217 research outputs found

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    Advanced modelling and control of 5MW wind turbine using global optimization algorithms

    Get PDF
    This article presents a methodological approach for controller gain tuning of wind turbines using global optimization algorithms. For this purpose, the wind turbine structural and aerodynamic modeling are first described and a complete model for a 5 MW wind turbine is developed as a case study based on a systematic modeling approach. The turbine control requirements are then described and classified using its power curve to generate an appropriate control structure for satisfying all turbine control modes simultaneously. Next, the controller gain tuning procedure is formulated as an engineering optimization problem where the command tracking error and minimum response time are defined as objective function indices and physical limitations (overspeed and oscillatory response) are considered as penalty functions. Taking the nonlinear nature of the turbine model and its controller into account, two meta-heuristic global optimization algorithms (Imperialist Competitive Algorithm and Differential Evolution) are used to deal with the defined objective functions where the mechanism of interaction between the defined problem and the used algorithms are presented in a flowchart feature. The results confirm that the proposed approach is satisfactory and both algorithms are able to achieve the optimized controller for the wind turbine

    Learning automata and sigma imperialist competitive algorithm for optimization of single and multi-objective functions

    Get PDF
    Evolutionary Algorithms (EA) consist of several heuristics which are able to solve optimisation tasks by imitating some aspects of natural evolution. Two widely-used EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are considered for improving single objective EA and Multi Objective EA (MOEA), respectively. HS is popular because of its speed and ICA has the ability for escaping local optima, which is an important criterion for a MOEA. In contrast, both algorithms have suffered some shortages. The HS algorithm could be trapped in local optima if its parameters are not tuned properly. This shortage causes low convergence rate and high computational time. In ICA, there is big obstacle that impedes ICA from becoming MOEA. ICA cannot be matched with crowded distance method which produces qualitative value for MOEAs, while ICA needs quantitative value to determine power of each solution. This research proposes a learnable EA, named learning automata harmony search (LAHS). The EA employs a learning automata (LA) based approach to ensure that HS parameters are learnable. This research also proposes a new MOEA based on ICA and Sigma method, named Sigma Imperialist Competitive Algorithm (SICA). Sigma method provides a mechanism to measure the solutions power based on their quantity value. The proposed LAHS and SICA algorithms are tested on wellknown single objective and multi objective benchmark, respectively. Both LAHS and MOICA show improvements in convergence rate and computational time in comparison to the well-known single EAs and MOEAs

    A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    Get PDF
    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover

    Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy

    Get PDF
    Abstract The human immunodeficiency virus (HIV), as one of the most hazardous viruses, causes destructive effects on the human bodies' immune system. Hence, an immense body of research has focused on developing antiretroviral therapies for HIV infection. In the current study, we propose a new control technique for a fractional-order HIV infection model. Firstly, a fractional model of the HIV model is investigated, and the importance of the fractional-order derivative in the modeling of the system is shown. Afterward, a type-2 fuzzy logic controller is proposed for antiretroviral therapy of HIV infection. The developed control scheme consists of two individual controllers and an aggregator. The optimal aggregator modifies the output of each individual controller. Simulations for two different strategies are conducted. In the first strategy, only reverse transcriptase inhibitor (RTI) is used, and the superiority of the proposed controller over a conventional fuzzy controller is demonstrated. Lastly, in the second strategy, both RTI and protease inhibitors (PI) are used simultaneously. In this case, an optimal type-2 fuzzy aggregator is also proposed to modify the output of the individual controllers based on optimal rules. Simulations results demonstrate the appropriate performance of the designed control scheme for the uncertain system

    Experimental Investigations on Machining of CFRP Composites: Study of Parametric Influence and Machining Performance Optimization

    Get PDF
    Carbon Fiber Reinforced Polymer (CFRP) composites are characterized by their excellent mechanical properties (high specific strength and stiffness, light weight, high damping capacity etc.) as compared to conventional metals, which results in their increased utilization especially for aircraft and aerospace applications, automotive, defense as well as sporting industries. With increasing applications of CFRP composites, determining economical techniques of production is very important. However, as compared to conventional metals, machining behavior of composites is somewhat different. This is mainly because these materials behave extremely abrasive during machining operations. Machining of CFRP appears difficult due to their material discontinuity, inhomogeneity and anisotropic nature. Moreover, the machining behavior of composites largely depends on the fiber form, the fiber content, fiber orientations of composites and the variability of matrix material. Difficulties are faced during machining of composites due to occurrence of various modes of damages like fiber breakage, matrix cracking, fiber–matrix debonding and delamination. Hence, adequate knowledge and in-depth understanding of the process behavior is indeed necessary to identify the most favorable machining environment in view of various requirements of process performance yields. In this context, present work attempts to investigate aspects of machining performance optimization during machining (turning and drilling) of CFRP composites. In case of turning experiments, the following parameters viz. cutting force, Material Removal Rate (MRR), roughness average (Ra) and maximum tool-tip temperature generated during machining have been considered as process output responses. In case of drilling, the following process performance features viz. load (thrust), torque, roughness average (of the drilled hole) and delamination factor (entry and exit both) have been considered. Attempt has been made to determine the optimal machining parameters setting that can simultaneously satisfy aforesaid response features up to the desired extent. Using Fuzzy Inference System (FIS), multiple response features have been aggregated to obtain an equivalent single performance index called Multi-Performance Characteristic Index (MPCI). A nonlinear regression model has been established in which MPCI has been represented as a function of the machining parameters under consideration. The aforesaid regression model has been considered as the fitness function, and finally optimized by evolutionary algorithms like Harmony Search (HS), Teaching-Learning Based Optimization (TLBO), and Imperialist Competitive Algorithm (ICA) etc. However, the limitation of these algorithms is that they assume a continuous search within parametric domain. These algorithms can give global optima; but the predicted optimal setting may not be possible to adjust in the machine/setup. Since, in most of the machines/setups, provision is given only to adjust factors (process input parameters) at some discrete levels. On the contrary, Taguchi method is based on discrete search philosophy in which predicted optimal setting can easily be achieved in reality.However, Taguchi method fails to solve multi-response optimization problems. Another important aspect that comes into picture while dealing with multi-response optimization problems is the existence of response correlation. Existing Taguchi based integrated optimization approaches (grey-Taguchi, utility-Taguchi, desirability function based Taguchi, TOPSIS, MOORA etc.) may provide erroneous outcome unless response correlation is eliminated. To get rid of that, the present work proposes a PCA-FuzzyTaguchi integrated optimization approach for correlated multi-response optimization in the context of machining CFRP composites. Application potential of aforementioned approach has been compared over various evolutionary algorithms

    Fuzzy adaptive emperor penguin optimizer for global optimization problems

    Get PDF
    The Emperor Penguin Optimizer (EPO) is a recently developed population-based metaheuristic algorithm that simulates the huddling behaviour of emperor penguins. Mixed results have been observed in the performance of EPO in solving general optimization problems. Within the EPO, two parameters need to be tuned (namely f and l) to ensure a good balance between exploration (i.e., roaming unknown locations) and exploitation (i.e., manipulating the current known best). Since the search contour varies depending on the optimization problem, the tuning of parameters f and l is problem-dependent, and there is no one-size-fits-all approach. To alleviate this parameter tuning problem, an adaptive mechanism can be introduced in EPO. This research work proposes a fuzzy adaptive variant of EPO, namely FAEPO, to solve this problem. As the name suggests, FAEPO can adaptively tune the parameters f and l throughout the search based on three measures (i.e., quality, success rate, and diversity of the current search) via fuzzy decisions. A test suite of twelve benchmark test functions and three global optimization problems: Team Formation Optimization (TFO), Low Autocorrelation Binary Sequence (LABS), and Modified Condition/ Decision coverage (MC/DC) test case generation problem were solved using the proposed algorithm. The respective solution results of the competing metaheuristic algorithms were compared. The experimental results demonstrate that FAEPO significantly improved the performance especially of its predecessor (EPO), an improved variant of EPO (i.e., IEPO), and a fuzzy-based variant of ChOA (i.e., FChOA) and gives superior performance against the competing metaheuristic algorithms. Moreover, the proposed FAEPO requires 50% less fitness function evaluation in each iteration than the ancestor EPO and exhibits competitive performance in terms of convergence and computational time against its predecessor (EPO) and other competing meta-heuristic algorithms with a 90% confidence level
    corecore