49 research outputs found

    Coupled Reaction Networks for Noise Suppression

    Get PDF
    Noise is intrinsic to many important regulatory processes in living cells, and often forms obstacles to be overcome for reliable biological functions. However, due to stochastic birth and death events of all components in biomolecular systems, suppression of noise of one component by another is fundamentally hard and costly. Quantitatively, a widely-cited severe lower bound on noise suppression in biomolecular systems was established by Lestas et. al. in 2010, assuming that the plant and the controller have separate birth and death reactions. This makes the precision observed in several biological phenomena, e.g., cell fate decision making and cell cycle time ordering, seem impossible. We demonstrate that coupling, a mechanism widely observed in biology, could suppress noise lower than the bound of Lestas et. al. with moderate energy cost. Furthermore, we systematically investigate the coupling mechanism in all two-node reaction networks, showing that negative feedback suppresses noise better than incoherent feedforward achitectures, coupled systems have less noise than their decoupled version for a large class of networks, and coupling has its own fundamental limitations in noise suppression. Results in this work have implications for noise suppression in biological control and provide insight for a new efficient mechanism of noise suppression in biology

    Coupled Reaction Networks for Noise Suppression

    Get PDF
    Noise is intrinsic to many important regulatory processes in living cells, and often forms obstacles to be overcome for reliable biological functions. However, due to stochastic birth and death events of all components in biomolecular systems, suppression of noise of one component by another is fundamentally hard and costly. Quantitatively, a widely-cited severe lower bound on noise suppression in biomolecular systems was established by Lestas et. al. in 2010, assuming that the plant and the controller have separate birth and death reactions. This makes the precision observed in several biological phenomena, e.g., cell fate decision making and cell cycle time ordering, seem impossible. We demonstrate that coupling, a mechanism widely observed in biology, could suppress noise lower than the bound of Lestas et. al. with moderate energy cost. Furthermore, we systematically investigate the coupling mechanism in all two-node reaction networks, showing that negative feedback suppresses noise better than incoherent feedforward achitectures, coupled systems have less noise than their decoupled version for a large class of networks, and coupling has its own fundamental limitations in noise suppression. Results in this work have implications for noise suppression in biological control and provide insight for a new efficient mechanism of noise suppression in biology

    Computational design and designability of gene regulatory networks

    Full text link
    Nuestro conocimiento de las interacciones moleculares nos ha conducido hoy hacia una perspectiva ingenieril, donde diseños e implementaciones de sistemas artificiales de regulación intentan proporcionar instrucciones fundamentales para la reprogramación celular. Nosotros aquí abordamos el diseño de redes de genes como una forma de profundizar en la comprensión de las regulaciones naturales. También abordamos el problema de la diseñabilidad dada una genoteca de elementos compatibles. Con este fin, aplicamos métodos heuríticos de optimización que implementan rutinas para resolver problemas inversos, así como herramientas de análisis matemático para estudiar la dinámica de la expresión genética. Debido a que la ingeniería de redes de transcripción se ha basado principalmente en el ensamblaje de unos pocos elementos regulatorios usando principios de diseño racional, desarrollamos un marco de diseño computacional para explotar este enfoque. Modelos asociados a genotecas fueron examinados para descubrir el espacio genotípico asociado a un cierto fenotipo. Además, desarrollamos un procedimiento completamente automatizado para diseñar moleculas de ARN no codificante con capacidad regulatoria, basándonos en un modelo fisicoquímico y aprovechando la regulación alostérica. Los circuitos de ARN resultantes implementaban un mecanismo de control post-transcripcional para la expresión de proteínas que podía ser combinado con elementos transcripcionales. También aplicamos los métodos heurísticos para analizar la diseñabilidad de rutas metabólicas. Ciertamente, los métodos de diseño computacional pueden al mismo tiempo aprender de los mecanismos naturales con el fin de explotar sus principios fundamentales. Así, los estudios de estos sistemas nos permiten profundizar en la ingeniería genética. De relevancia, el control integral y las regulaciones incoherentes son estrategias generales que los organismos emplean y que aquí analizamos.Rodrigo Tarrega, G. (2011). Computational design and designability of gene regulatory networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1417

    Engineering microcompartmentalized cell-free synthetic circuits

    Get PDF

    SCALABLE MODELING APPROACHES IN SYSTEMS IMMUNOLOGY

    Get PDF
    Systems biology seeks to build quantitative predictive models of biological system behavior. Biological systems, such as the mammalian immune system, operate across multiple spatiotemporal scales with a myriad of molecular and cellular players. Thus, mechanistic, predictive models describing such systems need to address this multiscale nature. A general outstanding problem is to cope with the high-dimensional parameter space arising when building reasonably detailed models. Another challenge is to devise integrated frameworks incorporating behavioral characteristics manifested at various organizational levels seamlessly. In this dissertation, I present two research projects addressing problems in immunological, or biological systems in general, using quantitative mechanistic models and machine learning, touching on the aforementioned challenges in scalable modeling. First, I aimed to understand how cell-to-cell heterogeneities are regulated through gene expression variations and their propagation at the single-cell level. To better understand detailed gene regulatory circuit models with many parameters without analytical solutions, I developed a framework called MAchine learning of Parameter-Phenotype Analysis (MAPPA). MAPPA combines machine learning approaches and stochastic simulation methods to dissect the mapping between high- dimensional parameters and phenotypes. MAPPA elucidated regulatory features of stochastic gene-gene correlation phenotypes. Next, I sought to quantitatively dissect immune homeostasis conferring tolerance to self-antigens and responsiveness to foreign antigens. Towards this goal, I built a series of models spanning from intracellular to organismal levels to describe the recurrent reciprocal relationships between self-reactive T cells and regulatory T cells in collaboration with an experimentalist. This effort elucidated critical immune parameters regulating the circuitry enabling the robust suppression of self-reactive T cells, followed by experimental validation. Moreover, by bridging these models across organizational scales, I derived a framework describing immune homeostasis as a dynamical equilibrium between self-activated T cells and regulatory T cells, typically operating well below thresholds that could result in clonal expansion and subsequent autoimmune diseases. I start with an introduction with a perspective linking seemingly contradictory behaviors of the immune system at different scales: microscopic “noise” and macroscopic deterministic outcomes. By connecting these aspects in the adaptive immune system analogously with an ansatz from statistical physics, I introduced a view on how robust immune homeostasis ensues

    Visual Cortex

    Get PDF
    The neurosciences have experienced tremendous and wonderful progress in many areas, and the spectrum encompassing the neurosciences is expansive. Suffice it to mention a few classical fields: electrophysiology, genetics, physics, computer sciences, and more recently, social and marketing neurosciences. Of course, this large growth resulted in the production of many books. Perhaps the visual system and the visual cortex were in the vanguard because most animals do not produce their own light and offer thus the invaluable advantage of allowing investigators to conduct experiments in full control of the stimulus. In addition, the fascinating evolution of scientific techniques, the immense productivity of recent research, and the ensuing literature make it virtually impossible to publish in a single volume all worthwhile work accomplished throughout the scientific world. The days when a single individual, as Diderot, could undertake the production of an encyclopedia are gone forever. Indeed most approaches to studying the nervous system are valid and neuroscientists produce an almost astronomical number of interesting data accompanied by extremely worthy hypotheses which in turn generate new ventures in search of brain functions. Yet, it is fully justified to make an encore and to publish a book dedicated to visual cortex and beyond. Many reasons validate a book assembling chapters written by active researchers. Each has the opportunity to bind together data and explore original ideas whose fate will not fall into the hands of uncompromising reviewers of traditional journals. This book focuses on the cerebral cortex with a large emphasis on vision. Yet it offers the reader diverse approaches employed to investigate the brain, for instance, computer simulation, cellular responses, or rivalry between various targets and goal directed actions. This volume thus covers a large spectrum of research even though it is impossible to include all topics in the extremely diverse field of neurosciences

    STOCHASTIC MODELS OF CHEMOTAXING SIGNALING PROCESSES

    Get PDF
    Stochasticity is ubiquitous in all processes. Its contribution in shaping the output response is not only restricted to systems involving entities with low copy numbers. Intrinsic fluctuations can also affect systems in which the interacting species are present in abundance. Chemotaxis, the migration of cells towards chemical cues, is one such example. Chemotaxis is a fundamental process that is behind a wide range of biological events, rang¬ing from the innate immune response of organisms to cancer metastasis. In this dissertation, we study the role that stochastic fluctuations play in the regulatory mechanism that regulates chemotaxis in the social amoeba Dictyostelium discoideum. It has been argued theoretically and shown experimentally that stochastically driven threshold crossings of an underlying excitable system lead to the protrusions that enable amoeboid cells to move. To date, how¬ ever, there has been no good computational model that accurately accounts for the effects of noise, as most models merely inject noise extraneously to deterministic models leading to stochastic differential equations. In contrast, in this study, we employ an entirely different paradigm to account for the noise effects, based on the reaction-diffusion master equation. Using a modular approach and a three-dimensional description of the cell model with specific subdomains attributed to the cell membrane and cortex, we develop a detailed model of the receptor-mediated regulation of the signal transduction excitable network (STEN), which has been shown to drive actin dynamics. Using this model, we recreate the patterns of wave propagation seen in both front- and back-side markers that are seen experimentally. Moreover, we recreate various perturbations. Our model provides further support for the biased-excitable network hypothesis that posits that directed motion occurs from a spatially biased regulation of the threshold for activation of an excitable network. Here we also consider another aspect of the chemotactic response. While front- and back-markers redistribute in response to chemoattractant gradients, over time, this spatial heterogeneity becomes established and can exist even when the external chemoattractant gradient is removed. We refer to this persistent segregation of the cell into back and front regions as polarity. In this dissertation, we study various methods by which polarity can be established. For example, we consider the role of vesicular trafficking as a means of bringing back-markers from the front to the rear of the cell. Then, we study how Bin/Amphiphysin/Rvs (BAR)¬domain proteins that are sensitive to membrane curvature, can amplify small shape heterogeneities leading to cell polarization. Finally, we develop computational models that describe a novel framework by which polarity can be established and perturbed through the alteration of the charge distribution on the inner leaf of the cell membrane
    corecore