6 research outputs found

    Distributed data cache designs for clustered VLIW processors

    Get PDF
    Wire delays are a major concern for current and forthcoming processors. One approach to deal with this problem is to divide the processor into semi-independent units referred to as clusters. A cluster usually consists of a local register file and a subset of the functional units, while the L1 data cache typically remains centralized in What we call partially distributed architectures. However, as technology evolves, the relative latency of such a centralized cache will increase, leading to an important impact on performance. In this paper, we propose partitioning the L1 data cache among clusters for clustered VLIW processors. We refer to this kind of design as fully distributed processors. In particular; we propose and evaluate three different configurations: a snoop-based cache coherence scheme, a word-interleaved cache, and flexible LO-buffers managed by the compiler. For each alternative, instruction scheduling techniques targeted to cyclic code are developed. Results for the Mediabench suite'show that the performance of such fully distributed architectures is always better than the performance of a partially distributed one with the same amount of resources. In addition, the key aspects of each fully distributed configuration are explored.Peer ReviewedPostprint (published version

    AGAMOS: A graph-based approach to modulo scheduling for clustered microarchitectures

    Get PDF
    This paper presents AGAMOS, a technique to modulo schedule loops on clustered microarchitectures. The proposed scheme uses a multilevel graph partitioning strategy to distribute the workload among clusters and reduces the number of intercluster communications at the same time. Partitioning is guided by approximate schedules (i.e., pseudoschedules), which take into account all of the constraints that influence the final schedule. To further reduce the number of intercluster communications, heuristics for instruction replication are included. The proposed scheme is evaluated using the SPECfp95 programs. The described scheme outperforms a state-of-the-art scheduler for all programs and different cluster configurations. For some configurations, the speedup obtained when using this new scheme is greater than 40 percent, and for selected programs, performance can be more than doubled.Peer ReviewedPostprint (published version

    Improving multithreading performance for clustered VLIW architectures.

    Get PDF
    Very Long Instruction Word (VLIW) processors are very popular in embedded and mobile computing domain. Use of VLIW processors range from Digital Signal Processors (DSPs) found in a plethora of communication and multimedia devices to Graphics Processing Units (GPUs) used in gaming and high performance computing devices. The advantage of VLIWs is their low complexity and low power design which enable high performance at a low cost. Scalability of VLIWs is limited by the scalability of register file ports. It is not viable to have a VLIW processor with a single large register file because of area and power consumption implications of the register file. Clustered VLIW solve the register file scalability issue by partitioning the register file into multiple clusters and a set of functional units that are attached to register file of that cluster. Using a clustered approach, higher issue width can be achieved while keeping the cost of register file within reasonable limits. Several commercial VLIW processors have been designed using the clustered VLIW model. VLIW processors can be used to run a larger set of applications. Many of these applications have a good Lnstruction Level Parallelism (ILP) which can be efficiently utilized. However, several applications, specially the ones that are control code dominated do not exibit good ILP and the processor is underutilized. Cache misses is another major source of resource underutiliztion. Multithreading is a popular technique to improve processor utilization. Interleaved MultiThreading (IMT) hides cache miss latencies by scheduling a different thread each cycle but cannot hide unused instructions slots. Simultaneous MultiThread (SMT) can also remove ILP under-utilization by issuing multiple threads to fill the empty instruction slots. However, SMT has a higher implementation cost than IMT. The thesis presents Cluster-level Simultaneous MultiThreading (CSMT) that supports a limited form of SMT where VLIW instructions from different threads are merged at a cluster-level granularity. This lowers the hardware implementation cost to a level comparable to the cheap IMT technique. The more complex SMT combines VLIW instructions at the individual operation-level granularity which is quite expensive especially in for a mobile solution. We refer to SMT at operation-level as OpSMT to reduce ambiguity. While previous studies restricted OpSMT on a VLIW to 2 threads, CSMT has a better scalability and upto 8 threads can be supported at a reasonable cost. The thesis proposes several other techniques to further improve CSMT performance. In particular, Cluster renaming remaps the clusters used by instructions of different threads to reduce resource conflicts. Cluster renaming is quite effective in reducing the issue-slots under-utilization and significantly improves CSMT performance.The thesis also proposes: a hybrid between IMT and CSMT which increases the number of supported threads, heterogeneous instruction merging where some instructions are combined using SMT and CSMT rest, and finally, split-issue, a technique that allows to launch partially an instruction making it easier to be combined with others

    Fast thread communication and synchronization mechanisms for a scalable single chip multiprocessor

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 159-163).by Stephen William Keckler.Ph.D

    Doctor of Philosophy

    Get PDF
    dissertationThe embedded system space is characterized by a rapid evolution in the complexity and functionality of applications. In addition, the short time-to-market nature of the business motivates the use of programmable devices capable of meeting the conflicting constraints of low-energy, high-performance, and short design times. The keys to achieving these conflicting constraints are specialization and maximally extracting available application parallelism. General purpose processors are flexible but are either too power hungry or lack the necessary performance. Application-specific integrated circuits (ASICS) efficiently meet the performance and power needs but are inflexible. Programmable domain-specific architectures (DSAs) are an attractive middle ground, but their design requires significant time, resources, and expertise in a variety of specialties, which range from application algorithms to architecture and ultimately, circuit design. This dissertation presents CoGenE, a design framework that automates the design of energy-performance-optimal DSAs for embedded systems. For a given application domain and a user-chosen initial architectural specification, CoGenE consists of a a Compiler to generate execution binary, a simulator Generator to collect performance/energy statistics, and an Explorer that modifies the current architecture to improve energy-performance-area characteristics. The above process repeats automatically until the user-specified constraints are achieved. This removes or alleviates the time needed to understand the application, manually design the DSA, and generate object code for the DSA. Thus, CoGenE is a new design methodology that represents a significant improvement in performance, energy dissipation, design time, and resources. This dissertation employs the face recognition domain to showcase a flexible architectural design methodology that creates "ASIC-like" DSAs. The DSAs are instruction set architecture (ISA)-independent and achieve good energy-performance characteristics by coscheduling the often conflicting constraints of data access, data movement, and computation through a flexible interconnect. This represents a significant increase in programming complexity and code generation time. To address this problem, the CoGenE compiler employs integer linear programming (ILP)-based 'interconnect-aware' scheduling techniques for automatic code generation. The CoGenE explorer employs an iterative technique to search the complete design space and select a set of energy-performance-optimal candidates. When compared to manual designs, results demonstrate that CoGenE produces superior designs for three application domains: face recognition, speech recognition and wireless telephony. While CoGenE is well suited to applications that exhibit a streaming behavior, multithreaded applications like ray tracing present a different but important challenge. To demonstrate its generality, CoGenE is evaluated in designing a novel multicore N-wide SIMD architecture, known as StreamRay, for the ray tracing domain. CoGenE is used to synthesize the SIMD execution cores, the compiler that generates the application binary, and the interconnection subsystem. Further, separating address and data computations in space reduces data movement and contention for resources, thereby significantly improving performance compared to existing ray tracing approaches

    Vector-thread architecture and implementation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 181-186).This thesis proposes vector-thread architectures as a performance-efficient solution for all-purpose computing. The VT architectural paradigm unifies the vector and multithreaded compute models. VT provides the programmer with a control processor and a vector of virtual processors. The control processor can use vector-fetch commands to broadcast instructions to all the VPs or each VP can use thread-fetches to direct its own control flow. A seamless intermixing of the vector and threaded control mechanisms allows a VT architecture to flexibly and compactly encode application parallelism and locality. VT architectures can efficiently exploit a wide variety of loop-level parallelism, including non-vectorizable loops with cross-iteration dependencies or internal control flow. The Scale VT architecture is an instantiation of the vector-thread paradigm designed for low-power and high-performance embedded systems. Scale includes a scalar RISC control processor and a four-lane vector-thread unit that can execute 16 operations per cycle and supports up to 128 simultaneously active virtual processor threads. Scale provides unit-stride and strided-segment vector loads and stores, and it implements cache refill/access decoupling. The Scale memory system includes a four-port, non-blocking, 32-way set-associative, 32 KB cache. A prototype Scale VT processor was implemented in 180 nm technology using an ASIC-style design flow. The chip has 7.1 million transistors and a core area of 16.6 mm2, and it runs at 260 MHz while consuming 0.4-1.1 W. This thesis evaluates Scale using a diverse selection of embedded benchmarks, including example kernels for image processing, audio processing, text and data processing, cryptography, network processing, and wireless communication.(cont.) Larger applications also include a JPEG image encoder and an IEEE 802.11 la wireless transmitter. Scale achieves high performance on a range of different types of codes, generally executing 3-11 compute operations per cycle. Unlike other architectures which improve performance at the expense of increased energy consumption, Scale is generally even more energy efficient than a scalar RISC processor.by Ronny Meir Krashinsky.Ph.D
    corecore