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Abstract: Renewable sources of energy play a key role in the process of decarbonizing modern
electric power systems. However, some renewable sources of energy operate in an intermittent, non-
dispatchable way, which may affect the balance of the electrical grid. In this scenario, wind turbine
generators must participate in the system frequency control to avoid jeopardizing the transmission
and distribution systems. For that reason, additional control strategies are needed to ensure the
frequency response of variable-speed wind turbines. This review article analyzes diverse control
strategies at different levels which are aimed at contributing to power balancing and system frequency
control, including energy storage systems.

Keywords: wind power; wind farm; frequency control; frequency response; inertia emulation

1. Introduction

Supply and demand of active power must be balanced at any given time for achieving
a stable operation of an electric power system. Otherwise, the stability and quality of the
power system will become progressively worse, which may result in the disconnection of
system components and, eventually, cause fault cascades and blackouts [1,2]. In order to
stabilize the system frequency, power production must match consumption; this balance
management is known as frequency control [3].

Synchronous machines have a natural capability to slow down frequency deviations
because of the inertia of their rotating masses. Thus, when a significant loss of power
generation occurs, the resulting frequency drop is slowed. As a consequence, additional
power reserves can be deployed to re-establish the power balance while remaining within
acceptable frequency deviation limits [4]. In contrast, most Wind Energy Conversion
Systems (WECS) are connected to the grid through power electronic interfaces, which
decouple the prime mover from the electric system and thus do not naturally provide
frequency response [5].

According to the International Renewable Energy Agency (IRENA), achieving the
Paris climate goals requires that global wind power energy share reaches 21% by 2030 and
35% by 2050, as shown in Figure 1 [6].

Figure 1. Wind power in total generation mix: onshore and offshore wind generation share.
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Currently, the increasing penetration of wind power and other renewable energy
sources (RES) introduces concerns about the system security due to the inherent variations
in the resulting rate of change of frequency (RoCoF). Therefore, actions must be adopted to
avoid large RoCoF values when RES are massively used in the power system. Particularly,
the effect of inertia of synchronous power-generating modules must be replaced with syn-
thetic inertia, which would facilitate further expansion of RES [4,7,8]. Actually, during the
last two decades, aggregated inertia has been reduced in Europe by around 20% in the last
two decades because of grid-decoupled RES integration [9].

The system operator in each control area is responsible for balancing the grid from
balancing service providers [10] whose power-generating modules must be capable of
adjusting the active power output in response to a deviation of the measured system
frequency [7]. Traditionally, the synchronous generators located in thermal power plants
provide balancing services. However, some grid codes require explicitly that wind farms
participate in frequency control tasks, such as EirGrid in Ireland and National Grid Code
in the UK [8,11].

An initial classification in frequency control techniques for RES is presented in [12].
Figure 2 shows how this classification has been applied to variable-speed wind turbines
(VSWT). Frequency control methods are split into two categories: with and without an
energy storage system (ESS), such as secondary batteries, flywheels, pumped hydropower,
or supercapacitors [13].

Figure 2. Inertia and frequency control technique design for variable-speed wind turbines.

The rest of this review article is organized as follows. Section 2 discusses grid code
requirements for frequency control and wind energy conversion systems, focusing on those
with variable-speed turbines. Section 3 presents the techniques that have been proposed
for the frequency control of variable-speed turbines at the generation-unit level. Section 4
explains different approaches aimed at providing frequency response from wind farms with
and without energy storage systems. Section 5 provides an overview of the possibilities
and challenges related to frequency control in power systems with increasing contribution
of wind energy. Finally, some conclusions are drawn in Section 6.

2. Frequency Stability and Wind Power
2.1. Overview of Grid Code Requirements

Frequency stability is the ability of a power system to maintain steady frequency and
restore active power equilibrium following a significant imbalance between generation
and load, with minimum unintentional loss of load [14].

Figure 3 shows the activation of operating reserves on the event of a loss of generation
in an electric power system [15].

Frequency control is usually divided into primary and secondary control [5] or, equiv-
alently in the terminology used by European Network of Transmissions System Operators
for electricity (ENTSO-e), “Frequency Containment Reserves” (FCR) and “Frequency
Restoration Reserves” (FRR), respectively [10,15].
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Primary reserve is the additional capacity of the network that can be automatically and
locally activated by the generator’s own governor until a few seconds at most after a loss
of load or generation. The purpose of primary reserve is to quickly restore the active power
balance in the system by means of the so-called “droop control”. The generation increase
or decrease is proportional to the error of frequency, and the frequency stabilization is
achieved at a lower value (in the case of loss of generation) or at a higher value (in the case
of loss of load) than the rated frequency of the system [15].

The purpose of secondary and tertiary reserves is to reset the electric system to its
nominal frequency. The transmission system operator (TSO) is in charge of establishing the
active power set-points in each control area.

At first, the frequency decreases with a slope that depends on the inertia of the system.
If frequency falls bellow fc,min , primary operating reserves must be activated, increasing
the mechanical power of the prime mover. Once the power balance is reached, the frequency
remains constant but below the target frequency. Then, secondary and tertiary reserves are
activated to restore the nominal frequency. The notation means the following:

• fop,min and fop,max are the frequency limits in which the system can work. These
limits are imposed by the applicable grid code.

• fss,min and fss,max define the tolerance band for the quasi-steady-state frequency
level, i.e., the level that is reached because of activation of only primary reserves by
means of droop control. In practice, this means that if frequency falls below fss,min ,
the generator will activate 100 % of its primary reserves.

• fc,min and fc,max are the limits of the dead band for activation of the primary reserves.

European TSOs such as TenneT, which operates in the Netherlands and large parts
of Germany, follow ENTSO-e recommendations and require that generators supply all of
their operating reserves in 30 s at most [16].

Wind turbines supporting primary frequency control have been investigated by a
number of authors [17–20].

There is a three-level hierarchy in control schemes for wind power generation to
provide frequency response: wind turbine level, wind farm level and power system
level [21]. Frequency containment reserves are provided at wind turbine level and wind
farm level.

Figure 3. Operating reserves activation in the event of a loss of generation in an electric power system.
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In order to get a general picture, Figure 4 shows the maximum and minimum limits
for the frequency levels allowed during a period of time for TenneT, the Grid Code of
Ireland and the National Grid Code of the UK.

Figure 4. Comparison of maximum times of operation as a function of grid frequency required by
TenneT, the Grid Code of Ireland and the National Grid Code (UK).

Several performance indicators may be used to describe and to evaluate the system
frequency response (SFR) [5]. Figure 5 shows a typical and idealistic SFR showing primary
control only. The following indicators are depicted:

• Rate of change of frequency at the time of the disturbance.
• Maximum frequency deviation ∆ fmax is the absolute value of frequency deviation

from nominal frequency, f0 .
• Frequency nadir fmin is the minimum frequency following a disturbance.
• Frequency nadir time tmin is the time at which the frequency reaches the nadir.
• Quasi-steady-state deviation ∆ fss is the deviation between the nominal frequency

value and the final value.

Figure 5. System frequency response considering primary control.

European Commission Regulation (EU) 2016/631 establishes harmonised rules for
grid connection for power-generating modules [7]. This regulation divides the power-
generating modules into four categories which depend on the voltage of the connection
point and the maximum capacity according to a threshold specified by the relevant TSO.
In continental Europe, power-generating modules with a rated power above 1 MW belong
to type C or type D categories which have to support Frequency Sensitive Mode (FSM),
meaning that they have to adapt their power output in response to a change in system
frequency to assist with the recovery to target frequency.

Primary frequency control is based on set-points for frequency and power whose
actual values are measured locally. Control actions are also local, taking place in each power-
generation unit supporting frequency control regardless of the location of the disturbance.
As droop control is a proportional controller, there remains an unavoidable frequency error
that has to be managed at power system level to restore the target frequency [5].
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Figure 6 is an adaptation of Figure 5 of EU Regulation 2016/631 to illustrate the FSM,
where no deadband has been considered. The droop, expressed as a percentage, is defined
as follows:

s = 100
|∆ f |

fn

Pref

|∆P| (1)

where Pref is the maximum capacity or the actual power output when the FSM threshold
is reached.

The droop characteristic must have a slope between 2 and 12% and, depending on
the relevant TSO, it could include a deadband up to 0.5 Hz. There is also a tolerance of
10–30 mHz for frequency measurement error called “frequency response insensitivity” [7].
These parameters are shown in Table 1.

Table 1. Parameters for active power frequency response in Frequency Sensitive Mode, specified by
the European Commission.

Parameters Ranges

Active power range related to maximum capacity
|∆P|
Pref

1.5–10%

Frequency response insensitivity
|∆ f |

fn
0.02–0.06% (10–30 mHz @ 50 Hz)

Frequency response deadband 0–500 mHz
Droop s 2–12%

Figure 6. Active power frequency response capability of power-generation modules in Frequency
Sensitive Mode illustrating the case of zero deadband and insensitivity.

In addition to the requirements regarding frequency containment reserves in FSM, EU
Regulation 2016/631 introduces the concept of synthetic inertia, which may be crucial for
system stability [15].

2.2. Inertia and Rate of Change of Frequency

In power systems with increasing wind power penetration, more pronounced fre-
quency nadir and RoCoF events may occur. This presents a significant challenge for system
operators [22].

Newton’s Second Law for a rotating electric machine is expressed as in Equation (2):

Tm − Te = J
dωm

dt
(2)

where J (kg m2) is the total moment of inertia of the system and Tm − Te (Nm) represents
the balance between the mechanical torque impressed on the rotating mass by a prime
mover and the electrical torque depending on the power exchanged with the system.
The resulting torque, if different from zero, causes an angular speed deviation. In the
absence of losses, it can be assumed that in a physical electrical system, the inertia is an
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effect proportional to torque imbalance and inversely proportional to the rate of change or
rotating speed [4]. Equation (3) considers the total kinetic energy of the rotating masses.

Ek =
1
2

J ω2
m (3)

Therefore, there is a relationship between power balance and speed deviation as
expressed in Equation (4),

Pm(t)− Pe(t) =
dEk
dt

= ωm J
dωm

dt
≈ ωg J

dωm

dt
(4)

where the mechanical speed of the rotating mass has been approximated with the rated
angular frequency of the grid, ωg. Total equivalent inertia, H, is defined as the ratio of
the kinetic energy of the rotating masses and the rated apparent power of synchronous
generators in the power system as,

H =
Ek
S

=
J ω2

g

2 S
(5)

Equation (5) is also valid for a single synchronous generator under study. H is
measured in seconds and it is an indication of the delivery time of the design power of
the generator from only its kinetic energy. The typical inertia constants for conventional
synchronous generators can range from 2 to 9 seconds [18,23].

Substituting J from Equation (5) in Equation (4),

Pm(t)− Pe(t) =
2 S
ωg

H
dωm

dt
(6)

Equation (6) shows that a power imbalance will cause an acceleration of rotating
masses in the system, which is proportional to system inertia.

It follows that, if consumption of active power increases, frequency will decrease
with a rate that will be higher the lower the inertia of the generator. Therefore, inertia is
considered as an energy reserve that acts instantly and moderates the change in system
frequency [8].

The rate of change of frequency (RoCoF) is the derivative of the power system fre-
quency, d f

dt . RoCoF is an important quantity that qualifies as the robustness of an electrical
grid [4]. The instantaneous RoCoF just after an imbalance of power (caused by disconnec-
tion of a generator or by load tripping) and before the action of any control is calculated
as follows,

RoCoF
∣∣∣
t=0+

=
∆P
P

f0

2 H
(7)

where 0+ is the moment just after the power imbalance. For example, the Grid Code of
Ireland allows a RoCoF up to 0.5 Hz/s for generation units connected to the network before
December 2018. Significantly, it has been recently modified to facilitate the delivery of the
2020 renewable targets, and it currently allows a RoCoF up to 1 Hz/s as measured over a
rolling period of 500 ms [8,24].

2.3. General Concepts about Harnessing Wind Energy

The mechanical power in the primary shaft of a wind turbine is given by the expres-
sion [25],

Pt = Cp P0 (8)
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where P0 is the power transported by the wind in an airstream whose section corresponds
to the area swept by the blades of the wind turbine under study, as defined by Equation (9).
Cp is the coefficient of aerodynamic performance of the turbine.

P0 = 0.5 ρ A v3
w (9)

ρ is the density of the air, A is the swept area and vw is the speed of the wind, supposedly
constant in the airstream that we considered in front of the turbine and far enough from it.

Electric active power delivered to the grid can be expressed in terms of mechanical
power of the turbine through a general efficiency factor, η , as follows,

P = η Pt (10)

The turbine shaft torque is,

Tt =
Pt

ωt
(11)

where ωt is the rotational speed of the turbine. Cp has a theoretical limit derived from
a simple model based on the conservation of linear momentum of the particles of air. Its
value is approximately 0.59 and it is known as the Betz limit. In a more elaborate model,
which includes wake rotation and conservation of angular momentum, the theoretical
maximum Cp depends on the speed of rotation of the turbine, and it approaches Betz limit
as rotation speed increases [25].

However, more realistic models show that Cp increases only up to an optimal speed
of rotation and optimal pitch angle ( β = 0 ), as Figure 7 shows.

An expression proposed in [26] for Cp(λ, β) for three-blade turbines is the following,

Cp(λ, β) = c1

(
c2

1
Λ
− c3 β− c4 βx − c5

)
e−c6

1
Λ (12)

where
1
Λ

=
1

λ + 0.08 β
− 0.035

1 + β3 (13)

λ, also known as TSR, is the blade tip speed to wind speed ratio,

λ =
ωt R
vw

(14)

where R is the radius of the area swept by the blades.
Coefficients c1 to c6 depend on the wind turbine under study. The authors in [27]

show a similar expression with numerical coefficients based on a model found in Mat-
lab/Simulink. A review of mathematical models of the coefficient of performance as a
function of TSR and pitch angle can be found in [28].

Figure 7. Operation limits of wind turbines from simplified models and typical horizontal axis
three-blade turbine.
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This implies that for a given wind speed, there is an optimal rotation speed that
extracts the maximum power from the wind.

The power curve of a wind turbine generator (WTG) represents the active power
output as a function of wind speed (see Figure 8). The WTG begins to generate power
when the wind speed reaches the cut-in value. For the rated wind speed, the generator
produces its rated power. If the wind speed gains the cut-out speed, power generation is
canceled in order to prevent defects and damages [25]. Theoretical power curves, assuming
ideal conditions, are supplied by manufacturers [29]. A complete overview on wind turbine
power curve modeling can be found in [30].

At the partial load operation region, the pitch angle is maintained at 0 (optimal pitch)
and the turbine is operated at optimal rotor speed for maximum aerodynamic efficiency in
order to maximize the power extracted from the wind. This control technique is known
as the maximum power point tracking algorithm (MPPT). The optimal aerodynamic
curve is usually characterized in a lookup table in the controller of the machine side
converter [15,31,32]. At full load operation, the pitch angle is increased to lose aerodynamic
efficiency in order not to exceed the rated power of the generator [33,34].

Figure 8. Typical power curve of a wind turbine generator.

An analytical modeling of wind speed distribution in wind turbine arrays including
small onshore and large offshore wind is developed in [35].

2.4. Variable-Speed Wind Turbines

According to the capability of speed variation, the gearbox and the electric generator,
horizontal axis, three-blade wind turbine-based WECS can be roughly classified into four
types [36,37]. For a more complete definition and variants of this classification, see [38].

• Type 1: Fixed speed wind turbine, with multiple-stage gearbox and squirrel cage
induction generator (SCIG).

• Type 2: Limited variable-speed wind turbine with multiple-stage gearbox and wound
rotor induction generator (WRIG).

• Type 3: Variable-Speed Wind Turbines (VSWT) using doubly fed induction generator
(DFIG) and partial converter.

• Type 4: VSWT with direct drive or single-stage gearbox and full converter.

Inertia from fixed-speed WECS cannot be controlled and, as the authors in [39] demon-
strate, it is negligible compared to a type 3 WECS of the same rated power. Type 2 WECS
use external resistors connected to the rotor to achieve a limited speed regulation for
maximizing the electrical torque and power. However, the use of external resistors for
this purpose is now considered obsolete [40]. This review is focused on type 3 and type 4
Variable-Speed Wind Turbines, which are capable of supporting primary frequency control
and releasing the “hidden inertia” of the turbine [18].

Figure 9 shows the architecture of types 3 and 4. Both of them use back to back
(B2B) converters. Type 3 features a partial-scale B2B converter (rotor side and grid side)
and a DFIG, whereas type 4 uses a full-scale B2B converter (machine side and grid side)
connected to the stator of a synchronous machine (SM) or an induction machine (IM) with
a squirrel-cage rotor. Some type 4 WECS are directly driven and do not include a gearbox.
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Figure 9. Typical architectures of Variable-Speed Wind Turbines. Top: Type 3, variable-speed with
multiple-stage gearbox, DFIG and partial-scale converter. Bottom: Type 4, variable-speed with
optional direct drive, IM or SM, and full-scale converter.

The quadrature-phase slip ring model of a doubly fed induction generator, along
with its overall control structure, is described in [41–43]. Several authors have used this
model to develop and enhance the field-oriented control (FOC) technique to achieve an
optimal power tracking including frequency response. FOC, also known as vector control,
sets a two-dimensional rotating reference, called d-q, whose direct axis is usually aligned
with the stator magnetic flux. Under this scheme, the torque and the active power are
proportional to the q-axis component of the rotor current, whereas the q-axis component
is used to regulate the reactive power flow [27,40,44–56]. Figure 10 depicts the control of
a DFIG with some of the additional controllers discussed in this article. colorblue In this
manuscript, the asterisk sign (*) next to a variable means “reference value”.

Figure 10. Control architecture in a type 3 WECS featuring a doubly fed induction generator.

Modeling WECS with full-scale converters has also been covered in a number of
articles [57–65].
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3. Frequency Control Techniques for Variable-Speed Wind Turbines
3.1. Inertial Response

The kinetic energy of the wind turbine (WT) is used when the frequency deviation
exceeds the frequency response insensitivity [2]. The power released to or absorbed from
the grid is known as the inertial response. The inertial controller is implemented by two
methods: hidden inertia emulation and fast power reserve emulation. Both methods have
an inertial response of a very short duration, i.e., up to 10 s since the beginning of the
frequency disturbance [5,63].

Eriksson et al. [66] make a similar distinction and use the terms “synthetic inertial re-
sponse” and “fast power reserve”. Synthetic inertial response corresponds to the controlled
response from a grid-decoupled generating unit to mimic the instantaneous exchange of
kinetic energy from a synchronous machine with the power system. Synthetic inertial
response is proportional to RoCoF. On the other hand, “fast frequency response” is the
controlled contribution of active power that has a quick response to frequency deviation.
The response can be proportional to this deviation, or it can react following a predetermined
schedule [21].

Lack of control over the primary energy source prevents continuous power regulation.
However, during the first 2 or 3 s, the inertial response control is almost immediate. The fast
response capability associated with variable-speed wind turbines can be used to improve
the transient performance of current frequency regulation procedures for conventional
generation units [67]. The initial frequency support mitigates the frequency nadir, matching
or even exceeding the performance of a conventional generator, but after the nadir is
reached, the frequency recovery is inferior since excessive deceleration of the wind turbine
must be prevented [57].

The impact of inertia response on wind turbine dynamics is under research. Guo and
Schlipf develop a spectral model of grid frequency and propose a notch filter to reduce
the impact on the shaft loads [68]. Ochoa and Martinez propose the study of the transfer
function that represents the dynamic response of primary frequency control [69].

3.1.1. Hidden Inertia Emulation

The aim of the synthetic inertia controller, or hidden inertia emulation, is to release
the kinetic energy from the wind turbine [18,39]. As Figure 11 shows, the output of this
controller ( PHsyn ) is combined with the output of the MPPT algorithm to form the active
power control signal [5].

PHsyn = 2 Hsyn f
d f
dt

(15)

The synthetic inertia controller helps to reduce RoCoF and to increase the frequency
nadir. It releases considerably larger kinetic energy from the wind turbine compared with
fixed-speed turbine with induction generator [39].

Gonzalez-Llongat considers three different activation schemes for hidden inertia
emulation [70]:

• Continuously operating. This is an unrealistic control scheme and it is mentioned only
for comparison purposes.

• Under-frequency trigger. This activation scheme produces a trigger signal if the
measured frequency is below the frequency threshold.

• Maximum RoCoF trigger. Similarly to RoCoF relays, the trigger signal is activated if
d f
dt is below a certain threshold.
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Figure 11. Controller for releasing hidden inertia.

3.1.2. Fast Power Reserve

The fast power reserve controller is designed to provide a short-term inertial re-
sponse [5,19,63,71,72]. It can significantly raise the frequency nadir [66].

Fast power reserve ( PHsyn ) is inferred from the kinetic energy stored in the wind turbine,

PHsyn t =
1
2

J
(

ω2
r,0 −ω2

r,f

)
(16)

where t is the time elapsed since the frequency disturbance, ωr,0 is the initial speed and
ωr,f is the rotational speed corresponding to t.

This controller acts on the rotor speed signal to allow kinetic energy from the turbine
to be released. The change in the speed signal for fast power reserve is obtained as follows,

ω∗r = ωr,f =

√
ω2

r,0 −
2
J

PHsyn t (17)

The block diagram in Figure 12 represents the general implementation of fast power
reserve emulation.

Ochoa and Martinez develop a control strategy to operate a DFIG-WT at an optimal
power point to contribute inertial response to a large-scale power system. Their simulation
shows that the inertial contribution of the wind turbine improves the frequency response
of the system [73].

Figure 12. Fast power reserve emulation controller.

3.2. Droop Control

The droop controller is a steady-state power-frequency characteristic as depicted in
Figure 13. It yields an active power change proportional to the frequency deviation [5].
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Figure 13. Frequency droop characteristic.

Figure 14 shows an implementation of the frequency droop control for a VSWT [5,18].
When the wind turbine works at its maximum power, the power increase ( ∆P ) is obtained
from the kinetic energy of the rotation masses. In this case, there is a risk of reducing the
turbine speed too far which would force it out of the stable operating range [17].

To avoid turbine stall, the droop controller can be combined with a deloading control:
The turbine is operated at a suboptimal operating point in order to have available power in
the wind ready to be delivered in response to a system frequency drop [5].

Zhang et al. propose a frequency control with a prediction-based droop coefficient
under real-time spot market rules. The droop coefficient and thus the power reference are
updated at every bidding interval by using near-term prediction of wind power and grid
frequency [74].

Droop control in weak power systems with reduced inertia are considered in [75].

Figure 14. Frequency droop control for variable-speed wind turbines.

3.3. Deloading

As mentioned in Section 2.1, wind power generation-units and, more generally, wind
farms are required to assist with the recovery of target frequency by ramping their output
up and down according to grid code requirements. However, hidden inertia emulation
and fast power reserve can only give a short-term frequency control. This means that wind
turbines have to be operated in a deloaded mode or, alternatively, use a suitable energy
storage system. The former can be achieved by means of two methods: rotor speed control
(overspeeding) and pitch angle control (pitching) [15,76] (see Figure 15). According to the
research in [77], overspeeding has a better performance but a narrower regulation range
than pitching.
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Figure 15. Deloading techniques: overspeeding and pitching.

3.3.1. Speed Control

Figure 16 depicts the optimal power curve for different wind speeds at partial load
operation and some deloaded curves based on overspeeding techniques [15]. Instead
of working at the optimal curve, the target operation points lie on a deloaded curve
corresponding to the requested power margin x as Equation (18) shows,

Pdel = Popt (1− x) (18)

Deloading by overspeeding to achieve power reserve for participation in frequency
control is adopted in [20,78–82].

Figure 16. Deloaded operation by means of speed control for a 1.5 MW DFIG-based wind turbine.

Figure 17 shows a traditional overspeeding controller in which deloaded operation
point is conditioned by the droop control [5].

Figure 17. Droop and speed controllers.
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3.3.2. Pitch Angle Control

Increasing pitch angle for deloading purposes is a well-known technique [20,83].
The pitch angle controller response is slow because of its high mechanical time constant
and causes fatigue load. The pitch angle controller is usually coordinated at the wind farm
level [33,84,85]. The traditional pitch angle controller is depicted in Figure 18.

Figure 18. Traditional pitch control.

3.4. Combination of Control Strategies

Depending on the wind speed level, either pitching or overspeeding is more suitable
to deload the wind turbine. In the low wind speed range, overspeeding techniques are
applied. For a wind speed higher than the rated speed pitch control is used not only for
limiting the power output but also for applying deloading strategies. For a wind speed
close to but below rated speed, a combination of overspeeding and pitching techniques
can be used [15].

Luo et al. note that pitching shows a slow response and overspeeding has a narrow
regulating range. In order to improve the regulation performance of the deloaded wind tur-
bine, they developed and simulated a coordinated active power control strategy combining
pitch angle control and speed control [86].

Traditional deloading techniques rely on the measured wind speed, but the accuracy
of this measurement, or lack thereof, affects the estimates of available reserve. This may
be somewhat avoided by carefully selecting a minimum droop [80]. However, Boyle et al.
show that wind turbines can provide linear steady-state frequency-droop control by over-
speeding without the need of measuring wind speed [82].

The coordinated control of inertia emulation, droop control, rotor speed control and
pitch angle control enhances frequency control and damps the frequency oscillations
effectively [79]. Alsharafi et al. [81] compare the performance of different methods in
the full range of wind speed, both separate and combined, through simulations. They
conclude that the best control performance in terms of RoCoF and frequency nadir is inertia
emulation in combination with pitch control.

Other contributors make a similar classification in frequency control methods: Sonkar
and Rahi [87] classify the control methods as “Inertial control”, “Droop control”, “Rotor
speed control”, “Pitch angle control”, “Coordinated control” and “Other techniques”, while
the review article in [88] distinguishes between “temporary energy reserves” (including
synthetic inertia control and fast power reserve) and “persistent energy reserves” which
means deloading by means of rotor speed control or pitch angle control.

Etxegarai et al. simulate the frequency response for under-frequency and over-
frequency events in a small isolated power grid with a 76 MVA thermal power station and
a 9 MW wind farm [89].

In [90], Hoseinzadeh and Chen develop a fuzzy logic-based LFC scheme for inertial
support to system stability.

PD-type inertial response controllers are easy to implement, but they are vulnerable
to measurement noise, which can undermine the performance of the inertial controller.
Liu et al. developed and carried out experiments with a robust inertial control that is
capable of rejecting the negative effects of measurement noise [91].

Hwang et al. propose a disturbance-adaptive short-term frequency support scheme for
a DFIG-based VSWT. The adaptive gain changes depending on the RoCoF and rotor speed.
They conclude that this technique can improve the frequency response while ensuring a
stable operation [92].
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4. Frequency Control Techniques at the Wind Farm Level

The effective frequency support from a wind farm (WF) requires a hierarchical control
structure. There are two major control systems at the WF level: Central Control and Local
Control. The Central Control regulates the active power of the WF by sending set-points to
all WTs and the ESS, if available. The Local Control regulates the active power output at
each WT and ESS and sends back information to the Central Control [5].

Figure 19 depicts the control hierarchy at the wind farm level. The active power
command PWF is received by the Central Control which distributes to the local controllers
of wind turbines and ESS units [21].

Figure 19. Control hierarchy at the wind farm level.

4.1. Proposed Solutions without an Energy Storage System

Many modeled wind farms in the literature do not include an ESS [77,93–95].
For example, Ghosh et al. propose a farm control framework for primary frequency

and inertial response for a high wind penetration power system supporting frequency
regulation during subsynchronous and super-synchronous operation of the wind farm [96].
Dong et al. propose a fully distributed power regulation method for DFIG-based wind
farms in which wind turbines share the load based on local information in order to guaran-
tee that overspeeding control takes priority [97].

Fast response and avoiding frequent regulation of pitch angles is the motivation
behind the control system designed in [98], where Zhang and Fang propose a coordinated
deloading strategy at the wind farm level that meets their expectations.

The power system in Rhodes Island (Greece) is an autonomous power system with
high wind penetration and different types of wind turbines whose primary frequency
control has been evaluated in [99].

In this article [100], the authors propose a variable droop control strategy for wind
farms that considers optimal rotor kinetic energy. They simulate an optimized scheduling
reserve mode executed by the wind farm control center.

4.2. Proposed Solutions with an Energy Storage System

As depicted in Figure 20, there are two configurations for energy storage systems
(ESS) [5]:

• Distributed ESS: Small, connected to the DC bus between the two converters on
each VSWT.

• Aggregated ESS: Large, connected to the grid.
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Figure 20. Configurations of energy storage systems at the wind farm level: distributed ESS and
aggregated ESS.

An ESS can help to provide frequency response. For example, Liu et al. designed
a fuzzy logic controller to find the minimum rated power for an ESS when a sudden
imbalance of active power takes place, and they found that an ESS with a power of about
5% of the rated power of the wind farm can provide similar short-term frequency response
capability to that of synchronous generators of the same power as well as better frequency
response under small disturbance [101].

There are different technologies for energy storage which can be applied to wind farms
or to power systems with high wind power penetration [13,102–106]. An overview of the
current state of energy storage from a sustainability perspective can be found here [107].
This review article focuses on the following ESS:

• Pumped Hydro Storage (PHS);
• Battery-based Energy Storage System (BESS);
• Flywheel Energy Storage (FES);
• Superconducting Magnetic Energy Storage (SMES);
• Supercapacitors (SC).

PHS is the largest and most mature energy storage technology. Martínez-Lucas et al.
evaluate the capacity of an isolated hybrid wind-hydro power plant to contribute to
frequency stability [108]. The proposed control strategies and adjustment methodology
have been applied to the El Hierro power system [109].

BESS are maturing with falling prices and could play an important role in the path to
decarbonization [110]. Particularly, systems based on lithium-ion batteries have evolved
very quickly. They present a wide range of cell technologies and system architectures
already available on the market [111]. Control strategies for BESS integration in microgrid
applications including wind power have been developed in [112–115]. Zhang et al. propose
a primary frequency controller with prediction-based droop coefficient involving a BESS
that provides frequency response and reduces intermittency [74].

Johnston et al. propose a methodology for optimal sizing of ESS applied to Vanadium
Redox Battery for participation in primary frequency support. They conclude that, for a
50 MW rated Wind Farm, a 5.3 MW/3 MWh ESS is the most profitable considering the
frequency regulation in the UK market [116].

In the Australian National Energy Market, there is already a functional “grid-forming”
battery that provides inertia and system strength, and some others are under construc-
tion [117]. In the UK, there is a rapid development and growth of BESS [118].

FES is based on transformation of electric power and kinetic energy of a rotating
mass [119,120].

SMES application for smoothing wind power fluctuations by means of a supercon-
ducting coil has been researched in [121]. In [122,123], Li et al. propose a hybrid SMES-
BES system.
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SCs are ideal for short-term power exchange [124]. Frequency control support by
means of supercapacitors on an isolated power system has been researched in [125].

5. Possibilities and Challenges for the Participation of Wind Power in
Frequency Control

Negnevitsky et al. performed a risk assessment for power systems under high pene-
tration of wind power [126]. Their conclusions are consistent with the problem discussed
in this review article: an increasing participation of intermittent power generation leads to
reconsidering the impacts of frequency disturbances, particularly in small or isolated grids.

The wind energy participation growth brings significant challenges in electric power
systems in terms of frequency control, including wind speed measurement noise, lack of
universal solutions, energy wasting, unexpected wind speed drops and modifications in
the ancillary services market [127].

In Europe, the higher penetration of intermittent generators decoupled from the grid
has reduced the total inertia by around 20% [9]. However, a recent report about inertia and
system strength of Australia’s national energy market reveals that there is an economical
alternative to the inertia provided by traditional generators: grid-forming batteries [117].

5.1. Wind Speed Measurement Noise

The lack of precision in the measurement of wind speed affects the estimates of the
available reserve. A possible solution to obtain more precise wind speed measurements
would be using LIDAR (light detection and ranging) sensors. These sensors have been ex-
tensively used in meteorological applications with good results [25]. However, Simley et al.
conclude that there are a number of barriers that prevent the widespread use of LIDARs
for control purposes in wind power applications, including reliability and sensitivity to
weather conditions [128].

5.2. Lack of Universal and Standard Solutions

Despite great efforts in research, there is still no standard method to enable frequency
control in wind turbines. Actually, the need of frequency support by wind farms is very
different in large grids and isolated systems.

The decision to make wind farms contribute to frequency control is also challenging.
Neither the European Commission Regulation “establishing a network code on require-
ments for grid connection of generators” nor the current UK Grid Code refer explicitly
to wind farms. Instead, they define a “power park module” as a set of generators non-
synchronously connected to the grid, which are classified in four types, each with their own
requirements for frequency and voltage control [7,11]. Another point of debate is to set a
reasonable deloading ratio, which must consider the instant available power according
to the current wind speed value. The UK Grid Code and the European Commission set
a maximum power reserve up to 10% of the maximum power available for power park
modules, depending on their type and operating conditions.

It is remarkable that the Grid Code of Ireland has been recently modified to allow a
higher RoCoF [8].

5.3. Energy Wasting and Unexpected Wind Speed Drops

There is an intentional power curtailment whenever the wind turbine is operated
deloaded (i.e., below its optimal operating point) to obtain primary reserves. Unexpected
wind speed drops can also make frequency control difficult. A dedicated ESS not only
would mitigate these problems but also would improve the production of WFs.

5.4. Modifications in the Ancillary Services Market

Increasing the penetration of wind power will affect the Balancing and Ancillary
Services Markets which were designed for conventional generation.
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5.5. Grid-Forming Batteries

Zuo et al. perform simulations that demonstrate that large-scale battery storage
systems improve frequency containment [129].

Recently, large BESS based on lithium-ion cells have been installed in Australia,
California and the UK, showing that this technology is applicable in large power systems.

Battery-based energy storage systems have a quick response and are reliable tech-
nology. They have a remarkable prospect in regulating system frequency, contributing to
enhancing system stability and allowing for increasing wind power penetration [130].

6. Conclusions

As grid-decoupled RES penetration increases, traditional frequency control has to be
rethought. This paper presents a review of control strategies for wind farms to contribute
to power balancing and system frequency control.

First, a brief overview of the literature on the subjects of frequency stability, wind
power, inertia and variable-speed wind turbines has been introduced. Secondly, the control
techniques for the provision of frequency response proposed by different researches have
been presented. These control techniques include the following:

• Hidden inertia emulation and fast power reserve, which try to mimic the short-term
inertial response of synchronous generators by means of additional control loops.

• Droop control, a well-known technique which is widely used in traditional generation
units for primary frequency control.

• Deloading techniques, including overspeeding and pitching.
• Strategies at the wind farm level, with and without energy storage.

As the provision of wind power is not fully controllable, droop control has to be com-
bined with either a deloaded operation of the wind turbine or a dedicated energy storage
system. Strategies on deloading the turbine have been presented. The authors conclude
that operating the wind turbine at a higher-than-optimal rotation speed (overspeeding)
has a good performance but shows narrow regulating range. On the contrary, modifying
the pitch angle to intentionally lose aerodynamic efficiency has a better regulating range,
but it is slower and it could cause fatigue load. The application of both strategies highly
depends on the wind speed. Unfortunately, the noise of the wind measurement introduces
a negative effect that recent investigations try to address.

This article also discusses different frequency control techniques at the wind farm level
and presents different approaches found in the literature. Some of them involve dedicated
energy storage systems implemented by means of different technologies such as pumped
hydro storage, battery-based energy storage, flywheels, superconducting magnetic storage
and supercapacitors.

Energy storage is an alternative for deloading techniques in order to provide frequency
response. Particularly, systems based on lithium-ion secondary batteries are gaining
attention with a quick growth of the market. They may become an option in the future
depending on the price.
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Abbreviations
The following abbreviations are used in this manuscript:

RES Renewable Energy Sources

RoCoF Rate of Change of Frequency,
d f
dt

TSO Transmission System Operator
ENTSO-e European Network of Transmission System Operators for electricity
WECS Wind Energy Conversion System
WF Wind Farm
WT Wind Turbine
WTG Wind Turbine Generator
VSWT Variable-Speed Wind Turbine
SCIG Squirrel Cage Induction Generator
WRIG Wound Rotor Induction Generator
PMSG Permanent Magnet Synchronous Generator
DFIG Doubly Fed Induction Generator
IM Induction Machine
SM Synchronous Machine
MPT Maximum Power Tracking
ESS Energy Storage System
PHS Pumped Hydro Storage
BESS Battery-based Energy Storage System
FES Flywheel Energy Storage System
SMES Superconducting Magnetic Energy Storage
SC Supercapacitors
HVDC High-Voltage Direct Current
Pm Mechanical power provided by the prime mover
P Active power
Tm Mechanical torque of the prime mover
Te Electromagnetic torque
J Rotational inertia
ωm Rotor mechanical speed
ωr Rotor electrical speed
ωg Grid angular frequency
S Apparent power
H Inertia constant
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