6,763 research outputs found

    Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time

    Get PDF
    Traditionally, inertia in power systems has been determined by considering all the rotating masses directly connected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic installations and wind power plants, has led to a significant dynamic characteristic change in power systems. This change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall impact on stability and reliability analysis of power systems is very significant. The power systems become more dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renewable generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new power system with high penetration renewables, where the lack of rotating masses directly connected to the grid must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addition, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms of frequency control strategies is included in the paper.This work was supported by the Spanish Education, Culture and Sports Ministry [FPU16/04282]

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Impact of Low Rotational Inertia on Power System Stability and Operation

    Full text link
    Large-scale deployment of RES has led to significant generation shares of variable RES in power systems worldwide. RES units, notably inverter-connected wind turbines and PV that as such do not provide rotational inertia, are effectively displacing conventional generators and their rotating machinery. The traditional assumption that grid inertia is sufficiently high with only small variations over time is thus not valid for power systems with high RES shares. This has implications for frequency dynamics and power system stability and operation. Frequency dynamics are faster in power systems with low rotational inertia, making frequency control and power system operation more challenging. This paper investigates the impact of low rotational inertia on power system stability and operation, contributes new analysis insights and offers mitigation options for low inertia impacts.Comment: Presented at IFAC World Congress 2014, Capetown, South Africa (Flaws in Table I corrected.

    Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    Get PDF

    Contribution of wind farms to the stability of power systems with high penetration of renewables

    Get PDF
    This article belongs to the Special Issue Modeling and Control of Wind Energy Conversion Systems.Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation.This research was funded by the Spanish Ministry of Science, Innovation and Universities grant number PID2019-106028RB-I0

    Improving Grid Hosting Capacity and Inertia Response with High Penetration of Renewable Generation

    Get PDF
    To achieve a more sustainable supply of electricity, utilizing renewable energy resources is a promising solution. However, the inclusion of intermittent renewable energy resources in electric power systems, if not appropriately managed and controlled, will raise a new set of technical challenges in both voltage and frequency control and jeopardizes the reliability and stability of the power system, as one of the most critical infrastructures in the today’s world. This dissertation aims to answer how to achieve high penetration of renewable generations in the entire power system without jeopardizing its security and reliability. First, we tackle the data insufficiency in testing new methods and concepts in renewable generation integration and develop a toolkit to generate any number of synthetic power grids feathering the same properties of real power grids. Next, we focus on small-scale PV systems as the most growing renewable generation in distribution networks and develop a detailed impact assessment framework to examine its impacts on the system and provide installation scheme recommendations to improve the hosting capacity of PV systems in the distribution networks. Following, we examine smart homes with rooftop PV systems and propose a new demand side management algorithm to make the best use of distributed renewable energy. Finally, the findings in the aforementioned three parts have been incorporated to solve the challenge of inertia response and hosting capacity of renewables in transmission network

    Provision of Frequency Response from Wind Farms: A Review

    Get PDF
    Renewable sources of energy play a key role in the process of decarbonizing modern electric power systems. However, some renewable sources of energy operate in an intermittent, non-dispatchable way, which may affect the balance of the electrical grid. In this scenario, wind turbine generators must participate in the system frequency control to avoid jeopardizing the transmission and distribution systems. For that reason, additional control strategies are needed to ensure the frequency response of variable-speed wind turbines. This review article analyzes diverse control strategies at different levels which are aimed at contributing to power balancing and system frequency control, including energy storage systems.This research was funded by the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), Diputación Foral de Álava (DFA) through the project CONAVANTER, and UPV/EHU through the project GIU20/063

    Evaluation of Electric Vehicle Charging Controllability for Provision of Time Critical Grid Services

    Get PDF
    Replacement of conventional generation by more stochastic renewable generation sources leads to reduction of inertia and controllability in the power system. This introduces the need for more dynamic regulation services. These faster services could potentially be provided by the growing number of electric vehicles. EVs are a fast responding energy resource with high availability. This work evaluates and experimentally shows the limits of EV charging controllability using widely supported IEC 61851 standard. The focus is put on EVs suitability for providing ancillary grid services with time critical requirements. Three different series produced EVs are tested. The experimental testing is done by using charging current controllability of built-in AC charger to provide a primary frequency regulation service with very dynamic input frequency. The results show that the controllability of most EVs is more than suitable for providing time critical grid services. Meanwhile, charging current ramping rates of recently produced EVs are potentially suitable to even provide synthetic inertia

    Grid Code-Dependent Frequency Control Optimization in Multi-Terminal DC Networks

    Get PDF
    The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.Australian Education International, Australian Government TEC2016-80242-PMinisterio de Economía y Competitividad DPI2016-75294-C2-2-
    corecore