
Distributed Data Cache Designs for
Clustered VLIW Processors

Enric Gibert, Jesús Sánchez, Member, IEEE, and Antonio González, Member, IEEE

Abstract—Wire delays are a major concern for current and forthcoming processors. One approach to deal with this problem is to

divide the processor into semi-independent units referred to as clusters. A cluster usually consists of a local register file and a subset of

the functional units, while the L1 data cache typically remains centralized in what we call partially distributed architectures. However, as

technology evolves, the relative latency of such a centralized cache will increase, leading to an important impact on performance. In

this paper, we propose partitioning the L1 data cache among clusters for clustered VLIW processors. We refer to this kind of design as

fully distributed processors. In particular, we propose and evaluate three different configurations: a snoop-based cache coherence

scheme, a word-interleaved cache, and flexible L0 buffers managed by the compiler. For each alternative, instruction scheduling

techniques targeted to cyclic code are developed. Results for the Mediabench suite show that the performance of such fully distributed

architectures is always better than the performance of a partially distributed one with the same amount of resources. In addition, the

key aspects of each fully distributed configuration are explored.

Index Terms—Single data stream architectures, design styles.

�

1 INTRODUCTION

AS feature sizes shrink, wire delays become slower
relative to gate delays [32], [1]. For example, in the

Pentium4 processor [20], some stages of the pipeline are
mainly dedicated to propagating signals along the chip.
One solution to this problem is to divide the processor into
semi-independent units referred to as clusters. A cluster
often consists of a local register file and a subset of the
functional units while other processor resources remain
centralized. We refer to this kind of architecture as a
partially distributed architecture. Local communications
(communications inside a cluster) are fast, while global
communications (intercluster communications) are slow.
Intercluster communications are used to propagate register
values when the producer and the consumer of a value are
assigned to different clusters. Hence, instructions should be
assigned or steered to clusters so that global communica-
tions are minimized while workload balance among
clusters is maximized. A typical cluster configuration can
be seen in the left part of Fig. 1. Clustering not only solves
the wire delay problem, but it also helps reduce power
consumption since some of the power-hungry processor
structures, such as the issue queue, the bypass network, and
the register file, are partitioned.

The use of an integer and a floating-point cluster is

common in commercial out-of-order superscalar micropro-

cessors. Such processors differentiate between the integer

pipeline and the floating-point pipeline in order to reduce

the complexity of the issue queue, the bandwidth of the

broadcast network, and the access bandwidth to the integer
and floating-point register files. More recent designs, such
as the Alpha 21264, partition the integer pipeline into two
clusters [19]. However, the use of clustering is even more
noticeable in the embedded/DSP market in which clustered
VLIW organizations are common [18], [41], [13], [12].

As wire delays increase relative to gate delays, having a
centralized L1 data cache that can be quickly accessed by all
clusters is becoming unfeasible. The cache could be close to
one or a few clusters but not to all of them. Besides, the
access time to the cache grows with its capacity. Hence, the
distribution of the data cache among clusters will be a key
performance issue in future microprocessors whose perfor-
mance will be dominated by wire delays. In order to do
that, the L1 data cache can be partitioned into different
smaller cache modules and one cache module can be
assigned to each cluster, as shown in the right part of Fig. 1.
Memory accesses to the local cache module are fast, while
memory accesses to remote cache modules or to the
centralized next level cache are slow. The distribution of
the data cache among clusters poses new challenges. First,
there are multiple alternatives on how the L1 data cache can
be partitioned into different cache modules and how data is
mapped to these modules. And, second, a new cache
coherence problem arises and mechanisms must be intro-
duced in order to guarantee data consistency. We will refer
to this kind of architecture as fully distributed architecture.

Few research works have dealt with the distribution of
the data cache among clusters so far ([43], [46], [34]) and
fully distributed architectures have not been implemented
in any commercially available processor yet. Most of these
research works are targeted at out-of-order superscalar
processors. In such proposals, instructions are assigned to
clusters at runtime by using several hardware tables and
prediction techniques. Performance results demonstrate
that the distribution of the data cache among clusters is a
viable solution to overcome the wire delay problem in the
memory hierarchy. In this work, we focus on statically

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005 1227

. The authors are with Intel Labs Barcelona-Universitat Politècnica de
Catalunya, c/ Jordi Girona, 29, Edifici Nexus II, 3a planta, 08034
Barcelona, Spain.
E-mail: {enricx.gibert.codina, f.jesus.sanchez, antonio.gonzalez}@intel.com.

Manuscript received 19 Apr. 2004; revised 23 Dec. 2004; accepted 5 Apr.
2005; published online 16 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0134-0404.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

scheduled processors (e.g., VLIW) instead of out-of-order
superscalar processors. In statically scheduled processors,
performance is very much related to the ability of the
compiler to generate effective code. Thus, an additional
challenge for clustered VLIW processors with a distributed
data cache is to develop instruction scheduling techniques
in order to exploit the underlying architecture efficiently.
Such instruction scheduling techniques must include
techniques to increase the percentage of local memory
accesses since they are executed faster than memory
accesses satisfied by remote cache modules or by the
centralized next level cache.

Our baseline partially distributed architecture consists of
four clusters, where each one has a subset of the functional
units and a local register file. For the sake of simplicity, all
clusters are assumed to be homogeneous. All other
resources (including the memory hierarchy) are global to
all clusters. Each cluster executes a fixed part of the VLIW
instruction and all clusters execute in lock-step mode: If a
cluster stalls when the consumer of a load instruction is
executed but data is not ready yet, all other clusters are
stalled as well.

We assume that intercluster communications are realized
through a set of global buses referred to as register-to-
register communication buses or register buses for short.
These buses are controlled by the compiler, which is
responsible for adding and scheduling an explicit copy
operation whenever it assigns two register-flow dependent
instructions to different clusters.

This paper presents a comparative study of different
architecture/compilation techniques that we have recently
proposed for fully distributed clustered VLIW processors
([38], [15], [17]). For each proposed architecture, efficient
instruction scheduling techniques are developed, which are
strongly tied to the architectural configuration in order to
exploit its particularities. Such scheduling techniques are
targeted to cyclic code and perform modulo scheduling of
inner loops, which account for most of the benchmarks’
execution time.

The rest of this paper is organized as follows: In Section 2,
a brief introduction to modulo scheduling is performed
since the proposed algorithms are built on top of it. The
compilation and simulation infrastructure is described in
Section 3, along with the benchmarks that have been used.
Next, each architecture/scheduling algorithm pair is pre-
sented in a different section. For each architecture config-
uration, the three main challenges for distributing the data
cache are discussed: the architecture itself, the scheduling
algorithm targeted to it, and memory coherence. In

addition, each configuration is evaluated individually. First,
the MultiVLIW is introduced in Section 4. Next, a word-
interleaved cache clustered VLIW processor is presented in
Section 5, while Flexible Compiler-Managed L0 Buffers are
explained in Section 6. The proposed architectural
schemes/compiler techniques are then compared in
Section 7. Finally, some related work is outlined in
Section 8 and conclusions are drawn in Section 9.

2 MODULO SCHEDULING AND SWING MODULO

SCHEDULING

Modulo scheduling is an effective technique to extract
instruction-level parallelism (ILP) from loops by over-
lapping the execution of successive iterations of the original
loop without the need to unroll it [8], [35]. It is a well-
understood technique used by many current compilers.

The parameters that most affect the performance of a
modulo scheduled loop are the Initiation Interval (II) and
the Stage Count (SC). The II is the number of cycles between
the initiation of consecutive iterations. For loops with a high
trip count, the execution time is almost proportional to the
II. Modulo scheduling algorithms begin by computing a
Minimum II (MII) for a given loop. The MII is bounded by
resource usage and recurrences in the Data Dependence
Graph. After that, modulo scheduling algorithms start an
iterative process trying to find a valid schedule with the
lowest possible value of the II starting with the MII. On the
other hand, the Stage Count (SC) specifies the number of
overlapped iterations.

Swing Modulo Scheduling (SMS) is one of the most
effective modulo scheduling techniques [27], [11]. It is
basically a heuristic to sort the instructions of the Data
Dependence Graph (DDG) so that a valid schedule is found
with the MII most of the time, combined with a bidirec-
tional scheduler. SMS gives priority to instructions in
recurrences according to the constraints they impose on
the II. It has been demonstrated that giving priority to
critical instructions is good to achieve tight schedules. In
particular, recurrences are sorted from most to least
restrictive in terms of II. Within each recurrence, nodes
are sorted so that most of them (all except one per
recurrence) have only predecessors or successors placed
prior to them in the ordered list.1 This is beneficial for
reducing register pressure [21], [10].

1228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

1. Nodes that belong to more than one recurrence are listed with the
most restrictive one.

Fig. 1. A typical clustered processor (left) and a clustered processor with a distributed L1 data cache (right). In both cases, a four cluster

configuration is assumed.

In this work, we develop instruction scheduling techni-
ques for cyclic code. In particular, we propose a modulo
scheduling algorithm for each of the proposed distributed
cache architectures.

3 TOOLS AND CONFIGURATIONS

The IMPACT compiler [7] has been used as the main
infrastructure to compile the benchmarks, optimize them,
and build hyperblocks [28]. The benchmarks we have used
are theMediabench suite [26] since they representworkloads
that can be found in embedded processors such as DSPs. The
benchmarks and their inputs are summarized in Table 1.

We evaluate the performance of the three proposed
architectures that are explained in the following sections:
the MultiVLIW, a word-interleaved cache clustered VLIW
processor and a clustered VLIW processor with Flexible
Compiler-Managed L0 Buffers. They are compared with a
partially distributed processor (a clustered architecture with
a unified L1 data cache). In all configurations, we have
assumed a 4-cluster architecture in which all clusters are
homogeneous and each one has one integer, one memory,
and one FP functional unit. The architectural parameters
used in our simulations are summarized in Table 2. We
have assumed that the latency of a centralized L1 data cache
is the same as the access time to a remote cache module
when the cache is distributed. In addition, we use the same
bandwidth for all cache configurations. In case of a unified
8KB cache, four read/write ports to the cache have been
assumed, whereas one read/write port cache module has
been used when the cache is partitioned. For each
architecture configuration, we have used the proposed
scheduling algorithm in order to perform modulo schedul-
ing of inner loops, which account for approximately
80 percent of the total execution time.

4 THE MULTIVLIW

4.1 Architecture

Sánchez and González [38] proposed partitioning the
L1 data cache into different cache modules and attaching
a cache module to each cluster. A snoop-based cache
coherence protocol such as MSI (used in multiprocessor
architectures [42]) is used to guarantee coherence among
the different cache modules. A memory access that is
satisfied by the local cache module has short latency, while
memory accesses requesting data that is mapped remotely
or coherence transactions, such as invalidation messages,
take longer. Although all clusters work in lock-step mode,
the use of a cache coherence protocol found in multi-
processor systems led the authors to use the term Multi-
VLIW to refer to this architecture.

The main advantage of the MultiVLIW is that data is
replicated/moved dynamically to the clusters that make
use of it based on the access pattern of the instructions.
However, data replication may limit the effective capacity
of the cache. In addition, a hardware cache coherence
protocol may have a high cost, especially in the embedded/
DSP domain.

4.2 Instruction Scheduling Algorithm

The instruction scheduling algorithm proposed for this
architecture is explained in this section. The core of the
algorithm will also be used for the following architecture
configurations, so it is exposed here in deeper detail. A
graphical view of the algorithm is shown in Fig. 2. Since
data is already moved dynamically to the clusters that make
use of it in the MultiVLIW, no additional techniques to
increase local accesses are used.

Given a Data Dependence Graph (DDG) representing a
loop, the algorithm starts by sorting its nodes using the

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1229

TABLE 1
Benchmarks and Inputs Used in Simulations along with the Relevant Command Line Arguments Used to Run the Programs

The main data type is listed in the last column, along with the amount of dynamic memory accesses to this data type.

SMS heuristic explained in Section 2. Once the nodes are
ordered, the algorithm proceeds by scheduling one instruc-
tion at a time. For each instruction, the set of possible
clusters where it can be scheduled is computed. This set
contains the clusters with enough free resources to execute
the instruction. If the instruction cannot be scheduled in any
cluster, the II is increased and the whole scheduling process
starts again.

On the other hand, if the set of possible clusters is not
empty, it is ordered so that clusters where global commu-
nications are minimized are selected first. In addition,
clusters that incur the same overhead in terms of global
communications are again ordered by giving priority to
clusters with fewer instructions already assigned to them.
The idea is to minimize global communications and max-
imize the workload balance among clusters at the same time.

Finally, the instruction is scheduled in the first cluster of
the set where a valid slot is found. If the schedule is not
possible, the II is increasedand thewholeprocess starts again.

5 A WORD-INTERLEAVED CACHE CLUSTERED

VLIW PROCESSOR

5.1 Architecture

Another way to partition the L1 data cache is to distribute a
cache line among clusters in a word-interleaved manner
[15]. In such a configuration, each cache module will hold
some words of each memory block, depending on the data

address and the interleaving factor of the architecture. We
use the term subblock to identify words of the same
memory block that are mapped into the same cache
module. For example, assuming a 4-cluster architecture,
8-word cache lines, and an interleaving factor of 1 word,
words 0 and 4 of a given cache line form a subblock that
will always be mapped to cluster 1, as can be seen in Fig. 3.
Note that each piece of data is mapped in a single cache
module, so there is no data replication, as opposed to the
MultiVLIW in which the same piece of data may be present
in different cache modules at the same time.

A memory access in a word-interleaved cache clustered
VLIW processor can be satisfied with four different
latencies (assuming a perfect L2 data cache or main
memory):

. Local hit: If the memory access references a local
subblock and it is present in the local cache module.

. Remote hit: If the memory access references a remote
subblock and it is present in the corresponding
remote cache module.

. Local miss: If the memory access references a local
subblock and it misses in the local cache module.

. Remote miss: If the memory access references a
remote subblock and it misses in the corresponding
remote cache module.

With such a static binding between addresses and
clusters, compiler techniques are key to increasing the ratio

1230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

TABLE 2
Architectural Parameters for Each Configuration

Fig. 2. Modulo scheduling algorithm for the multiVLIW. This algorithm is later refined to generate efficient code for the other architectural

configurations.

of memory accesses that are satisfied locally. Although the
proposed techniques increase the proportion of local
accesses by 27 percent on average, small buffers in each
cluster are an effective hardware technique to hold remotely
mapped data and further increase the ratio [14]. The idea is
to amortize a costly remote access. When a cluster accesses a
remote subblock, the whole remote subblock is returned to
the cluster and cached in its local buffer. These buffers are
handled as a regular cache structure and the next access to a
cached remote subblock will be satisfied locally if it has not
been replaced from the buffer. These buffers are referred to
as Attraction Buffers since data is attracted to the cluster
that accesses it. An example of Attraction Buffers is shown
in Fig. 4, where data mapped in cluster 4 is attracted to
cluster 1.

Techniques to keep cache modules and Attraction
Buffers coherent are explained in Section 5.3.

5.2 Instruction Scheduling Algorithm

We have adapted the proposed scheduling algorithm
explained in Section 4.2 in order to generate code for a
word-interleaved cache clustered VLIW processor. The
algorithm has been divided into several steps, which are
covered in deeper detail next. These steps are:

1. Profiling and variable alignment: Gathering infor-
mation of memory accesses.

2. Loop unrolling: In order to increase local accesses.
3. Latency assignment: To schedule each memory

instruction with its “appropriate” latency.
4. Sorting the nodes of the Data Dependence Graph

(DDG).
5. Cluster assignment and scheduling.

5.2.1 Profiling and Variable Alignment

Due to the static binding between addresses and clusters in
a word-interleaved cache clustered VLIW processor, it is
very important to develop techniques to increase the
number of local accesses. Such techniques rely on informa-
tion for each memory instruction that is gathered through
profiling.

We will refer to the amount of times an instruction is
expected to access each cluster as the access pattern of the
instruction. Such information may be different when a
different input set is used. For example, if a memory
instruction I accesses a heap variable V and has an access
pattern of {100, 0, 0, 0} (meaning that it accessed elements of
V mapped in cluster 1 100 times, while it never accessed
elements mapped in other clusters), it is reasonable to

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1231

Fig. 3. A 4-cluster word-interleaved cache clustered VLIW processor. L1 blocks are split into subblocks which are statically assigned to clusters

based on their addresses and the interleaving factor.

Fig. 4. Attraction Buffers are a complexity-effective hardware mechanism to increase local accesses. In this example, the interleaving factor is equal

to the size of array a’s elements.

schedule I in cluster 1, which is its preferred cluster or its
most accessed cluster during profiling. However, V may be
aligned differently when another input is used and I’s
preferred cluster may not be cluster 1 anymore.

In order to mitigate alignment differences among input
sets, variable alignment is enforced. In particular, stack
frames are aligned so that their first word is always mapped
in cluster 1. On the other hand, heap variables are aligned in
the same way by forcing malloc-type routines to return
pointers aligned to the first cluster. Finally, global variables
are not aligned in any special way since they are always
mapped in the same addresses, regardless of the input data.

5.2.2 Loop Unrolling

Before scheduling, the compiler performs loop unrolling.
Loop unrolling helps improve the performance of modulo
scheduled loops for unified and clustered architectures [37].
For a word-interleaved configuration, unrolling has an
additional advantage: It can help increase local accesses. For
example, imagine the following piece of code:

for (i=0; i<MAX; i++) {

load a[i]

perform computations

store b[i]

}

where array elements are 4-bytes long and a 4-byte
interleaving factor is used to distribute data among clusters.
Given a 4-cluster architecture, three out of four memory
accesses will be remote, no matter where memory instruc-
tions are scheduled. However, if the loop is unrolled four
times, each memory instruction will access data mapped in a
single cluster. If the compiler is able to assign each memory
instruction to its appropriate cluster, allmemoryaccesseswill
be satisfied locally. In order to compute the Optimum
Unrolling Factor2 (OUF) for each loop, the compiler takes
into account the strideof eachmemory instruction in the loop,
the number of clusters, and the interleaving factor. The stride
of memory instructions is computed statically by the
compiler. Memory instructions without a stride are not
considered when computing the OUF of each loop since it is
difficult to predict their access pattern.

Although unrolling may be beneficial, the compiler may
be applying excessive unrolling if every loop is unrolled by
its OUF, leading to code explosion. For example, the OUF of
a loop that has memory instructions with a 1-byte stride is
16, assuming a 4 cluster architecture with an interleaving
factor of 4 bytes. Memory accesses with 1-byte and 2-byte
strides are common in the evaluated benchmarks. In
addition, excessive unrolling may generate loops that
iterate few times, making them not suitable for modulo
scheduling. These two drawbacks, together with the use of
small Attraction Buffers in each cluster in order to increase
local accesses by hardware, advocates for the use of a more
selective unrolling process. In particular, the compiler
chooses among three different unrolling factors instead of
always using OUF and chooses the best one for each loop in
terms of less expected compute time. The three factors are: 1
(no unroll), N (unroll by N , N being the number of

clusters), and OUF. The compute time of a loop L is
estimated by the compiler using the following formula:

TcompL ¼ ðavg num iterationsL þ SCL � 1Þ � IIL:

5.2.3 Latency Assignment

Memory instructions do not have a deterministic latency.
Hence, they can be scheduled with different latencies, such
as the hit latency or the miss latency, based on profiling
information or some other heuristics. Scheduling memory
instructions with small latencies (hit latency) reduces
compute time since tighter schedules are achieved. How-
ever, if instructions miss in the cache, stall time is increased.
On the other hand, if memory instructions are scheduled
with large latencies (miss latency), compute time is
increased, but stall time is reduced. It has been shown that
a hybrid mechanism in which memory instructions are
selectively scheduled with one or another latency based on
a locality analysis is a good trade-off between compute time
and stall time and performance is improved [36]. This is
done in this step of the algorithm.

Since a memory instruction can be classified into four
different groups in a word-interleaved cache clustered
VLIW processor (local hit, remote hit, local miss, remote
miss), each memory instruction may be scheduled with four
different latencies. Given a loop, the compiler will first
assign the largest latency (remote miss) to all memory
instructions. However, execution time may be greatly
increased with this initial assignment compared to that
achieved if all memory instructions were assigned and
scheduled with the smallest latency (local hit). Thus, an
iterative process reassigns smaller latencies to some selec-
tively chosen instructions in order to achieve an execution
time similar to the latter. The idea is to assign smaller
latencies to memory instructions that will probably be
satisfied with latency. For instance, assume the following
loop that has not been unrolled and assume that all
instructions have a 100 percent hit rate:

for (i=0; i<MAX; i++) {

load a[i]

load b[4*i]

compute

store a[i]

}

load b½4 � i� accesses the same cluster for all iterations and
will be transformed into local accesses if scheduled
properly. Hence, its latency is reduced before the latency
of load a½i� that will access a remote cluster most of the time.

A benefit function B is computed for each instruction in
the loop. This benefit function describes how good would
be to reduce the latency of an instruction I from L to L0 (L0

always being smaller than L). The benefit function is the
following:

BðI; L; L0Þ ¼ rExecution Time

�Stall T ime
:

This function corresponds to the ratio between the
expected decrease in execution time if the latency reduction
was performed for that particular instruction divided by the
expected increase in stall time. In order to compute the
expected increase in stall time, profiling information

1232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

2. The unrolling factor that guarantees that all memory instructions in
the loop with a known strike will access data mapped in a single cluster for
all iterations.

gathered in Step 1 is used. For example, the ratio of local
accesses versus remote accesses is used to account for the
times the instruction will be executed with a local or a
remote latency and this information is derived from the
access pattern of the instruction. In addition, the hit rate is
used to estimate the ratio of local or remote hits and local or
remote misses. On the other hand, the impact of the
instruction on the II is used to estimate the decrease in
execution time if its latency is reduced.

The compiler reassigns the latency of the instruction with
highest benefit and iterates by recomputing the benefit
function for the rest of the instructions and by changing the
latency of one instruction at a time. This iterative process
finishes when the expected execution time of the loop is the
same as if all memory instructions were scheduled with the
smallest latency.

5.2.4 Sort the Nodes of the DDG

After the latency of all instructions has been assigned, the
algorithm sorts them using the Swing Modulo Scheduling
(SMS) ordering phase, as was done in the previous
algorithm.

5.2.5 Cluster Assignment and Scheduling

Finally, the algorithm starts the scheduling process itself.
For each node or instruction, the algorithm computes the set
of possible clusters where it can be scheduled. As explained
before, this set contains the clusters with enough free
resources to execute the instruction. If the instruction
cannot be scheduled in any cluster, the II is increased and
the whole process starts again as was done in the previous
algorithm.

If the set of possible clusters is not empty, it is then
sorted. For memory instructions, priority is given to each
instruction’s preferred cluster (the cluster it accessed most
during profiling), which is placed at the beginning of the
set. The rest of the clusters are ordered by giving priority to
clusters that minimize global communications and max-
imize workload balance. Finally, the instruction is sched-
uled in the first cluster of the set where a valid slot is found.

5.3 Memory Coherence

Memory instructions must be scheduled carefully in order to
guarantee memory coherence [16]. Coherence may be
corrupted if memory requests accessing the same memory

address are not satisfied in the original program order. For
instance, if a load instruction scheduled in cluster 1 at cycle i
accesses variable X that is mapped in cluster 3 and a store
instruction to the same variable is scheduled in cluster 4 one
cycle later, coherence is corrupted if the store instruction
updates X before it is read. This scenario is shown in Fig. 5.
Although the compiler has scheduled the store one cycle after
the load, this situation can still occur due to the nondetermi-
nistic latency to reach a remote cluster. When the remote
request derived from the load instruction is issued, the
memory bus may be busy due to other remote accesses,
invalidation requests, replacements, etc., that can lead to a
situation in which the store request reaches cluster 2 before
the load request. In addition, coherence must be kept among
Attraction Buffers, which may cache different copies of the
same data.

The solution to this problem is to restrict, to some extent,

the assignment of memory instructions to clusters. In

particular, the scheduling algorithm forces memory depen-

dent instructions to be scheduled in the same cluster since

the serialization of memory accesses is guaranteed within a

cluster but not among clusters. Hence, the compiler builds

memory dependent sets and assigns and schedules memory

instructions belonging to the same set to the same cluster. In

the example of Fig. 5, either the load should be scheduled in

cluster 4 or the store in cluster 1.
Memory dependent sets are constructed after applying

some kind of high-level memory disambiguation analysis

[9]. It should be pointed out that the compiler always stays

on the conservative side when performing such a type of

analysis: Whenever it cannot determine whether two

memory instructions will access the same data, it will add

a memory dependence between them. In order to reduce

the impact of such assignment constraints, memory

dependent sets are built for each loop independently. Thus,

these constraints are only applied on a loop basis. In order

to guarantee coherence between loops, the execution of a

loop does not proceed until all memory accesses of the

previous loop have reached their home cluster, the home

cluster being the one where the data is statically mapped.
Note that this solution also guarantees coherence among

Attraction Buffers since memory instructions accessing the
same piece of data are assigned and scheduled into the

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1233

Fig. 5. The latency of a memory bus is not deterministic. Hence, memory instructions may proceed in an order different from the original program

order if the scheduling algorithm does not restrict the assignment of memory instructions to clusters. This is known as the memory coherence

problem.

same cluster and will use a single Attraction Buffer.3 Once a
loop exits, the contents of all Attraction Buffers are flushed.

5.4 Evaluation

In this section, some of the proposed mechanisms and
techniques for a word-interleaved cache clustered VLIW
processor are evaluated. We should point out that an
interleaving factor of 4 bytes has been used since 4-bytes are
one of the most common data types in the simulated
benchmarks, as shown in the last column of Table 1.

The impact of the proposed scheduling techniques on the
local ratio (the proportion of local versus remote accesses) is
studied first. In Fig. 6, memory accesses have been classified
into local hits, remote hits, local misses, remote misses, and
combined accesses. Combined accesses are accesses to
subblocks that have already been requested and are still
pending and, hence, the second request is not issued. These
combined accesses can result in hits or misses and they
have just been counted as a separate group. The y-axis
represents the ratio of all memory accesses. For each
benchmark, four bars are drawn. From left to right, these
bars represent the results of the proposed scheduling
algorithm with

1. no unrolling with variable alignment,
2. OUF unrolling without variable alignment,
3. OUF unrolling with variable alignment, and
4. OUF unrolling with variable alignment and no

memory dependent sets, where memory instructions
are freely scheduled in their preferred cluster.

Note that this last column is shown for comparison
purposes since coherence is not guaranteed (memory
accesses may reach memory out of program order, although
coherence is guaranteed by hand in our simulator in order
to maintain correct execution).

As can be seen, loop unrolling and variable alignment
help increase the percentage of local hits. In particular, the
local hit ratio is increased by 20 percent on average when
variable alignment is used for OUF unrolling (comparing
the second and the third columns), while it is increased by
27 percent on average between no unrolling and OUF
unrolling, both with variable alignment (comparing the first
and the third columns). This indicates that the proposed

strategies are successful in increasing the proportion of
memory accesses that are satisfied locally. Furthermore,
variable alignment increases the size of the benchmarks’
working sets by only 6 percent on average. This increase is
concentrated in the programs with the smallest working
sets (g721dec and g721enc) and it translates into a negligible
impact on the hit rate and performance.

Although the percentage of local accesses is large for
some benchmarks, remote accesses are still important in
some applications. Remote accesses are due to:

. Double precision accesses in which memory instruc-
tions access data elements bigger than the interleav-
ing factor. These accesses require at least one
remotely mapped word. This type of access accounts
for 50 percent of all accesses in mpeg2dec.

. Indirect accesses of the form a½b½i��. This type of
access is very common in jpegdec, jpegenc, pegwitdec,
and pegwitenc.

. Memory accesses with an ”unclear” preferred
cluster. These include indirect accesses that have
been introduced before and accesses such as the
following two examples:

for (i=0; i<N; i++) {

for (j=i; j<N; j=j+4) {

load a[j]

...

}

}

for (i=0; i<N; i++) {

p++; q=p; /* p & q are pointers */

for (j=0; j<N; j=j+4) {

load *q

q = q + 4

...

}

}

where we assume that inner loops have been
unrolled OUF times and, in both load instructions,
access the same cluster once the inner loop is
entered. This type of access is common in jpegdec
and jpegenc.

. Memory dependent sets. Memory instructions in a
memory dependent set are not scheduled in their
preferred cluster but on the average preferred

1234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Fig. 6. Each bar from left to right represents the classification of memory accesses using: 1) no unrolling with variable alignment, 2) OUF unrolling

without variable alignment, 3) OUF unrolling with variable alignment, and 4) OUF unrolling with variable alignment and no memory dependent sets

(memory instructions are freely assigned to their preferred cluster).

3. Memory instructions accessing the same data may be assigned and
scheduled into different clusters as long as all memory instructions
accessing this data are load instructions. In this case, there is no coherence
problem since data that may be replicated in more than one Attraction
Buffer is only read.

cluster of the set. These kind of remote accesses are
important in epicdec, pgpdec, pgpenc, and rasta, as can
be seen when comparing the third and fourth
columns in Fig. 6. In these cases, the memory alias
analysis applied by the compiler cannot disambig-
uate memory references in some important loops
and memory dependent sets are relatively big. A
more aggressive alias analysis may reduce this kind
of remote access.

However, we have used a more selective unrolling
heuristic than OUF unrolling, as explained in Section 5.2. In
this case, Attraction Buffers are important to increase local
accesses by hardware and reduce stall time. Stall time is
mainly due to memory instructions that have been
scheduled too close to their consumers. Remote accesses
and, especially, remote hits are the biggest source of stall
time, as can be seen in Fig. 7. For each benchmark (except
for g721dec and g721enc, where stall time is negligible), two
bars are shown using selective unrolling which correspond
to: 1) stall time generated without Attraction Buffers and
2) stall time generated with 16-entry 2-way set-associative
Attraction Buffers. Results are normalized to the first bar.
Stall time has been divided into stall time generated by
remote hits, local misses, and remote misses (local hits
never cause stalls). As can be observed, stall time is mainly
due to remote hits that account for 72 percent of the stall
time, on average, without Attraction Buffers. In addition,
Attraction Buffers are an effective way to reduce stall time,
which is reduced by 36 percent on average.

A previous partial study [14] showed that 8-entry and
16-entry Attraction Buffers are enough to capture most of
the remote accesses and are cost-effective solutions in terms
of buffer size and stall time reduction.

6 FLEXIBLE COMPILER-MANAGED L0 BUFFERS

FOR A CLUSTERED VLIW PROCESSOR

6.1 Architecture

The last distributed cache configuration we have proposed
for clustered VLIW processors consists of a slow centralized
L1 data cache and a small and fast L0 buffer per cluster [17].
Due to the small capacity of these buffers, flexible
mechanisms can be used to map data to the buffers and
manage them. In addition, the compiler is responsible for
marking which instructions make use of the buffers and
which do not. Hence, it is important to map critical data in

the buffers without overflowing their capacity. We refer to
these buffers as Flexible Compiler-Managed L0 Buffers, or
L0 buffers for short, and an example is shown in Fig. 8.

We consider that an entry in an L0 buffer has the size of a
cache line divided by the number of clusters. The term
subblock is again used to identify bytes of an L1 block that
are mapped in the same entry of a given L0 buffer.

The proposed buffers are flexible since data from the
slow centralized L1 data cache can be mapped to the buffers
in different ways. First, there is no static binding between
addresses and clusters, so any piece of data can be present
in any cluster. In addition, data can be mapped in the buffer
in a linear manner or in an interleaved manner.

With linear mapping, consecutive bytes of a cache line
form one subblock that is mapped in the buffer of the
cluster that requested the data. On the other hand, with
interleaved mapping, an L1 block is split into N subblocks
(N being the number of clusters) and subblocks are mapped
in consecutive clusters. Subblocks are formed by interleav-
ing bytes of the cache line using the access granularity as
the interleaving factor. For example, in case of a load_2_bytes
instruction, subblocks will be formed by using an inter-
leaving factor of 2 bytes. An example of both mapping
schemes is shown in Fig. 9.

The use of a dynamic interleaving factor is better
explained with an example. Assume that a loop has been
unrolled N times, N being the number of clusters, and has
derived in the following code:

for (i=0; i<MAX; i+=4) {

a[i] = b[i] + C; /* load_1 accesses

b[0],b[4],b[8], ... */

a[i+1] = b[i+1] + C; /* load_2 accesses

b[1],b[5],b[9], ... */

a[i+2] = b[i+2] + C; /* load_3 accesses

b[2],b[6],b[10], ... */

a[i+3] = b[i+3] + C; /* load_4 accesses

b[3],b[7],b[11], ... */

}

It seems reasonable to schedule each load instruction in a
consecutive cluster andmapdata accordingly. If arrays a and
b are 2-byte element arrays, data can be split into subblocks
with a 2-byte interleaving factor so that elements b½0�, b½4�, b½8�,
etc., are mapped in the same cluster. The disadvantage of
using a dynamic interleaving factor is that data must be

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1235

Fig. 7. Stall time due to different memory access types. The first bar represents stall time when no Attraction Bufferes are used, while the second

shows stall time when 16-entry 2-way set-associative Attraction Buffers are used. Values are normalized to the first bar.

packed into subblocks in different and specificmanners. This
packing operation is performed by the pack logic shown in
Fig. 8, which consists of a few demultiplexers and shifters.
We assume that an extra cycle is paid for this type of
access when moving data from L1 to the buffers.

Note the difference between this scheme and the static
interleaved scheme described in Section 5.1. Whereas
unrolling a loop OUF times is important to increase local
accesses by software in the latter, the architecture itself
adapts to the application to some extent in the former by
interleaving data depending on the usage pattern. Hence,
unrolling a loop by N is enough to guarantee that memory
accesses with an original stride of one element will access
data mapped in the same L0 buffer.

L0 buffers are controlled by the compiler through

directives and hints associated with memory instructions.

Such directives and hints can be divided into three groups:

1) directives that indicate whether the memory instruction

should access the buffer or not, 2) hints that indicate how

data should be mapped in the buffers in case the instruction

is marked to access them, and 3) hints to indicate whether

the previous/next subblock should be prefetched to the

local L0 buffer when the first/last element of a subblock is

accessed. A directive is different from a hint because the

former must be enforced by the implementation for correct

execution, whereas a hint may be ignored at the expense of

some impact on performance but not on correctness.

The compiler is responsible for deciding which instruc-

tions must be marked to map data in the buffers, to mark

them with the appropriate directives and hints and to

guarantee coherence among the buffers as well. Note that

prefetching hints are important in order to guarantee a high

L0 hit rate. Memory instructions that are marked to access

the buffers will be scheduled with a small latency. Hence,

each time they do not find the requested data in the local

L0 buffer, stall time is generated.
Finally, L0 buffers are write-through with respect to the

L1 cache. Thus, store instructions update the local L0 buffer

and L1 in parallel. This simplifies the management of

replacements and helps the scheduling algorithm guarantee

memory coherence.

6.2 Instruction Scheduling Algorithm

Before scheduling, the compiler performs loop unrolling.

For each loop, it chooses between two unrolling factors

based on the expected compute time: 1 (no unroll) or N (N

being the number of clusters). When a loop is unrolled by

N , memory instructions with an original stride of one

element may benefit from the interleaved mapping offered

by the architecture. The compute time of a loop L is again

estimated using the following formula:

TcompL ¼ ðavg num iterationsL þ SCL � 1Þ � IIL:

1236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Fig. 8. A 4-cluster architecture with a unified L1 data cache and Flexible Compiler-Managed L0 Buffers.

Fig. 9. Examples of linear and interleaved mapping, assuming 16-byte L1 blocks.

The structure of the scheduling algorithm after loop
unrolling is shown in Fig. 10 and is similar to that explained
in Section 4.2. The main differences are pointed out next.

Since L0 buffers have a low latency and a small number of
entries, the compiler marks the most critical instructions4 to
make use of them without overflowing the capacity of each
individual L0 buffer. In order to do so, it keeps a counter for
each cluster indicating the number of free L0 entries in that
cluster for the current partial schedule. These counters are
grouped into an array called num_free_entries, which is
initialized before the scheduling process.

Before scheduling an instruction, the algorithm recom-
putes the slack of all memory instructions, taking into
account the partial schedule. The slack is defined as the
difference between the earliest execution cycle and the latest
one when the instruction may be scheduled. The P most
critical memory instructions (i.e., those with less slack) are
then marked to be candidate instructions to make use of the
buffers and be scheduled with the L0 latency, P being the
total amount of free L0 entries in the processor at that time
(the sum of all counters in array num_free_entries). The rest
of the instructions are assigned the L1 latency. This step is
performed before scheduling an instruction in order to
assign a latency to it. Note that recomputing the slack of
each memory instruction is crucial because the slack of an
instruction may be different before and after scheduling
other instructions.

Afterward, the set of possible clusters where the
instruction can be scheduled is computed. This set contains
the clusters with enough free resources to execute the
instruction. This set is ordered taking into account the
L0 buffer usage, global communications and workload
balance. If the instruction is a candidate instruction, the set is
divided in two groups: those clusters where the instruction
can really be scheduled with the L0 latency (those clusters
with free L0 entries) and the rest. Priority is given to clusters
within the first group of the set so that candidate instructions
are first probed to be scheduled with a small latency. Within
each group, clusters are ordered by taking into account
global communications and workload balance. On the other
hand, if the instruction is not a candidate instruction, all
clusters belong to the second group.

Finally, each time a candidate instruction is marked to use
the buffers and is scheduled with the L0 latency in a cluster,
the corresponding counter is decreased, indicating that one
entry in that buffer has been consumed. When a counter
reaches zero, it means that all L0 entries are being used and

no more candidate instructions can be scheduled in that
particular cluster with the L0 latency. An exception in this
step occurs when two instructions accessing the same data
are scheduled in the same cluster.5 In this case, the counter
is decreased just once, when the first instruction is
scheduled.

6.3 Memory Coherence

Memory coherence must be guaranteed among L0 buffers
since the same piece of information may be present in
different buffers at the same time. Our solution to this
problem is similar to that exposed in Section 5.3.

The scheduling algorithm builds sets of memory
dependent instructions and assigns and schedules all
memory instructions of a set to the same cluster. This
guarantees that data accessed by memory dependent
instructions is only mapped to one of the buffers and
memory conflicts do not arise with data mapped to other
clusters. However, this strategy can be refined in this case.
In particular, given a memory dependent set with load and
store instructions, loads scheduled with the L0 latency and
stores in the same set must be scheduled in the same cluster.
Load instructions that are marked to bypass the buffers can
be scheduled in any other cluster since they will directly
access L1, which is always up to date because L0 buffers are
write-through.

Memory dependent sets are built on a loop basis. Once a
loop exits, the contents in all L0 buffers are invalidated.

6.4 Evaluation

First, we evaluate the number of L0 entries that are required
to capture almost all memory accesses and reduce stall time.
In Fig. 11, execution time is shown for 4-entry, 8-entry,
16-entry, and an unbounded number of L0 buffer entries.
Execution time has been divided into compute time (shaded
parts) and stall time (white parts). Stall time is due to
memory accesses that have been scheduled too close to their
consumers. Execution time has been normalized to that of a
partially distributed VLIW processor. As can be observed,
8-entry buffers are enough to capture almost all memory
accesses and execution time is reduced by 16 percent
compared to a processor without such buffers.

The only benchmark where performance is worse com-
pared to a clustered architecturewithout L0 buffers is jpegdec.
With 4-entryL0 buffers, stall time is greatly increased in some
of its important loops due to the buffers’ LRU replacement

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1237

Fig. 10. Instruction scheduling algorithm for a clustered VLIW processor with Flexible Compiler-Managed L0 Buffers.

4. A critical instruction is defined as an instruction that impacts
performance if its execution is delayed.

5. Two load instructions inside a loop that access the same data are
possible when the compiler cannot disambiguate them with some store
instruction in between.

policy. In this case, prefetched subblocks replace “useful”
subblocks from L0 buffers that have not been used yet and
that are accessed afterward. On the other hand, execution
time is also increased for bigger L0 buffers sizes (8 and
16 entries) compared to a partially distributedprocessor. This
is due to one loop where all memory slots are busy and
prefetching is common. Such memory pressure translates
into contention in the memory hierarchy and stall time
increases.ThealgorithmcouldgiveupusingL0buffers in this
loop and use a more conservative schedule (the same
schedule as a clustered processor without buffers), which,
in this case, generates better results.

In Fig. 12, the percentage of subblocks that have been
mapped in a linear or in an interleaved way is shown in the
first bar of each benchmark, assuming 8-entry L0 buffers,
while the second bar shows the L0 buffer hit rate. In most
cases, the L0 hit rate is above 95 percent. This is very
important since memory instructions that have been
scheduled with the L0 latency should find their data in
the buffers. Otherwise, stall time would be greatly
increased. The exceptions are the epicdec, mpeg2dec, pegwit-
dec, pegwitenc, and rasta benchmarks. For pegwitdec and
pegwitenc, the low L0 hit rate is due to a low L1 hit rate as
well. On the other hand, in the case of epicdec, mpeg2dec, and
rasta, there are several loops with small II values (values like
2, 3, or 4 cycles). In such scenarios, prefetch requests are
generated too close in time to the consumer instructions of
the data and data is stored in the buffers too late. Thus, the
processor is often stalled. This phenomenon translates into
many stall time for epicdec and rasta, while stall time is not
increased that much in mpeg2dec. A smarter prefetch
mechanism, which prefetches two subblocks in advance
instead of the next/previous subblock, can be used to
reduce stall time in these loops. In particular, overall
execution time is reduced by 12 percent in epicdec and
4 percent in rasta when prefetching two subblocks in
advance. However, prefetching more data in advance

requires more L0 buffer entries and this study is left for
future work.

7 COMPARISON OF THE DIFFERENT SCHEMES

We have compared the performance of a partially dis-
tributed processor with that of the three proposed fully
distributed schemes. In all four cases, the same loop
unrolling heuristic has been used so that results are not
biased by different loop unrolling optimizations. In parti-
cular, the instruction scheduling algorithms choose between
two unrolling factors: 1 (no unrolling) and N (N being the
number of clusters) and chooses the best one for each loop
in terms of less expected compute time. Note that the
Optimum Unrolling Factor (OUF) has not been used for a
word-interleaved cache clustered VLIW processor in order
not to favor this architecture by using a different unrolling
factor. The use of Attraction Buffers in this architecture
increases local accesses by hardware and overcomes the
limitation of not using such an unrolling factor.6 The
architectural parameters for each configuration were intro-
duced in Table 2.

In Fig. 13, execution time is shown for a clustered VLIW
processor with 8-entry Flexible Compiler-Managed
L0 Buffers, the MultiVLIW, and a clustered VLIW with a
word-interleaved cache and 8-entry Attraction Buffers.
Execution time has been divided into compute time (shaded
parts) and stall time (white parts). Stall time is mainly due to
memory instructions that have been scheduled too close to
their consumers. Execution time is normalized to that of a
partially distributed processor. The IPC for the partially
distributed architecture baseline is depicted on top of the
bars. As can be seen, all three configurations outperform a
clustered architecture with a centralized cache. In particular,

1238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

Fig. 11. Execution time for different L0 buffer sizes.

Fig. 12. Percentage of subblocks mapped in a linear and in an interleaved manner, along with the L0 buffer hit rate.

6. Besides, an important fraction of the simulated loops, the OUF is equal
to N (the number of clusters).

execution time is reduced by 16 percent when L0 Buffers

are used, by 18 percent with the MultiVLIW, and by

8 percent with a word-interleaved cache compared to the

execution time of a partially distributed processor.
In addition to this quantitative comparison, we

can perform a qualitative one based on three key

points: hardware complexity, software complexity, and

performance (see Table 3). First, the MultiVLIW is the

scheme that requires the most complex hardware. This is

due to the snoop-based cache coherence protocol that may

be prohibitive in the embedded/DSP domain. However, the

scheduling algorithm is the simplest one since data is

already moved/replicated dynamically to the clusters that

make use of it. In addition, it has a good performance

compared to a partially distributed processor.
On the other hand, a word-interleaved scheme is a much

simpler design in terms of hardware, but the scheduling

algorithm gets a little bit more complex. In addition, in

order to avoid excessive unrolling for a pure word-

interleaved scheme, Attraction Buffers must be used in

order to increase local accesses, reduce stall time, and have

a competitive performance. This scheme performs better

than a partially distributed processor, but its performance is

not as good as the performance of the MultiVLIW and that

of the Flexible Compiler-Managed L0 Buffers.
Finally, a clustered VLIW processor with Flexible

Compiler-Managed L0 Buffers has a low hardware com-

plexity, a high software complexity compared to that of the

MultiVLIW (recomputing slacks frequently is expensive in

terms of compilation time), and its performance is very

close to the latter.

8 RELATED WORK

Several works advocate the use of clustering in order to

mitigate the wire delay problem and reduce power

consumption [32], [1]. The IPC obtained in a clustered

processor is lower than that obtained in a centralized

processor with the same amount of resources, mainly due to

intercluster communications. However, when the impact on

cycle time and power consumption are considered, a

clustered architecture can outperform a unified architecture

both in terms of energy and execution time.

There have been numerous contributions in the field of

partially distributed architectures. In the out-of-order

processor domain, dynamic techniques to steer or assign

instructions to clusters have been developed [6], [2], [5]. On

the other hand, for statically scheduled or VLIW processors,

the compiler is responsible for distributing instructions

among clusters ([29], [31], [37], [22], [10] among others).

Some more recent studies have focused on fully distributed

architectures for out-of-order processors [46], [34], [5].

Other research works in the area of clustered micro-

architectures include Raw [43], TRIPS [39], and Wavescalar

[40]. In all these cases, the processor is made up of a set of

tiles or clusters, often organized in a mesh network where

each cluster has its own data and instruction cache,

functional units, and local register file or local temporary

value storage. These approaches differ mainly in the

execution model and are different from our approach in

two ways: 1) We target a traditional VLIW processor and

2) we focus mainly on the compiler since our target

architecture is a pure VLIW processor.

On the other hand, Kin et al. [24] also proposed using a

small buffer acting as an L0 cache in order to reduce power

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1239

Fig. 13. Execution time of the three fully distributed schemes compared to that of a clustered VLIW processor with a unified L1 data cache.

TABLE 3
Qualitative Comparison of the Three Fully Distributed Schemes

consumption with a reduced impact on performance. They

refer to this buffer as the filter cache. However, the filter

cache acts as a regular cache, it is not flexible, and it is not

controlled by the software. In addition, the filter cache was

proposed for a nonclustered processor, while the L0 Buffers

are used as part of the solution to the wire delay problem.

Other proposals exist in the literature that use small

buffers to increase performance or decrease power con-

sumption ([33], [4], [3], [44] among others). However, none

of them are targeted to deal with the wire delay problem in

a clustered environment and do not provide the flexibility

offered by the Flexible Compiler-Managed L0 Buffers

introduced in this work.

Finally, adaptive memory structures have also been

explored by other research groups. While we propose

simple mechanisms to adapt the L0 buffers to the memory

access patterns of programs, other works advocate for

processor-in-memory schemes ([25], [30], [23]). Another

approach is used in Impulse [45], where memory is kept

simple and functionality is added to the memory controller

in order to exploit memory space and bandwidth efficiently.

9 CONCLUSIONS

The distribution of the data cache among clusters in

clustered VLIW processors poses three challenges: 1) de-

signing a cache partitioning and data mapping scheme,

2) developing effective instruction scheduling techniques,

and 3) forcing memory coherence.
In this paper, we presented and compared three different

alternatives to partition the data cache among clusters in

VLIW processors. The first approach is called the Multi-

VLIW. It is based on assigning a cache module to each

cluster and using a snoop-based cache coherence protocol

in order to guarantee data coherence. Next, a word-

interleaved cache clustered processor has been introduced.

Finally, a clustered processor with a centralized L1 data

cache and Flexible Compiler-Managed L0 Buffers in each

cluster has been proposed. For each alternative, instruction

scheduling techniques for cyclic code are proposed, along

with mechanisms to guarantee memory coherence.
Results for the Mediabench suite demonstrate the

effectiveness of the proposed architectures and instruction

scheduling algorithms. A word-interleaved cache clustered

VLIW processor outperforms a VLIW processor with a

centralized cache by 8 percent, while the MultiVLIW and a

processor with Flexible Compiler-Managed L0 Buffers

outperform it by 18 percent and 16 percent, on average,

respectively. A comparison among them concludes that the

Flexible Compiler-Managed L0 Buffers is the most cost-

effective approach.

ACKNOWLEDGMENTS

This work has been partially supported by El Ministerio de

Educación y Ciencia under grant TIN2004-03072 and Intel

Corporation and it has been developed using the resources

of CESCA and CEPBA.

REFERENCES

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger, “Clock
Rate versus IPC: The End of the Road for Conventional
Microarchitectures,” Proc. 27th Int’l Symp. Computer Architecture,
June 2000.

[2] A. Aggarwal and M. Franklin, “An Empirical Study of the
Scalability Aspects of Instruction Distribution Algorithms for
Clustered Processors,” Proc. Int’l Symp. Performance Analysis of
Systems and Software, 2001.

[3] O. Avissar, R. Barua, and D. Stewart, “An Optimal Memory
Allocation Scheme for Scratch-Pad-Based Embedded Systems,”
ACM Trans. Embedded Computing Systems, 2002.

[4] R. Bahar, G. Albera, and S. Manne, “Power and Performance
Tradeoffs Using Various Caching Strategies,” Proc. Int’l Symp. Low
Power Electronics and Design, 1998.

[5] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Dynami-
cally Managing the Communication-Parallelism Trade-Off in
Future Clustered Processors,” Proc. 30th Int’l Symp. Computer
Architecture, June 2003.

[6] R. Canal, J.M. Parcerisa, and A. González, “Dynamic Cluster
Assignment Mechanisms,” Proc. Sixth Int’l Symp. High-Performance
Computer Architecture, Jan. 2000.

[7] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W. Hwu,
“IMPACT: An Architectural Framework for Multiple-Instruction-
Issue Processors,” Proc. 18th Int’l Symp. Computer Architecture,May
1991.

[8] A. Charlesworth, “An Approach to Scientific Array Processing:
The Architectural Design of the AP120B/FPS-164 Family,”
Computer, vol. 14, no. 9, Sept. 1981.

[9] B. Cheng, “Compile-Time Memory Disambiguation for C Pro-
grams,” PhD thesis, Dept. of Computer Science, Univ. of Illinois,
May 2000.

[10] J.M. Codina, J. Sánchez, and A. González, “A Unified Modulo
Scheduling and Register Allocation Technique for Clustered
Processors,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, Sept. 2001.

[11] J.M. Codina, J. Llosa, and A. González, “A Comparative Study of
Modulo Scheduling Techniques,” Proc. Int’l Conf. Supercomputing,
June 2002.

[12] P. Faraboschi, G. Brown, J. Fisher, G. Desoli, and F. Homewood,
“Lx: A Technology Platform for Customizable VLIW Embedded
Processing,” Proc. 27th Int’l Symp. Computer Architecture, June 2000.

[13] J. Fridman and Z. Greefield, “The TigerSharc DSP Architecture,”
IEEE Micro, Jan./Feb. 2000.

[14] E. Gibert, J. Sánchez, and A. González, “An Interleaved Cache
Clustered VLIW Processor,” Proc. Int’l Conf. Supercomputing, June
2002.

[15] E. Gibert, J. Sánchez, and A. González, “Effective Instruction
Scheduling Techniques for an Interleaved Cache Clustered VLIW
Processor,” Proc. 35th Int’l Symp. Microarchitecture, Nov. 2002.

[16] E. Gibert, J. Sánchez, and A. González, “Local Scheduling
Techniques for Memory Coherence in a Clustered VLIW
Processor with a Distributed Data Cache,” Proc. First Int’l Symp.
Code Generation and Optimization, Mar. 2003.

[17] E. Gibert, J. Sánchez, and A. González, “Flexible Compiler-
Managed L0 Buffers for Clustered VLIW Processors,” Proc. 36th
Int’l Symp. Microarchitecture, Dec. 2003.

[18] P.N. Glaskowsky, “MAP1000 Unfolds at Equator,” Microprocessor
Report, vol. 16, no. 12, Dec. 1998.

[19] L. Gwennap, “Digital 21264 Sets New Standard,” Microprocessor
Report, vol. 14, no. 10, Oct. 1996.

[20] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., Q1, Feb. 2001.

[21] R. Huff, “Lifetime-Sensitive Modulo Scheduling,” Proc. ACM
SIGPLAN ’93 Conf. Programming Languages Design and Implementa-
tion, 1993.

[22] K. Kailas, K. Ebcioglu, and A. Agrawala, “CARS: A New Code
Generation Framework for Clustered ILP Processors,” Proc.
Seventh Int’l Symp. High-Performance Computer Architecture, Jan.
2001.

[23] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an Advanced Intelligent
Memory System,” Proc. Int’l Conf. Computer Design, Oct. 1999.

[24] J. Kin, M. Gupta, and W.H. Mangione-Smith, “The Filter Cache:
An Energy Efficient Memory Structure,” Proc. 30th Int’l Symp.
Microarchitecture, Dec. 1997.

1240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER 2005

[25] C.E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K.
Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K.
Keeton, R. Thomas, N. Treuhaft, and K. Yelick, “Scalable
Processors in the Billion-Transistor Era: IRAM,” Computer,
vol. 30, no. 9, Sept. 1997.

[26] C. Lee, M. Potkonjak, andW.H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nication Systems,” Proc. 30th Int’l Symp. Microarchitecture, Dec.
1997.

[27] J. Llosa, A. González, E. Ayguadé, and M. Valero, “Swing Modulo
Scheduling,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, Oct. 1996.

[28] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bring-
mann, “Effective Compiler Support for Predicated Execution
Using the Hyperblock,” Proc. 25th Int’l Symp. Microarchitecture,
Dec. 1992.

[29] E. Nystrom and A.E. Eichenberger, “Effective Cluster Assignment
for Modulo Scheduling,” Proc. 31st Int’l Symp. Microarchitecture,
1998.

[30] M. Oskin, F.T. Chong, and T. Sherwood, “Active Pages: A
Computation Model for Intelligent Memory,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, June 1998.

[31] E. Özer, S. Banerjia, and T.M. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered Register
File Microarchitectures,” Proc. 31st Symp. Microarchitecture, Nov.
1998.

[32] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. 24th Int’l Symp. Computer Architec-
ture, June 1997.

[33] P. Panda, N. Dutt, and A. Nicolau, “Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications,” Proc.
European Design and Test Conf., Mar. 1997.

[34] P. Racunas and Y. Patt, “Partitioned First-Level Cache Design for
Clustered Microarchitecture,” Proc. 17th Int’l Conf. Supercomputing,
June 2003.

[35] B.R. Rau, “Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops,” Proc. 27th Int’l Symp. Microarchitec-
ture, Nov. 1994.

[36] J. Sánchez and A. González, “Cache Sensitive Modulo Schedul-
ing,” Proc. 30th Int’l Symp. Microarchitecture, Dec. 1997.

[37] J. Sánchez and A. González, “The Effectiveness of Loop Unrolling
for Modulo Scheduling in Clustered VLIW Architectures,” Proc.
29th Int’l Conf. Parallel Processing, Aug. 2000.

[38] J. Sánchez and A. González, “Modulo Scheduling for a Fully-
Distributed Clustered VLIW Architecture,” Proc. 33rd Int’l Symp.
Microarchitecture, Dec. 2000.

[39] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K. Kim, D.
Burger, S.W. Keckler, and C.R. Moore, “Exploiting ILP, TLP, and
DLP Using Polymorphism in the TRIPS Architecture,” Proc. 30th
Ann. Int’l Symp. Computer Architecture, June 2003.

[40] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Waves-
calar,” Proc. 36th Int’l Symp. Microarchitecture, Dec. 2003.

[41] Texas Instruments Inc., “TMS320C62x/67x CPU and Instruction
Set Reference Guide,” 1998.

[42] M. Tomasevic and V. Milutinovic, “Hardware Approaches to
Cache Coherence in Shared-Memory Multiprocessors,” IEEE
Micro, vol. 14, nos. 5-6, pp. 52-59, 61-66, Oct., Dec. 1994.

[43] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J.
Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A.
Agarwal, “Baring It All to Software: Raw Machines,” Computer,
vol. 30, no. 9, Sept. 1997.

[44] Y. Wu, R. Rakvic, L. Chen, C. Miao, G. Chrysos, and J. Fang,
“Compiler Managed Micro-Cache Bypassing for High Perfor-
mance EPIC Processors,” Proc. 35th Int’l Symp. Microarchitecture,
Nov. 2002.

[45] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter,
W. Hsieh, and S. McKee, “The Impulse Memory Controller,” IEEE
Trans. Computers, special issue on advances in high-performance
memory mystems, vol. 50, no. 11, Nov. 2001.

[46] V.V. Zyuban, “Inherently Lower-Power High-Performance Super-
scalar Architectures,” PhD thesis, Dept. of Computer Science and
Eng., Univ. of Notre Dame, Mar. 2000.

Enric Gibert received the bachelor’s and MS
degrees in computer engineering from Enginyer-
ia La Salle, Universitat Ramon Llull at Barcelo-
na, Spain, in 1995 and 1998, respectively. In
1996, he became an assistant professor in the
Informatics Department at Enginyeria La Salle.
He then joined the Department of Computer
Architecture at the Universitat Politècnica de
Catalunya in September 2000, where he started
the PhD under the supervision of Antonio

González and Jesús Sáchez. His work focused on distributed and
energy-aware cache memories for clustered VLIW processors. In March
2005, he joined the Intel Barcelona Research Center.

Jesús Sánchez received the MS and PhD
degrees in computer engineering from the
Universitat Politècnica de Catalunya (UPC) at
Barcelona, Spain, in 1995 and 2001, respec-
tively. He joined the Department of Computer
Architecture of the UPC-Barcelona in 1995 as a
research assistant. From September 1998 until
June 2002, he was an assistant professor in this
department. He joined the Intel Barcelona
Research Center as a senior researcher in

March 2002. His main interests are in the area of processor
microarchitecture and compilation techniques, with special emphasis
on memory hierarchy, locality analysis, instruction level parallelism,
clustered architectures, and instruction scheduling. He has more than 20
publications on these topics. He is currently working on compilation/
profiling techniques for speculative multithreaded architectures. He is a
member of the IEEE.

Antonio González received the MS and PhD
degrees from the Universitat Politècnica de
Catalunya (UPC) in Barcelona, Spain. He is
the founding director of the Intel Barcelona
Research Center, whose research focuses on
new microarchitecture paradigms and code
generation techniques for future microproces-
sors. Prior to his career at Intel, he joined the
faculty of the Computer Architecture Department
of UPC in 1986 and became a full professor in

2002. He currently holds a part-time professor position in this
department. His research has focused on computer architecture,
compilers and parallel processing, with a special emphasis on processor
microarchitecture and code generation. He has published more than
180 papers, has given more than 60 invited talks, and has filed
10 patents in the areas of power-aware microarchitectures, clustered
microarchitectures, speculative multithreaded processors, data value
and data dependence speculation and reuse, cache architectures,
register file architecture, modulo scheduling, code analysis and
optimization, parallel algorithms, prolog-oriented architectures, instruc-
tion fetching mechanisms, and digital image processing. He is an
associate editor of the IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed Systems, ACM Transactions
on Architecture and Code Optimization, and Journal of Embedded
Computing. He has served on more than 50 program committees for
international symposia in the field of computer architecture, including
ISCA, MICRO, HPCA, PACT, ICS, ICCD, ISPASS, CASES, and IPDPS.
He has been program (co)chair for ICS 2003, ISPASS 2003, and
MICRO 2004, among other symposia. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GIBERT ET AL.: DISTRIBUTED DATA CACHE DESIGNS FOR CLUSTERED VLIW PROCESSORS 1241

