1,928 research outputs found

    Impact of Technology Spreading on MEMS design Robustness

    Full text link
    International audienc

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined

    Bares 2.0 wave buoy and sustainable buoy network

    Get PDF
    The aim of this article is to show the operation of the Bares 2.0 wave buoy and the Bares network developed by HCTech. In the marine sector it is highly important to know the state of the sea for applications such as the construction of ports, the study of the impact of waves in coastal areas, the development and calibration of forecasting wave models, the knowledge of the state of the maritime navigation channels, etc. Some of the great difficulties that exist in order to obtain the information of ocean waves is the high cost of the buoys, installation and maintenance. The Bares network aims to cover areas of high oceanographic interest, the target is a sustainable network of buoys that facilitate the access to wave data. The features of this network are the optimized cost, high reliability and reduced maintenance.Peer Reviewe

    Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Get PDF
    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm–15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO2 non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.This work was partly supported through the EU FP7 project SOI-HITS (No. 288481). MTC thanks the Oppenheimer Trust and the EPSRC IAA for their generous financial support.This is the author accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/apl/106/19/10.1063/1.4921170

    Security of GPS/INS based On-road Location Tracking Systems

    Full text link
    Location information is critical to a wide-variety of navigation and tracking applications. Today, GPS is the de-facto outdoor localization system but has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing, and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination, and monitored by a INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We developed and evaluated algorithms that achieve such goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also designed, built, and demonstrated that the magnetometer can be actively spoofed using a combination of carefully controlled coils. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the true destination without being detected. We also show that it is possible for the adversary to reach almost 60-80% of possible points within the target region in some cities

    Novel Test Fixture for Characterizing Microcontacts: Performance and Reliability

    Get PDF
    Engineers have attempted to improve reliability and lifecycle performance using novel micro-contact metals, unique mechanical designs and packaging. Contact resistance can evolve over the lifetime of the micro-switch by increasing until failure. This work shows the fabrication of micro-contact support structures and test fixture which allow for micro-contact testing, with an emphasis on the fixture\u27s design to allow the determination and analysis of the appropriate failure mode. The other effort of this investigation is the development of a micro-contact test fixture which can measure contact force and resistance directly and perform initial micro-contact characterization, and two forms of lifecycle testing for micro-contacts at rates up to 3kHz. In this work, two different designs of micro-contact structures are fabricated and tested, with each providing advantages for studying micro-contact physics. After fabrication was refined, three functioning fixed-fixed Au micro-contact support structures with contact radii of 4, 6, and 10 µm and two functioning fixed-fixed Ag micro-contacts were tested using the µN force sensor at cycle rates up to 3 kHz. Comparing the PolyMUMPs micro-contact support structure to the fixed-fixed micro-contact support structure, it was determined that the fixed-fixed micro-contact support structure is the best structure for studying the evolution of micro-contact resistance

    Low-cost technology for the integration of micro- and nanochips into fluidic systems on printed circuit board: fabrication challenges

    Get PDF
    Nowadays, micro- and nanochips are usually\ud fabricated with Silicon and/or glass. A simple, low-cost and\ud reliable integration packaging method that provides flexibility\ud to the incorporation of electronic and fluidic devices into a\ud system has not been fully developed yet. The use of Printed\ud Circuit Board material as substrate to create dry film resist\ud microfluidic channels is the core technology to provide such an\ud integration method. The feasibility and potential of the\ud proposed packaging method is demonstrated in this wor

    Digital Microfluidics as a Reconfiguration Mechanism for Antennas

    Get PDF
    This dissertation work concentrates on novel reconfiguration technologies, including design, microfabrication, and characterization aspects with an emphasis on their applications to multifunctional reconfigurable antennas. In the literature, reconfigurable antennas have made use of various reconfiguration techniques. The most common techniques utilized revolved around switching mechanisms. Other techniques such as the incorporation of variable capacitors, varactors, and physical structure manipulation surfaced recently to overcome many problems faced in using switches and their biasing. Usage of fluids (micro-fluidic or otherwise) in antennas provides a conceptually easy reconfiguration mechanism in the aspect of physical alteration. However, a requirement of pumps, valves, etc. for liquid transportation makes the antenna implementations rather impractical for the real-life scenarios. This work reports on design and experiments conducted to evaluate the electrowetting on dielectric (EWOD) driven digital microfluidics as a reconfiguration mechanism for antennas
    • …
    corecore