: TCP uses packet loss to detect congestion. This heuristic

works well in wired networks where transmission losses are rare and buffer drops

are the primary cause of loss. When a packet is dropped, TCP assumes its

transmission rate is too high, causing buffers along the path to the destination

to overflow. However, this inference is incorrect in wireless networks where loss

predominantly occurs in the transmission medium.

2. Data generation mismatch: Many sensor network applications involve low, con-

stant bit rate (CBR) flows that might experience a sudden increase in transmis-

sion rate when an interesting event occurs. With TCP, every incoming ACK

causes an increase in the transmission window size. The problem is that if the

stream was not saturating the network (as in a low-rate CBR), this window

inflation is artificial and does not signify that the capacity indicated by the

window is actually available. When an event occurs that causes a sequence of

packets to be sent in quick succession, TCP would assume that the large win-

dow was usable, but the result would be packet loss because the network isn't

actually capable of sustaining this large window (rate).

3. End-to-end acknowledgment overhead: Many end-to-end congestion control

schemes require ACKs to be sent from the receiver, to allow the sender to

obtain an accurate idea of the state of the network. Many sensor streams don't
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require the reliability semantics of TCP, making the cumulative ACKs unneces-

sary. Furthermore, since most sensor data packets are small, end-to-end ACKs

would consume a substantial fraction of the overall network bandwidth.

4. Small window performance: Protocols like TCP are notorious for poor per-

formance when windows are small [11], as would be the case in many low-

bandwidth sensor networks. Although some recent solutions have been pro-

posed for this problem [8], a fundamental problem is that small-window paths

often tend to cause high packet loss rates in the way TCP adapts while probing

for more bandwidth.

While TCP could possibly be modified to accommodate sensor networks, these

four points show that wireless sensor network design constraints and traffic patterns

necessitate a different model for congestion control. In Chapter 4 we discuss several

techniques for controlling congestion that are more appropriate for the sensor network

domain.

3.4 Metrics

Based on these quantitative observations, we propose a number of metrics to evaluate

the performance of sensor networks under congestion: network efficiency q, node

imbalance C, network fairness $, aggregate sink received throughput, and median packet

latency. Table 3.1 summarizes these metrics.

We define efficiency 7 as the number of hops "useful" packets travel, divided by the

total number of packet transmissions in the network (Equation 3.1 in Table 3.1). A

useful packet is any packet that eventually reaches its destination and its usefulness

is weighted by the distance it travels in hops. Efficiency is important to measure

because network bandwidth is limited, and energy is often a scarce resource in sensor

networks. Motivated by the previous energy result (Figure 3-1, right), this definition

extends previous notions of link efficiency [60, §5.3] to a multi-hop sensor network

setting. The denominator of the metric (total number of transmissions) includes all
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Figure 3-4: Efficiency is the ratio of the number of packets received at the sink
weighted by the distance each packet travels to the total number of transmissions. In
the left-hand diagram, node A sends one packet to B, but because of channel loss, B
must retransmit twice. The efficiency r7 for this network is 1: 1 packet received over
1 hop, with a total of 3 transmissions. In the right-hand diagram, node A sends 2
packets to B over 2 hops, 1 of which is dropped. The efficiency for this network is 2:
1 packet received over 2 hops, with a total of 3 transmissions.

retransmissions, as well as transmissions associated with packets that are eventually

dropped or corrupted.

One of the primary motivations for our efficiency metric is that a packet originat-

ing far from the sink should not be penalized for being forwarded through a greater

number of hops. This goal is achieved by weighting the utility of a successfully de-

livered packet by the number of hops it travels. In addition, our efficiency metric

penalizes failed transmissions, buffer drops, retransmissions due to lost acknowledg-

ments, and channel losses. Efficiency penalizes a dropped packet to a greater extent

if it travels a greater number of hops toward a sink because these packets are costly

for the network in terms of contention and energy. Efficiency therefore measures the

fraction of transmissions in a sensor network that contribute to a packet's eventual

delivery at the sink. Efficiency also measures the fraction of transmissions whose

energy is not wasted. Figure 3-4 shows two examples of how efficiency is computed.

Related to efficiency is imbalance, a per-node measure of how well each node

forwards data. We define the imbalance C at node i using Equation 3.2 in Table 3.1.

Note, that for the tree-based forwarding topologies, N(i) contains all nodes that were

i's parent at some point in time. Figure 3-5 shows an example of how we calculate
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Figure 3-5: Imbalance measures the amount of traffic that a node successfully for-
wards. In the above diagram, node i receives 6 packets from its children. It forwards
these packets to its parent, but only 3 are received (3 packets are lost either in the
channel or dropped by the parent's queue). Therefore, the imbalance for node i is

6= = 2.

imbalance. When C = 1 for node i, i receives and transmits equal amounts of data

from its neighbors to its next hop nodes. A large ( indicates that node i receives more

data from its neighbors than it successfully transmits. Imbalance differs from a simple

buffer drop count, because it is directly influenced by wireless drops. Imbalance is

particularly useful for identifying "hot-spots" in the network that account for a sizable

fraction of the losses in efficiency.

Achieving fairness is desirable because in many sensing applications there is a

decreasing marginal utility of increasing a sensor's report rate. In other words, it

is often more important to hear a low rate of traffic from N sensors spread out

across a large area than a high rate from one sensor. Achieving fairness in multi-

hop wireless networks is difficult and often comes at the cost of reduced aggregate

throughput [31, 35]. We measure fairness <5 with the index [23] shown in Table 3.1.

While efficiency and imbalance capture how efficiently a sensor network delivers

data in terms of its use of transmission opportunities and energy, they do not measure

the overall rate of data delivery. We therefore report aggregate and median per-node

throughput, both measured at the sink.
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Metric Definition Parameters
Efficiency U is the set of useful packets,

=uEU hops(u) (3.1) P is the set of all packets,
EpCP ZhEhops(p) xmits(p, h) hops(p) ranges over each

hop packet p takes, and
xmits(p, h) counts the num-
ber of transmissions packet p
undergoes at hop h.

Imbalance This metric is defined for

pckts rcvd at Z" each i; packet counts are

= # pckts rcvd at j (3.2) taken over the entire experi-
ZjeN(i) # pckts rcvd at i from i ment. In our expts., N(i) is

the set of parents for node i.
Fairness The average rate of packets

( 1 ri delivered from the ith sen-

N N (3.3) sor is denoted ri. N is the
number of sensors in the net-
work.

Throughput Measured aggregate and me-
dian per-node throughput
received at the sink.

Latency Median latency of packets
received at the sink.

Table 3.1: The metrics we use to evaluate network performance.
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Median packet latency is also important to measure because many applications

require that the time between sensing and reporting be minimal. Traffic overload in a

sensor network often increases latency. It is important to note that although adding

buffering and flow control helps to alleviate congestion, it also increases the queuing

delay of packets at each hop, increasing end-to-end latency.

We use these five metrics in Chapter 5 to evaluate the performance of our conges-

tion control techniques in our testbed.
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Chapter 4

Mitigating Congestion

In Chapter 3 we saw how congestion degrades channel quality, increases energy con-

sumption, and leads to node starvation. In this chapter we propose several techniques

for mitigating congestion in sensor networks. These techniques have two explicit goals:

1. Increase network efficiency to reduce energy consumption and improve channel

quality.

2. Avoid starvation to improve the per-node end-to-end throughput distribution.

In the first section we present a high-level overview of our scheme, Fusion, and

then follow with several sections describing its component mechanisms.

4.1 Fusion: An integrated approach to congestion

The congestion control scheme we propose is called Fusion and integrates three tech-

niques: hop-by-hop flow control, rate limiting, and a prioritized MAC. Hop-by-hop

flow control is designed to prevent nodes from transmitting if their packets are only

destined to be dropped due to insufficient space in output queues at downstream

nodes. Rate limiting meters traffic being admitted into the network to prevent un-

fairness toward sources far from a sink. A prioritized MAC ensures that congested

nodes receive prioritized access to the channel, allowing output queues to drain. While

these techniques do not explicitly rely on topology information, we focus on single-

sink, spanning-tree topologies in this thesis.
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We also note that the application of these techniques is difficult in the wireless

domain. This difficulty arises from the fact that contention for the wireless channel

occurs at both the sender and the receiver. Indoors, this contention is particularly

problematic, since radio reflection makes propagation erratic and causes interference

between two seemingly-disjoint sets of nodes. Additionally, there is a natural trade-off

between channel utilization and fairness. By allowing nodes that provide transit for

large amounts of traffic to transmit, we essentially allocate bandwidth to those nodes

with the greatest contention. Finally, the wireless channel is inherently lossy, making

distributed control of data flows even more challenging.

4.2 Hop-by-hop flow control

The first component of Fusion we discuss is hop-by-hop flow control, which has been

proposed in wired local-area and wide-area networks [34, 36, 37], as well as in sensor

networks [30, 52]. In our implementation, each node sets a congestion bit in the

header of every outgoing packet. By taking advantage of the broadcast nature of

the wireless medium, our implementation provides congestion feedback with every

transmission to all nodes in a radio neighborhood. As a result, this implicit feedback

obviates the need for explicit control messages that could use a significant fraction of

available bandwidth.

Hop-by-hop flow control has two components: congestion detection and congestion

mitigation. We first discuss several methods of detecting congestion: using queue

occupancy, channel sampling, or packet loss.

A simple way to detect congestion relies on monitoring a node's queue size: if the

fraction of space available in the output queue falls below a high water mark a (in our

implementation, a = 0.25), the congestion bit of outgoing packets is set; otherwise

the congestion bit is cleared. This technique, which we evaluate in Chapter 5 as queue

occupancy, incurs little additional overhead.

CODA [52] proposes an alternate way to detect congestion. When a packet is

waiting to be sent, the node samples the state of the channel at a fixed interval.
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Figure 4-1: Hop-by-hop flow control provides feedback on a link by link basis. Step 1
shows a scenario where three nodes (C1, C2, and C3) simultaneously forward traffic
to a common parent (P). Once queues build up at node P, it sets the congestion bit
in all outgoing traffic, which other nodes monitor (Step 2). When nodes CI, C2, and
C3 hear that their next hop node P has set its congestion bit, they stop sending,
allowing node P to drain its queues (Step 3).
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Based on the number of times the channel is busy, it calculates a utilization factor. If

utilization rises above a certain level, it sets the congestion bit. Otherwise, the node

clears the congestion bit. We call this method channel sampling and evaluate it in

Chapter 5.

Another detection method uses an estimate of channel quality to infer congestion.

In this scheme, each node maintains link statistics and signals congestion anytime

loss rates rise above a given threshold. This mechanism is similar to the way in which

TCP uses loss as a signal for its congestion control mechanisms. Additionally, it may

be beneficial to combine all or some of these congestion detection approaches in an

effort to detect congestion as early as possible. We leave such an analysis for future

work.

Congestion mitigation is the mechanism by which nodes in a given radio neigh-

borhood throttle their transmissions to prevent queues at their next-hop node from

overflowing. When a node overhears a packet from its parent with the congestion bit

set, it stops forwarding data, allowing the parent to drain its queues. Without such

a feedback mechanism, packet buffers could easily be overrun when a wave of traffic

flows through the network. If a path experiences persistent congestion, hop-by-hop

backpressure will eventually reach the source, allowing application-level flow control

(described later in Section 4.6), to throttle the source rate. Figure 4-1 shows a typical

scenario where hop-by-hop flow control would be employed.

Relaying a node's congestion state can be problematic when backpressure needs to

propagate through multiple hops. For example, when a parent sets its congestion bit,

its children stop transmitting, thereby preventing themselves from informing their

own children when they become congested. We solve this problem by allowing a

congested node to send out one additional packet after it receives backpressure from

its parent. A congested node may also send one additional packet per received packet,

to compensate for children not hearing a packet that indicates congestion. Each

unexpected packet-those received after a node sets its congestion bit-is a signal that

congestion state has not propagated to all children. This policy does risk overflowing a

parent's output queue by one packet, but does so in order to prevent the transmission
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Figure 4-2: Unbalanced network topologies make delivering a node's fair share diffi-
cult. In the diagram above, node B should get 5x the bandwidth of node A, since it
provides transit for many nodes. In a congested environment, a traditional CSMA
MAC would give nodes A and B equal access to the channel, leading to a great degree
of unfairness. The source rate limiting scheme described in Section 4.3 aims to reduce
the unfairness in these and other topologies.

of a potentially larger set of packets from children who did not hear the original

backpressure signal.

4.3 Rate limiting

Congestion can occur anywhere in the network because of the variability of channel

conditions and workloads. These points of congestion usually result in an increase

in the noise floor accompanied by a precipitous drop in the packet delivery rate.

As network diameter grows, it becomes particularly problematic if transit traffic is

dropped due to congestion, because the network has already expended a significant

amount of energy and bandwidth transmitting the packet over many hops (a problem

referred to as livelock).

Moreover, there is a natural tendency for the network to deliver traffic originating

close to a sink at the expense of traffic sourced deeper inside the network. Figure 4-2

shows a topology that could arise in practice and result in a high degree of unfairness

in a congested network. Because of the shared nature of the wireless spectrum and

how the CSMA MAC layer operates, nodes A and B would each receive access to
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half of the available bandwidth. This situation is undesirable because node B must

provide transit for traffic originating from five nodes while node A must only do so

for one. Ideally node B should receive five times the bandwidth of node A if each

node in the network has data to send. Consequently, to address the problems caused

by'unfairness and the rise in the noise floor, we propose using source rate limiting.

The source rate limiting scheme we evaluate works as follows. Note that we make

the simplifying assumption that all nodes offer the same traffic load and that the

routing tree is not significantly skewed. A more general approach that better handles

variable rates would require nodes to propagate their rates. For simplicity, we use a

passive approach that relies on nodes monitoring transit traffic to determine the rates

at which they should source data. In this approach, each node listens to the traffic its

parent forwards to estimate N, the total number of unique sources forwarding data

through the parent. Each node uses a token bucket scheme to regulate the rate at

which locally-generated traffic is admitted into the network. A node accumulates one

token every time it hears its parent forward N packets, up to a maximum number of

tokens. The node only admits packets from its local applications when its token count

is above zero, with each send costing one token. This approach rate limits the node to

source traffic at the same rate as each of its siblings. Transit traffic at a node need not

be rate limited because it was previously admitted to the network using our source

rate limiting policy. Should this policy be inadequate, hop-by-hop backpressure will

ensure that distant sources reduce their transmission should a "hotspot" develop.

We evaluate this simple source rate limiting scheme in Chapter 5 both in isolation

and in concert with the other congestion control mechanisms.

4.4 The MAC layer

Although nodes can react to congestion using the above network-layer mechanisms,

they cannot always react to congestion fast enough to prevent buffer losses without

help from the MAC layer. A carrier sense multiple access (CSMA) MAC can aid

congestion control.
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A standard CSMA MAC layer gives all nodes competing to transmit an equal

chance of success. However, during times of congestion, this approach can lead to

reduced performance due to a congested node's inability to quickly propagate conges-

tion control feedback to its neighbors. For example, consider a high fan-in scenario,

where several nodes are forwarding data through a common parent. On average, the

parent node will gain access to the channel only after half of its neighbors have trans-

mitted. However, because the parent is congested, it may not have enough buffer

space available to store packets from half of its children. Hence, the parent has no

choice but to drop packets that some of its children forward to it. Consequently, it is

imperative that congested nodes have prioritized access to the wireless medium.

In order to address this issue, we adopt a technique that Aad and Castelluccia

advocate [7], making the length of each node's randomized backoff (before every trans-

mit cycle) a function of its local congestion state. If a node is congested, its backoff

window is one-fourth the size of a non-congested node's backoff window, making it

more likely that a congested node will win the contention period, allowing queues to

drain. This approach also increases the likelihood that hop-by-hop congestion control

information (whether or not queues are backlogged) will reach a node's neighborhood.

4.5 The hidden terminal problem

As described in Chapter 3, hidden terminals occur when two senders that are not in

radio range transmit to a common receiver. One way of reducing collisions between

hidden terminals is to exchange RTS/CTS control packets before communicating. Al-

though these control packets can collide, and some non-colliding transmissions may

be prevented, the RTS/CTS exchange eliminates most data packet collisions. The

added cost of the RTS/CTS exchange is worthwhile when data packets are substan-

tially larger than control packets. However, in sensor networks, data packets are

usually small [21], and on some platforms the RTS/CTS exchange would incur a 40%

overhead [54]. Consequently, we do not evaluate this mechanism.
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Woo and Culler propose a simple strategy to alleviate hidden terminals in tree-

based topologies [54]. When a node overhears its parent finish sending a packet,

it waits for one packet-time plus a guard time, to avoid a likely hidden terminal

collision with its grandparent (Figure 3-3). We evaluate this delay strategy with our

other congestion control strategies in Chapter 5.

4.6 Application adaptation

Application-level mechanisms play an important role in preventing congestion. In our

TinyOS implementation, when the networking stack is not ready to accept additional

data, it signals applications via send failures. It is then up to the application to

respond appropriately. Some applications will simply wait until the stack is ready

again (the strategy we evaluate). Others may adjust their send rate via an AIMD

controller' or a similar mechanism. Generally, in resource-constrained wireless sensor

networks applications should only allow a small number of packets to be outstanding

in the networking stack at any given time. This policy is important on resource con-

strained nodes using a simple FIFO queue to schedule packet transmissions because

locally generated traffic could easily consume the entire output queue, resulting in

most transit traffic being dropped. Finding the appropriate balance between transit

and locally generated traffic is critical for high end-to-end performance and may argue

for some degree of separation between the two classes of traffic, which we leave for

future work.

4.7 Evaluation implementation

With the widespread use of TCP on the Internet, congestion control is a service that

most developers expect their networking stack to provide. Likewise, in sensor net-

works the communication model should shield developers from the details of conges-
1An additive-increase multiplicative-decrease, or AIMD, controller additively increases a param-

eter when it receives positive feedback and multiplicatively decreases the parameter when it receives
negative feedback. TCP uses an AIMD controller to adjust the size of its congestion window and
probe for additional bandwidth.
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Figure 4-3: The Fusion congestion control suite is implemented in TinyOS as a
congestion-aware queue and MAC sitting above the raw radio layers but below the
application layer.

tion control, allowing most applications to benefit without developers having explicit

knowledge of congestion control subtleties. To that end, we implemented Fusion as

a congestion-aware queue that resides between the application and the lower-layer

networking protocols. In addition, we made several enhancements to the TinyOS

MAC layer; however, these modifications are decoupled from the queue, which can

operate correctly in isolation. Figure 4-3 depicts where the Fusion queue fits into

the overall network stack structure in TinyOS. Applications enqueue packets using

standard TinyOS conventions and receive a signal when the radio stack processes the

packet. The flow of packets through the queue is governed by the congestion control

algorithms described in the previous sections.
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Chapter 5

Experimental Evaluation

In this chapter we evaluate our integrated approach to congestion control, Fusion, in

a 55-node indoor wireless sensor network (Section 2.3). We analyze its component

mechanisms, presented in Chapter 4, both in isolation and in concert to study their

relative contributions to performance. Because traffic patterns in deployed sensor net-

works can be variable, we base our analysis on results from three realistic workloads:

a periodic workload, a high fan-in workload, and a correlated-event workload. The

metrics we use to measure network performance-efficiency, imbalance, throughput,

fairness, and latency-are those presented in Chapter 3. What follows is a brief sum-

mary of the congestion control techniques we evaluate, with the remaining sections

providing a detailed discussion of their performance under each workload.

5.1 Congestion control techniques

The results presented in the subsequent sections discuss the performance of the fol-

lowing six congestion control strategies:

1. Occupancy: hop-by-hop flow control using queue occupancy to detect congestion

(Section 4.2)

2. Channel sampling: hop-by-hop flow control using channel sampling to detect

congestion (Section 4.2)
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Strategy Remarks Parameters
Queue occupancy Hop-by-hop flow control using Queue size of eight,

queue occupancy (Section 4.2); a 0.25.
a indicates the fractional queue
occupancy at which congestion is
indicated.

Channel sampling Hop-by-hop flow control using N = 4, E = 100 mil-
channel sampling (Section 4.2). liseconds, a = 0.85.
N indicates the number of epochs
of length E that the channel is
sensed for; a indicates the EWMA
averaging parameter.

Delay The queue occupancy strategy aug- r 40 milliseconds.
mented with the delay technique as
described in Section 4.5. After over-
hearing the end of a parent's trans-
mission, we backoff for T millisec-
onds, slightly more than one packet-
time on the Mica2's CC1000 ra-
dio [15].

Rate limiting We implement a simple rate lim- Token bucket has a
iting strategy as described in Sec- depth of 10. Ac-
tion 4.3. tive sources discov-

ered over a 4 second
window.

Fusion This strategy simultaneously com- As above.
bines the queue occupancy, for-
warding delay, and rate limiting al-
gorithms.

No congestion control No congestion control related None-uses an un-
changes are made to the network modified B-MAC.
layer or MAC. Transmission is
attempted as soon as data enters
the outgoing queue (after carrier
sense and MAC backoff).

Table 5.1: The congestion control strategies evaluated in this thesis and their relevant
parameters.
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3. Delay: hop-by-hop flow control with hidden terminal avoidance as (Section 4.5)

4. Rate limiting: source rate limiting (Section 4.3)

5. Fusion: combining delay and rate limiting (Section 4.1)

6. No congestion control: an unmodified network stack

We summarize each congestion control strategy in Table 5.1, providing the values

of the parameters for each scheme. For every strategy except "no congestion control",

we use B-MAC with the prioritization features described in Section 4.4. For the "no

congestion control" strategy, we use the unmodified version of B-MAC (Section 2.3.3)

included with TinyOS.

5.2 Experimental setup

We evaluate each of our congestion control techniques under three realistic work-

loads. In the periodic workload, nodes generate readings at a fixed rate, representing

a monitoring network. In the high fan-in workload, we increase the average number of

children per parent (by constraining the routing topology) to model a tiered or clus-

tered network topology. The correlated-event workload evaluates our strategies under

an impulse of traffic, which is common in many tracking and detection applications.

For each experimental data point in the periodic and correlated-event workload

results, we report an average over 15 runs to one sink (node 6, see Figure 2-3 for its

location). Our high fan-in workload results are the average of 5 runs. The graphs for

the periodic and correlated-event workloads contains 99% confidence intervals, and

the graphs for the high-fan workload contain 95% confidence intervals (the decrease

in confidence is due to fewer runs). We combine runs taken during different times of

the day and on different days of the week. The traffic statistics collection phase of

each run lasts 240 seconds for the periodic and high fan-in workloads, and 60 seconds

for the event experiment. Therefore, the total run-time for each data point is 3600

seconds for the periodic workload, 1200 seconds for the high fan-in workload, and 900

seconds for the correlated-event workload.
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As described in Section 2.3.2, nodes cooperatively forward data to the sink using

a multi-hop routing tree. Nodes select individual forwarding paths using ETX and

propagate routes using DSDV. All packets sent through the wireless sensor network

are 36 bytes in length. During the experiments the only other traffic running through

the network is from infrequent routing updates, which are sent every ten seconds

per node. In addition, we set the radio frequency to reduce the amount of outside

interference from other wireless sensor networks in the building. We allow routes to

stabilize for 120 seconds prior to the data collection phase of our experiments, and we

pin routes for the duration of the experiment once the stabilization phase completes.

Pinning routes ensures that the routing protocol does not influence the outcome of

our experiments.

We evaluate all metrics as a function of per-node offered load, which ranges

from 0.25 packets/s to 4 packets/s for periodic and high fan-in workloads. For the

correlated-event workload, the event size ranges from 1 to 8 packets. Since the link-

level throughput for the Mica2 caps at approximately 40 packets/s and our network

has 55 nodes, we can be sure that our network becomes congested at 4 packets/s. In

addition, all packets are transmitted reliably with up to three retransmissions per-link.

5.3 Periodic workload

The periodic workload models a typical monitoring sensor network in which sensor

nodes generate readings at fixed time intervals. Deployments exhibiting this traffic

pattern are quite common in practice [22, 33, 49]. In this workload, each node sources

traffic at some fixed rate and helps to forward other nodes' traffic to a sink. To

avoid synchronizing periodic reports from different nodes, we introduce a random

jitter, which is small relative to the report rate, at the beginning of the experiment.

Figure 5-1 shows a snapshot of the routing topology used to forward packets toward

the sink.

We note here that it is deceptively difficult to provision a wireless sensor net-

work to obviate the need for an congestion control, even under this simple workload.
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Figure 5-1: The routing topology in one run of an experiment with Fusion flow control
and each node offering 1 packet/s, as formed by the ETX (Section 2.3.2) path selection
metric. The thickness of each edge is proportional to the number of packets the node
at the head of the edge received from the node at the tail of the edge.
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Figure 5-2: Average network efficiency 'i versus per-node offered load under a periodic
workload. 99% confidence intervals are shown.

Even though a network designer knows the aggregate offered load a priori, the un-

predictable nature of radio transmissions makes it is almost impossible to know the

actual forwarding topology of the network, making fine-grained channel bandwidth al-

location difficult. In addition, the forwarding topology changes with time in response

to changing network conditions.

5.3.1 Periodic workload: Network efficiency

As described in Section 3.4, network efficiency measures the fraction of transmissions

that go towards getting packets to an access point. Specifically, efficiency (defined in

Equation 3.1) is the ratio of the number of packets received at the sink, weighted by the

distance each packet travels in hops, to the total number of transmissions, including

retransmissions and dropped packets. Figure 5-2 shows how network efficiency 97

varies with per-node offered load for each congestion control strategy. First, note

the decreasing trend for each congestion control strategy. This trend is expected,

because as the number of transmissions increases, the noise floor of the network rises,

increasing the probability of packet corruption and retransmission. Additionally, the
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probability of collisions due to MAC contention and hidden terminals increases. These

factors drive q down as offered load grows.

Rate limiting offers an incremental improvement in efficiency for the same reason

that the efficiency vs. offered load trend is downward: fewer packet transmissions. In

particular, rate limiting reduces the offered load near the sink of the network, where

congestion and contention are worst. However, as the offered load increases, hidden

terminals and interference prevent this strategy from exceeding the efficiencies of the

other strategies.

Hop-by-hop flow control offers an additional improvement in efficiency, but suc-

ceeds for a different reason than rate limiting. Rather than reducing contention

between the transit and leaf nodes of the network, hop-by-hop flow control improves

efficiency by throttling transmissions based on queue contention in the local neigh-

borhood. In addition, as offered load increases, queue occupancy congestion detection

consistently outperforms channel sampling. This suggests that queue occupancy is at

least as good as channel sampling as an indicator of congestion.

Combining these two flow control strategies in the Fusion scheme yields the highest

gains in efficiency. Hop-by-hop flow control helps to throttle transmissions at every

link in the network, while the rate limiting mechanism meters traffic being admitted

into the network. Moreover, these strategies are complementary because rate limiting

delays transmissions even when hop-by-hop flow control would allow them. Together,

these two techniques achieve high levels of efficiency even after the network reaches

saturation, increasing efficiency by a factor of three. However, although these gains

are substantial, efficiency is still quite low, barely reaching 0.3 at moderate offered

loads. With two out of three transmissions being wasted, there is still room for

improvement.

5.3.2 Periodic workload: Imbalance

Recall from Section 3.4 that imbalance, or C, is a measure of how well a node forwards

data. We define imbalance as the ratio of the number of packets received at a node

to the number of packets that were received at its parent. This metric is particularly
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Figure 5-3: Node imbalance ( (CDF) for different flow control strategies. Each node
offers 4 packets/s.

useful for identifying hotspots (nodes with high () in a network that account for a

large fraction of the wasted transmissions.

With an offered load of 4 packets/s, we plot distributions of node imbalance ( for

different congestion control strategies in Figure 5-3. These results summarize node

imbalances over multiple runs of the periodic experiment.

Without any congestion control strategy, the network has many hotspots: approx-

imately five nodes (the 90th percentile) have an imbalance greater than 50-meaning

five nodes received 50 times as much traffic as they could forward. Furthermore, the

tail of the imbalance CDF without congestion control is very heavy, indicating the

presence of hotspots in the network that are not successfully forwarding any traffic

they receive. Rate limiting also exhibits a heavy tail, indicating that rate limiting

does little to help these nodes.

Channel sampling and occupancy-based congestion control both remove hotspots

from the network. We see a marked synergistic improvement when we combine the

congestion control strategies in the Fusion scheme.

Figures 5-4 and 5-5 qualitatively show the amount of traffic received by each node

in one experimental run. The figures show a periodic workload of 4 packets/s using
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Fusion and no congestion control strategies, respectively. The thickness of each link

is proportional to the number of packets the node at the head of the edge receives

from the node at the tail of the edge.

In Figure 5-4 (with Fusion), the relatively thick edges in the graph form a forward-

ing backbone over which most traffic is sent. This forwarding backbone shows that

nodes are correctly funneling traffic towards the sink at rates that can be sustained.

The rate limiter helps to shape traffic such that leaf nodes, especially those near the

sink, do not overload the network. In addition, a "conservation of packets" property

holds at most nodes: for nodes that route traffic, several thin incoming links usually

result in a much thicker outgoing link. These nodes have an imbalance close to 1.

In contrast, in Figure 5-5 (with no congestion control) there is no clear forwarding

backbone, and the conservation of packets property does not hold at many nodes.

For example, one or more thick edges entering a node lead to one thin edge exiting

the same node. This implies a large number of buffer or wireless drops, and explains

the hotspots we see in Figure 5-3. Also note the lack of thick edges in the densely-

populated upper-left hand corner of the map. This suggests a large number of wireless

collisions in that geographic region.

5.3.3 Periodic workload: Throughput and fairness

Next, we measure the aggregate received throughput at the sink, without regard to

which nodes deliver the data. Figure 5-6 shows that as offered load increases, using

the non-rate limiting congestion control strategies-occupancy, channel sampling, and

delay-result in the highest throughput. This follows because rate limiting reduces

transmission rates to allow nodes deep in the network to reach the sink.

The throughput trend is of secondary importance, however, since fairness de-

creases substantially without congestion control. Figure 5-7 shows the distribution of

throughput that the sink receives from each node at an offered load of 2 packets/s.

Note that without congestion control, more than 40% of the nodes deliver less than 1

packet every 100 seconds, making that part of the network essentially useless. While
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Figure 5-4: Traffic flow in one run of a Fusion congestion controlled experiment with

each node offering 4 packets/s. The thickness of each edge is proportional to the

number of packets the node at the head of the edge receives from the node at the tail

of the edge. The deployment contains 55 nodes spread out over 16,076 square feet

and node 6 serves as the network sink.

78

1. 777- --- - I----- - , -



433

4

452

/5

2

442

25

Figure 5-5: Traffic flow in one run of an experiment with no congestion control and
each node offering 4 packets/s. The thickness of each edge is proportional to the
number of packets the node at the head of the edge receives from the node at the tail
of the edge. The deployment contains 55 nodes spread out over 16,076 square feet
and node 6 serves as the network sink.
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Figure 5-6: Average aggregate received throughput (measured at the sink) versus per-
sensor offered load under a periodic workload. 99% confidence intervals are shown.

congestion control sacrifices the high throughput of a minority of nodes, it distributes

bandwidth between nodes more fairly.

Table 5.2 shows the data reporting periods that any given percentage of nodes in

the network can achieve when every sensor offers 4 packets/s. In the second column,

we see that without any congestion control, no throughput guarantees can be made for

25% of the nodes. In contrast, nodes using an occupancy-based hop-by-hop congestion

control strategy can cover 90% of the network. If, however, we are only interested in

the throughput 10% of the nodes in the network can achieve, no congestion control is

the best strategy. This regime, however, is unlikely to be of much interest to sensor

network designers, because 10% of the nodes would provide poor network coverage,

particularly because these nodes are the ones closest to the sink.

As we vary offered load between 0.25 and 4 packets/s, we see the same trends

for aggregate throughput. Without any congestion control, aggregate throughput

increases as show in Figure 5-6. However, the network mostly delivers data from

nodes one hop away from the sink, resulting in a decrease in fairness as shown in

the right hand side of Figure 5-8. Without source rate limiting, congestion control

mechanisms suffer a similar fate, because nodes in the core of the network have more
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No congestion control
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Channel sampling ------
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Figure 5-7: Per-node throughput received at the SAP (complementary CDF) under
a periodic workload. Each node offers 2 packets/s.

Maximum period
Coverage No cong. Occupancy Channel Occ. + Rate Fusion

ctrl sampling Delay limiting
100% 00 00 00 00 00 00
95 00 108s 00 123s 00 43s
90 00 62 s 100s 71 s 250s 35 s
75 00 29 s 38 s 33s 31 s 15 s

50 38s 12 s 13 s 12 s 8.5s 7.2 s
25 4.2 s 3.4s 3.8s 3.2 s 2.9s 3.Os
10 840 ms 870 ms 980 ms 950 ms 1.4 s 1.5 s

Table 5.2: Network coverage broken down by congestion control strategy. Given
that a network designer wants the network coverage shown in the left hand column,
that percentage of nodes operating under different congestion control strategies can
achieve at least the report rate show in the rightmost columns. The offered load in
the network is periodic at 2 packets/s per node.
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Figure 5-8: Average fairness q$ versus per-node offered load under a periodic workload.
99% confidence intervals are shown.

opportunities to inject packets into the network, because they have fewer hops over

which hop-by-hop backpressure can act. Rate limiting dramatically improves fairness

because space becomes available in node transmission queues for traffic from the edges

of the network.

Figure 5-9 shows median node throughput as a function of per-node offered load.

Below an offered load of 0.5 packets/s, the network is in an underloaded state, and

median received throughput increases with offered load. Above 1 packet/s, nodes

need a congestion control strategy if more than 50% of the nodes are to provide any

traffic at all. This result quantifies the high degree of unfairness that nodes at the

edges experience when the network is an a state of congestion collapse. At least half

the nodes running the Fusion strategy are able to maintain at least 0.1 packets/s

as offered load increases because rate limiting prevents the core of the network from

overwhelming the edges.
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nodes are dropped. Thus, latency decreases with increasing offered load because the

nodes that get through are in the core of the network, closer to the sink. Since the

Fusion strategy is the fairest, as offered load increases, a greater proportion of the

packets received are from the edges (many hops away), and consequently, latency is

higher.
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Figure 5-10: Median packet latency as a function of offered load under a periodic
workload. 95% confidence intervals are shown.
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Figure 5-11: Average network-wide wireless link channel rate (before retransmissions)
versus per-node offered load under a periodic workload. 99% confidence intervals are
shown.
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Figure 5-12: Total network-wide buffer drops per network-wide received packets as a

function of per-node offered load under a periodic workload. 99% confidence intervals
are shown.

5.3.5 Periodic workload: Sources of loss

Figure 5-11 shows network-wide wireless channel loss rates as a function of offered

load. We calculate loss rate by dividing the sum transmission count (including retrans-

missions) by the sum reception count. As expected, the wireless loss rate increases

for all strategies as the offered load increases. This trend is caused by rise in the noise

floor, and possibly an increase in the number of collisions due to hidden terminals.

The "no congestion control" strategy suffers from the highest loss rates, which

approach more than 80% at 4 packets/s. Channel sampling and rate limiting occupy

the middle ground, with loss rates approaching 60% and 70%, respectively. The

occupancy-based congestion control strategies perform even better, keeping loss rates

under about 50%. The Fusion scheme performs the best overall, with close to a

50% decrease in drops at 4 packets/s. Surprisingly, there is no statistical difference

in wireless drop rate between the occupancy + delay strategy and the occupancy

strategy. This observation suggests that either hidden terminals are not the primary

problem in our network, or that the delay strategy does not often avoid them.
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Figure 5-12 shows total network-wide buffer drops per packets received, as a func-

tion of offered load. This figure measures the probability that a packet will be dropped

due to buffer overflow, given that it was successfully received. Surprisingly, the buffer

drop rate is significantly higher for strategies that include hop-by-hop flow control.

This trend is the result of the substantially higher wireless loss rates of the strategies

that do not include hop-by-hop flow control. With these latter strategies (no conges-

tion control and rate limiting), nodes do not receive enough packets to fill up their

forwarding queues and trigger buffer drops.

5.3.6 Periodic workload: Energy considerations

Performance under a power-saving workload is important to low-power monitoring

applications where a large number of nodes periodically sleep (forgetting their con-

gestion state) in between low-rate packet transmissions. There are a wide variety

of power-saving strategies proposed for sensor networks. CSMA-based sleep-wakeup

algorithms [14, 56] elect a dynamic "backbone" of nodes that forwards traffic for

the other power-saving nodes. Other proposals synchronize nodes' sleep-wakeup cy-

cles [58, 50]. In TDMA-based sensor networks, data sources can sleep in all inactive

time slots. For any of the above types of networks, the key challenge is designing and

evaluating congestion control algorithms that can function soon after the node wakes

up.

The congestion control techniques presented in this thesis rely on overhearing the

wireless channel to propagate congestion state. When combined with power-saving, it

is not immediately clear how the reduction in overhearing time resulting from various

sleep intervals will impact congestion control performance. To measure this impact,

we constructed a topology and implemented an algorithm that simulates the effects

of the sleep-wakeup cycle. In this power-saving workload, a core set of nodes is

selected to forward traffic. The remaining leaf nodes send traffic at a low data rate (1

packet/s), sleeping for a given fraction of the period. After waking up, nodes forget

their congestion state, listen for the remaining fraction of the period, then send.
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Our preliminary results for varying listen/sleep intervals indicate that sleep-

wakeup power-saving strategies have a statistically insignificant impact on network

performance. In particular, efficiency is dependent on offered rate, but not listen

period. Unlike many protocols that rely on overhearing, hop-by-hop flow control is

not cumulative: nodes are only concerned with the most recently propagated con-

gestion state. Additionally, in large multi-hop networks, transit nodes-which need

to be awake continuously to forward traffic, and hence, fully benefit from congestion

control-represent the majority of transmissions in the network. However, we leave a

detailed analysis of the effects of power saving on congestion control for future work.

5.4 High fan-in network experiments

Our high fan-in experiments evaluate congestion control in a wireless network where

mitigating congestion is very difficult. We choose only a small subset of the nodes to

perform the task of routing traffic in the network. Nodes still choose routes using the

ETX metric, but only ten nodes out of 55 advertise routes to the sink. Figure 5-13

shows a representative routing topology used in one run of our experiments. Non-

uniform node deployments-where a high degree of fan-in is expected-motivate this

workload. Heterogeneous node capabilities, such as differences in processor, memory,

and power ability, can also result in such a topology.

Note that compared to the topology formed in Figure 5-1 under the periodic work-

load, this topology has a higher degree of fan-in and a smaller network diameter. The

high fan-in makes hop-by-hop congestion control more difficult, since each child must

each receive congestion feedback before the aggregate demand on a parent decreases.

5.4.1 High fan-in network: Network efficiency

Figure 5-14 shows network efficiency versus per-node offered load as offered load

ranges from 0.25 to 4 packets/s. Comparing Figure 5-14 with Figure 5-2 (network

efficiency under the periodic workload), we make the following observations.

87



18 21 44 9 29 31 5 2S 53

is 20 25 54 10 12 13 33 36 37 43 56 14 22 24 27 34

7 17 26 49 so 52 16 23

19 30 11 39 48 51

4 38 40 1

42 45

2 3 5 8 32 41 47 46

6

Figure 5-13: Routing topology in one run of a high fan-in experiment with Fusion
congestion control and each node offering 1 packet/s, as formed by the ETX path
selection metric, restricted to gateway nodes. The thickness of each edge is propor-
tional to the number of packets the node at the head of the edge received from the
node at the tail of the edge.

Even at low offered load, network efficiency in the high fan-in network is lower than

network efficiency in the periodic network. It is unlikely that poor link selection in the

high fan-in network causes the lowered efficiency, because the wireless link drop rates

for both the high fan-in and normal networks are equal at low transmission rates.

The likely explanation, therefore, is wireless contention and network congestion at

high fan-in nodes.

As offered load increases, the trend continues, with efficiency in the fan-in network

marginally lower than in the normal network. Note that in a high fan-in topology,

congestion control techniques work together to increase performance. Fusion clearly

outperforms all strategies as offered load increases.

5.5 Correlated-event workload

The correlated-event workload captures the effect of spatially-correlated events in

a sensor network. Detection and tracking applications often use an event-oriented

reporting model rather than sending a periodic stream of readings. In particular, this
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Figure 5-14: Average network efficiency r. versus per-node offered load in a high

fan-in network. 95% confidence intervals are shown. The curves for Occupancy and
Occupancy + Delay overlap.

workload models the effects of a single, synchronized impulse of traffic on network

performance.

Instead of collecting analog data from each node in our testbed, we model an

event-based workload using the following method. At the beginning of the experi-

ment, we run a distributed level-aware time synchronization protocol similar to the

Timesync Protocol for Sensor Networks (TPSN) [19]. Using an Ethernet backchan-

nel, we verified synchronization of 91% of the testbed to within 29 ms (approximately

one packet-time) and all 55 nodes in our testbed to within 56 ms (approximately two

packet-times).

After the synchronization phase, all nodes in the testbed simultaneously send B

packets back-to-back (or, if the channel is carrier-sensed busy, as fast as possible) at

the scheduled time of each event. There is sufficient time (20 seconds) between each

event to let traffic drain completely from the network.

We evaluate this correlated-event workload by varying the traffic burst size B.

It is important to note that for this workload, which consists of a single impulse of

traffic, source rate limiting has no impact. Our rate limiting algorithm is designed to
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operate when there is significant per-node traffic present in the network. Our events

do not last long enough for our rate limiter to build up an estimate of sustainable

traffic rates. As a result, we omit the rate limiting and Fusion schemes from our data

sets for clarity and investigate in detail performance of the hop-by-hop variants.

5.5.1 Correlated-event workload: Network efficiency

Even at small event sizes, the strong time correlation between events necessitates

some kind of congestion control. This trend stands in contrast to that of the periodic

and high fan-in workloads in which the benefits of congestion control are mainly

seen at higher offered loads. Figure 5-15 shows network efficiency as each node's

traffic event size B varies between 1 and 8 packets. As expected, we observe that

a downward trend still exists for all strategies as network load increases. However,

even when B = 1, the occupancy hop-by-hop congestion control strategy yields close

to an 80% gain in network efficiency over no congestion control. As B increases,

the relative improvement in network efficiency (versus the baseline of no congestion

control) increases for all strategies. When B = 8, the best strategy is approximately

two times better than the baseline.

There is a clear benefit to using hop-by-hop flow control for a correlated-event

workload to combat congestion caused by the wave of data flowing from the leaves to

the sink.

Buffer occupancy augmented with a forwarding delay for hidden terminal reduc-

tion (occupancy + delay) performs a little better than just occupancy-based hop-by-

hop congestion control when B is small. Without the delay strategy, synchronization

in the correlated-event workload makes hidden terminal collisions between a node and

its grandparent more likely. The forwarding delay allows a node's grandparent, which

normally would exist as a hidden terminal and be prone to collision, a larger window

to successfully complete its transmission. At larger values of B, the improvement in

network efficiency due to the forwarding delay is negligible. For all event sizes, chan-

nel sampling performs noticeably worse than all strategies except for no congestion

control.
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Figure 5-15: Average network efficiency rq as a function of event size B under a
correlated-event workload. 99% confidence intervals are shown.

5.5.2 Correlated-event workload: Drop rate

For many types of applications designed to detect discrete, non-repeating events, the

end-to-end packet drop rate is an important measure of performance. This need for

reliability stands in contrast to the periodic workload where often it is reasonable

to assume that subsequent reports will supersede any lost data. Figure 5-16 shows

the end-to-end drop rate as a function of event size B for various congestion control

strategies. Note how all strategies perform better than no congestion control. In some

cases, the lack of any congestion control can increase the end-to-end drop rate by

almost 35%. Hop-by-hop flow control alleviates congestion in this workload because

the backpressure desynchronizes packet transmissions.

5.5.3 Correlated-event workload: Latency

In Figure 5-17 we show how packet latency rises when using any of the congestion

control strategies. This increase is to be expected because all congestion control

strategies operate by delaying transmissions. By decreasing the rate at which queues

drain, wireless contention and collisions are reduced at the cost of increased queuing
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delays. For small event sizes, the increase in latency is in the neighborhood of 40%.

However, the maximum increase in latency is seen when the event size is 3, resulting

in a latency increase of over 100% when compared to no congestion control.

Whether or not these increases in latency are actually meaningful depends on the

application. It is important to note that latencies can by significantly reduced by

decreasing the size of the forwarding queues, at the cost of increased losses when

burst sizes are large.
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Chapter 6

Conclusion

This thesis presents an experimental evaluation of three complementary congestion

control strategies for wireless sensor networks. We show that unless a sensor network

operating under load has some means of controlling congestion, it will face significant

degradation in efficiency and fairness. As network load increases, or when channel

variations cause fluctuations in achievable bandwidth, nodes must modulate their send

rates based on congestion feedback or the network will go into congestion collapse.

We show that wireless congestion is very different from its wired counterpart.

Wired congestion results in buffer drops at internal routers and can be alleviated using

such protocols as TCP. Wireless congestion affects networks at a lower level, resulting

in drops in the transmission medium. These drops and the resulting degradation in

channel quality is caused in part by collisions from hidden terminals as well as by

corruption from many distant transmitters. Moreover, congestion in wireless sensor

networks substantially reduces fairness and reduces the number of bits delivered per

unit energy.

The metrics we use for evaluation express properties that designers and users of

sensor networks should find desirable. Network efficiency quantifies the amount of

energy that is wasted on transmissions that do not deliver packets. Fairness quan-

tifies the degree of variation in send rates, which impacts sensor network coverage.

Imbalance measures the inequity between packet receptions at a given node and its

next hop, providing a clearer picture of the hotspots in a network and how that re-
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sults in buffer and wireless drops. Latency is important because many event-driven

applications require the timely reporting of sensor values.

We evaluate three techniques for mitigating congestion both in isolation and

in concert. Our results show that hop-by-hop flow control using a simple queue

occupancy-based congestion detection method offers substantial efficiency improve-

ments for all types of workloads and utilization levels. This finding holds because a

successful wireless transmission requires both the sender and receiver to be contention-

free with respect to both the wireless channel and queue space. Implementing a rate

limiting policy results in substantial improvements to fairness. Finally, MAC en-

hancements support the operation of hop-by-hop flow control.

We analyze two ways of detecting congestion: queue occupancy and channel sam-

pling. In addition to offering significantly better performance, queue occupancy re-

quires no support from the MAC layer and is very easy to implement on different

platforms.

We present Fusion, a congestion control mechanism that combines hop-by-hop

flow control, rate limiting, and a prioritized MAC. Our results show that Fusion

improves network efficiency by up to a factor of three and reduces node starvation.

Additionally, we show the efficacy of Fusion under a variety of workloads on a 55-node

deployment. A simple periodic workload benefits because it is extremely difficult to

adequately provision for varied link capacities of a large scale deployment. A high fan-

in network realizes gains from congestion control because the nature of that topology

makes transit nodes particularly prone to buffer drops. Correlated-event workloads

need congestion control to handle the sudden bursts of traffic that spatially-correlated

events generate.

6.1 Future work

The results presented in this thesis point to a number of possible areas for future

work. First, although the rate limiting scheme presented in Section 4.3 is effective at

improving the fairness of networks under load, a robust rate limiting algorithm that
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correctly handles node failures, skewed routing topologies, and variable send rates

would be useful.

Second, even though our implementation of hop-by-hop flow control relies on over-

hearing, an alternate implementation is possible with the use of link-level acknowledg-

ments to indicate congestion state. Although we have briefly investigated this design

point, we leave a performance comparison for future work.

Third, this thesis only analyzed single sensor access point networks. Deploying

multiple access points has the potential to decrease network diameter and increase

spatial reuse. Although our congestion control techniques only require a few modi-

fications to work in a multiple access point networks, more work would need to be

done to adapt supporting routing protocols and path selection metrics to this new

architecture.

Finally, while we offer hints as to the sources of loss in our network, more work

needs to be done to find definitive answers. In particular, we are investigating whether

losses occur because of hidden terminal collisions (in which case RTS/CTS might be

a solution) or due to additive interference from distant sources of noise.
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