
AGAMOS: A Graph-Based Approach to Modulo
Scheduling for Clustered Microarchitectures

Alex Aletà, Josep M. Codina, Jesús Sánchez, Member, IEEE, Antonio González, and David Kaeli

Abstract—This paper presents AGAMOS, a technique to modulo schedule loops on clustered microarchitectures. The proposed

scheme uses a multilevel graph partitioning strategy to distribute the workload among clusters and reduces the number of intercluster

communications at the same time. Partitioning is guided by approximate schedules (i.e., pseudoschedules), which take into account all

of the constraints that influence the final schedule. To further reduce the number of intercluster communications, heuristics for

instruction replication are included. The proposed scheme is evaluated using the SPECfp95 programs. The described scheme

outperforms a state-of-the-art scheduler for all programs and different cluster configurations. For some configurations, the speedup

obtained when using this new scheme is greater than 40 percent, and for selected programs, performance can be more than doubled.

Index Terms—Clustered microarchitectures, ILP, instruction replication, modulo scheduling, statically scheduled processors.

Ç

1 INTRODUCTION

CLUSTERING is becoming a common trend in the design of
current microprocessors due to its ability to reduce

wire delays, power dissipation, and complexity. Clustering
consists of partitioning processor resources into several
groups or clusters. The components of each cluster are
simpler, faster, and consume less power than a traditional
centralized implementation. The resources in a cluster can
be laid out in close proximity, which will reduce signal
transmission delays [22]. Long (and slow) wires are used to
interconnect clusters.

The use of clustering has been popular especially in the
DSP market, including Texas Instruments’ TMS320C6x
[36], Analog Devices’ TigerSHARC [19], BOPS’s Man Array
[31], HP/ST’s Lx [17], and Equator’s MAP1000 [20]. All
of these processors use a statically scheduled, clustered
microarchitecture.

The effectiveness of a statically scheduled processor
depends heavily on the effectiveness of the compiler. Among
the different compiler steps, code scheduling is probably the
most critical for performance for this class of target
processors. In this paper, we limit our focus to instruction
scheduling techniques for clustered microprocessors. In
particular, we focus on scheduling software-pipelined loops
[12] since a vast majority of the execution time on this class of
processors is spent in loop bodies.

One major task to be performed during instruction
scheduling for clustered microarchitectures is cluster
assignment. The performance of clustered processors
depends heavily on the ability of the compiler to assign
instructions to the appropriate cluster such that workload is
balanced and intercluster communications are minimized.

In this work, we propose a Modulo Scheduling algorithm
for clustered architectures. Modulo Scheduling is a com-
monly used technique to exploit parallelism in loops. The
proposed heuristic-based algorithm (AGAMOS) generates
schedules with high instruction-level parallelism while
reducing register requirements and intercluster commu-
nication penalties. The technique is evaluated using
678 loops taken of the SpecFP95 benchmark suite. The
execution time spent in these loops represents approxi-
mately 95 percent of the total execution time of these
programs. The results presented in this paper show that for
different cluster configurations, the proposed algorithm
significantly outperforms previously proposed approaches.

Former proposals for code scheduling on clustered
microarchitectures were based on a two-phase approach.
First, instructions are assigned to clusters using just the
information provided by the data dependence graph
(DDG), and then the instructions are scheduled by strictly
following the computed partition. More recent proposals
have shown that performing cluster assignment and
instruction scheduling in a single step can be more effective
since the interaction between tasks can be taken into
account. However, the drawback of these latter proposals
is that the cluster assignment of each individual instruction
is decided based on information about already scheduled
instructions, which restricts assignment to use only a partial
or local view of the dependence graph.

The technique proposed in this paper combines the
benefits of global and local information to overcome the
limitations of previous approaches [2]. The main feature of
the technique is that the distribution of the instructions
among the clusters is performed using a global view of the
whole DDG, and at the same time, takes into account
the main implications that the partition will have on the

770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

. A. Aletà is with the Universitat Politècnica de Catalunya (UPC), Campus
Nord, C6-221 Jordi Girona, 1, Barcelona, Spain 08034.
E-mail: aaleta@ac.upc.edu.

. J.M. Codina is with Intel Labs, Edifici Nexus-2, c./ Jordi Girona 29 (3A),
Barcelona, Spain 08034. E-mail: josep.m.codina@intel.com.

. J. Sánchez and A. González are with the Intel-UPC Barcelona Research
Center, Edifici Nexus-2, c./ Jordi Girona 29 (3A), Barcelona, Spain 08034.
E-mail: {jesus.sanchez, antonio.gonzalez}@intel.com.

. D. Kaeli is with the Department of Electrical and Engineering,
Northeastern University, 409 Dana Research Center, Boston, MA 02115.
E-mail: kaeli@ece.neu.edu.

Manuscript received 4 Apr. 2008; revised 22 Aug. 2008; accepted 10 Sept.
2008; published online 11 Feb. 2009.
Recommended for acceptance by K. Ghose.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-04-0143.
Digital Object Identifier no. 10.1109/TC.2009.32.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

scheduling step. The final scheduling is performed as a
separate phase, but the main interaction between these two
tasks (e.g., required memory port usage, intercluster
interconnect utilization, and register requirements) is pre-
cisely estimated during cluster assignment. The information
considered is obtained through an estimate of the final
schedule, which is called a pseudoschedule [3]. Our approach
also features novel instruction replication heuristics to
further reduce the number of communications [4], [5].

The remainder of this paper is organized as follows:
Section 2 provides some background on modulo scheduling
and graph partitioning techniques. Section 4 describes the
proposed technique. Section 5 analyzes its performance.
Section 6 reviews related work, and Section 7 summarizes
this work.

2 MODULO SCHEDULING

Modulo Scheduling is an instruction scheduling technique
for loops [32]. It achieves high performance by overlapping
the execution of consecutive iterations. To begin the
execution of a new iteration, it is not necessary that the
previous iteration has finished its execution. A new
iteration begins after a fixed number of cycles. This number
of cycles is called the initiation interval (II). There is a lower
bound for the II, the minimum initiation interval (MII),
which is computed taking into account resources (resMII)
and recurrences (recMII): MII ¼ maxfresMII; recMIIg.

If a single iteration takes it length cycles to execute, then
there can be up to it lengthIId e iterations executing at the
same time. This term is called the stage count (SC). The stage
count determines the length of the prolog and the epilog of
the loop [33].

Using the terminology just defined, the time that a
modulo-scheduled loop takes to complete execution is
given by the following formula:

Texec ¼ Ntimes � II � ðNiters � 1þ SCÞ;

where Ntimes stands for the number of times that the
loop is executed and Niters represents the number of
iterations of that loop. Hence, reducing the II is crucial
to reducing Texec.

The loop is represented as a DDG G ¼ ðV ;EÞ, where V
stands for the set of nodes of G (every node corresponds to
an instruction in the loop) and E stands for the set of edges
of G (every edge corresponds to a dependence between
instructions in the loop).

Computing a schedule that minimizes the execution time
for a given loop is an NP-complete problem. When using
clustered architectures, the problem becomes even more
difficult. In addition to scheduling all of the instructions in
the loop, we have to schedule intercluster communications
to pass values among clusters. In this work, we assume an
intercluster connection network composed of a set of buses,
as described in [35]. We will write n buses to denote the
number of buses in the network and lat buses will stand for
the latency of these buses.

Given a cluster assignment of the loop instructions, a
communication is required whenever a value that is
produced on one cluster has a consumer instruction located

in a different cluster. Let n coms stand for the number of
communications induced by the cluster assignment. The
minimum number of cycles required to schedule all these
communications is referred to as the bus minimum initiation
interval (busMII). It can be computed as follows:

busMII ¼ n coms

n buses

l m
� lat buses:

3 GRAPH PARTITIONING

Graph partitioning algorithms try to split the set of nodes of
a graph into a predetermined number of parts, respecting
some constraints regarding the number of nodes in each
part, while trying to optimize some objective function.

There is a significant amount of previous work in the
literature that discusses graph partitioning. It has been
shown that multilevel algorithms are the most effective
techniques [24]. These algorithms consist of two steps. In
the first step, the graph is coarsened, that is, a graph with
fewer nodes is generated by fusing pairs of adjacent nodes
present in the original graph. Since the newly generated
graph has fewer nodes, it is easier to partition. Hence, the
new graph is partitioned, which induces a partition in the
original graph. In the second step, a set of heuristics is
applied in order to enhance the partition of the original
graph. In Fig. 1, we present pseudocode for a recursive
version of a multilevel partitioning algorithm. In the next
sections, we describe the two steps in more detail.

3.1 Multilevel Strategies

3.1.1 Coarsening

Graph coarsening is an iterative process. At each step of
this process, a graph with fewer nodes and fewer edges is
obtained. Every new graph is built by fusing pairs of
adjacent nodes of the graph produced by the previous
step into a single macronode in the new graph. Fig. 2
shows an example. The original DDG is shown in the top
left corner. In the next graph, down to the right, the
groups of nodes that will be fused into a single macronode
are marked in gray.1 In the next graph in the upper right,
the three pairs of nodes marked in gray have been fused
into three macronodes.

In order to decide which pairs of nodes will be fused
into new macronodes, a matching is computed. A match-
ing is a set of edges such that none of the edges in this set
is adjacent. The pairs of nodes linked by edges belonging
to the matching are fused into new macronodes. It is

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 771

Fig. 1. Pseudocode for a multilevel partition algorithm.

1. The numbers beside the edges represent their weights, which are
described in Section 3.2.1.

desirable that macronodes have a similar size and coarsen-
ing is performed simultaneously on the whole graph.
Therefore, it is convenient that the matching contains as
many edges as possible to coarsen all the parts of the graph
at the same time. However, there may be edges that are
better candidates than others to collapse. For this reason,
each edge is given a weight and a maximum weight
matching is computed. A maximum weight matching is a
matching such that the sum of the weight of the edges
belonging to it is the highest possible.

This process is repeated, producing a set of graphs.
Every new graph has fewer, though coarser, nodes. In the
example, three graphs are presented, the original one (five
nodes), graph 2 (three nodes), and graph 3 (two nodes).
Every node in the original graph belongs to only one node
in the coarser graphs. For example, in Fig. 2, node A in the
original graph belongs to the macronode AB in graph 2 and
to the macronode ABCD in graph 3.

Coarsening continues until we obtain a graph with a
small number of nodes. This graph is partitioned using a
straightforward process. Usually, coarsening stops when
the number of nodes is equal to the number of partitions;
the final graph is partitioned by assigning each macronode
to a different partition. Since every node of the finer graphs
belongs to one node of the final graph, the partition of the
final graph also induces a partition in all the finer graphs. In
particular, the partition in the final graph induces a
partition in the original graph (referred to as the prelimin-
ary partition). In the example shown in Fig. 2, the graph is
partitioned into two sets of nodes and coarsening stops
when a graph with two macronodes (namely, ABCD and
EF) is obtained. Then, each macronode is assigned to a
different subset. Hence, we have obtained a partition in the
original graph: nodes A, B, C, and D are assigned to one
subset, and nodes E and F to the other subset.

3.1.2 Refining Heuristics

Once the preliminary partition has been obtained, it is
improved upon by analyzing the partitions induced in all
the intermediate graphs produced during the coarsening
process. The process starts with the result obtained in the

final graph and revisits all intermediate graphs, until we
reach the original graph. For this purpose, two heuristics
are applied. These heuristics pursue different goals. The
goal of the first heuristic is to keep the partition balanced
(keeping balanced with respect to the number of nodes in
each set of the partition). The goal of the second heuristic is
to improve the partition (i.e., it tries to obtain a partition
that improves the value of the objective function specified
by the partition problem).

Several implementations have been proposed for both
heuristics. Most of them are based on the well-known
algorithm by Kernighan and Lin [25]. The general idea is
to move nodes from one set of the partition to another
whenever these movements produce a better partition (in
terms of balancing or in terms of the value of the objective
function).

3.2 Graph Partitioning for Modulo Scheduling

In this section, we explain a multilevel graph-partitioning
algorithm for modulo scheduling. The main goal is to
partition a loop in such a way that it can produce a high-
performance schedule. To accomplish this purpose, the
weights assigned to the edges to compute the matching for
the coarsening and the heuristics used to improve the
partition have been carefully designed.

Before describing both tasks in detail, we analyze the
impact of clustering on performance. As we have seen in
Section 2, the execution time of a modulo-scheduled loop is
determined by the II and the length of the schedule.
Splitting the instructions of the loop into clusters can impact
both factors.

Clustering can impact the II in several ways. When the
producer and the consumer of a given value are in different
clusters, intercluster communication is needed. If the
number of these communications is too high, the cluster
interconnect may become a bottleneck and the II may need
to be increased. Furthermore, adding a communication in a
recurrence may increase the length of the recurrence,
which, in turn, can impact the II. Note that for the same
reason, communications may also increase the length of the
schedule.

772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

Fig. 2. Example of coarsening.

Another reason why clustering can impact the II is
register pressure. Splitting instructions into clusters can
increase register pressure due to many reasons. First, some
values may be live in various clusters at the same time.
Second, the workload is not the same in all clusters, so some
of the workloads will have higher register requirements. In
fact, an effective way of reducing the number of commu-
nications consists of placing as many instructions as
possible in one (or a few) clusters. Therefore, this cluster
would suffer from greater register pressure. Hence, redu-
cing the number of communications and keeping register
pressure low are two tightly correlated tasks.

In the next sections, we will show the actions taken
during the partitioning step to address these issues. In
particular, coarsening takes into account the structure of
recurrences in order to avoid inserting communications
where they may increase latency, whereas the heuristics
used to improve the partition benefit from using a more
global view of the structure of the graph that allows us to
more accurately account for the impact of changing the
number of intercluster communications and register pres-
sure on the resulting II.

3.2.1 Weighting Edges to Coarsen the Graph

As described in Section 1, coarsening fuses together pairs of
adjacent nodes into a single macronode. The pairs of fused
nodes will be placed in the same cluster in the preliminary
partition. Hence, we want to fuse together nodes that are
likely to belong to a common set of the partitions. The pairs
to fuse are chosen by finding a maximum weight matching.
Therefore, edges connecting nodes that are likely to belong
to the same set of the partition should have bigger weights.
In this section, we describe how we assign weights to edges.

Our final goal is to generate a partition that results in the
fastest schedule. Hence, the weights have to guide us
during partitioning so that we avoid increasing the II and
the overall schedule length. As explained earlier, one reason
for increasing the II is to introduce communications into
recurrences. We will define weights that will try to avoid
this situation by taking into account the structure of the
recurrences. To accomplish this, the weight of an edge e,
weight(e), needs to capture two different factors. The most
important factor is the impact on execution time of adding a
delay to this edge. We refer to this factor as delay(e). It is
computed as follows:

delayðeÞ ¼ ðNiters � 1Þ � ðnewMII�MIIÞ
þ new longest path� longest path;

where Niters is the iteration count of the loop (obtained
through profiling), newMII is the minimum initiation
interval (taking into account the latency of the commu-
nication), and longest path and new longest path are the
number of cycles of the longest paths in the graph before
and after adding a delay in the edge, respectively.

Thus, the defined weights will be higher for edges
between nodes that belong to a recurrence whose recMII
could increase due to communications. Therefore, these
recurrences will not be split. In addition, these weights also
penalize edges where placing a communication would
increase the length of the schedule.

As an example, we will show how to compute the delay
for the edges of the graph of Fig. 2. Assume that all the
instructions, and that communications between clusters,
have a one-cycle latency. Assume also that the distance of
the backward edge A!C is one. Then, the MII is
determined by the recurrence A, B, C:

MII ¼ recMII ¼ 3:

The longest path in the graph is the path D, C, B, A. Since
all the instructions have a one-cycle latency, the longest
path is four cycles.

Let us see how to compute the delay for edge C!B. If a
communication was placed between these two instructions,
the recurrence would be longer, which would increase the
II. Besides, the longest path would also be one cycle longer:

newII ¼ 4;new longest path ¼ 5;

delay ¼ 99ð4� 3Þ þ 5� 4 ¼ 100:

The delay is the same for the edges B!A and A!C.
Regarding edge D!C, the delay is only one cycle (the II
is the same), whereas the delay for edges D!E and E!F
is zero.

The second factor that affects the weight of an edge is its
slack, slack(e). The slack of an edge is defined as the number
of delay cycles that could be added to this edge without
affecting execution time. For some edges, adding a delay to
them may not directly affect execution time. However, the
effect of various communications may increase recMII or
the length of the schedule. That is the reason why we also
consider the slack in computing the weight.

For instance, increasing the latency of edges C!B, B!A,
A!C, and D!C causes a delay. Therefore, their slack is zero.
On the other hand, increasing the latency of edge D!E or
E!F does not affect execution time. However, if a commu-
nication was placed in both of them, then the length of the
schedule would increase. Therefore, the slack is one cycle.

These two factors are converted into a single metric. The
former factor, delay(e), is more important because it measures
a direct impact on execution time whereas the slack
measures only how close we are to increasing execution
time. To ensure that any difference in the former factor has
always a greater weight than the largest difference in the
latter factor, we multiply the delay by the highest value of the
slack plus one. Then, we add the highest value of the slack
minus the actual slack (the lower the slack, the higher the
weight). We finally add one unit, in order to avoid any zero-
valued edge weights (because edges with zero weight will
never be in the maximum weight matching). This is
summarized by the following expression:

weightðeÞ ¼ delayðeÞ � ðmax slackþ 1Þ
þmax slack� slackðeÞ þ 1;

where max slack is the maximum slack of any edge of
the graph.

Then, for instance, the weight of edge C!B is

weightðC ! BÞ ¼ 100�2þ 1� 0þ 1 ¼ 202:

Coarsening is repeated until a graph with as many nodes
as clusters in the target architecture is obtained. Then, each

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 773

node is assigned to a different cluster and this induces a

preliminary partition of the original graph: every original

node belongs to a unique macronode and it is assigned to

the cluster where the macronode is. For instance, in Fig. 2,

the induced preliminary partition puts instructions A, B, C,

and D in one cluster and instructions E and F in the other.

3.2.2 Refining the Partition

In this section, we describe two heuristics used to improve

the partition: one tries to balance the workload whereas the

other tries to minimize the impact of the partition on

execution time. Both heuristics are applied to all the

intermediate graphs obtained during the coarsening process.
Improving workload balance. To have a valid partition

for a given II, each cluster must have enough resources to

schedule its corresponding set of instructions. If this

constraint is met, we will say that the partition is balanced.

For instance, the left-hand side of Fig. 3 shows the partition

obtained from the coarsening example shown in Fig. 2. If we

assume one general-purpose functional unit per cluster and

II ¼ 3, then cluster 1 has insufficient resources to schedule

the four instructions. In this case, we would say that the

partition is unbalanced. On the other hand, if II ¼ 4, the

same partition would be balanced (even if the number of

instructions in each cluster would not be the same).

In order to balance a partition, we apply a heuristic to all
the intermediate graphs starting from the coarser ones. In
Fig. 4, we present pseudocode for this heuristic.

At each step, the heuristic tries to improve workload
balance if the current partition overloads any particular
machine resource (i.e., its utilization factor is higher than
100 percent.) For this purpose, we analyze each resource,
from most heavily loaded to the least loaded. For each
cluster C1 where this resource is overloaded, we try to
make some balancing movements by applying the steps
described in Fig. 4. In particular, for all nodes v in the
considered cluster C1 containing any operation that uses
the considered resource, we try to move that node v from
C1 to any other cluster C2. As long as v is removed from
C1, the load in C1 is reduced. On the other hand, the load in
C2 increases. To consider this move as a candidate for
balancing the partition, the resulting partition must not
overload previously considered resources in C2. Besides,
the resulting utilization of the currently considered resource
in C2 must be lower than the previous utilization in C1

(point 1 in Fig. 4).
In the example shown in Fig. 3, if we assume II ¼ 3, then

the usage of the FU in cluster 1 is 4/3. Thus, the partition is
not balanced and the balancing heuristic is applied. Moving
nodes in graph 3 cannot provide any benefits in terms of
balancing. We start with graph 2. When moving any
macronode of graph 2 from cluster 1 to cluster 2, the usage

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

Fig. 3. Example for the balancing heuristic.

Fig. 4. Pseudocode for the Minimizing the Impact of the Partition on Execution Time heuristic.

of the FU in cluster 2 is 4/3, which is the same as we had in
cluster 1 before making the movement. Therefore, these
movements do not provide any benefit. In the next
iteration, we apply the heuristic to the original graph.
When we move any of the nodes of cluster 1 to cluster 2, we
obtain a balanced partition. All the movements provide the
same benefit in terms of balancing the partition. However,
it is intuitively clear that the best option is to move node D,
as shown in Fig. 3, since the other movements introduce
unnecessary communications. Hence, a way to choose this
movement is needed, instead of the other choices which are
less beneficial for performance.

When several movements achieve the same degree of
balancing, we choose among them (point 2 in Fig. 4) with
the same criteria used by the heuristic that minimizes the
impact of the partition on performance (we describe this
heuristic in the next section). Once a movement has been
selected, the whole process is repeated until no resource is
overloaded or until no beneficial movement can be found.

Minimizing the impact of the partition on execution
time. For each graph generated during the coarsening
process, from the coarsest to the finest, after applying the
improving workload balance heuristic, we try to reduce the
impact of the partition on execution time. To achieve this
goal, we use an iterative heuristic. Its pseudocode is shown
in Fig. 4.

The heuristic generates different partitions and chooses
the best one (i.e., the partition that is likely to generate the
fastest schedule) until no further improvement can be
achieved. Thus, we need a strategy to generate different
partitions and a way to compare them.

Different partitions are generated by moving nodes from
one cluster to another. Since the entire partition space
cannot be explored, we need to select the movements that
are more likely to improve the partition. Since intercluster
communications are a major cause of II increase, we only
consider moving a node v if that node v is adjacent to an
edge belonging to the cut of the partition (i.e., a node v that
has a neighbor in a different cluster). In particular, we
consider moving v from its current cluster C1 to each cluster
C2 6¼ C1, where it has an adjacent node (point 1 in Fig. 4). If
there are not enough free resources in C2 to place node v
there, but the required resources can be made available by
moving a node from C2 to C1, all feasible exchanges
between pairs of nodes are considered (point 2 in Fig. 4).

Among all the generated partitions, we want to choose
the one that is most likely to produce the best schedule

(point 3 in Fig. 4). The most rigorous approach would be to
compute the schedule associated with each partition and
select the best one. Obviously, this would be too time-
consuming. However, we can compute an approximate
schedule that we call pseudoschedule to accurately estimate
all the factors that can influence the execution time of the
final schedule. In particular, the pseudoschedule is used to
estimate the II and the SC of the partition and the number
of lifetimes used in each cluster. The way to compute the
pseudoschedule is described in Section 3.3.

Then, for all possible partitions generated by only moving
a single node or swapping a pair of nodes, we select a
partition according to the criteria presented in Fig. 5. First, we
choose the partition with the shortest estimated execution
time. In case of a tie in this metric, we select the partition that
is most likely to be improved in future refinements. In
particular, we try to reduce the load on resources that are
most likely to cause the II to increase (i.e., intercluster buses
and registers). Hence, if busMII � II, then we assume that
the number of communications is already sufficiently low.
Therefore, in the case of a tie in the estimated execution time,
we choose the partition that minimizes register pressure.
More specifically, we choose the partition that further
reduces the maximum number of lifetimes used in a cluster.
Alternatively, if busMII > II, this indicates that commu-
nications are critical and we select the partition that
minimizes busMII.

In the case of a tie in the second metric (whether we are
considering registers or communications), we select the
partition that minimizes the other criterion (i.e., if we used
register pressure as the second metric, then we use
communications as the third; if we used communications
as the second metric, we use register pressure as the third).

Once the best partition is found, the node movement (or
the exchange of node pairs) that produced the selected
partition is applied. This process is repeated until no further
benefit can be obtained.

3.3 Pseudoschedules

When comparing two partitions, it is difficult to decide
which one could produce a better schedule because there
are multiple constraints that cannot be quantified at the
partitioning step that influence the quality of the final
schedule, like the length of the schedule and the register
pressure. To properly estimate the impact of these factors
on the final schedule, we build an approximate schedule:
the pseudoschedule.

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 775

Fig. 5. Scheme of the decision criteria of the refinement heuristic.

To produce a pseudoschedule, we first compute a lower
bound on the II (lb II) as follows:

lb II ¼ maxfII; newRecMII; busMIIg;

where II is the initiation interval for which we are trying to
produce a schedule, newRecMII is computed as the recMII
while taking into account the latency of the necessary
communications and busMII is the bus minimum initiation
interval described in Section 2.

Next, we assume that the initiation interval of the
pseudoschedule (ps II) is equal to this lower bound
(ps II :¼ lb II), and then try to find a suitable slot for each
node. Since the pseudoschedule needs to be computed as
accurately as possible, nodes are scheduled using the same
rules as those used by the final scheduler. Therefore,
according to the ordering described in [28], each node is
scheduled as close as possible to its predecessors/succes-
sors in order to shorten lifetimes. Unlike the final scheduler,
if we cannot find a slot available to schedule an instruction
in the cluster to which it belongs, we assign that node to a
given cycle, even if there are insufficient resources available
in this cycle.

We determine this cycle as follows:

1. If the node v has only predecessors in the partial
pseudoschedule: cycleðvÞ ¼ EarliestStartðvÞ þ II.

2. If the node has only successors in the partial
pseudoschedule: cycleðvÞ ¼ LatestStartðvÞ � II.

3. If the node has both predecessors and succes-
sors in the partial pseudoschedule: cycleðvÞ ¼
½LatestStartðvÞ � EarliestStartðvÞ�=2.

By computing cycles in this way, we penalize a partition
by extending lifetimes and increasing the length of the
schedule. This penalty is relatively small since this is just an
intermediate partition that can still be improved in later
steps. For case 3, if the node has both predecessors and
successors in the partial pseudoschedule, it means that the
node represents the last instruction in a recurrence loop
(see [28]), and that some dependences cannot be met. In
this case, a larger penalty is assessed to the ps II. This
recurrence may have to be split. Since splitting a recurrence
generally incurs two communications, we penalize the
ps II by more than twice the bus latency

ps II ¼ lb II þ 2 � lat busesþ 1:

Note that for this approximate schedule, an unlimited
number of registers is assumed. However, once the
pseudoschedule is built, the number of lifetimes it requires,
as well as the maximum number of lifetimes that overlap, is
computed to provide more information to the partition.

Iteratively applying this algorithm, all the nodes in the
graph are pseudoscheduled (i.e., assigned to a cycle).
The algorithm investigates no more than lb II different
positions. Thus, the time complexity to produce a pseu-
doschedule is linear with II� j V j .

The computed pseudoschedule is quite accurate, espe-
cially when the partition is balanced and there is enough
space to schedule all instructions in the cluster as specified
by the partition. Therefore, moving nodes among clusters
during the partitioning step can target different goals,
depending on the most constraining factors. For instance, a
goal can be to reduce the number of communications,

evenly distributing register pressure, to produce a better
distribution of recurrences among clusters or reduce the
length of the schedule.

4 PROPOSED MS SCHEME

Several heuristics have been proposed to modulo schedule
loops [15]. These heuristics try, in general, to maximize ILP
and some of them also try to minimize register pressure. For
clustered architectures, modulo scheduling is more com-
plex since it has also to deal with intercluster communica-
tions and the distribution of the workload among clusters.

In this work, we propose AGAMOS, a new technique that
performs cluster assignment using a multilevel graph-
partitioning scheme. In this way, the scheduler uses global
information of the DDG and it can achieve a better workload
balance at the same time that it can reduce the number of
communications. The generation of this partition is guided
by approximate schedules, called pseudoschedules, which
provide very accurate information about the properties of
the final schedule. During this process, selected instructions
are replicated in order to reduce the number of commu-
nications. The scheduler tries to follow the cluster assign-
ment produced by the graph partition. However, the
scheduler can refine this assignment.

In this section, we provide an overview of the code
generation algorithm, the replication heuristics, and the
scheduler.

4.1 Overview of the Scheduling Algorithm

In Fig. 7, the high-level flow of the proposed algorithm is
shown. The scheme tries to find a valid schedule that
minimizes the II. It starts with II ¼MII. If it fails, the II is
increased by one unit.

To produce a feasible schedule for the current II, the
DDG is partitioned according to the algorithm we have
described in Section 3.2. The partitioning technique in-
cludes a set of heuristics to replicate instructions in various
clusters in order to reduce the number of communications,
as described in Section 4.2.

The last step of the algorithm is the scheduling phase
(Section 4.3). Each instruction is scheduled in the cluster,
where it has been assigned by the partition. If the algorithm
succeeds and a valid slot is found, then scheduling proceeds
to the next instruction. If a valid slot cannot be found for the
current instruction in the cluster where it has been assigned
by the partition, it is tried to be scheduled in other clusters. If a
suitable cluster is found, the instruction is scheduled in that
cluster and the algorithm continues with the next operation
(starting again with the cluster dictated by the partition). If we
reach a situation where an instruction cannot be scheduled in
any cluster, the process stops, the II is increased, and the
described process restarts.

4.2 Instruction Replication

At each step of the partitioning process, before computing
the pseudoschedule, we compute the busMII. If
busMII > II, this means that intercluster communication
bandwidth is insufficient to schedule all the communica-
tions. For example, the graph shown in the left-hand side of
Fig. 6 represents a DDG. This graph is partitioned into four
sets of nodes and each set is assigned to a different cluster:

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

fL;M;Ng to cluster 1; fI; J;Kg to cluster 2; fA;B;C;D;Eg
to cluster 3; and fF;G;Hg to cluster 4. In the resulting
partition, there are three values that have to be commu-
nicated: the values produced by instructions D, E, and J . If
we assume an II ¼ 2 and an intercluster communication
network with one bus that has one-cycle latency (recall that
we assume intercluster networks that broadcast the values
to all clusters), then busMII ¼ 3 > II. In this case, there is
an excess of communication.

We refer to the maximum number of communications that
can be scheduled for the current II as the max n coms, and
to the number of excess communications as the extra coms.
The number of excess communications can be computed as
follows:

extra coms ¼ n coms�max n coms

max n coms ¼ II=lat busesb c � n buses;

where n coms stands for the number of communications
implied by the partition, as defined in Section 2.

The number of communications can be reduced (and so
can extra coms) by replicating selected instructions in
specific clusters. In this section, we describe a heuristic to
achieve this purpose.

4.2.1 Replication Subgraphs

The replication subgraph corresponding to an instruction com,
whose resulting output value has to be communicated to
other clusters, is the minimum set of nodes that have to be
replicated in order to remove that communication. We will
denote this subgraph as Scom.

A simple example is presented in Fig. 6. The replication
subgraph corresponding to the communication of the
value produced by instruction D has four nodes:
SD ¼ fD;B;C;Ag; the replication subgraph for E is:
SE ¼ fE;Ag. Node D does not belong to SE because it is
unnecessary to replicate D to remove communication E
since the value produced by D is already communicated and
is available in the other clusters. The replication subgraph of
instruction J is: SJ ¼ fJ; Ig.

4.2.2 Removing Unnecessary Instructions

After removing a communication by replicating instructions
in other clusters, there may be some original (nonreplicated)
instructions that are no longer needed. An example can be
found in Fig. 6. The graph in the right-hand side of the Figure
represents the resulting DDG after removing the commu-
nication of nodeE by replicating SE in clusters 2 and 4. Then,
the original instruction E in cluster 3 is not needed. The
value that it produces is not used by any other instruction.
The two successors of E (J and G) obtain their copy of E
from the copy generated in their respective clusters. There-
fore, the original instruction E can be removed from the
graph, so more resources will become available in
cluster 3. Removable instructions can be anticipated before
replication. Thus, they can also be taken into account when
selecting which subgraph to replicate.

4.2.3 Replication Heuristic

In Fig. 7, pseudocode for the replication heuristic is
presented. It works as follows: first, we compute the
replication subgraphs and identify the removable instruc-
tions for all of the values that need to be communicated.

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 777

Fig. 6. Example of instruction replication to reduce communications.

Fig. 7. Pseudocode for the replication heuristic.

Then, we choose the best candidate for replication and
replicate it. After performing replication, the number of
communications (n coms) is reduced by one, and the
number of excess communications (extra coms) is also
reduced by one. This process is repeated until the number
of communications becomes equal to the maximum
number of communications allowed for the current II
(n coms ¼ max n coms) and the number of excess commu-
nications is zero (extra coms ¼ 0), or until no further
replication is possible due to resource constraints.

In order to select the best candidates for replication, we
take into account the usage of resources. In some cases, the
number of extra coms is large, so there may be insufficient
resources to replicate all the necessary instructions. There-
fore, it is important to reduce the number of extra instructions
that need to be added. Furthermore, reducing the number of
extra instructions is also beneficial for other reasons such as
register pressure, energy consumption, and code length.
Hence, our metric is based on reducing the number of extra
instructions.

To determine the weight of a subgraph, we first assign
weights to the nodes that have to be copied to other clusters
to avoid the communication and the nodes that can be
removed after the subgraph has been replicated. Then, the
weight of the subgraph is the sum of the weights of
the nodes that have to be replicated, minus the weight of
the nodes that can be removed.

To compute the weight of a single node v, we take into
account the degree to which resources that are used by the
instruction will be constrained if the subgraph is replicated.
If a node belongs to more than one subgraph, it can be
replicated and then used multiple times

weightðv; cÞ ¼
usageðres;cÞþextra opsðres;c;subgraphÞ

availableðres;cÞ�II
SC=v 2 SCf gj j ;

where usageðres; cÞ stands for the number of instructions
that use resource res and that are assigned to cluster c for
the given partition; extra opsðres; c; subgraphÞ represents
the number of instructions that use resource res that have to
be replicated in cluster c in order to replicate the subgraph,
and finally, available(res,c) is the number of resources of type
res in cluster c.

4.3 Final Schedule

When the partition has been completed, the final schedule is
computed. In this section, we present the approach used to
perform instruction scheduling and register allocation. Both
tasks are carried out at the same time, generating spill code
on the fly when needed. The approach is based on the
URACAM modulo scheduling framework for clustered
VLIW architectures [14].

4.3.1 Instruction Scheduling

First of all, the nodes of the DDG are sorted according to the
Swing Modulo Scheduler [28]. Then, following this order-
ing, the schedule is produced through an iterative process
that works by adding instructions to a partial schedule until
all instructions have been scheduled. Each instruction is
scheduled in the cluster assigned during the partition.

Once a new partial schedule has been obtained, the
proposed technique includes mechanisms in order to
reduce the pressure on a given type of resource at the

expense of increasing the pressure on others. This is
achieved by applying some transformations to the
partial schedule:

1. Reduce register pressure by inserting spill code.
2. Reduce the bus pressure by performing communica-

tions through memory. Communications through
buses can be removed by storing the value from the
source cluster to a given memory location and loading
it in the clusters from memory where it is needed.

Both of these transformations increase the pressure on
memory ports. If later in the schedule memory pressure
becomes too high, we can reduce it by undoing any of the
previous transformations (i.e., by either removing spill
code or inserting communication instructions that use the
interconnection network instead of memory).

For each partial schedule, all transformations are applied.
For each transformation applied, a new partial schedule is
obtained. Therefore, we need a mechanism to compare the
partial schedules and decide which one is the best. For this
purpose, we use the figure of merit described in Section 4.3.2).
Transformations are applied until no further improvement
(in terms of the figure of merit) can be achieved.

If no feasible schedule can be found for a given
instruction following the cluster assignment of the parti-
tion, then we try to place that instruction in the other
clusters. In turn, these alternative schedules are improved
by means of the transformations. Note that the original
URACAM proposal did not use graph partitioning to
perform cluster assignment. Thus, in contrast to our
approach, URACAM tried to schedule each node to each
cluster.

If no feasible schedule is found either, then the II is
increased. Then, the partition and replication are redone in
order to take advantage of the bigger amount of resources
available and the scheduling process is restarted.

4.3.2 Figure of Merit

When different partial schedules are suitable, we need a
function that allows us to compare them and select which
one is better. We define a function that we will refer to as
the figure of merit.

The figure of merit is based on the utilization of the most
critical resources. The underlying assumption is that the
more constrained a resource, the more likely to impact
execution time.

The utilization of functional units is determined before-
hand and does not depend on the schedule. The selected II
has been chosen in such a way that there are enough slots
for any required functional unit operation. However, the
utilization of other resources is unpredictable and depends
on the particular schedule. These critical resources are the
intercluster connection network, the memory ports, and
the registers.

Given a partial schedule and the current instruction that
is to be scheduled, we use a multidimensional figure of
merit to compare the different partial schedules resulting
from inserting the instruction in alternative slots. The figure
of merit consists of a set of (2�n clstþ 1) percentages:

1. One for intercluster communications—the percen-
tage of free communication slots (before scheduling

778 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

the current instruction) that are consumed by the
newly inserted instruction.

2. n clust for memory—for every cluster, the percen-
tage of free memory access slots (before scheduling
the current instruction) that are consumed by the
newly inserted instruction.

3. n clust for registers—for every cluster, percentage
of free lifetimes (before scheduling the current
instruction) that are consumed by the newly
inserted instruction.

The reason why we use the percentage of remaining
resources that are consumed by the analyzed instruction is
that scarce resources are more valuable than abundant ones.
More specifically, the value of a given type of resources is
inversely proportional to the amount of currently remaining
resources of this type.

Then, we need a function that compares two figures of
merit and determines which one is better. For this purpose,
the components of each figure of merit are sorted from
highest to lowest. Then, values are compared pairwise,
starting from the highest value until a significant gap is
found (greater than a given threshold2). In this case, the
figure of merit with the lowest component is chosen. If all
pairs of components are similar, a choice is made by
summing the components for each figure of merit and
selecting the one with the lowest sum.

This approach of comparing figures chooses the one that
maximizes the available resources of the most heavily used
type of resource. This heuristic can be characterized as trying
to benefit the most constrained (most used) resource so that
the difference between the least constrained (least used)
resource and the most constrained is gradually reduced.

In contrast to the original URACAM approach, the
partition provides additional information about the usage
of resources (i.e., usage of memory ports in each cluster). This
additional information is taken into account when comput-
ing the figure of merit that results in a better estimation of
the impact of the decisions taken at scheduling time.

5 EVALUATION

5.1 Experimental Framework

Our Modulo Scheduling algorithm has been implemented
in the ICTINEO compiler [8]. For the evaluation, we used all
the loops in the SPECfp95 benchmark suite that have
neither subroutine calls nor conditional exits. Loops with
conditional structures in their bodies have been IF-
converted [7] into a single basic block loop. In addition,
we used profiling to obtain the number of times and the
average number of iterations that the loops were executed.
The loops that executed, on average, less than four
iterations were discarded. In total, we used 678 loops that
accounted for more than 95 percent of the total number of
executed instructions. Loop unrolling was disabled in order
to prevent the increase in code size, which is critical for
these processors.

We study three different clustered VLIW designs. Each is
12-issue and has the same number of total resources that are
divided homogeneously across the different clusters. These
clustered designs are shown in Table 1.

We will refer to the first design as unified. This
architecture is composed of a single cluster with four
functional units of each type (integer, floating point, and
memory) and a unique register file. The 2-cluster design has
two functional units of each type and half the number of the
registers per cluster, whereas the 2-cluster design has one
functional unit of each type and a quarter of the number of
registers per cluster.

For the 2 and 4-cluster designs, different configurations
based on the number of registers, number of buses, and
latency of the buses are considered. Each configuration is
identified as a sequence of letters and numbers, NcMbP lQr,
where N stands for the number of clusters, M represents
the number of buses, P stands for the latency of these buses,
and Q represents the number of registers.

For all configurations, the memory hierarchy is shared
by all the clusters and considered perfect (i.e., all accesses
hit in cache). The latency assumed for hits is two cycles for
the configurations whose bus latency is one cycle and three
cycles for the configurations whose bus latency is two
cycles. The latency of the remaining instructions is pre-
sented in Table 1.

The unified design has the same resources as the 2 and
4-cluster designs. However, for a unified architecture,
register pressure is lower. Moreover, a unified architecture
does not suffer from intercluster communication penalties.
Therefore, the instructions per cycle (IPC) measure for the
unified configuration is an upper bound on what can be
achieved by the clustered architectures. Note that IPC is
independent of the processor cycle time. The clustered
organizations will certainly benefit from a faster clock, and
thus, an IPC for a clustered configuration that approaches
the IPC obtained by a unified architecture translates to
an overall performance improvement when the cycle time
is considered.

In this section, we use IPC as the main performance
metric. The IPC includes the contribution of the prolog and
epilog. Only the original loop instructions are considered,
i.e., IPC does include neither replicated instructions, nor
communications nor spill instructions.

For some loops, their associated initiation interval
reaches a limit that makes modulo scheduling inappropri-
ate. In this case, list scheduling is applied. Nevertheless,
we have noticed that this case occurs for just a few loops in
our suite.

5.2 Performance Figures

Fig. 8 shows the results for different cluster configurations.
In this figure, we show IPC for 2-cluster architectures that
have one bus, one-cycle latency; 4-clusters with one bus
with a one-cycle latency, and 4-clusters with one bus with a
two-cycle latency. The graphs on the left-hand side of Fig. 8
correspond to architectures possessing 32 registers, whereas

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 779

2. Based on the original URACAM technique [13, we set the threshold to
10 percent for the experiments reported.

TABLE 1
Clustered VLIW Designs and Latency of the Instructions

the graphs on the right-hand side correspond to architec-
tures with 64 registers.

We plot results for three different approaches. The white
bar represents the unified configuration. The gray bar
represents URACAM. We have chosen URACAM as a
baseline for comparison because it is a state-of-the-art
scheduler that performs cluster assignment, instruction
scheduling, and register allocation in a single step. This
family of schedulers has been shown to outperform
previous proposals, as will be further discussed in Section 6.
Finally, the black bar plots IPC for the approach described
in this paper, AGAMOS.

The main conclusion that we can draw from these
figures is that the scheme presented in this work produces
significant gains for all configurations and all programs

with respect to URACAM. On average, the schedules

produced by the proposed techniques improve IPC from

10 percent up to 40 percent over URACAM. The smallest

speedup (10 percent) is achieved for the 2c1b1l64r

configuration. This is due to the fact that this architecture

is the least constrained of the architectures considered, and

so the performance achieved is close to that of a unified

architecture. Therefore, there are fewer opportunities for

improving the workload balance and reducing the number

of communications.
On the other hand, the most constrained configuration,

i.e., 4c1b2l32r receives the greatest benefits from using

replication and pseudoscheduling. In this case, the speedup

is close to 40 percent. This is due to the fact that for this

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

Fig. 8. IPC for the different configurations.

particular architecture, it is critical to evenly balance
workload. Both communications and register pressure are
critical. Therefore, reducing communications at the expense
of placing many instructions in a single cluster is not a good
strategy. Our pseudoschedules take this fact into account. In
addition, replication provides an alternative way of redu-
cing the number of communications.

If we look at the IPC results in more detail, we can see
that for some programs (e.g., swim or fpppp for 4c1b2l-
architectures), with both 32 and 64 registers, the speedup is
over 100 percent. In addition, there are many programs
such as tomcatv or su2cor for which the speedup is over
50 percent. We have observed that the programs with the
higher speedups are dominated by loops with a high trip
count. For these loops, the II has a big impact on execution
time. AGAMOS is very efficient at reducing the II because
it can solve different problems such as communications in
recurrence circuits, the excess of communications, or high-
register pressure.

On the other hand, for programs such as apsi or applu,
the speedup achieved is much lower. This is due to the fact
that these programs have some dominating loops with a
low trip count. For these loops, the length of the schedule is
as important as the II. AGAMOS takes also into account
the length of the schedule but the potential to reduce it is
smaller because it is limited by the longest paths in the
DDG. Hence, the speedups obtained are lower.

Finally, the speedups for mgrid are low for some
configurations and very high for the most restrictive ones.
Note that when the speedup is low, the IPC is close to that
of the unified architecture. Hence, AGAMOS has no
potential to increase performance for this program and
these configurations. When the architecture is more
restrictive, AGAMOS can find a good schedule.

5.3 Reducing the Number of Communications

In this section, we evaluate the effect of the techniques used
to reduce the number of communications, that is, commu-
nications through memory and instruction replication. In
Fig. 9, we can see the average IPC obtained for the
SPECfp95 programs with the proposed scheduling scheme
for the different possible alternatives. We compare a
baseline that uses the partitioning technique guided by
pseudoschedules but does not consider communications
through memory and does not perform instruction replica-
tion (white bars that correspond to the work presented in

[3]), with scheduling only communications through mem-
ory (light gray bars), with using only instruction replication
(dark gray bars), or with using both techniques (black bars).

The main conclusion is that both techniques are useful to
achieve a better IPC. Obviously, this is due to a reduction in
the number of communications, which is often the bottle-
neck for cluster scheduling. Therefore, the more constrained
the interconnection network, the larger the benefit. Hence,
the biggest benefits are obtained for the architectures
supplied with two-cycle latency interconnection networks.
For example, for the two-cycle latency bus configurations,
the speedup achieved when using both techniques is
greater than 30 percent.

Another important conclusion is that replicating instruc-
tions provides greater IPC benefits than does scheduling
communications through memory (dark gray bar and light
gray bar, respectively). This is due to the fact that instruction
replication can use all free resources, whereas memory
communications benefit only from memory slots. Besides,
scheduling communications through memory reduces the
chances to schedule spill code. This fact is especially
significant when register pressure is high. As we can see,
for configurations with 32 registers, the performance ob-
tained by a scheduler that pays no attention to reducing the
number of communications is very close to the performance
obtained from a scheduler that schedules communication
through memory.

6 RELATED WORK

Finding an optimal schedule in a resource-constrained
environment is well known to be NP-complete. Many
heuristics have been proposed in order to find near-optimal
schedules. These heuristics have different goals: increasing
throughput [23], [33], minimizing register pressure [16],
reducing the effect of cache misses, or improving many of
them simultaneously [28], [34]. All of these studies focus on
modulo scheduling algorithms targeting unified (i.e., non-
partitioned) architectures.

There have been a number of modulo scheduling
approaches proposed for clustered architectures. Nystrom
and Eichenberger [29] performed cluster assignment and
instruction scheduling in two independent steps. Cluster
assignment was done using a straightforward algorithm
based on the structure of the graph. It required less
compilation time than multilevel strategies but it was not
able to sufficiently reduce the number of communications.

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 781

Fig. 9. IPC achieved using the proposed techniques to reduce the number of communications.

In fact, this scheme was outperformed by Sánchez and
González [35], who proposed to integrate cluster assign-
ment and instruction scheduling. Fernandes et al. [18] also
perform cluster assignment and instruction scheduling in a
single step. However, they assume a different architecture
with an unusual register file organization based on a set of
local queues for each cluster and a queue file for each
communication channel. Finally, also Hiser et al. [21]
presented a two-step approach in which a greedy algorithm
is used for partitioning software pipelined loops.

More recent approaches [14], [37] perform cluster
assignment, instruction scheduling and register allocation
in a single step. These algorithms are the state-of-the-art
and we use them as our baseline.

In recent works, some extensions to modulo scheduling
have been proposed in order to deal with heterogeneous
clustered VLIW microarchitectures where each cluster can
run at a different frequency and voltage [6].

There are also several works on acyclic scheduling for
clustered architectures ([10], [30]). Probably, the closest one
to our technique is [13], where graph partitioning is also
used to perform cluster assignment.

There is limited prior work related to instruction replica-
tion. Chaitin et al. [11], in their work on register coloring,
pointed out that values could be cheaply recomputed versus
spilled and refetched from memory. Based on this observa-
tion, they proposed a technique called rematerialization. This
technique was later extended by Briggs et al. [9].

The work most closely related to our instruction
replication technique is the work by Kuras et al. [27],
where they describe a technique called value cloning for
Long Instruction Word architectures with partitioned
register banks. Their work targeted read-only values and
induction variables.

Another approach used to address excess communica-
tions in clustered architectures is loop unrolling. There has
been a significant amount of prior work addressing this
topic, including techniques targeting clustered VLIW archi-
tectures [35]. Although unrolling can remove most of the
communications and achieve high performance, it increases
code size significantly. For DSPs, where VLIW architectures
are frequently used [36], [19], [31], [17], [20], code size is a
critical issue.

Cluster microarchitectures are also popular for dynami-
cally scheduled processors. In this area, Aggarwal and
Franklin [1] studied a technique to perform dynamic
instruction replication.

Task duplication [26] has been used in the multiproces-
sors domain to alleviate the overhead introduced when
tasks executing on different processors exchange data.

7 CONCLUSIONS

In this paper, we have presented AGAMOS, a scheme to
modulo schedule loops for clustered microarchitectures. The
proposed technique achieves improved workload balance
and reduces the communications by using a multilevel
graph partitioning strategy. In addition, in order to further
reduce the communications, it performs instruction replica-
tion and schedules communications through memory.

AGAMOS is a two-step approach that overcomes the
limitations of previous techniques by combining the benefits
of the global view of the DDG obtained during the partition

with the information available at scheduling time. In order to

deal with the phase-ordering problem, pseudoschedules are

used to guide cluster assignment and information from the

partition is passed to the final scheduler. The partition can be

modified at scheduling time.
The described technique is shown to outperform a state-of-

the-art scheduler for all programs and all configurations

evaluated. Some of the speedups achieved are higher than

100 percent. Besides, 50 percent speedup is reached for many

programs. Finally, we have also shown that by combining

instruction replication and communications through mem-

ory, we can provide significant performance benefits.

ACKNOWLEDGMENTS

This work is supported by the Spanish Ministry of

Education and Science and FEDER funds of the EU under

contracts TIN 2004-03072, and TIN 2004-07739-C02-01, the

Generalitat de Catalunya under grant 2005SGR00950, and

Intel Corporation.

REFERENCES

[1] A. Aggarwal and M. Franklin, “Instruction Replication: Reducing
Delays Due to Inter-PE Communication Latency,” Proc. Int’l Conf.
Parallel Architectures and Compiler Techniques (PACT ’03), Sept.
2003.

[2] A. Aletà, J.M. Codina, J. Sánchez, and A. González, “Graph-
Partitioning Based Instruction Scheduling for Clustered Proces-
sors,” Proc. 34th Int’l Symp. Microarchitecture, Dec. 2001.

[3] A. Aletà, J.M. Codina, J. Sánchez, A. González, and D. Kaeli,
“Exploiting Pseudo-Schedules to Guide Data Dependence Graph
Partitioning,” Proc. Int’l Conf. Parallel Architectures and Compiler
Techniques (PACT ’02), Sept. 2002.

[4] A. Aletà, J.M. Codina, A. González, and D. Kaeli, “Instruction
Replication for Clustered Microarchitectures,” Proc. 36th Int’l
Symp. Microarchitecture, 2003.

[5] A. Aletà, J.M. Codina, A. González, and D. Kaeli, “Removing
Communications in Clustered Microarchitectures through In-
struction Replication,” ACM Trans. Architecture and Code Optimiza-
tion (TACO), vol. 1, no. 2, pp. 127-151, June 2004.

[6] A. Aletà, J.M. Codina, A. González, and D. Kaeli, “Heterogeneous
Clustered VLIW Microarchitectures,” Proc. Fifth Int’l Symp. Code
Generation and Optimization, pp. 354-366, 2007.

[7] J. Allen, K. Kennedy, and J. Warren, “Conversion of Control
Dependence to Data Dependence,” Proc. 10th Ann. Symp. Principles
of Programming Languages, Jan. 1983.

[8] E. Ayguadé, C. Barrado, A. González, J. Labarta, D. López,
S. Moreno, D. Papua, F. Reig, Q. Riera, and M. Valero, “Ictineo:
A Tool for Research on ILP,” Proc. Conf. Supercomputing, 1996.

[9] P. Briggs, K.D. Cooper, and L. Torczon, “Rematerialization,” Proc.
Special Interest Group on Programming Languages (SIGPLAN ’92)
Conf. Programming Language Design and Implementation, June 1992.

[10] A. Capitanio, N. Dutt, and A. Nicolau, “Partition Register Files for
VLIW’s: A Preliminary Analysis of Tradeoffs” Proc. 25th Int’l
Symp. Microarchitecture (MICRO-25), 1992.

[11] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E.
Hopkins, and P.W. Markstein, “Register Allocation via Coloring,”
Computer Languages, pp. 47-57, Jan. 1981.

[12] A. Charlesworth, “An Approach to Scientific Array Processing:
The Architectural Design of the AP120B/FPS-164 Family,”
Computer, vol. 14, no. 9, pp. 18-27, Sept. 1981.

[13] M.L. Chu and S.A. Mahlke, “Compiler-Directed Data Partitioning
for Multicluster Processors,” Proc. Int’l Symp. Code Generation and
Optimization (CGO), 2006.

[14] J.M. Codina, J. Sánchez, and A. González, “A Unified Modulo
Scheduling and Register Allocation Technique for Clustered
Processors,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, 2001.

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009

[15] J.M. Codina, J. Llosa, and A. González, “A Compartive Study of
Modulo Scheduling Techniques,” Proc. Int’l Conf. Supercomputing
(ICS ’02), June 2002.

[16] A.E. Eichenberger, E.S. Davidson, and S.G. Abraham, “Optimum
Module Schedules for Minimum Register Requirements,” Proc.
Conf. Supercomputing, 1995.

[17] P. Faraboschi, G. Brown, J. Fisher, G. Desoli, and F. Homewood,
“Lx: A Technology Platform for Customizable VLIW Embedded
Processing,” Proc. 27th Int’l Symp. Computer Architecture, June 2000.

[18] M.M. Fernandes, J. Llosa, and N. Topham, “Distributed Modulo
Scheduling,” Proc. Int’l Symp. High-Performance Computer Archi-
tecture, pp. 130-134, Jan. 1999.

[19] J. Fridman and Z. Greenfield, “The TigerSharc DSP Architecture,”
IEEE Micro, vol. 20, no. 1, pp. 66-76, Jan./Feb. 2000.

[20] P.N. Glaskowsky, “MAP1000 Unfolds at Equator,” Microprocessor
Report, vol. 12, no. 16, Dec. 1998.

[21] J. Hiser, S. Carr, P.H. Sweany, and S.J. Beaty, “Register Assign-
ment for Software Pipelining with Partitioned Register Banks,”
Proc. 14th Int’l Parallel and Distributed Processing Symp., 2000.

[22] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proc.
IEEE, pp. 490-504, Apr. 2001.

[23] S. Jain, “Circular Scheduling: A New Technique to Perform
Software Pipelining,” Proc. Int’l Conf. Programming Languages,
Design and Implementation, 1991.

[24] G. Karpis and V. Kumar, “Analysis of Multilevel Graph
Partitioning,” Proc. Seventh Supercomputing Conf., 1995.

[25] B. Kernighan and S. Lin, “An Effective Heuristic Procedure for
Partitioning Graphs,” Bell Systems Technical J., 1970.

[26] B. Kruatrachue and T.G. Lewis, “Grain Size Determination for
Parallel Processing,” IEEE Software, vol. 5, no. 1, pp. 23-32, Jan.
1988.

[27] D. Kuras, S. Carr, and P. Sweany, “Value Cloning for Architec-
tures with Partitioned Register Banks,” Proc. Workshop Compiler
and Architecture Support for Embedded Systems, pp. 1-5, Dec. 1998.

[28] J. Llosa, E. Ayguadé, A. González, and M. Valero, “Swing Modulo
Scheduling,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT ’96), Oct. 1996.

[29] E. Nystrom and A.E. Eichenberger, “Effective Cluster Assigne-
ment for Modulo Scheduling,” Proc. 31st Int’l Symp. Microarchi-
tecture, pp. 103-114, 1998.

[30] E. Ozer, S. Banerjia, and T.M. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered Register
File Microarchitectures,” Proc. 31st Int’l Symp. Microarchitecture
(MICRO-31), 1998.

[31] G.G. Pechanek and S. Vassiliadis, “The ManArray Embedded
Processor Architecture,” Proc. 26th. Euromicro Conf.: “Informatics:
Inventing the Future, ” Sept. 2000.

[32] B.R. Rau and C. Glaeser, “Some Scheduling Techniques and an
Easily Schedulable Horizontal Architecture for High Performance
Schientific Computing,” Proc. 14th Ann. Microprogramming Work-
shop, pp. 183-197, Oct. 1981.

[33] B.R. Rau, Iterative Modulo Scheduling. Hewlett-Packard Company,
1995.

[34] J. Sánchez and A. González, “Cache Sensitive Modulo Schedul-
ing,” Proc. 30th Int’l Symp. Microarchitecture, 1997.

[35] J. Sánchez and A. González, “The Effectiveness of Loop Unrolling
for Modulo Scheduling in Clustered VLIW Architectures,” Proc.
29th Int’l Conf. Parallel Processing, Aug. 2000.

[36] Texas Instruments, Inc., “TMS320C62x/67x CPU and Instruction
Set Reference Guide,” 1998.

[37] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero, “Modulo
Scheduling with Integrated Register Spilling for Clustered VLIW
Architectures,” Proc. 34th Int’l Symp. Microarchitecture, Dec. 2001.

Alex Aletà received the Master’s degree in
mathematics from the Universitat Politècnica de
Catalunya (UPC), where he is currently working
toward the PhD degree in computer architec-
ture. Then, he joined ARCO research group in
the same university. He will graduate in 2009.
His research has been focused on code
generation and optimization for clustered VLIW
microarchitectures.

Josep M. Codina received the MS and PhD
degrees in computer science from the Universi-
tat Politècnica de Catalunya. He joined Intel in
2004, and he is a senior research scientist at
Intel Barcelona Research Center. His research
interests include computer architecture, compi-
lers, code generation, and dynamic optimization
for future microprocessors.

Jesús Sánchez received the MS and PhD
degrees in computer engineering from the
Universitat Politècnica de Catalunya (UPC),
Barcelona, in 1995 and 2001, respectively. He
joined the Department of Computer Arquitec-
ture, UPC, in 1995, as a research assistant and
was an assistant professor from 1998 to 2002.
Since March 2002, he has been with the Intel-
UPC Barcelona Research Center, which he
joined as a senior research scientist. His

interests include processor microarchitecture and compilation techni-
ques, in particular memory hierarchy, instruction-level parallelism,
clustered architectures, instruction scheduling, and speculative multi-
threading. He has more than 30 publications on these topics. He is
currently working on speculative multithreading techniques and FPGA-
based prototypes. He is a member of the IEEE.

Antonio González received the MS and PhD
degrees from the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain. He is the
founding director of the Intel Barcelona Re-
search Center, started in 2002. His research
focuses on new microarchitecture paradigms
and code generation techniques for future
microprocessors. Prior to this, he joined the
faculty of the Computer Architecture Department
of UPC in 1986, and became a full professor in

2002. He has published more than 300 papers, has given more than 80
invited talks, has filed more than 40 patents, and has advised 15 PhD
thesis in the areas of computer architecture and compilers. He has
served as an associate editor of the IEEE Transactions on Computers,
the IEEE Transactions on Parallel and Distributed Systems, ACM
Transactions on Architecture and Code Optimization, and Journal of
Embedded Computing. He has served on more than 100 program
committees for international symposia in the field of computer
architecture, including ISCA, MICRO, ASPLOS, HPCA, PACT, ICS,
ISPASS, CASES, and IPDPS. He has been the program chair for ICS
2003, ISPASS 2003, MICRO 2004, and HPCA 2008, and the general
chair for MICRO 2008, among other symposia.

David Kaeli received the BS and PhD degrees
in electrical engineering from Rutgers University,
and the MS degree in computer engineering
from Syracuse University. He is presently a full
processor on the ECE Faculty at Northeastern
University, Boston, MA, where he directs the
Northeastern University Computer Architecture
Research Laboratory (NUCAR). Prior to joining
Northeastern in 1993, he spent 12 years at IBM,
the last 7 at T.J. Watson Research Center,

Yorktown Heights, NY. He has published more than 180 critically
reviewed publications, five books, and eight patents. He regularly
provides tutorials on the subject of profiling and instrumentation, and has
organized workshops on GPGPUs, security, and binary translation. His
research spans a range of areas including VLSI design to back-end
compilers and database systems. He is an associate editor of the IEEE
Computer Architecture Letters and the Journal of Instruction Level
Parallelism, and the chair of the IEEE Technical Committee on
Microprocessors and Microprogramming. He is also a member of CRA’s
Computing Consortium Council.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ALETÀ ET AL.: AGAMOS: A GRAPH-BASED APPROACH TO MODULO SCHEDULING FOR CLUSTERED MICROARCHITECTURES 783

