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Abstract— Noise is intrinsic to many important regulatory
processes in living cells, and often forms obstacles to be
overcome for reliable biological functions. However, due to
stochastic birth and death events of all components in biomolec-
ular systems, suppression of noise of one component by another
is fundamentally hard and costly. Quantitatively, a widely-
cited severe lower bound on noise suppression in biomolecular
systems was established by Lestas et. al. in 2010, assuming
that the plant and the controller have separate birth and
death reactions. This makes the precision observed in several
biological phenomena, e.g. cell fate decision making and cell
cycle time ordering, seem impossible. We demonstrate that
coupling, a mechanism widely observed in biology, could
suppress noise lower than the bound of Lestas et. al. with mod-
erate energy cost. Furthermore, we systematically investigate
the coupling mechanism in all two-node reaction networks,
showing that negative feedback suppresses noise better than
incoherent feedforward achitectures, coupled systems have less
noise than their decoupled version for a large class of networks,
and coupling has its own fundamental limitations in noise
suppression. Results in this work have implications for noise
suppression in biological control and provide insight for a new
efficient mechanism of noise suppression in biology.

I. INTRODUCTION

Many important processes in living cells, such as gene
expression, are intrinsically stochastic [1]. The effect of noise
is further enhanced by several biological factors, such as
the low copy number of many important molecules, such as
DNA and regulatory molecules, and the fact that even con-
trollers performing noise suppression consists of intrinsically
stochastic molecular components [1], [2], [3]. In particular,
assuming that the controller and the plant dynamics are
separate biochemical processes, Lestas et. al. [2] showed
that there is a severe lower bound on the noise for the
plant component of a chemical reaction network due to the
intrinsic stochasticity of controller components in chemical
reactions. Quantitatively, it states that the lower bound for
noise is typically inversely proportional to the quartic root
of the signaling rate, in contrast with a square root result
that is familiar in electrical engineering and statistics. This
bound implies that significant noise is inevitable, despite
the regulatory mechanisms found in biology that could
suppress noise [4]. Specifically, the bound implies that noise
suppression in cells is usually prohibitively expensive, as
reducing noise by 10 fold would require 10,000 fold increase
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in signaling rate, which corresponds to 10,000 fold faster
production and degradation of molecules.

On the other hand, we observe almost deterministic pre-
cision in many biological processes, such as the synchro-
nization of molecular oscillations in mammalian circadian
clock [5], precise timing of gene expression dynamics in
cell cycle [6] and the cell type differentiation through gene
expression patterns during development [7]. This observation
naturally urges one to seek biologically relevant noise sup-
pression mechanisms that are beyond the scope of systems
investigated in [2], so that they are not as costly as suggested
by [2].

In this work we propose coupling as such a noise sup-
pression mechanism that is omnipresent in biological pro-
cesses. Coupling is used here to describe chemical reactions
where more than one chemical species are produced or
degraded simultaneously. For example, a coupled reaction
may transform one species into another one, or it may
produce one molecule each of two species simultaneously.
Hence, coupling naturally goes beyond the assumption in
[2] that the plant and the controller dynamics are separate
biochemical processes, since the increase and/or decrease
of a plant component and a controller component could be
coupled in a reaction once we allow coupling.

Many important regulatory processes in biology and ge-
netic circuits engineered in synthetic biology have a coupling
interpretation. In bacteria, genes are commonly grouped
into operons, so they are transcribed and regulated together
[8]. Non-coding RNAs with regulatory functions such as
microRNA and siRNAs are commonly transcribed together
with mRNAs that encode the genes to be regulated [9]. In
metabolic networks and signaling cascades, one enzyme may
transform from an inactivated state to an activated state,
where the enzyme or its downstream products may in turn
regulate the transformation reaction [8], [10]. Regulatory
functions in synthetic biology are commonly implemented
in binding proteins linked with functional domains, where
the link is cut to transform the protein-domain complex into
a protein and a domain separately, which could have different
regulatory properties than the complex [11], [12].

Coupling as a noise suppression mechanism is rather
intuitive from an information theoretic point of view (as in
[2]). It is obvious that, compared to a decoupled controller
component, a controller component whose stochastic birth-
death processes are coupled with the plant would have
more information about the plant, therefore have more po-
tential to suppress its noise. Indeed, a subsidiary result in
an earlier study [13] showed that the coupled versions of
two regulatory circuits have less noise than the decoupled
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versions. However, it is not known what are the conditions
for coupling to suppress noise, the fundamental limitations
on noise suppression once we allow coupling (in the spirit
of [2]), or coupling’s implications on designing biochemical
network architectures.

In this work we set off to provide some initial answers
to these problems. After reviewing the notions of chemical
reaction networks and methods to analyze them in Section
II, we show how coupling could suppress noise through
a simple example in Section III-A. We then propose a
biologically plausible coupled system that suppresses noise
below the lower bound of Lestas et. al. [2] in Section III-B.
Lastly, in Section III-C, we investigate all possible two-node
chemical reaction network architectures to gain insight on
the advantage of coupled networks versus decoupled ones,
feedback versus feedforward architectures, and limitations of
noise suppression by coupling.

II. BACKGROUND

A. Chemical Reaction Networks

Here we provide the minimum background on the stochas-
tic descriptions of chemical reaction networks (CRNs) and
relevant analysis methods. For more details, see [14], [15],
[3].

A chemical reaction network (CRN) is a collection of
reactions of the following form:

x
rk(x)−−−→ x+ dk,

where x ∈ Zn≥0 is the state vector describing the number
of molecules of the n chemical species in the system,
k = 1, ...,m indexes m reactions, and rk : Rn → R≥0
is the propensity function which describes the rate of re-
action k. Technically, the system dynamics is described as
a continuous-time Markov chain with x ∈ Zn≥0 as states
of the system, and rk(x)∆t describes the probability that,
if the system is in state x at time t, it will jump to state
x+dk within time ∆t, for small ∆t. Note that even though
mass action dynamics, where rk are always a special form
of polynomial of x, is commonly assumed [16], we do not
make that assumption here.

The stochastic description of the system dynamics is
described in terms of the chemical master equation (CME),
which describes the evolution of the probability distribution
for molecular counts x [17]:
d

dt
P (x, t) =

∑
k

(rk(x− dk)P (x− dk)− rk(x)P (x)) ,

where P (x, t) is the probability that the system has x
number of molecules at time t.

For the mean, we have

d

dt
〈xi〉 =

d

dt

∑
x

xiP (x, t) =

〈∑
k

dikrk(x)

〉

=

〈 ∑
k:dik>0

dikrk(x)

〉
−

〈 ∑
k:dik<0

|dik| rk(x)

〉
≡
〈
R+
i (x)

〉
−
〈
R−i (x)

〉
,

where the last equality was used as the definition for R+
i

and R−i . R+
i , the birth rate of xi, is the summed rate of all

reactions that increases xi, while R−i , the death rate, is the
summed rate of all reactions that decreases xi. Note that, at
steady state, we have

〈
R+
i

〉
=
〈
R−i
〉
.

It is worth noting that, in the limit where the reaction
volume is large while the number of molecules per volume
remains finite (made precise in [18]), the system dynamics
can be described by a deterministic rate equation:

dx̃i
dt

=
m∑
k=1

dikrk(x̃) = R+
i (x̃)−R−i (x̃),

where x̃ ∈ Rn≥0 is the concentrations of chemical species,
which are continuous, instead of molecular counts x ∈ Zn≥0,
which are discrete.

Through similar calculations as in the equation for the
mean, we see that, at steady state, we have the following
equation for covariance:

Cov
(
xi, R

−
j −R

+
j

)
+Cov

(
xj , R

−
i −R

+
i

)
=
∑
k

dikdjk 〈rk〉 .

One major achievement of the theoretical investigations in
[3] is the re-writing of the above equation using physically
interpretable quantities. The re-written equation is as follows:

1

τj

Cov
(
xi, R

−
j −R

+
j

)
〈xi〉 〈Rj〉

+
1

τi

Cov
(
xj , R

−
i −R

+
i

)
〈xj〉 〈Ri〉

=
1

τi

〈
sj|i
〉

〈xj〉
+

1

τj

〈
si|j
〉

〈xi〉
:= Dij =

∑
k dikdjk 〈rk〉
〈xi〉 〈xj〉

.

(1)

Here τi, the average life time of an xi molecule, and
〈
si|j
〉
,

the average step sizes or co-step sizes, are introduced. As
these are key concepts utilized for this work, they are
explained in detail below.

Step sizes. For i = j, we define the average step size of
xi as

〈
si|i
〉
≡
∑
k |dik| ρik, where ρik = |dik|〈rk〉∑

k′ |dik′ |〈rk′ 〉
, the

probability that when xi changes, that change comes from
reaction k. The notation

〈
si|i
〉

signifies that this is average
step size of xi conditioning on that xi changes. For example,
if x1 has only one birth reaction x1 → x1 + 1 and one death
reaction x1 + 10, then

〈
s1|1
〉

= 1+10
2 , because birth and

death rates are always equal at steady state.
For i 6= j, we define co-step sizes

〈
sj|i
〉
≡∑

k ρik |djk| sgn {dikdjk}. So
〈
sj|i
〉

is the average change of
species xj conditioning on that xi changes simultaneously in
these reactions. Note that this could be positive or negative.
From the definition, we see that the co-step size

〈
si|j
〉

captures whether birth and death of xi and xj are coupled
in some reaction. For example, if the only reaction that
have simultaneous changes to x1 and x2 is (x1, x2) →
(x1 − 1, x2 + 1), i.e. one x1 becomes one x2, and x2 have
no other birth reactions, then

〈
s1|2
〉

= − 1
2 . It is negative

because when x1 decreases, x2 increases. It is divided by 2
because this reaction accounts for all of x2’s birth, therefore
half of x2’s changes.

Note that the co-step sizes and the birth and death rates
are related to each other:

〈
sj|i
〉
〈Ri〉 =

〈
si|j
〉
〈Rj〉.

Life times. For general stationary stochastic processes
describing the increase and decrease of a quantity, Little’s
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law states that an average life time can be defined as the
ratio between the mean and its birth or death rate. The key
intuition is the following, where

∫ T
0
xi(t)dt is the life time

of all xi molecules in T , and
∫ T
0
R+
i (t)dt is the total number

of molecules born in T :

τi ≡
limT→∞

∫ T
0
xi(t)dt

limT→∞
∫ T
0
R+
i (t)dt

=
limT→∞ 〈x〉T

limT→∞
〈
R+
i

〉
T

=
〈xi〉〈
R±i
〉 .

Therefore, we define τi ≡ 〈xi〉
〈R±i 〉

, the average life time or the
time scale of xi.

B. Linear Noise Approximation
We see that the covariance equation (1) involves terms

of the form Cov
(
xi, R

±
j

)
, which would involve higher

order moments if R±j is nonlinear. The resulting system of
moment equations is generally infinite dimensional and hard
to solve. This naturally calls for moment closure methods
to approximately solve this system [19]. One particularly
simple and analytically tractable method is linear noise
approximation (LNA). LNA could be derived by assum-
ing that the mean 〈x〉 is close to a fixed point so that
〈x〉 = R+

j (〈x〉), and by simply approximating birth and
death rates by their first order Taylor expansion: R−j (x) ≈

R−j (〈x〉)+
∑m
`=1

∂R−j (〈x〉)
∂x`

∆x`. Define the logarithmic gains

Hjl ≡
(
∂R−j (〈x〉)

∂x`

〈x`〉
〈R−j 〉

− ∂R+
j (〈x〉)
∂x`

〈x`〉
〈R+

j 〉

)
[14], equation (1)

becomes
1

τj

m∑
`=1

Hjlηil +
1

τi

m∑
`=1

Hilηjl = Dij .

In matrix form, we have
Mη + ηMᵀ = D, (2)

where ηij = ηji =
Cov(xi,xj)
〈xi〉〈xj〉 , Dij = Dji = 1

τi

〈sj|i〉
〈xj〉 +

1
τj

〈si|j〉
〈xi〉 =

∑
k dikdjk〈rk〉
〈xi〉〈xj〉 , Mij =

Hij
τi

. Note that an internal
relation needs to be utilized when solving this system of
equations: 〈

si|j
〉

〈xi〉 τj
=

〈
sj|i
〉

〈xj〉 τi
, (3)

which is derived from the relation
〈
si|j
〉
〈Rj〉 =

〈
sj|i
〉
〈Ri〉.

Equation (2) is called the fluctuation dissipation theorem
in the statistical physics community and Lyapunov equation
in the control community [cite]. Note that the normalized
covariance η is a solution to this Lyapunov equation shows
that it is finite if and only if the linearized deterministic
system d

dtx = ∇〈x〉(R+ − R−)x is asymptotically stable,
i.e. −M is Hurwitz.

As LNA is the main tool of analysis in this work, more
comments on the effectiveness of LNA is in order. Although
LNA was historically derived as a second order system size
approximation of the chemical master equation, resulting
in a Fokker-Planck equation with a stochastic differential
equation interpretation and a Gaussian steady state distri-
bution [20], this is not necessary. LNA, as well as higher
order approximations, could be derived as Taylor expansions
on the moment equations [21]. In fact, it could be shown

that LNA could be interpreted as a linear propensity CRN
approximation that preserves discreteness and non-negativity
of the state variables (see Section V-B).

III. RESULTS

A. Coupling could reduce noise

Here we illustrate how coupling could reduce noise
through one simple example with very explicit analysis.

Consider the following feedforward network, called a
“sniffer” system in biological literature [22].

x1
w−→ x1 + 1, x2

w−→ x2 + 1,

x1
kx1x2−−−−→ x1 − 1, x2

x2/τ2−−−→ x2 − 1.
(4)

It consists of two components x1 and x2, both activated by
an external input w, while x2 acts as an enzyme that catalyze
the degradation of x1. The system (4) does not couple the
birth events of x1 and x2, so they are produced with rate
w through separate reactions. The corresponding coupled
version of system (4) keeps the last two death reactions the
same while substituting the following reaction for the first
two birth reactions:

x1, x2
w−→ x1 + 1, x2 + 1. (5)

For both coupled and decoupled versions, we see that the
birth rates of x1 and x2 are R+

1 = R+
2 = w, their death

rates are R−1 = kx1x2, R−2 = x2/τ2, and their step sizes
are 〈s11〉 = 〈s22〉 = 1. For the coupled version, the co-step
sizes are 〈s12〉 = 〈s21〉 = 1

2 , indicating half of the flux are
through a coupled reaction where x1 and x2 are increased or
decreased with the same number, while both co-stepsizes are
0 for the decoupled version. Applying LNA approximation
(see Section II), the steady states are 〈x1〉 = τ2/k, 〈x2〉 =
w/τ2 and the time scales are τ1 = 1/(k 〈x2〉) = τ2

kw . The

gain matrix is H =

[
1 1
0 1

]
. The diffusion matrix D in

equation (2) are the following:

Dc =

[
2

τ1〈x1〉
1

τ2〈x1〉
1

τ1〈x2〉
2

τ2〈x2〉

]
, Dd =

[
2

τ1〈x1〉 0

0 2
τ2〈x2〉

]
,

whereDc is for the coupled case andDd is for the decoupled
case.

Equation (2) then becomes the following for the decoupled
system:[

2η11+η12τ1

η12+η22
τ1

+ η12
τ2

η12+η22
τ1

+ η12
τ2

2η22τ2

]
=

[
2

τ1〈x1〉 0

0 2
τ2〈x2〉

]
.

Solving this system of equations for the η’s, we have

η22 =
1

〈x2〉
, η12,d = − τ2

τ1 + τ2

1

〈x2〉
,

η11,d =
1

〈x1〉
− η12,d =

1

〈x1〉
+

τ2
τ1 + τ2

1

〈x2〉
.

We see that the noise of x1 in the decoupled case, η11,d,
can be decomposed into two parts: the first term 1

〈x1〉 that
is the intrinsic noise of x1 doing birth-death by itself, and
the second term that is the noise of x2 carried over to x1
through its regulation on x1.
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In comparison, equation (2) becomes the following for the
coupled system:[

2η11+η12τ1

η12+η22
τ1

+ η12
τ2

η12+η22
τ1

+ η12
τ2

2η22τ2

]
=

[
2

τ1〈x1〉
1

τ2〈x1〉
1

τ1〈x2〉
2

τ2〈x2〉

]
.

Solving this system of equations with the additional con-
straint that τ2 〈x1〉 = τ1 〈x2〉, a consequence of equation (3),
we have the following:

η22 =
1

〈x2〉
, η12,c = 0, η11,c =

1

〈x1〉
.

Note that η11,c is the same as that of a simple birth-death
process of x1 by itself, with no interaction with x2 at
all. The noise for the decoupled case is larger than the
coupled case by η11,d− η11,c = τ2

τ1+τ2
η22, x2’s noise passed

onto x1 through their interaction. This indicates that the
noise contributed to x1 from the interaction with x2 in the
decoupled case is cancelled out here due to coupling.

This example shows that coupling could indeed reduce
noise. In particular, we see that coupling very effectively got
rid of noise contributed by the stochasticity of the controller
component. We will see that this is largely true for the
general case in Section III-C.

B. Coupling suppresses noise below Lestas et. al. bound

We show here through a biologically plausible example
that coupled systems could have noise below the bound
described in [2].

Consider the following system:

x1

x1
τ1−−→ x1 − 1, x2

k
x1−−→ x2 + 1,

(x1, x2)
x2
nτ2−−→ (x1 + 1, x2 − n).

(6)

Here n molecules of x2 can be converted to 1 molecule of
x1, resulting in a negative coupled reaction. Besides this, x1
has first order death reaction by itself, while x2 is produced
through a reaction that is suppressed by x1.

When n = 1, the coupled reaction could be an enzyme
transforming from an inactive state x2 into an active state x1,
which in turn suppresses the production of this enzyme x2.
Alternatively, it could be a binding protein in complex with
a functional domain (x2) being digested into separate parts,
where the free binding protein (x1) suppresses the production
of this complex (x2). When n > 1, the coupled reaction
could be protein subunits x2 forming a protein complex
x1 involving n such subunits (e.g. n = 2 corresponds
to a dimer), while x1 has one of its active functions the
suppression of subunit x2’s production. Therefore, this sys-
tem is biologically plausible with potential straight-forward
implementations through tools in synthetic biology.

To compare with the Lestas et. al. bound, we need to delve
into the details of their work [2]. Lestas et. al. considered
reaction networks of the following form:

x1
u(x2)−−−→ x1 + 1, x1

x1/τ1−−−→ x1 − 1,

x2
f(x1)−−−→ x2 + 1, x2

g(x2)−−−→ x2 − 1,

where x1 is the plant species whose noise is to be con-
trolled, while x2 is the signaling controller species whose

information on x1 is the only source of information on x1
we could use to suppress its noise. The signaling of x2 is
through its birth events, as the birth rate f is dependent
on x1. For example, if f(x1) = x1, so x1 catalyzes the
production of x2, then we would estimate x1 to be large
if we observe a high density of x2’s birth events. Therefore,
information about x1’s abundance could be extracted through
a trajectory of x2’s birth events. Because x2’s death rate g
doesn’t depend on x1, the death events could only confuse
our observations and does not add to our information about
x1. So we ignore death events and focus on x2’s birth events.
On the other hand, with the information about x1 extracted
through observations on x2, we try to suppress x1’s noise by
controlling its production rate, u, which could be an arbitrary
function of x2, potentially with memory. In control theory
terms, x1 is the plant, birth events of x2 with signaling rate f
is the sensor, and x1’s birth rate u is the controller actuation.

Lestas et. al. then proceeded to use sensor and actuator
separation in order to first bound the channel capacity in
terms of f and then bound the noise in terms of channel
capacity. The bounds are the following:

C = 〈f〉 log

{
1 +

Var {f}
〈f〉2

}
, η11 ≥

1

〈x1〉
1

Cτ1 + 1
, (7)

where C is an achievable upper bound for the channel
capacity of x2’s birth events assuming finite mean and
variance of f , and τ1 is the average life time of x1 as defined
in Section II. If we can write the mean and variance of f
in terms of those of x1 (e.g. when f ∝ x1), then these
two bounds could be combined to produce a lower bound
of x1 in terms of only x1’s mean, variance, and time scales.
Importantly, when f is a linear function of x1, f ∝ x1,
this bound is η11 ≥ 1

〈x1〉
2

1+
√
1+N

, where N = fτ1
〈x1〉 is the

effective signaling rate, defined to be number of birth events
of x2 per x1 molecule during an average life time of x1
(i.e. before x1 changes). This is the quartic bound for the
coefficient of variation (

√
η11) mentioned in Section I.

Going back to our example, we see that the number of
x2 molecules consumed in the coupled reaction, n, is equal
to the signaling rate N as defined above. So we expect to
see better noise suppression with increasing n. The birth rate
satisfiesf = k

x1
, which is not a linear function of x1, so we

need to use equation (7), while the linear bound could not be
used. In simulation, we need to estimate mean and variance
of f to calculate C, which in turn enables calculation for
lower bound of η11 in equation (7). It is important to note that
we violated non of the assumptions of the Lestas et. al. bound
except allowing coupling among reactions. Using LNA, we
could analytically solve the system to have η11 = 1

〈x1〉
n+1
4n

in the fast controller dynamics limit, where τ2 � τ1 (see
results in Section III-C). The simulation result comparing the
simulated noise of x1, its LNA analysis, and the Lestas et. al.
bound in equation (7) is shown in Figure 1. We see that the
noise is indeed well below the theoretical bound of Lestas
et. al. for not too large n, which is the more biologically
probably parameter regime.

We also did simulation for the decoupled version of
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Fig. 1. Noise of example (6) in Section III-B compared to Lestas et. al.
bound [2]. The y axis is the variance divided by mean of x1, or its Fano
factor. The x axis is the signaling rate N = n, taking integer values from
1 to 10. The Gillespie simulation results of system (6) are the black dots
(coupled-sim), in good agreement with the theoretical results based on LNA
shown as the light grey curve (coupled-theory). The theoretical bound of
equation (7) with estimated capacity shown as the light red curve (bound).
The same simulation results for the decoupled version of system (6) are
blue dots (decoupled-sim).

system (6), where the following two reactions substituted
the coupled reaction:

x1

x2
nτ2−−→ x1 + 1, x2

x2
nτ2−−→ x2 − n.

The simulation results for this decoupled version are the
blue dots in Figure 1, showing that it is indeed above the
Lestas et. al. bound, as the decoupled case satisfied all of
the assumptions in their work [2].

It should also be noted that although system (6) could
achieve noise below the bound of [2], the scaling of noise in
N in this system is actually worse than quartic root because
it has a lower bound of 1

4 , as is shown by the black curve’s
convergence to 1

4 in Figure 1 as well as the LNA calculation
for η11 in this case. We will see in the following section that
this non-zero lower bound on noise is true in general for
coupled systems. In other words, once the architecture of a
system is determined, there is a lower bound on how much
noise can be reduced by coupling.

C. Coupling in two-component CRN

In this section, we study the lower bound for noise in
two-node chemical reaction networks, explicitly allowing
coupling among reactions.

We start from the following formula for noise for stable
two-node chemical reaction networks using LNA, which is
derived in Section V-A:

η11 ≥
1

H11 〈x1〉
min

{〈
s1|1
〉

+

1

1 +K

(〈
s1|1
〉
− 2k

∣∣〈s1|2〉∣∣+ k2
〈
s2|2
〉

N

)}
.

(8)

Here N =
〈R±2 〉τ1
〈x1〉 is the effective signaling rate as in the

Lestas et. al. bound in equation (7), k = H12

H22
sgn

{〈
s1|2
〉}

,
and K = −H12H21

H11H22
. k is the controller actuation gain, as H12

is the logarithmic gain of x2’s influence on x1’s birth and
death rates. The sign of

〈
s1|2
〉

enters k so that the sign of
k is meaningful as well: k < 0 always implies amplification

of noise, while k > 0 may result in suppression of noise.
K is the closed loop gain, with negative sign in front to
again make positive K correspond to noise suppression and
negative K, noise amplification.

In Section V-A, it is shown that the two terms in the
minimization in equation (8) are achievable. η11 achieves
the first term if the controller time scale is much larger than
the plant time scale with τ1 � τ2, while the second term
is achieved when the controller time scale is much faster
than the plant time scale with τ1 � τ2. It is reasonable

that η11 becomes η11,nc ≡
〈s1|1〉
H11〈x1〉 when the controller x2’s

dynamics is very slow, as x2 is essentially constant in x1’s
time scale, so x1 is doing birth-death by itself with constant
x2. Therefore, we can regard η11,nc, the first term, as a
baseline that is easily achieved when there is no control
actuation at all. Note that the no control case is not the same
as open loop, as open loop could have controller actuation
on the plant with no sensing.

The more interesting term is the second one, which could
become less than the first no-control term in certain architec-
tures. For the second term to be small, we need k > 0 and
K > 0. K > 0 corresponds to negative feedback, with either
x1 activating x2 and x2 repressing x1, or x1 repressing x2
and x2 activating x1. k > 0 corresponds to an actuation that
is compatible with the coupling reaction. If we have positive
coupling, i.e.

〈
s1|2
〉
> 0, then k > 0 implies H12 > 0 or that

the controller x2 represses x1, as in the example of Section
III-A. If we have negative coupling, i.e.

〈
s1|2
〉
< 0, then

k > 0 implies H12 < 0 or that the controller activates x1, as
in the example in Section III-B. More detailed implications
are discussed below.

1) Feedback vs. feedforward: Both incoherent feedfor-
ward and negative feedback architectures are widely found in
natural biological regulatory systems with homeostasis [23].
However, our result shows that feedforward architectures
always have larger noise compared to negative feedback
architectures with the same plant dynamics, controller ac-
tuation, and coupling. Feedforward architectures allow con-
troller actuation but no sensing, so K = 0. If K > 0, which
is the case for negative feedback, then the lower bound for
noise is always lower than the feedforward case by a factor of

1
1+K . Note that noise could be amplified by positive feedback
with K < 0.

This is in strong contrast with the result for deterministic
robust perfect adaptation, relevant for suppression of extrin-
sic noise (i.e. noise of parameters). Robust perfect adaptation
is the property that a deterministic system could reach a
homeostasis at steady state despite constant disturbances
and uncertain dynamics [24], which is biologists’ term
for robust constant disturbance rejection. Both feedforward
and feedback architectures could implement robust perfect
adaptation equally well, with only differences in the physical
controller implementation considerations [25]. Once noise
is considered, we see that negative feedback could achieve
smaller noise than feedforward, even when the underlying
deterministic system dynamics is the same.
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2) Coupled vs. decoupled.: The coupled case always have
lower noise than the decoupled case if k > 0. If we assume
our system does not have coupling, then

〈
s1|2
〉

= 0, so the
term −2k

∣∣〈s1|2〉∣∣, which is negative when k > 0, becomes
zero for the decoupled case.

We also see that larger N or higher signaling rate always
corresponds to less noise in the decoupled case, which agrees
with what is implied by the Lestas et. al. bound. The lower

bound for this case is η11 ≥ η11,fb ≡
〈s1|1〉

H11(1+K)〈x1〉 , achieved
in the large signaling (N →∞) and fast controller (τ2 � τ1)
limit. Therefore we can regard η11,fb as the lowest noise
achievable with only feedback regulations and no coupling.
Note that η11,fb = 1

1+K η11,nc, so we decrease noise by a
factor of 1

1+K compared to no control case when we have
negative feedback.

In comparison, the coupled case have a different interpre-

tation of the effective signaling rate N , as N =
〈s2|1〉
〈s1|2〉 if〈

s1|2
〉
6= 0, a consequence of equation (3). In this case, the

effective signaling rate and the coupling strength are strongly
related to each other. In particular, if the coupling reaction is
known, then the optimal signaling rate is no longer infinite.
This is shown explicitly in the following subsection.

3) Limit on noise suppression by coupling: We show that
the effective signaling rate is not larger the better for coupled
systems and that the suppression of noise through a coupling
reaction is limited to a factor of 1

2 beyond the feedback lower
bound η11,fb.

Consider the case where we have only one coupling
reaction of the form (x1, x2) → (x1 + b1σ1, x2 + b2σ2),
where b1, b2 ∈ Z>0 are the molecule counts of x1 and x2
changed by this reaction, and σ1, σ2 ∈ {1,−1} are signs of
the change. We assume this coupled reaction has α1 portion
of the birth or death flux of x1, and α2 portion of the flux of
x2, where α1, α2 ∈ (0, 1]. We also assume that all reactions
other than the coupled one have step size 1. In terms of
these parameters, we have

〈
s1|1
〉

= α1b1+(1−α1)+1
2 =

1 + α1(b1−1)
2 ,

〈
s2|2
〉

= 1 + α2(b2−1)
2 ,

〈
s1|2
〉

= α2b1
2 σ1σ2,〈

s2|1
〉

= α1b2
2 σ1σ2, and N =

〈s2|1〉
〈s1|2〉 = α1b2

α2b1
. Substituting

these into equation (8) yields lower bounds for noise in terms
of αi and bi. Notice that once the coupling reaction is known
or b1, b2 are determined, varying the effective signaling rate
N is the same as varying α1 and α2, the fractions of fluxes
that the coupled reaction take.

The partial derivative of the second term of the lower
bound in equation (8) with respect to b1 is always positive, so
b1 should be as small as possible, while the partial derivative
with respect to b2 is always negative, so b2 should be as
large as possible. This makes sense, as larger b2

b1
means that

x1’s change is amplified in x2’s change, so the signal is less
corruptible by internal noise of x2.

If we take b1 = 1, then the partial derivative with respect
to α1 is always negative, so α1 = 1 is optimal. This is
reasonable, as α1 = 1 means the coupling reaction accounts
for as large a fraction of change as possible of x1, so the
knowledge of x1’s change obtained from x2 through the

coupling reaction is more informative.
The partial derivative with respect to α2, however, is

usually not as simple. The optimal α2 is
α1b2
k −1
b2−1 when

b2 6= 1. This shows that the optimal fraction of flux in x2
of the coupled reaction is related to the controller actuation
gain as well as the stoichiometry of the coupling reaction.
In particular, this shows that the optimal effective signaling
rate N is determined by parameters of the coupling reaction,
such as b1, b2 and k. For example, taking α1 = 1 and large
b2, we have 1

k as the optimal α2, and the optimal effective
signaling rate N is k b1b2 .

It should be noted that the effective signaling rate is not
larger the better when coupling reaction is fixed does not
contradict that larger effective signaling rate should always
reduce noise. Indeed, larger effective signaling rate N always
corresponds to smaller lower bound for noise if we do
not constrain b1 and b2. The optimal b2 is infinity, which
corresponds to infinite N . However, once b1 and b2 are fixed,
then N is no longer free to vary by itself. For example, if
we fix parameters at their optimal values so that b1 = 1,
α1 = 1 and b2 is large, then N = 1

α2b2
, which could

only become larger by decreasing α2. However, smaller
α2 would also mean that the coupling reaction accounts
for a smaller fraction of x2’s change, so the signal about
x1 becomes more easily obfuscated by noise of x2’s other
reactions not coupled with x1. In other words, since smaller
α2 corresponds to more signal amplification through x2’s
own birth-death reactions that are not coupled with x1, there
is a tradeoff between noisy amplification of signals through
the decoupled reactions and the preservation of accurate
signals through the coupled reactions.

Another implication of the above observation is that under
coupling reactions, a moderate signaling rate could result
in significant noise suppression, as the optimal N could be
small. This suggests that noise suppression with coupling
could be rather cost-effective, therefore preferable for bio-
logical systems.

Now, taking the optimal values of b1 = 1, α1 = 1, b2 →
∞, and α2 = 1

k results in η11 = η11,c = 1
2η11,fb in the fast

controller limit (τ2 � τ1), so the optimal lower bound with
one coupling reaction while other reactions have step size
1 is half of the optimal lower bound of negative feedback.
This shows that coupling cannot make noise arbitrarily small
beyond the no-coupling case.

IV. DISCUSSION

In this work we investigated the coupling mechanisms
that is widely found in biology for noise suppression. We
constructed examples that can suppress noise below the
Lestas et. al. bound [2] and, by systematically analyzing all
two-node chemical reaction networks, showed that coupling
has implications on effective network architectures and that
coupling has its own limitations in noise suppression.

Our example constructed in Section III-B suppresses noise
below the Lestas et. al. bound, but broke one of their
assumptions that require the plant and the controller to
have separate birth-death reactions. It may therefore seem
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natural that we could go below their bound. However, it
should be noted that not only is the Lestas et. al. bound
hypothesized to be true in much more general situations [2],
previous efforts in going beyond this bound either employed
complex non-biological controllers [26] or could only show a
theoretically better lower bound with unknown achievability
[27]. Hence, finding an example or a class of systems that
suppresses noise beyond the Lestas et. al. bound is highly
nontrivial with significant implications. In particular, the
example in Section III-B shows that biologically plausible
reaction systems could indeed suppress noise below the
Lestas et. al. bound, and situations beyond the bound should
be seriously explored and considered for regulation and
information processing in biological systems. Indeed, the
constructions showing that chemical reaction networks could
perform universal computations almost all used coupling
reactions [28].

With that said, the results in this work does not try to
contradict the results in [2], but rather follows its pioneering
efforts in exploring fundamental limits of noise suppression
in biological systems. We showed that noise suppression with
coupling could decrease noise below their bound, but has its
own fundamental limitations. This is also connected with the
work of [3], which does not assume LNA and derives tight
exact lower bounds for noise, but the lower bounds are harder
to analyze for different cases and only examples without
coupling have been analyzed. It is therefore of high interest
to derive exact lower bounds in the spirit of [3] that includes
coupling. Furthermore, theoretical investigations that relate
LNA analysis with the methods of [3] would be highly
beneficial, as the LNA method is scalable and analytically
tractable, hence useful for controller design and architecture
exploration.

This work focused on intrinsic noise, while noise in
biology could be intrinsic as well as extrinsic. Intrinsic noise
arises from randomness of the system dynamics itself, while
extrinsic noise comes from noise in system parameters [29].
Extrinsic noise could be treated rather well by ignoring
intrinsic noise [29], so perfect extrinsic noise suppression
could be considered as perfect adaptation in the deterministic
system. Robust perfect adaptation and its constraints on
system architecture for biomolecular systems is studied in
[25]. It is therefore desirable to connect intrinsic noise
suppression together with robust perfect adaptation concerns.
After all, noise suppression is not meaningful if the fixed
point is not desirable.

While coupling considered in this work is of a binary
kind, where two components are either coupled or decoupled,
several biological phenomena observed in nature also have
a “soft” coupling interpretation. For example, genes that are
spatially close to each other due to their position on the
genome or its 3d structure are more likely to be transcribed
together in a short period of time [8]. Indeed, the positioning
of genes are evolutionarily selected and the 3d structure of
the genome is highly regulated [11]. This urges the study of
a generalization of the coupling notion here to include these
cases.

Lastly, coupling is a phenomenon rather specific to
biomolecular control. Although covariance is considered in
canonical stochastic control theory, coupling is a structu-
ally and physically different way of influencing variables’
covariance than regulations through birth and death rates.
This echoes the results in [25], where physical constraints
specific to biomolecular reaction systems is shown to make
integral feedback implementation a nontrivial design problem
in biology. With these observations, it is highly desirable to
develop theoretical tools custom-fit for biological systems so
as to gain insight for biomolecular control problems.
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V. APPENDIX

A. Two component CRN noise analysis

Here we derive equation (8) using LNA.
Equation (2) for the two dimensional (n = 2) case gives

rise to the following system of equations:2(H11
τ1
η11 +

H12
τ1
η12
) (

H11
τ1

+ H22
τ2

)
η12 +

H12
τ1
η22 +

H21
τ2
η11

2
(
H21
τ2
η12 +

H22
τ2
η22
) 

=

 2〈s1|1〉
τ1〈x1〉

〈s1|2〉
τ2〈x1〉

+
〈s2|1〉
τ1〈x2〉

2〈s2|2〉
τ2〈x2〉

 .
We make the following assumptions: the deterministic

linearized system is stable, and H11, H22 6= 0. The first
assumption is needed for the LNA to have finite variance.
Since the deterministic system is stable if and only if −M is
Hurwitz, for n = 2 case we have the following conditions for
stable linearized system: H11

τ1
+ H22

τ2
> 0 while H11H22 −

H12H21 > 0. The second assumption is more biological.
H11 = 0 implies ∂x1R

− = ∂x1R
+, so stability of x1 relies

on sensing and actuation of other system components. This
is highly undesirable biologically, as constantly mutations
could occur in the system that results in loss of function,
breaking the sensing reactions such that other components
become fixed and do not respond to changes of x1, or
breaking the actuation reactions such that other components’
actions on x1 become zero. In either case, x1 dynamics could
become unstable, implying disastrous consequences for the
biological organism. In addition, the H11 = 0 or H22 = 0
cases are not biologically informative but simple to analyze,
and can be easily shown that they satisfy the bound (8) as
well.

With the above assumptions, we could then write the
equation above into more informative parameters and rewrite
it into the following linear system of equations: 1 k1|2α 0
k2|1 1 k1|2
0 k2|1α 1

 H11η11
(T21H11 +H22)η12

T21H22η22

 =


〈
s1|1
〉

2
〈
s1|2
〉

〈s2|2〉
N

 1

〈x1〉
,
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where Tij = τi
τj

is a ratio of time scales, ki|j =
Hij
Hjj

is
the logarithmic sensitivity of xi to changes in xj normalized
by the sensitivity of xj to its own changes, N = 〈R2〉τ1

〈x1〉
is the effective signaling rate as defined in [2], and α =

H11τ2
H11τ2+H22τ1

with α = 1 − α. Solving the system for η11
yields the following:

η11 =
1

H11 〈x1〉

{
α
〈
s1|1
〉
+

α

(〈
s1|1
〉
− 2k2|1

〈
s2|1
〉
+ k2

〈s2|2〉
N

)
1− k1|2k2|1

}
.

So we see that η11 can be expressed as a convex combination
of two terms since α + α = 1 and α ∈ [0, 1]. Taking the
min of the two terms then yield the lower bound shown in
equation (8), with the first term achieved when α = 1 or
τ2 � τ1, and the second term achieved when α = 0 or
τ2 � τ1.

B. Birth-death interpretation of LNA

LNA was considered am interpretable but inaccurate ap-
proximation because of its derivation assuming large mean
and Gaussian noise, which violates the non-negativity and
discreteness of the variables [20], [19]. Here, through one
simple example, we show that the Gaussian interpretation is
not necessary, and the non-negativity and discreteness could
be preserved. A systematic investigation is ongoing work to
be published on another occasion.

Consider the following non-linear birth death process:

x
a3−→ x+ 1 x

x3

−→ x− 1.

Equation (2) gives η = 1
H〈x〉 = 1

3〈x〉 . The only fixed point
is x∗ = a. Then consider the following linear-propensity
birth-death process:

x
r1(x)−−−→ x+ 1, x

r2(x)−−−→ x− 1,

where r2(x) = a3

a−d 23ae

(
x− d 23ae

)
and r1(x) = r2(x) −

3a2(x − a), for a > 3. Therefore R− − R+ for this
system is the same as that for the original nonlinear birth-
death process, and equation (2) would yield the same result
η = 1

3〈x〉 with the same fixed point x∗. On the other hand, the
system does not evolve below d 23ae as the death rate is zero
on that number, so the variable x is always non-negative.

This implies that LNA could be a good approximation
even when the mean molecular count is small (in fact as
small as 3 in this case), and the distribution could preserve
the discreteness as well as non-negativity, so it is not neces-
sarily Gaussian. The only situations that LNA breaks down
then are the same as the situations where the deterministic
linearization of a nonlinear dynamical system breaks down:
sharp non-lineariarities away from the fixed point.
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