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Abstract

Digital Microfluidics as a Reconfiguration Mechanism for Antennas

by

Yasin Damgaci, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Bedri A. Cetiner
Department: Electrical and Computer Engineering

This dissertation work concentrates on novel reconfiguration technologies, including

design, microfabrication, and characterization aspects with an emphasis on their applica-

tions to multifunctional reconfigurable antennas. In the literature, reconfigurable antennas

have made use of various reconfiguration techniques. The most common techniques uti-

lized revolved around switching mechanisms. Other techniques such as the incorporation of

variable capacitors, varactors, and physical structure manipulation surfaced recently to over-

come many problems faced in using switches and their biasing. Usage of fluids (microfluidic

or otherwise) in antennas provides a conceptually easy reconfiguration mechanism in the

aspect of physical alteration. However, a requirement of pumps, valves, etc. for liquid trans-

portation makes the antenna implementations rather impractical for the real-life scenarios.

This work reports on design and experiments conducted to evaluate the electrowetting on

dielectric (EWOD) driven digital microfluidics as a reconfiguration mechanism for anten-

nas. There are three approaches developed for the designing of this new type reconfigurable

digital-microfluidic antenna. The first approach is based on the unique metamaterial trans-

mission line structures, which are leading to antenna miniaturization. Coplanar waveguide

(CPW) metamaterial transmission lines (TLs) were designed and used as digital microflu-

idic platforms, where tunable resonance frequency was demonstrated for radio frequency
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(RF)/microwave applications. The maximum tuning range achieved was around 400 MHz

(from 3.51 GHz to 3.92 GHz) with a DC actuation voltage of 110 V. The second methodol-

ogy was based on annular slot antenna integration with a microfluidic chip, which consists of

EWOD platform having mercury droplet within it. This droplet was spread out by electro-

static actuation, thereby resulting in reversible reconfigurable impedance properties. This

reconfigurable antenna was designed, fabricated, and measured. The frequency of operation

is tuned from 11.4 GHz to 13 GHz as demonstrated by simulations and measurements from

the fabricated prototype. The third methodology was proposing a tunable component us-

ing superhydrophobic micro-structured surfaces. These surfaces, along with tunable wetting

techniques, can be used for transition from the superhydrophobic Cassie state to the nor-

mal Wenzel wetting state to build a variable capacitive device (analog varactor, a switched

capacitor) or a low-loss switch. Fabrication and measurement results were presented for a

low voltage capacitive switch, which could be an alternative to the micro-electromechanical

systems (MEMS) counterparts.

(88 pages)
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Public Abstract

Digital Microfluidics as a Reconfiguration Mechanism for Antennas

by

Yasin Damgaci, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Bedri A. Cetiner
Department: Electrical and Computer Engineering

The properties of conventional antennas are fixed by the initial design and cannot be

changed. A reconfigurable antenna, on the other hand, can dynamically change its prop-

erties, and it can adjust its behavior for a given propagation condition. This dissertation

work concentrates on novel reconfiguration technologies, including design, microfabrication,

and characterization aspects with an emphasis on their applications to multifunctional re-

configurable antennas. In the literature, reconfigurable antennas have made use of various

reconfiguration techniques. The most common techniques utilized revolved around switch-

ing mechanisms. Other techniques such as the incorporation of variable capacitors, var-

actors, and physical structure manipulation surfaced recently to overcome many problems

faced in using switches and their biasing. Usage of fluids (microfluidic or otherwise) in

antennas provides a conceptually easy reconfiguration mechanism in the aspect of phys-

ical alteration. However, a requirement of pumps, valves, etc. for liquid transportation

makes the antenna implementations rather impractical for the real-life scenarios. This work

reports on experiments conducted to evaluate the electrowetting on dielectric (EWOD)

driven digital microfluidics as a reconfiguration mechanism for antennas. EWOD is direct

manipulation technique of liquids with electrostatic actuation. There are three approaches

developed for the designing these new type antennas. The first approach is based on the
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unique metamaterial transmission line structures which are leading to antenna miniatur-

ization. The following methodology is based on antenna integration with a microfluidic

chip which consists of an EWOD platform having a mercury droplet within it. The third

methodology proposes a tunable component using superhydrophobic micro-structured sur-

faces. These surfaces, along with tunable wetting techniques, can be used for transition

from the superhydrophobic Cassie state to the normal Wenzel wetting state to build a vari-

able capacitive device (analog varactor, a switched capacitor) or a low-loss switch. Results

are demonstrated by simulations and measurements from the fabricated prototypes.
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Chapter 1

Introduction

Modern wireless Radio-Frequency (RF)/microwave systems have experienced an ex-

plosive growth within recent years. Increasing demands on capacity, higher data rates,

multi-mission functionality introduces a requirement to perform a multitude of functions

across several frequency bands and operating bandwidths. In most cases, these require-

ments cannot be served by a single antenna but rather require the use of multiple antennas

of varying form-factors and geometries. Antenna is the interface between the transceiver

and the free space. Reconfigurable antennas can deliver the same throughput as a multi-

antenna system using dynamically variable and adaptable single-antenna geometry without

increasing the physical number required to accommodate these antennas. Reconfigurable

antennas can thus provide great versatility in applications such as cognitive radio, multiple-

input and multiple-output (MIMO) systems, Radio-Frequency Identification (RFID), smart

antennas, etc.

1.1 Reconfigurable Antennas

Reconfigurable antennas have existed for many years and have many examples. Recon-

figuration of an antenna is achieved through an intentional redistribution of the currents

or, equivalently, the electromagnetic fields of the antennas effective aperture, resulting in

reversible changes in the antenna impedance and/or radiation properties. These changes

are enabled through various mechanisms such as switching, material tuning, and structural

modifications. Thus, under this definition, the traditional phasing of signals between ele-

ments in an array to achieve beam forming and beam steering does not make the antenna

reconfigurable because the antennas basic operating characteristics remain unchanged in

this case [1, 2].
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1.2 Reconfiguration Mechanism

The choice of reconfiguration mechanism presents trade-offs in functionality and com-

plexity as well as device or system lifetime. For instance, mechanisms that rely on movable

parts to facilitate reconfiguration (e.g., RF micro electro mechanical systems (RF MEMS))

may experience mechanical wear or failure from hot-switching. However, they are typically

actuated electrostatically and the performance they provide over solid-state designslow in-

trinsic losses and power consumption (especially at higher frequencies) often offsets the

potential for a degraded lifetime and failure of the device. As another example, the inte-

gration of tunable materials for the antenna design can cause an entirely different set of

problems if the material properties or tunability degrades over time. Both degradations in

the performance are in addition to the complexity and integration of the antenna, reconfigu-

ration mechanism, and supporting structures (bias, control, etc.). Therefore, selection of the

reconfiguration mechanism should be made carefully, with system lifetime, cost, complexity,

and desired performance levels and losses considered from the outset [3].

Although reconfigurable antennas come in a large variety of different shapes and forms

[4], it is possible to group them into four main categories based on their reconfigurability

function as:

• A frequency reconfigurable antenna,

• A radiation pattern reconfigurable antenna,

• A polarization reconfigurable antenna,

• Combinations of the above stated categories (Multifunction Reconfigurable Antenna

MRA).

In the case of frequency reconfigurable antennas, frequency tuning occurs for different

antenna configurations. This frequency tuning manifests itself in resonance shifting in a

return loss data. In the case of reconfigurable radiation pattern antennas, radiation patterns

change in terms of shape, direction, or gain. In the case of a reconfigurable polarization

antenna, polarization types change for every antenna configuration. In the last category,
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antennas exhibit many properties combined together to yield, for example, a reconfigurable

return loss with reconfigurable polarization. Reconfigurable antennas can also be further

classified into three main groups based on their reconfiguration mechanisms:

1. Antennas using discrete electronic components,

2. Antennas using tunable materials,

3. Antennas using physical/mechanical alteration.

The most common technique for reconfiguration is switching. For switching, either

Microelectromechanical System (MEMS) or solid-state switching devices can be employed.

MEMS have been the preferred technology due to the monolithic integration capability with

antenna segments along with their low loss and power characteristics. Also, the potential

of MEMS in avoiding nonlinearity and intermodulation effects is an important advantage

over solid-state switching devices. However, the long-term reliability of MEMS and complex

packaging processes along with associated high-cost still remain to be the main bottlenecks

for MEMS integrated reconfigurable antennas.

1.3 Contributions of This Dissertation

In this dissertation, a novel reconfiguration technique based on digital microfluidics was

employed. This technique can be included in the physical/mechanical alteration group, but

it is much more simple and at a lower cost compared to previous MEMS-based techniques.

By using liquid metal droplets, antenna itself was created and deformation and manipulation

were carried out on the antenna element itself without using any complex circuitry or

different circuit components. As a result, the ability to manipulate the liquids changes

the geometry of the antenna, which in turn changes the current distribution resulting into

the desired reconfigurable mode of operation. In summary, with this new reconfiguration

mechanism, it is possible to achieve a lower complexity and cost as compared to prior art

of reconfiguration mechanisms.
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1.4 Dissertation Outline

The outline of the dissertation is organized as follows: Chapter 2 describes the details

of reconfiguration mechanisms and fluidics antennas; Chapter 3 focuses on the theoretical

background of digital microfluidics; Chapter 4 presents the simulated and measured results

for reconfigurable metamaterial transmission lines; Chapter 5 demonstrates the design,

fabrication, and test work on the X band frequency reconfigurable antenna; Chapter 6

deals with a novel RF switch design based on superhydrophobic surfaces; and eventually,

the dissertation is concluded in Chapter 7, where the future work plan is also included.
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Chapter 2

Literature Review

2.1 Reconfiguration Mechanisms

The reconfiguration of an antenna may be achieved through many techniques. Some

designers resort to circuit elements while others rely on mechanical alteration of the struc-

ture such as rotating or bending of one or more of its parts [5]. Yet another approach

is biasing different antenna parts at different times, reconfigure the feeding networks, or

appropriately excite the antenna arrays. All such approaches have significantly contributed

to the evolution of reconfigurable antennas during the last decade. More recently, antenna

designers have used electrically-actuated switches and variable capacitors in order to achieve

reconfiguration [6]. p-i-n (PIN) diodes and RF-MEMS are some of the most widely used

electrically actuated devices [7–23].

2.1.1 Discrete Electronic Components

The effective length the antenna, and hence its operating frequency, can be changed

by adding or removing part of the antenna length through electronic, optical, mechanical,

or other means. Groups have demonstrated different kinds of switching technology, such

as optical switches, PIN diodes, Field-Effect Transistors (FETs), and RF-MEMS switches

[24–30].

In general form, the antenna with switches, shown in Fig. 2.1 [31], is composed of differ-

ent patches connected together by switches. The conceptual antenna provides ten different

reconfigurable modes of operation corresponding to the combination of two operating fre-

quencies (4.1 and 6.5 GHz) and five reconfigurable polarizations of the radiated field (linear

X, linear Y, dual linear, right hand circular, and left hand circular).
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Fig. 2.1: Different configurations for the antenna structure.

Micro-electromechanical systems (MEMS) RF switches make use of micro-machined

beams or membranes that are deflected to open or close an RF circuit in either a series or

shunt configuration. The micro-machined beams can be designed for either direct (ohmic)

or capacitive-coupled contact with the RF circuit. The beams are typically attached at

one end (cantilever) or attached at both ends (fixed-fixed beam or membrane). Actua-

tion of the beams can be accomplished using various techniques, including electrostatic,

electromagnetic, piezoelectric, or thermo-mechanical. Electrostatic actuation is most com-

monly used due to the relative ease of generating electric fields at the microscopic level,

fast response times, and low-power consumption [32]. RF MEMS switches have several

attractive features over PIN diodes or other solid-state switches, including lower insertion

loss, higher isolation, low dc power consumption, and relatively high power handling. How-

ever, the MEMS switches do have certain disadvantages, including the requirement for high

activation voltages, higher cost, lower reliability, and limited commercial availability. For

ohmic-contact switches, one of the main sources limiting reliability is the increased resis-

tance, which eventually occurs due to damage, pitting, and hardening of the contact area

due to the impact force between the beam and the contact. Micro-welding can also be a
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serious problem for switches handling higher RF power (100 mW to 1000 mW), where the

power dissipated in the ohmic resistance enough to cause the beam to weld to the contact,

resulting in a failure for the switch to open. For capacitive switches, the main source of

failure is due to stiction (the inability of the switch to release once the pull-down voltage is

removed) between the dielectric layer and the metal layer. This results from the relatively

large contact area, where the charging effects of the dielectric layer either cause the switch

to stick in the downstate position, or results in an increase in the pull-down voltage, making

the switch unusable. Furthermore, due to the MEMS sensitivity to moisture and dirt, the

device needs to be hermetically sealed in a nitrogen environment, which increases the cost

of these devices.

Electrostatic actuators (voltage driven) have very low-power consumption (µW range)

compared to the mW range for electromagnets, but require higher activation voltages (typ-

ically 20 V to 70 V). Piezoelectric actuators rely on the deformation of structures caused

by the motion of internal charges as a result of an applied electric field [33]. They typi-

cally make use of exotic materials, such as lead-zirconate-titanate (PZT), but may require

somewhat lower activation voltages. Electromagnetic actuators are current driven and thus

require lower actuation voltages, but they consume higher dc power, and it is difficult to re-

alize the required multi-turn magnetic windings on a small scale. MEMS switches have been

integrated with various antennas, including microstrip patches, and slots, for the design of

reconfigurable antennas.

A pixelized structure [27] is shown in Fig. 2.2. The proposed reconfigurable pixel-

patch antenna architecture is built on a number of printed rectangular shaped metallic

pixels interconnected by RF MEMS actuators on a quartz substrate.

The fractal structure [8], shown in Fig. 2.3, is reconfigured using RF MEMS switch.

The basic antenna is a 130◦ balanced bowtie. A portion of the antenna corresponds to a

two iteration fractal Sierpinski dipole. The remaining elements are added (three elements

on each side) to make the antenna a more generalized reconfigurable structure.

Two designs based on a spirally shaped patch [29,30] use switches to extend or shorten



8

Fig. 2.2: Reconfigurable pixel-patch antenna and radiation diagrams for pattern reconfigu-
ration.

Fig. 2.3: The reconfigurable fractal antenna structure.

the length of a spiral arm. The spiral arm shaped patch antenna [29] is shown in Fig. 2.4.

This spiral shaped patch is printed on the dielectric substrate and is fed in the center

through a coaxial cable. Using the coaxial feed, the antenna is excited through a vertical

probe, which is formed by extending the inner conductor of the coaxial line while the

external side of the coax is connected to the ground plane in the back of the substrate. The

spiral antenna consists of five sections that are connected with four RF-MEMS switches.

The location of switches is determined such that the axial ratio and gain of the antenna

are optimum at the frequency of interest. This antenna achieves resonance tuning and

reconfigurable polarization.

A PIN diode is a semiconductor device that exhibits nonlinear behavior in terms of its

current as a function of voltage (IV) characteristics. The diode can be made to behave as
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Fig. 2.4: Multi-part antenna with switches used to extend the spiral microstrip line length
and achieve a circular polarization.

either a short circuit (ON state) or an open circuit (OFF state), depending on whether the

biasing dc voltage across its terminals is positive or negative, respectively. This behavior

has been exploited in the design of PIN diodes as RF switches. PIN-diode switches are

relatively inexpensive devices, and readily available in a variety of commercial packages of

rectangular or cylindrical shape, with maximum dimensions as small as a few millimeters.

They offer relatively fast switching times, but since they draw current in the On state,

they have a relatively high dc power consumption. Another important parameter is the

maximum RF power that the diode switch can support, which is limited by the maximum

power dissipation allowable for the diode. The maximum RF signal power that the diode can

accommodate will differ depending on whether it is configured as a series or a shunt switch.

(Typically, PIN diodes can handle on the order of tens of watts, which will limit their

use in high-power applications.) PIN diodes have been integrated into various antennas

as switches in order to implement discrete frequency tuning at two or more frequencies.

Examples include printed dipoles, slot antennas, microstrip-patch antennas, and dielectric

resonator antennas [33].

Field-effect transistors (FETs) can also be used as microwave switches. The FET is

a device with three terminals, identified as the source, drain, and gate. The flow of RF

current between the source and drain can be turned on or off by adjusting the relative
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bias voltage on the gate. The FET switch draws practically no DC current in either the

On or Off state, giving it an advantage over the PIN-diode switch in terms of a lower DC

power consumption. FET switches have been used in the design of reconfigurable microstrip

antennas, slot antennas, and printed dipoles [34].

A varactor, or variable capacitor, is a circuit element, typically based on a p-n junction

semiconductor device, the capacitance of which can be controlled by the application of a

bias voltage. The variable junction capacitance is controlled by the applied DC voltage

across the varactors terminals. Like PIN diodes and FET switches, a wide variety of var-

actors are readily commercially available. The varactor also draws negligible current, and

thus has a low DC power consumption. Varactors have been used with various antennas,

including microstrip patches, slots, dipoles, and dielectric resonator antennas, for designing

reconfigurable antennas with continuous frequency tuning [35].

An example design reconfigured by variable capacitors [12] is shown in Fig. 2.5. The

antenna is a 2 x 2 reconfigurable planar wire grid antenna designed to operate in free space.

Variable capacitors are placed in the centers of 11 of the 12 wire segments that comprise

the grid. The center of the 12th segment, located on the edge of the grid, is reserved for

the antenna feed. An antenna size of 4 cm x 4 cm is assumed for this design. The values

of the variable capacitors are constrained to lie between 0.1 pF and 1 pF. These capacitors

are then adjusted using a robust Genetic Algorithm (GA) optimization technique in order

to achieve the desired performance characteristics for the antenna. This antenna exhibits

resonance tuning.

2.1.2 Tunable Materials

Tunable materials, which are materials with inherent electrical properties (permittivity,

permeability, or conductivity) of which can be controlled by the application of an external

bias (electric, magnetic, or optical). Examples of tunable substrates include ferroelectrics,

ferrites, liquid crystals, and semiconductors. These materials can be incorporated as an

integral part of the antenna, and alteration of their electrical properties translates into a

shift in operating parameters.
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Fig. 2.5: Reconfigurable antenna geometries (a) Planar version (b) Volumetric version.

Ferrites are ceramic-like material made from sintering a mixture of metallic oxides.

They are characterized by a relative permeability of several thousand at low frequencies,

dielectric constants of 10 or greater, and high values of resistivity. Ferrites have found

widespread applications as cores (used in inductors, transformers, and electromagnets),

beads (for suppressing high-frequency noise in electronic components), and powders used

for magnetic-recording tapes. Commercially available microwave ferrite materials include

magnesium, nickel, and lithium ferrites, and various yttrium iron garnets (YIGs). These

ferrite materials are available in various shapes, including sheets and rods of circular or

rectangular cross section. At microwave frequencies, ferrites are used in such devices as

isolators, circulators, and phase shifters. The important property of ferrites that is ex-

ploited in the design of reconfigurable antennas at microwave frequencies is the change in

permeability with the application of a dc magnetic field. Ferrites currently have the lowest

losses and highest tuning ranges among the tunable materials. They can also be readily

integrated with printed-antenna technology. Their main drawback is the relatively complex

biasing requirements (they require an electromagnet or wire coil, or a movable permanent

magnetic) and higher dc power consumption, due to the need for a constant bias current.

Ferroelectric substrates offer a behavior analogous to ferrites, where the permittivity

of the ferroelectric can be altered by the application of a static electric field. This behavior

is the property of certain classes of crystals exhibiting a spontaneous polarization that can
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be reversed by the application of an electric field. Metal oxides known as perovskites,

characterized by the common formula ABO3 (such as titanates, BaTiO3, and niobates,

KNbO3 ), have the requisite crystal structure for this behavior [36]. The dielectric constants

for these materials are typically on the order of several hundred.

Liquid crystals are fluids that exhibit a phase state with a certain degree of ordering

in the arrangement of its molecules, which lies between the crystalline solid state (at low

temperatures) and the ordinary liquid state (at high temperatures). Liquid crystals have

been used for many years at optical frequencies in displays for numerous types of electronic

equipment, and more recently for flat-screen televisions. To date, only a limited amount of

research has been carried out to examine the use of liquid crystals at microwave or millime-

terwave bands. For microwave applications, the liquid crystals have a behavior similar to

that of paraelectrics, where an applied electric field can alter the dielectric constant of the

material. In liquid crystals, this change in dielectric constant arises from a change in the

orientation of the molecules in response to an applied electric field. The dielectric constants

of liquid crystals are much lower than in ferroelectrics, with values typically between 2.5 and

4, making them more amenable to integration with printed antennas. A tunability of up to

about 30% has been achieved at microwave frequencies, with bias voltages on the order of

15 V to 20 V, which is much lower than the bias voltages required for paraelectric materials.

Power consumption is also relatively low. One of the disadvantages of liquid crystals is that

they must be kept between about 20◦C to 35◦C in order to stay in the liquid-crystal phase.

Rainville and Harackiewicz [37] presented a polarization-tunable microstrip antenna

based on static magnetic biasing of a ferrite film. As with microstrip antenna on bulk

ferrite substrates [38, 39], the co-polarized fields are much less dominant than those from

a traditional microstrip patch antenna. Rainville and Harackiewicz [37] took advantage of

the fact that the applied static bias field tuned the frequency of the cross-polarized field

to create a range of elliptical polarizations. Optimization of feed point and ferrite film

properties could result in purely circular and linear polarizations as well.
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2.1.3 Mechanical/Structural Changes

Reconfigurability can be achieved in many radiators by deforming the physical shape

of an antenna or by altering the antennas dimensions. This approach is best suited for

resonant-type antennas, where a change in one or more dimensions will cause a shift in

the resonant frequency. This is typically accomplished through the use of a mechanical

actuator. Actuators come in a myriad of forms and sizes, and can be designed for various

applications ranging from the precision micron control of delicate optical components to

the displacement of large masses. Instead of using actuators that are integrated into the

antenna to execute the desired change in dimensions, antennas could potentially be made

up of inherently deformable material. Examples of such materials include electro-active

polymers and shape-memory alloys [40].

The first design that used a mechanical structural change to achieve reconfiguration [40]

is shown in Fig. 2.6. The antenna is fabricated over a sacrificial layer residing on the

substrate. A thin layer of magnetic material is then electroplated on the antenna surface. By

etching away the sacrificial layer between the antenna and substrate, the antenna is released

and connected only by its feed line. When an external field is applied, the flexible region

created at the junction between the released and unreleased microstrip line is plastically

deformed, and the structure is bent by an angle. After this plastic deformation, the antenna

remains at a certain rest angle above the substrate even after the field is removed. This

antenna exhibits resonance tuning.

Fig. 2.6: Antenna where the patch was bent to achieve reconfiguration.



14

With the reflective surface physically removed and isolated from the primary feed,

reflector antennas are a natural choice for applications that require radiation pattern recon-

figurability independent of frequency. Changes in an effective reflector have been demon-

strated using reconfigurable high-impedance surfaces [41]. A lattice of small resonant ele-

ments produces high-surface impedance near their resonant frequency, creating, in effect,

an artificial ground plane. Changing the capacitances between resonant elements across

the lattice through mechanical means creates a phase gradient that can produce a steered

beam when the lattice is used as a reflector [42]. A closely related approach has also been

used to develop a reconfigurable leaky-wave antenna using mechanical tuning [43]. In this

case, a horizontally polarized antenna is used to couple energy into leaky transverse electric

waves on a tunable impedance surface. A diagram of the surface, including the moveable

top capacitance surface, is shown is Fig. 2.7. The radiated beam from the surface can be

steered in elevation over a range of 45◦ by changing the apparent capacitance of the surface

through mechanically shifting the top capacitive plane. The antenna and surface are shown

in Fig. 2.8. An electronically tuned version of this antenna that uses varactors can produce

reconfigurable backward as well as forward leaky-wave beams [44,45].

Fig. 2.7: Mechanically reconfigurable impedance surface consisting of two printed circuit
boards: a high-impedance ground plane and a separate tuning layer. The tuning layer is
moved across the stationary high-impedance surface to vary the capacitance between the
overlapping plated and tune the resonance frequency of the surface.
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Fig. 2.8: A horizontally polarized antenna couples energy into leaky modes on the tunable
impedance surface. The waves propagate across the surface and radiate at an angle governed
by the surface resonance frequency with respect to the excitation frequency. By tuning the
surface resonance frequency, the beam is steered in the elevation plane.

2.2 Fluidic Antennas

Fluidic systems have been proposed for antenna reconfiguration, which can be catego-

rized as a subset for the mechanical/structural changes group. Fluidic conductors have been

used in stretchable dipoles [46] and patch antennas [47]. All of these antennas, however,

require precise mechanical positioning in order to tune to the correct frequency, which can

be difficult and expensive to do. The positioning will also be significantly slower than the

methods discussed previously. Alternatively, the reconfiguration mechanism can consist of

fluidic dielectrics, which will effectively change the electrical size of a radiating element.

The antenna shown in Fig. 2.9 is a frequency reconfigurable patch antenna enabled

by a simple pressure-driven capillary and fluidic colloidal dispersions. Prepared dispersions

were injected into capillaries 1 and 3 of this antenna for reconfigurability.

Another fluidic reconfigurable antenna, shown in Fig. 2.10, is a frequency reconfig-

urable dielectric resonator antenna (DRA) [48]. The coaxial probe-fed structure has tunable

impedance properties that are reversibly controlled by adjusting the columnar height of the
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Fig. 2.9: Fabricated test antenna with capillaries.

dispersion. Colloidal barium strontium titanate was dispersed in hydrotreated naphthenic

oil and placed at several heights into a section of polycarbonate tubing over an aluminum

ground plane.

The antenna shown in Fig. 2.11 is a stretchable RF antenna. The antenna consists of

liquid metal (eutectic gallium indium alloy (EGaIn)) enclosed in elastomeric microfluidic

channels.

Fig. 2.10: Diagram of the coaxially fed DRA using colloidal dispersions.
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Fig. 2.11: Stretchable antenna.
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Chapter 3

Digital Microfluidics

What we propose in this dissertation is to use Electrowetting on Dielectrics (EWOD)

based Digital Microfluidics as a reconfiguration mechanism. This technique is distinctly

different than prior art. A reconfigurable antenna, where its liquid elements can be actu-

ated and moved in a controlled manner, for achieving dynamic reconfigurability in antenna

properties was developed. Microfluidics deals with the behavior, precise control, and ma-

nipulation of fluids that are geometrically constrained to a small, typically sub-millimeter

scale as a definition. Typically, micro means one of the following features:

• small volumes (nl, pl, fl),

• small size,

• low energy consumption,

• effects of the micro domain.

3.1 Continuous-Flow Microfluidics

These technologies are based on the manipulation of continuous liquid flow through mi-

crofabricated channels. Actuation of liquid flow is implemented either by external pressure

sources, external mechanical pumps, integrated mechanical micro pumps, or by combi-

nations of capillary forces and electrokinetic mechanisms. These systems are inherently

difficult to integrate and scale because the parameters that govern flow field vary along

the flow path making the fluid flow at any one location dependent on the properties of

the entire system. Permanently etched microstructures also lead to limited reconfigurabil-

ity. Therefore, following technique used as a reconfiguration mechanism for the designed

antennas.
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3.2 Digital (Droplet-Based) Microfluidics

Alternatives to the above closed-channel continuous-flow systems include novel open

structures, where discrete, independently controllable droplets are manipulated on a sub-

strate using electro weting. Following the analogy of digital microelectronics, this approach

is referred to as digital microfluidics. By using discrete unit-volume droplets, a microfluidic

function can be reduced to a set of repeated operations, i.e., moving one unit of fluid over

one unit of distance. Therefore, digital microfluidics offers a flexible and scalable system ar-

chitecture as well as high fault-tolerance capability. Moreover, because each droplet can be

controlled independently, these systems also have dynamic reconfigurability, whereby groups

of unit cells in a microfluidic array can be reconfigured to change their functionality during

the concurrent execution of a set of bioassays. One common actuation method for digital

microfluidics is electrowetting-on-dielectric (EWOD). Many lab-on-a-chip applications have

been demonstrated within the digital microfluidics paradigm using electrowetting. How-

ever, recently other techniques for droplet manipulation have also been demonstrated using

Surface Acoustic Waves (SAW), optoelectrowetting, mechanical actuation, etc.

3.3 Electrowetting Theory

The basis of electrowetting can be traced back to G. Lippmans electro-capillary ex-

periment in 1875. In this experiment, Lippman studied the effect of a potential difference

applied to mercury inside a double-walled capillary tube. When a voltage was applied the

interfacial surface tension of the mercury glass interface decreases causing the liquid to rise

under the action of a capillary force. Lippman termed this process the electro-capillary

effect. Later in 1976, Chudleigh and Minnema investigated the same effect using contact

angle measurements on insulating polymer surfaces. In 1981, under the investigation of

Beni and Hackwood, this phenomenon was given an official name of electrowetting. The

true potential of electrowetting for display and optical applications was not truly realized

until 1993 when Berge wrote an article on reversible electrowetting on dielectrics. Berge

became known as the father of modern-day electrowetting techniques after writing this pa-

per. Berge was the first scientist to apply a dielectric for electrowetting, which allows for
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reversibility of the effect [49].

Electrowetting on dielectrics (EWOD) is a voltage-induced manipulation of small drops

of polar liquids placed on a dielectric surface. In the presence of direct or alternating-current

electric field, electrical charges gather together at the interface between conductive and

dielectric material. If the interface is deformable like conductive or non-conductive liquid,

electrical field induces an interfacial force that can create a distortion on the liquid which

is called electrowetting [49]. The Young-Lippmann Eq. (3.1) explains electrowetting more

specifically electrowetting on dielectrics (EWOD) - which aims movement of droplets on a

solid substrate. The Young-Lipmann equation [49]:

cos θ = cos θ0 +
ε0εV

2

2γLV d
, (3.1)

where θ is the contact angle under applied voltage of V and θ0 is the contact angle without

externally applied potentials, ε is the dielectric constant of a dielectric layer of thickness d

and ε0 is the vacuum permittivity. In Fig. 3.1, a small volume of an aqueous solution is

deposited on a hydrophobic dielectric. The volume of liquid is limited so that the interfacial

surface tensions dominate the shape of the droplet, thus outside effects, such as gravity, are

greatly reduced. The basic electrowetting system can be modeled as a capacitor. A probe

inserted into the aqueous solution together simulates the upper plate of a capacitor and is

identified as the upper electrode. The electrode under the hydrophobic dielectric layer acts

as a second capacitor plate and a base electrode. The term hydrophobic is defined as having

a surface energy that allows the droplet to have an initial Youngs contact angle greater than

90◦. Having the droplet at a voltage and the base electrode grounded an electric potential is

introduced to the system. The electrowetting system can now be thought of as a capacitor

where the dielectric is in between two electrodes, the droplet and electrode. In order to

explain the electrowetting effect, Berge used a modified version of Lippmans equation by

replacing the interfacial surface tension terms allowing γSV (solid-liquid) to reduce with

increasing applied voltage (Fig. 3.2).

There are two critical parameters for EWOD design. Firstly, the initial contact angle
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Fig. 3.1: The electrowetting effect in an air ambient. The left image illustrates the initial
contact angle with no voltage applied, and the right image illustrates the new contact angle
once a bias is introduced.

(without applied voltage) should be large enough to obtain a maximum contact angle vari-

ation; and secondly, the thickness of dielectric layer should be as small as possible to reduce

applied potential [50]. However, minimum thickness should stand of applied voltage for the

electrowetting effect before dielectric breakdown occurs. Mainly two different architectures

have been developed for EWOD devices: open and covered systems (Fig. 3.3). In the open

system, droplets sit freely on the top of the substrate; and for the closed system, droplets

Fig. 3.2: Droplet on an ideal hydrophobic surface. In the left image, no potential is applied.
In the right, a potential is applied between the substrate and polar liquid.
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are confined between two plates.

Many droplet operations can be realized using either open or covered system designs.

Independent from the architecture, these devices usually involve micro-fabricated metal

electrodes on the top of the substrate. The electrode is coated by a dielectric layer and

covered by a hydrophobic layer in order to increase the electrowetting effect on the droplet

[50].

3.3.1 Electromechanical Model of EWOD

The derivation of the Lippmann law, i.e., the dependency of the contact angle according

to the applied voltage, can be done by the following different approaches: the classical

thermodynamic approach, the energy minimization approach, and the electromechanical

approach. The first two approaches only address the static problem. If one wants to

address the dynamic problem, which would require the inclusion of viscous effects, the

forces exerted by the electric field on the interface have to be explicitly determined. Thereby,

only electromechanical approach is given in details. The electromechanical interpretation

of electrowetting presented throughout this section to demonstrate multiple points-of-view

can be used to predict the macroscopic behavior of an observed physical phenomenon. In

this analysis, the droplet is assumed to be a perfect conductor and the surrounding medium

a perfect insulator.

Fig. 3.3: Common electrowetting architectures (a) Open system (b) Covered system.
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The electrostatic body force acting on a liquid is often formulated in terms of the

Korteweg-Helmholtz body force density:

fe = ρfE −
ε0
2
E2∇ε+∇

[
ε0
2
E2 ∂ε

∂ρ
ρ

]
, (3.2)

where E is the electric field, ρf is volume density of free electric charge, ε0 is permittivity

in vacuum, ε is the dielectric constant, and ρ is the mass density of the liquid. The third

term on the right side of Eq. (3.2), known as electrostriction, is ignored since it has no

influence on the hydrostatics as the mass density in a liquid remains constant [51]. Using

the assumption that the liquid is a perfect conductor, the volume charge density in the

liquid bulk is zero (ρf = 0), but exists at the surface. The 2nd term on the right hand

side of Eq. (3.2) is the ponderomotive force term, and as described by Jones [52], the

ponderomotive force may appear to be nonphysical because there is no obvious mechanism

for a dipole force at a boundary to exist when there is no electric field gradient, that is,

no point-by-point body force distribution. However, this approach still works if you want

to calculate the total force acting on the body not the distribution of forces acting within

it. Therefore, the proper usage of Eq. (3.2) is to find the total force by taking the volume

integral. Since the ponderomotive term force vanishes everywhere except at the surface, the

net force can also be found by a surface integral. One of the implications of this argument

is the total force acting on the body can be found by either a volume integral or equally

appropriately by a surface integral of the Maxwell stress tensor.

Following classical electrodynamics, the conservation of momentum can be used to

find the surface force by integrating along the surface of an element volume dV over the

momentum flux density of the electric fields. This procedure produces the Maxwell stress

tensor [53]. The Maxwell stress tensor consistent with Eq. (3.2) is:

Tmn = ε0ε

(
EmEn −

1

2
δmnE

2

)
, (3.3)

where δmn is the Kronecker delta function and m,n = x, y, z. On the surface of a conductor
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there is no tangential electric field [54]; thus the only non-vanishing component is the normal

component which is related to the surface charge density by:

ρs = ε0εE · n. (3.4)

The net force acting on a perfectly conductive liquid droplet is obtained by integrating

over the interface surface:

Fm =

∮
TmnnndA, (3.5)

where nn is the outward unit normal vector. The force per unit surface area, δA, defined

as electrostatic pressure and directed along the outward surface normal is:

F/δA = Peln =
1

2
ε0εE

2n =
ρsE

2
. (3.6)

To determine how this surface pressure affects the contact angle for a sessile drop re-

quires solving for the electric field and charge density distribution along the surface of the

drop. This is typically accomplished by solving the Laplace equation for an electrostatic po-

tential, ∇2V = 0, with appropriate boundary conditions. In practice, this is often achieved

through a numerical analysis such as finite elements.

Both the field and charge distribution are found to diverge algebraically upon approach-

ing the three phase contact line. This results in the Maxwell stress being a maximum at

the contact line and decaying rapidly to negligible values at a distance equivalent to the

dielectric thickness, d, from the contact line [55]. A schematic of the forces on the interface

of a drop near the three phase contact line is shown in Fig. 3.4.

The schematic shown in Fig. 3.4 is the typically depiction of the liquid interface and

contact angle formed due the electric field. However, this is an inaccurate portrayal. Recent

research by Mugele confirmed that the local contact angle at the three phase interface re-

mains equal to Youngs angle, θY , for the equilibrium drop condition (zero potential state),

independent of the applied voltage. The distortions of the interface due to the electric field,
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Fig. 3.4: Schematic of the electric charge distribution in the vicinity of the triple contact
line. Electric charges are located at the solidliquid interface and at the liquidgas interface,
approximately within a distance d from the solid surface. In reality, this is a very simplified
view since the liquid interface is distorted by the electric forces very close to the triple
contact line.

however, still occur on a scale of the dielectric thickness. Since the insulator thickness is

typically on the order of microns or smaller the contact angle that can be measure and

observed is equivalent to the contact angle predicted by the electrowetting equation, Eq.

(3.1) and referred to as the Lippmanns angle, θL. In general solving the Laplacian can be

challenging because of the multi-dimensions involved with the problem. By using a confor-

mal mapping procedure (the Schwarz-Christoffel mapping), there exist harmonic functions

for E and V which allows Eq. (3.6) to be integrated. This transformation procedure treats

the geometry near the three phase contact point as an inifite planar wedge [56].

The horizontal and vertical force components on the interface at the contact line are

found to be:
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Fx =
ε0εV

2

2d
, (3.7)

Fy =
ε0εV

2

2d

1

tan θ
, (3.8)

where V is the applied potential, d is the dielectric thickness, ε is the dielectric strength of

insulator, and θ is the contact angle. It is the horizontal force component that will pull on

interface at the three phase contact line until it balances with the surface tension forces.

The vertical component which does not contribute to the displacement of the interface is

theorized by some researchers to play a role as a possible cause of contact angle saturation

[51].

Given the rapid decay in the Maxwell stress from the three phase contact line and since

the thickness of the dielectric layer is typically on the order of microns or smaller, while

a size of a drop is on the order of millimeters in electrowetting systems, the electric static

force in the macro sense can be considered to act as a point force at the three phase contact

line. Because the horizontal force term in Eq. (3.7) can be represented as a point force,

the equilibrium force balance at the three phase contact line, in conjunction with Youngs

equation leads to:

γwo cos θ = γso − γsw +
ε0εV

2

2d
. (3.9)

This equation is identical to Eq. (3.1), the fundamental equation for electrowetting. In

the macroscopic sense, the two methods are equivalent. An interesting aspect of Eq. (3.7)

is it is independent of contact angle, which suggests the electrostatic force pulling on the

interface is independent of interface shape, at least for the condition when the thickness of

the dielectric layer is much smaller than the size of the drop. The implication of this is a

change in contact angle is not the mechanism for translation of a drop but is the observed

result of a net force exerted on the liquid due to a nonuniform electric field [51].
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3.3.2 Limitations of EWOD

For ideal electrowetting to happen, all of the charge must stay in the conductive elec-

trodes. Unfortunately, in the real world applications, there are effects that can limit the

electrowetting performance of the devices. Two types of effects alter the final contact angle

of the droplet: saturation phenomena and physical phenomena. Charging is the accumu-

lation of charge in the dielectric layers. The accumulated charge neutralizes some of the

charging found in the liquid electrode, thus reducing the force felt by the droplet. The

accumulation of charging in the dielectric layers is most prevalent in two cases: when a

static voltage is applied for an extended period and when a large voltage is applied to the

system. Once a voltage is applied to the droplet for an extended period, > 1 sec., the

droplets contact angle will start to relax. The affect limits the capability of the minimum

contact angle within the system and is coined saturation.

The next set of limiting phenomena is caused by the physical condition of the dielectric

layer or by the ambient environment. Normally, when a droplet wets the surface, all of the oil

is displaced from the bottom of the conductive liquid. In some cases, usually when a large

bias is applied, oil can become trapped under the conductive electrode. These random

small droplets increase the effective thickness of the dielectric limiting the electric field

between the two electrodes at these sites. This will reduce the magnitude of the electric

field based on the number of trapped droplets. Another limiting phenomenon, satellite

droplets, occurs when a large bias is rapidly applied to the system. Sometimes a small

amount of the conductive liquid can eject from the main droplet. These small droplets

reduce the horizontal electric field around the edges of the larger droplet. While satellite

droplets are more common in an air ambient, the affect can also occur in oil ambient. The

final two limiting phenomena are actual physical properties of the coatings. In the first case,

the fluoropolymer has delaminated from the dielectric exposing the dielectric. There are two

problems with this case. First, the detached fluoropolymer creates a barrier, which restricts

the movement of the droplet. Second, the dielectric from the fluoropolymer. This changes

the initial contact angle of the system. In the final limiting phenomena , the fluoropolymer
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surface has become fouled. If contamination is the cause, the sample is ruined. All of the

aforementioned phenomena will limit the electrowetting response of the droplets. Usually,

more than one of the listed limiting phenomena will determine the final contact angle.
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Chapter 4

Tunable Zeroth-Order Resonator Antenna Based on EWOD

A new technology based on Electrowetting on Dielectrics (EWOD) for tuning the

zeroth-order resonant frequency of a metamaterial transmission line unit cell has been

demonstrated. The unit cell structure has been designed, fabricated, and characterized. The

proposed structure eliminates complex biasing scheme by combining the Coplanar Waveg-

uide (CPW) architecture with EWOD mechanism. EWOD phenomenon was exploited to

expand the base contact area of a liquid mercury droplet placed on the unit cell, which

resulted in changing the left-handed capacitance thereby tuning the resonant frequency.

The main advantages of the proposed unit cell structure are its reliable operation with a

simple structure and easy manufacturing processes needed to fabricate it. The design also

offers flexibility where not only liquid metal but also liquid dielectric could be used. A new

class of reconfigurable antennas could be realized by using this technology.

4.1 Metamaterials

Metamaterials are synthesized structures whose electromagnetic properties can be en-

gineered. The basis of a metamaterial is a unit cell that is much smaller than a wavelength.

The individual properties of the unit cell aggregate to determine the effective material prop-

erties of the metamaterial as a whole. The design of the unit cell can be tailored to syn-

thesize a variety of material parameters such as a positive or negative permittivity [57,58],

a positive or negative permeability [59], a negative refractive index [60], or anisotropy [61].

This list of material parameters extends outside the realizable parameters found in nature.

This leads to many interesting phenomena that can be realized such as, backward wave

propagation, negative refraction, and sub-diffraction focusing. The unit cell itself can be

repeated periodically or aperiodically, to form a homogenous or inhomogeneous metama-
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terial, respectively. Thus, at the heart of every metamaterial design is the unit cell which

bestows the effective material properties on the metamaterial.

There are two main approaches that have arisen to synthesize metamaterials at mi-

crowave frequencies. They are the bulk approach and the transmission-line approach.

Transmission Line Approach

Composite right/left-handed (CRLH) metamaterials are the metamaterials with both

of the right-handed properties and the left-handed properties [62]. The CRLH metama-

terials has been applied to some novel microwave devices. The properties of the CRLH

metamaterials can be analyzed by the transmission line theory. The equivalent homoge-

neous (continuous and invariant along the direction of propagation) transmission line modes

for the purely right handed (PRH), purely left handed (PLH), and CRLH transmission lines

are shown in Fig. 4.1 [62].

As shown in Fig. 4.1, the PRH TL consists of a series inductance and a shunt capaci-

tance, while the PLH consists of a series capacitance and a shunt inductance. The PRH TL

actually does not exist because of the parasitic series inductance and the shunt capacitance.

So the CRLH TL is more general than the PLH. The complex propagation constant γ of

the transmission line can be expressed by:

γ = α+ jβ =
√
Z ′Y ′ . (4.1)

The Z
′

and Y
′

are the impedance and the admittance per-unit length of the transmis-

sion line. For the case of CRLH transmission line, according to the circuit shown in Fig. 4.1,

we can write:

Fig. 4.1: Equivalent circuit models. (a) Homogeneous RH TL (b) Homogeneous LH TL (c)
Homogeneous CRLH TL.
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Z
′
(ω) = jωL

′
R +

1

jωC
′
L

,

Y
′
(ω) = jωC

′
R +

1

jωL
′
L

.

(4.2)

Substituting Eq. (4.2) into (4.1), and assuming a lossless dielectric material (α = 0),

one obtains:

β (ω) = s (ω)

√
ω2L

′
RC

′
R +

1

ω2L
′
LC

′
L

−
(
L

′
R

L
′
L

+
C

′
R

C
′
L

)
, (4.3)

and

s (ω) =

−1, ifω < ωΓ1 = min

 1√
L

′
RC

′
L

,
1√
L

′
LC

′
R

 ,

−1, ifω > ωΓ2 = max

 1√
L

′
RC

′
L

,
1√
L

′
LC

′
R

 .

(4.4)

The phase constant β (ω) can be purely real or purely imaginary. When β is purely

real, the electromagnetic fields will pass the CRLH transmission line without loss. If βis

purely imaginary, then the CRLH is in a stop-band range because γ = jβ is a real number.

It is well know that for the RH transmission line, the phase constant is given by:

βR = ω
√
L

′
RC

′
R, (4.5)

and for the LH transmission line, we have [62]:

βL = − 1

ω
√
L

′
LC

′
L

. (4.6)

Based on the Eqs. (4.3), (4.5), and (4.6), the dispersion diagrams for PRH TL, PLH

TL, and CRLH TL are shown in Fig. 4.2 [62]. The ωβ diagram is called the dispersion
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diagram.

4.2 Zeroth-Order Resonator

The CRLH TLs unique dispersion characteristic can be exploited to realize novel res-

onators not possible with conventional RH TLs. As a result, novel resonant antennas can

also be realized by using CRLH TLs. To understand the unique resonance conditions of

the CRLH metamaterial TL, a review of resonator theory is presented in this section. A

conventional RH open- or short-circuited TL of physical length, L, can be used to realize a

resonator with resonance condition described by:

βn =
nπ

L
, (4.7)

where βn is the phase constant of resonance mode n [63]. For the conventional TL resonator,

n has to be a non-zero, positive integer. In the case of a CRLH TL resonator, n can be a

positive integer, negative integer, or even zero. Figure 4.3(a) shows a CRLH TL of length,

L = Np with its resonance modes shown in Fig. 4.3(b).

A CRLH TL of length, L = Np can support a total of 2N − 1 resonances: N − 1

negative resonances, N − 1 positive resonances, and a zeroth-order (n = 0) resonance. The

negative resonances have the same field distribution as the positive resonances, but at lower

frequencies. By using the n = 1 resonance of the CRLH TL resonator, a half-wavelength field

distribution can be obtained at a much lower frequency than a conventional TL resonator of

comparable length and substrate makeup. In the case of the n = 0 resonance, an electrical

length of zero is obtained. Therefore, the n = 0 resonance is independent of the CRLH TL

resonators physical length. For an unbalanced CRLH TL, there exist two possible n = 0

resonances at ωse and ωsh. The n = 0 mode for the unbalanced case is determined by

the boundary condition applied to the input and output of the CRLH TL resonator. In

the case of short-circuit boundary conditions, the shunt components of the CRLH unit cell

are eliminated. Therefore, se determines the n = 0 resonance for shortcircuit boundary

conditions. The input impedance for short-circuit boundary conditions is given by:
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Fig. 4.2: Dispersion diagrams corresponding to the TLs.

Fig. 4.3: Resonance modes corresponding to the TLs.

Zin,s.c. = −jZ0 tan (βL)
β→0
≈ −jZ0βL. (4.8)

In the case of open-circuit boundary conditions, the series components of the CRLH

unit cell are eliminated. Therefore, sh determines the n = 0 resonance for open-circuit

boundary conditions. The input impedance for the case of open-circuit boundary conditions

is given by:

Zin,o.c. = −jZ0 cot (βL)
β→0
≈ −jZ0/βL. (4.9)
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In addition, the dispersive nature of the CRLH TL means that its resonance conditions

are not harmonics of each other unlike a RH TL resonator. In general, the negative and

zero resonance modes of the CRLH TL are of interest for antenna applications.

4.3 Tunable Zeroth-Order Resonator Transmission Line

A new approach for tuning the resonant frequency of metamaterial-inspired trans-

mission lines (TLs) by using electrowetting on dielectric (EWOD) is presented in this se-

tion. Coplanar Waveguide (CPW) metamaterial-inspired TLs were designed and used as

digital microfluidic platforms, where tunable resonance frequency was demonstrated for

RF/microwave applications. A repeatable tuning mechanism was realized by exploiting

the interface deformation of a liquid metal (mercury) droplet by an applied voltage. The

maximum tuning range achieved is around 400 MHZ (from 3.51 GHz to 3.92 GHz) with a

DC actuation voltage of 110 V.

4.3.1 Design

Capacitor Loaded Coplanar Waveguides

The CRLH TL has a particular aspect of supporting an infinite-wavelength wave at a

finite and nonzero frequency defined as a zeroth-order resonance, which is solely dependent

upon the series and shunt, inductances, and capacitances of the unit cell [64]. Equation (4.4)

shows the equivalent circuit of a capacitor loaded TL unit cell, where the shunt inductance

is removed eliminating the shunt resonance. This circuit supports the zeroth-order and

positive resonances that can be tuned by adjusting the capacitor value (CL) as shown in

Fig. 4.4.

In this work, a Coplanar Waveguide (CPW) was chosen as the host TL due to its

uniplanar design and since it enables easy realization of the series and shunt connections

of inductors and capacitors. Also, the coplanar electrode design makes it a particularly

appropriate platform for an electrowetting actuation. The proposed CPW metamaterial-

inspired TL can be modeled with the equivalent circuit shown in Fig. 4.4. The zeroth-order
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LR CL

CR

p

Fig. 4.4: Equivalent circuit of a capacitor loaded CPW.

resonant frequency occurs when the phase constant of Bloch wave along the structure equals

zero, β = 0. The phase constant can be expressed in terms of the scattering parameters

of the unit cell as given in Eq. (4.10). The proposed 2-port unit cell was also simulated

by a full-wave analysis and measured in determining its scattering (S−) parameters. The

propagation constant (β) is then extracted from the measured scattering-parameters to

determine the resonant frequencies [65].

βp = cos−1

(
1− S11S22 + S12S21

2S21

)
(4.10)

Tunable Zeroth Order Resonance Based on Electrowetting on Dielectric

(EWOD)

The zeroth order resonant frequency of the proposed CPW metamaterial TL is LR/CL

as is seen from the equivalent circuit shown in Fig. 4.4. Therefore, one can adjust the

resonant frequency by changing CL through the EWOD technique. A capacitor loaded

CPW TL was used as an EWOD stage by simply adding a dielectric layer on the top of the

TL metal layer. Figure 4.5 shows the unit cell geometry along with the dimensions of critical

design parameters. This structure has an interdigitated finger like pattern which creates

the left-handed capacitance, CL, and also serves as the actuation electrodes for EWOD.

The interdigitated section is covered by a Parylene/Teflon dielectric layer, on top of which

a liquid metal (mercury) droplet is placed. Figure 4.6 depicts the cross section (A-A’) view

of the structure and also shows the EWOD phenomenon taking place. By using the EWOD

phenomenon, this droplet is spread by DC actuation voltage applied between input and

output ports of the structure as shown in Fig. 4.5 [66–68]. This movement of the liquid
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metal droplet increases its base contact area, which in turn changes (increases) the effective

left-handed capacitance, CL. Thus the resonant frequency is changed (decreased) resulting

in the desired tuning. The approached adopted in our design allows building low-cost and

low-complexity tunable RF/microwave components with a simple bias network.

4.3.2 Fabrication

Figure 4.6 is used to describe the microfabrication processes, where 4-inch Quartz wafer

(εr = 3.9) with a thickness of 0.525 mm is used as a substrate material. For the metal layers

of the CPW TL, a 20 nm Chromium (Cr), 200 nm Copper (Cu), 20 nm Cr, and 30 nm Nickel

(Ni) metals were electron-beam (e-beam) evaporated successively and patterned by lift-off

technique. This multi-layer metal also serves for the EWOD actuation electrodes. Ni was

used to avoid reaction with mercury droplet, which is known to react with most of the metal

materials. On top of the multi-layer metal, a 1m thick dielectric layer of Parylene C was

deposited at room temperature by vapor deposition, which was then patterned by reactive-

ion-etch (RIE) using Oxygen (O2) plasma. In addition to Parylene C, another dielectric

layer of hydrophobic Teflon AF with a thickness of 80nm was spun coated to minimize

contact angle hysteresis improving the robust repeatable operation. After coating, Teflon

AF layer was baked at 200◦ C for 2 hours. Finally, this hydrophobic AF film was patterned

by O2 plasma to define an opening of a circular-shape at the center, which was, subsequently,

filled by an additional 20 nm/30 nm Cr/Au layer deposited by E-beam evaporation and

patterned by lift-off. This circular pattern with a 100 µm diameter at the center acts as

an anchor providing a mechanical stability for the manually dispensed mercury droplet of

1 mm diameter [69]. In dispensing the droplets Gilson Microman micropipette was used.

The photographs of a fabricated device are shown in Fig. 4.7. The manually dispensed

mercury droplet has a volume of 1 µL with a diameter of approximately 1 mm. After the

applied voltage the mercury droplet spreads, which results in an increase of 150 µm in

the radius of the contact base area. The measured initial contact angle was 140 ◦ for the

dielectric layer of Parylene C with a thin layer of hydrophobic Teflon AF on top. Some other

dielectrics such as SU-8 and SiO2 were also used and tested, where Parylene C provided
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Fig. 4.5: The layout and test schematic of the tunable CPW metamaterial TL. p = 2, w =
1.395, s = g = 0.07, r1 = 0.75, r2 = 0.7, r3 = 0.1, r4 = 0.05 (units in mm).

Fig. 4.6: Cross section (A-A’) view of the structure and EWOD principle.

better frequency tuning with a robust repeatable operation. This shows that more contact

angle change and less dielectric charging achieved by Parylene C.

4.3.3 Experimental Results

The scattering parameter measurements of the fabricated CPW TLs have been per-

formed by using Agilent 8722ES network analyzer with a 2-port Short Open Load Transmis-

sion (SOLT) calibration in the 50 MHz - 12 GHz frequency band. DC actuation voltage was

supplied by a separate voltage source, which was applied to the terminals of RF input and

output ports via bias tees as shown in Fig. 4.5. In this measurement set-up, the DC voltage
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Fig. 4.7: The photographs of a fabricated device (a) before and (b) after mercury droplet
dispensing. The boundaries of the base contact areas are illustrated with white and red
dash lines before and after EWOD spreading, respectively, (r2 − r2 150µm).

was superimposed with the RF source signal provided by the network analyzer, where the

bias tees were used to prevent high DC voltages going into the network analyzer. In order

to observe the reversible operation of the fabricated devices, the measurements started by

applying the DC voltages in increments of 10 Vs (10 V, 20 V, 30 V · · · and 110 V), where

the DC source was turned off at each step. We clearly observed that the spread mercury

droplet returned back to its original non-spread stage every time the source was turned off.

After obtaining the simulated and measured S-parameters of which variations with respect

to frequency are given in Fig. 4.8(a,b), the dispersion behavior, which is represented by

the variation of phase constant as a function of frequency has been obtained by using Eq.

(4.10). As shown in Fig. 4.8(c), the zeroth-order resonance frequency was shifted from 3.92

to 3.51 GHz by the applied DC voltage of 110 V providing a maximum tuning range in

excess of 400 MHz. The actuation voltages above 110V cause the mercury droplet to be

freed from the anchor thereby the droplet starts moving. As the device operation relies
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on the spread of the droplet while it is fixed at the central anchor location, the normal

device operation mechanism is lost above 110V. Slight variations in the RF responses from

device-to-device on the wafer were also observed, which could mainly be attributed to the

small variations in the hand dispensed volume.

The main advantages of the proposed unit cell structure are its reliable operation with

a simple structure and easy manufacturing processes needed to fabricate it. The design also

offers flexibility where not only liquid metal but also liquid dielectric could be used. A new

class of tunable phase shifters, antennas, and microwave filters could be realized by using

this digital microfluidic platform as building blocks.

4.4 Antenna Application

In this section, the n = 0 resonance mode supported by a capacitor loaded CPW TL

resonator is used to realize infinite wavelength resonant antennas with monopolar radiation

patterns with the concept introduced last section. The infinite resonant antenna can be

made arbitrarily small and single droplet could be used for reconfiguration. In the case

of short-circuit boundary conditions, the resonant frequency is determined by the series

resonance of the unit cell. More unit cells can also be used to enhance the directivity of

the proposed antenna. Capacitor-loaded CPW is short-circuited through a short section

of CPW line of relatively higher characteristic impedance. This CPW section is needed

to compensate for the degradation of the input matching condition at the series resonance

when fewer unit cells are used.

The antenna (Fig. 4.9) simulated using Agilent ADS and Ansys HFSS to confirm

that the antenna works as intended and to get a better understanding of the antenna

parameters such as S11, input impedance, current density distributions, radiation patterns,

and efficiency. Since the same dimensions used as previous section, tuning range and center

frequency is same with the transmission line examples. Only difference is the antenna is

a one port device and needs the matching circuit. The antenna has disadvantages as any

other metamaterial antenna like the low efficiency and small bandwidth.
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(a)

(b)

(c)

Fig. 4.8: Simulated and measured (a) S11 (b) S21 parameters before and after applied
voltage of 110 Volts (c) Calculated propagation constant of the unit cell structure.
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Fig. 4.9: ADS and HFSS models of the proposed antenna and reflection coefficient after
matching.
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Chapter 5

A Frequency Reconfigurable Antenna Based on EWOD

We present a novel antenna reconfiguration mechanism relying on electrowetting-based

digital microfluidics to implement a frequency reconfigurable antenna operating in the X

band. The reconfigurable antenna built on a quartz substrate (εr = 3.9, tan δ = 0.0002)

is a coplanar waveguide (CPW) fed annular slot type antenna, which is monolithically

integrated with a microfluidic chip. This chip establishes an electrowetting on dielectric

(EWOD) platform with a mercury droplet placed in it. The base contact area of the mer-

cury droplet can be spread out by electrostatic actuation, thereby resulting in a change of

loading capacitance. This in turn changes the resonant frequency of the antenna enabling

a reversible reconfigurable impedance property. This reconfigurable antenna has been de-

signed, fabricated, and measured. The frequency of operation is tuned from around 11

GHz to 13 GHz as demonstrated by simulations and measurements from the fabricated

prototypes. The design methodology, fabrication processes, and the experimental results

are given and discussed.

5.1 Design and Working Mechanism

The presented digital microfluidic-based MRA introduces new design requirements as

the EWOD platform and the liquid metal are the integral parts of the radiating antenna

structure directly impacting its performance characteristics (radiation and impedance prop-

erties). Therefore, an integrated design approach, where the electromagnetic (EM) and

digital microfluidics related parameters are jointly optimized, must be adopted.

Choosing the proper liquid material is crucial as this material must be compatible with

both EWOD mechanism and EM performance of the antenna. Although the liquid metals

and dielectrics have been both demonstrated for the antenna applications, the dynamic
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manipulation of liquid metals by EWOD plays an important and distinguishing role in the

presented MRA case. Most of the current EWOD applications are focused on the dielectric

liquid manipulation, which might not be suitable for high-frequency applications, due to the

high dielectric loses. Therefore, liquid metal, of which conductivity is similar to that of solid

metals such as copper (Cu), gold (Au), etc., becomes the preferred option. There are only

few metals available in liquid form at the room temperature. Mercury being one of them has

been used for RF switching applications by EWOD because of its widespread availability

even though it has a toxic nature. Recently, non-toxic room temperature liquid metal alloys,

such as Galinstan, have also been available. However, the necessity of controlling the thin

oxide layer formation due to its sensitivity to air exposure presents significant challenges

for successful EWOD actuation. For these reasons, the presented MRA uses mercury as the

liquid metal for EWOD actuation.

Figure 5.1 shows the 3-D schematic of the MRA with an inset showing the magnified

view of the integrated microfluidic chip. As seen from this figure, the basic antenna structure

is a coplanar waveguide (CPW) fed annular slot antenna built on a quartz substrate (εr =

3.9, tan δ = 0.0002) with a thickness of 1 mm. For the permittivity value of the quartz

substrate, the slot guided wavelength, λg at the resonant frequency can be given as below:

λg
λ0

= 0.9217− 0.277 ln εr + 0.0322
W

h

[
εr

W/h+ 0.435

]1/2

−0.01 ln
h

λ0

[
4.6− 3.65

ε2 (9.06− 100 (W/λ0))
√
W/λ0

]
,

(5.1)

where W = r1−r2 is the slot-line width (see (Fig. 5.1)), λ0 the free-space wavelength, εr and

h are the permittivity and thickness of the quartz substrate, respectively. While Eq. (5.1)

provides a good first-order approximation for the resonance frequency, the actual frequency

for the digital microfluidic annular slot antenna will be in the close vicinity of that of given

by Eq. (5.1). This is due mainly to the microfluidic chip, which is integrated within the

basic annular slot antenna, where the RF ground line is extended into the micro-chamber
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structure as can be seen from Fig. 5.1. By using Eq. (5.1) as a first order approximation

in conjunction with full-wave EM analyses, the dimensions of the antenna and CPW of

50 characteristic impedances along with the transition regions have been determined for

the targeted X band operation (center resonance 12 GHz), and are given in the caption of

Fig. 5.1.

As seen from Fig. 5.1, the microfluidic chip which consists of SU-8-based cylindrical

micro-chamber, micro-frames (4 columns), and EWOD platform with a mercury droplet

placed in it is located at the right side of the MRA center. In order to precisely control

the dispensing, positioning, and the spreading of the mercury droplet by EWOD, it is

confined within the micro-frame structure, which also serves to avoid undesired gravitational

effects. Moreover, a circular chamber design was used to house silicone oil droplet, which

encapsulates the mercury droplet. This silicone oil serves for reducing actuation voltage

for spreading the mercury droplet by EWOD, reduces the uncertainty due to contact-angle

hysteresis, and also provides the initial structure for ultimate packaging. The volume of

the mercury droplet has been so determined (1µL) that not only the RF capacitive loading

required for the desired frequency tuning range (≈ 2GHz) but also a simple EWOD platform

can be obtained (see Appendix). Accordingly, the associated dimensions corresponding to

these design features have been determined by full-wave EM analyses and are given in the

caption of Fig. 5.1. As shown in Fig. 5.1, the RF ground and signal planes comprise the

EWOD electrode. The dispensed mercury droplet sits on the Paryelene dielectric layer,

which is deposited on top of the high resistive TaN layer. Notice from the upper inset of

Fig. 5.1 that there is an opening of a circular shape at the center, which provides the DC

contact between the mercury droplet and the RF ground metal required for the EWOD

actuation. The additional high-resistive layer is needed to increase the loading capacitance,

Cl, which can be given as:

Cl = Con − Coff , (5.2)

where Coff and Con are the coupling capacitances before and after spreading by EWOD,
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Fig. 5.1: (a) 3-D schematic of the MRA integrated with a microfluidic chip. The inset shows
the magnified view of the microfluidic chip; (b) Top view of the MRA with magnified views
of the CPW feed and EWOD platform (1 and 2 are the radii of the contact base area of
Mercury droplet, before and after spreading). The design dimensions are: r1 = 4.1, r2 =
3.9, rc = 1.3, r3 = 0.1, r4 = 0.5, w1 = 1, w2 = 0.1, w3 = 0.05, g1 = 0.015, g2 = 0.0115, g3 =
0.025, l1 = 4.5, l2 = 0.45, l3 = 0.7, d1 = d2 = 0.2, h1 = 1, h2 = 1, 1 ∼= 0.320, 2 ∼= 0.470 (units
in mm).

respectively. The loading capacitance is responsible in providing the desired frequency

tuning range of ≈ 2GHz. It is important to note that the capacitive coupling occurs

due to the mutual coupling between the mercury droplet and RF signal plane. To spread

the mercury droplet by EWOD technique, a DC actuation signal of ≈ 140V , which is

superimposed on the RF signal, is applied to the CPW signal and ground planes as shown

in Fig. 5.1. Thus, the contact base area of the mercury droplet is spread outwardly, which

brings it closer to the RF signal plane, thereby increasing the coupling capacitance. The

upper inset of Fig. 5.1 also shows the edges of the contact base area before and after EWOD

operation (ρ1 and ρ2). As is seen from this figure, the lateral spreading of 150 µm (ρ2− ρ1)

provides a large enough loading capacitance resulting in the desired frequency tuning as

demonstrated by simulations and measurements. Notice that the CPW RF feed design

enables the signal and ground metallization of the antenna to be also used for EWOD

actuation electrodes, thereby resulting in a simple biasing network.
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5.2 Fabrication

A proof of concept frequency reconfigurable antenna that is designed to reconfigure its

central operating frequency from 11 GHz to 13 GHz, have been fabricated and measured.

Figure 5.2 shows two different cross section views (AA’ and BB’) and the corresponding

microfabrication process flows.

The process starts with the deposition of a 200 nm thick Tantalum Nitride (TaN) with

a sheet resistivity of 700 ohm/sq on a 4-inch quartz substrate of 1 mm thickness. The TaN

layer was deposited by reactive sputtering and patterned lithographically using a reactive ion

etching. For the antenna and CPW metal layers a 20 nm Chromium (Cr), 1000 nm Copper

(Cu), 20 nm Cr, and 30 nm Nickel (Ni) were electron-beam (e-beam) evaporated successively

and patterned by lift-off technique. Ni was used to avoid reaction with mercury droplet,

which is known to react with most of the metals. On top of this multilayer metal, a 1m thick

dielectric layer of Parylene C was deposited at room temperature by vapor deposition, which

was then patterned by reactive-ion-etch (RIE) using Oxygen (O2) plasma. Next, the micro-

frame structure of four columns and the micro-chamber were formed by processing SU-8

material. The height of SU-8 columns and the chamber with 1 mm thickness was determined

by the typical diameter (1 mm) of the mercury droplets. A deposition process was developed

in order to obtain such an ultra-thick structures with a single spin of SU-8 2100 (Microchem).

To increase the adhesion of these structures to antenna metal layer, OmniCoat (Microchem)

(adhesion promoter for SU8) was used. In this developed process, 12 mL of SU-8 2100

was spun with 500rpm coating speed. The temperatures for the soft and post-exposure

baking are also critical process parameters, which were determined to be 120◦C and 55◦C,

respectively. Moreover, the baking temperatures were always ramped up and down with a

rate of 1◦C/min from 50◦C. This prevents the ultra-thick SU-8 structures from cracking and

distorting during developing and baking processes. Also, a step exposure with each step

consisting of a 60 s exposure and a 30 s delay was used. After post-exposure bake, the micro-

frame and micro-chamber features were developed with slow agitation. Finally, a mercury

droplet of a 1 mm-diameter was placed in each micro frame manually. In dispensing the
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Fig. 5.2: The process flow for fabricating the frequency reconfigurable antenna integrated
with a microfluidic chip.

droplets, Gilson Microman micropipette was used. After dispensing the mercury droplet,

micro-chamber was filled with silicone oil encapsulating the mercury droplet as shown in

the last step of Fig. 5.2. Figure 5.3 shows a top-view photograph of a fabricated MRA

prototype. The pictures of an empty, mercury filled, and mercury and silicone oil filled

microfluidic chips are shown, respectively.

5.3 MRA Prototype Characterization

The frequency response of the fabricated frequency reconfigurable antenna prototype

has been measured and the measured results were compared with those of the simulated

results. To perform the RF measurements, a 3.5 mm SubMiniature version A (SMA) RF

connector was attached to the input port of the CPW feed line by using a conductive epoxy,

as shown in Fig. 5.3. The prototype was then connected to a fully-calibrated single port of a
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vector network analyzer (VNA). To spread the mercury droplet by EWOD, a DC actuation

voltage (Vcc) was supplied by a separate voltage source, which was superimposed with the

RF source signal provided by the VNA (see Fig. 5.1). The total signal was applied to the

CPW feed line via bias tees, which are used to prevent high DC voltages going to the VNA.

The results for antenna reflection coefficients are shown in Fig. 5.4, where the tuning in

frequency in response to the spread of the mercury droplet is clearly observed. When the

mercury droplet is in its un-actuated state (Vcc = 0V ), the center frequency of operation

is at around 13 GHz as confirmed by both from measurements and simulations shown in

Fig. 5.4. An applied DC actuation voltage of ≈ 140V causes the mercury droplet to spread,

which in turn increases the loading capacitance, thereby resulting a shift in the frequency

of operation, which brings it to 11 GHz range. A reasonably good agreement between the

measured and simulated results demonstrates the robustness of the fabricated prototype

and the accuracy of the design methodology.

The integrity of the radiation properties (gain values and shape of the radiation pattern)

of the reconfigurable antenna is maintained over the reconfigurable frequency band (11 to

13 GHz) as demonstrated by the full-wave simulations. Maintaining the characteristics of

one parameter, which in this case are the radiation properties, while reconfiguring another

parameter (frequency) is an important design requirement for reconfigurable antennas.

As a conclusion, a new class of frequency reconfigurable antenna integrated with a

microfluidic chip has been designed, micro-fabricated, and measured. This reconfigurable

antenna uses EWOD mechanism to manipulate the contact base area of a liquid metal mer-

cury droplet, which in turn changes the frequency of operation from 13 GHz to 11 GHz, thus

achieving reconfigurability in frequency of operation. The microfabrication processes relying

on ultra-thick (1 mm) SU-8 have also been developed in order to build and monolithically

integrate the microfluidic chip. The reflection coefficient results showing the frequency re-

configurability were successfully demonstrated both theoretically and experimentally. This

reconfigurable antenna, which uses only a single mercury droplet as a main building block

in a microfluidic chip, will pave the way of more sophisticated MRAs integrated with a
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microfluidic chip having multiple mercury droplets, where spreading, moving, merging, and

splitting operations can be performed. Such an MRA results in more advanced reconfig-

urable functions simultaneously in frequency, radiation pattern, and polarization, which are

critically needed for the next generation cognitive wireless communication applications.
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Fig. 5.3: The photographs of (a) the top view of a fabricated MRA prototype; and (b) an
empty, mercury filled, and mercury + silicone oil filled microfluidic chips.
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Chapter 6

RF Switch Based on Reversible Wetting States on

Superhydrophobic Surfaces

A new way to build a tunable component using superhydrophobic micro-structured

surfaces are introduced in this chapter. Liquids tend to bead up in droplets on such surfaces

rather than forming a continuous wetted surface. These surfaces, along with tunable wetting

techniques can be used for creating novel RF devices such as reconfigurable antennas.

Based on microfabrication techniques, we have created a variety of microstructured

superhydrophobic surfaces with precisely controlled morphology and chemical functional-

ization. Liquid metal droplets, such as mercury, placed on these surfaces exhibits very

large contact angles, a high level of mobility, and small contact angle hysteresis. Using

electric fields, reversible transitions between the wetted and superhydrophobic have been

investigated for RF switching applications.

6.1 Superhydrophobic Surfaces

Superhydrophobic surfaces have important applications in the development of artificial

self-cleaning surfaces and water-proof clothing. They also find use in microfluidic-based

technologies such as lab-on-chip devices, microelectromechanical systems (MEMS), and

microarray biochips. Lotus leaves are known for their water repellency and consequently to

remain clean from any parasitic dust or debris. This phenomenon (also called rolling ball

state) is very common in nature not only for the lotus, but also for nearly 200 other species:

vegetables, insects, and even some animal species. Figure 6.1 shows a typical Scanning

Electron Microscope (SEM) picture of a Lotus leaf.

The common point between all water repellant surfaces is their roughness in combina-

tion with low surface energy chemistry. Indeed, the surfaces are composed of micrometric
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Fig. 6.1: SEM image of a Lotus leaf.

structures limiting the impregnation of the liquid and pushing back the drop. Most of the

time, the surfaces contain a second scale of roughness, consisting of nanometric size [70,71].

In order to minimize its energy, a liquid droplet forms a liquid pearl on the microstruc-

tured surface. The superhydrophobicity term is thus used when the apparent contact angle

of a water droplet on a surface reaches values higher than 150◦. Previously, the studied

substrates were regarded as smooth surfaces, i.e., the roughness of the substrate was suffi-

ciently low and thus does not influence the wetting properties of the surface. In this case,

the relation of Young gives the value of the contact angle θ on the surface. However, a

surface can have a physical heterogeneity (roughness) or a chemical composition variation

(materials with different surface energies). A new contact angle is then observed, called the

apparent contact angle noted θ∗. It should be noticed that locally, the contact angle be-

tween the liquid droplet and the surface can assume almost any value with these geometries

due to pinning of the contact line. Two models exist which describe the enhancement of

the apparent contact angle: the model of Wenzel and of Cassie-Baxter (Fig. 6.2).

Drop on a rough and hydrophobic surface can adopt two configurations: (a) a Cassie-

Baxter configuration (air patches are confined below the drop), and (b) a Wenzel [71]

(solid/liquid interface exactly follows the solid roughness). In both cases, an increase in the

apparent contact angle of the drop is observed. These two models were highlighted by the

experiment of Johnson and Dettre. Many research teams have tried to understand in more

detail the superhydrophobicity phenomenon and particularly the difficulty of the wetting

transition from the Wenzel to Cassie configuration [72]. For a superhydrophobic surface, a
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Fig. 6.2: Superhydrophobic surfaces (a) Cassie-Baxter (b) Wenzel states.

pronounced difference between the two models is the hysteresis value. The first experiment

on this subject was conducted by Johnson and Dettre (1964) who measured the advancing

and receding contact angles, according to the surface roughness. For low roughness, a strong

hysteresis, up to 1000 (Wenzel), is observed and attributed to an increase in the substrate

surface in contact with the drop. Starting from a certain roughness (not quantified in their

experiment), the hysteresis becomes quasi null resulting from the formation of air pockets

under the drop (Cassie-Baxter state). The receding angle approaches the advancing angle.

Other experiments also show that for a drop in the Cassie-Baxter state, it is possible to

obtain a contact angle significantly higher than for a drop in the Wenzel state.

The apparent contact angle of a sessile droplet in the Cassie (θc) and Wenzel (θw)

states may be obtained using energy minimization and is given by:

cos θc = (−1 + φ (1 + cos θ0)) , (6.1)

cos θw = rm cos θ0, (6.2)

where φ is the ratio of the area of the top surface of the pillars to the total base area of

the substrate, rm is the surface roughness, defined as the ratio of the total surface area

(including the sides and base) of the roughness elements to the projected surface area (not

including the sides of the roughness elements). θ0 is the contact angle of the droplet on a

flat surface. The equations are not valid for high roughness.
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6.2 Switching of Wetting States on Superhydrophobic Surfaces

Superhydrophobic surfaces display remarkable properties including ultrahigh contact

angles, ultralow contact angle hysteresis, large hydrodynamic slip, and tunable optical

diffraction. These properties rely on the weak interaction between the liquid and the sub-

strate due to the entrapment of air (or vapor) in the cavities of the rough surface topography.

At the transition from the superhydrophobic Cassie state to the normal Wenzel wetting

state, the gas from the cavities is expelled and the interaction between the liquid and the

substrate increases dramatically. The contrasting properties of the Cassie and the Wenzel

state make it particularly attractive to design surfaces that allow for switching between

the two wetting states. Various external control parameters have been used to trigger the

transition from the Cassie to the Wenzel state, including hydrostatic pressure, optical, and

chemical stimuli [73], as well as electric fields. In particular, the latter offers opportunities

for fast and precise fine-tuning of the wetting state. Yet, a microscopic understanding of

the mechanism controlling the properties of the superhydrophobic state under electrowet-

ting (EW) conditions and in particular the stability limit of the Cassie state is lacking.

Such a detailed understanding will be crucial to reach the holy grail of reversible switching

between these states, which has so far been limited to a few special cases involving partial

evaporation, violent mechanical shaking, and specific water-in-oil systems.

The Cassie state is associated with very low resistance to droplet motion. To sustain

the Cassie state, either reversibility of the Cassie-Wenzel transition should be achieved or

the surface must be designed such that the energy barrier for a transition to the Wenzel

state is extremely high. Bahadur and Garimella [74] identified contact angle retraction as

a necessary condition for the reverse transition from the Wenzel state to the Cassie state.

Four EW reversal mechanisms have been demonstrated to date. Krupenkin et al. [75]

achieved reversible transition by vaporizing the liquid in immediate contact with pillars

by means of a heat pulse through the pillar substrate. Dhindsa et al. [76] showed that

reversibility can be achieved through competitive two-liquid EW. Manukyan et al. [77]

achieved reversibility by changing only a part of the interface to the Wenzel state, while
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other regions of the drop substrate interface remain in the Cassie state. This causes the

Wenzel state without EW forces to be highly unstable and hence the interface transitions

to the Cassie state. However, the method is not useful when the Wenzel transition happens

all across the interface. Recently, Kumari and Garimella [78] proposed the inclusion of an

additional electrode to obtain complete Cassie-Wenzel reversal of a droplet between two

plates. The other method of maintaining the Cassie state is to completely prevent the

Cassie-Wenzel transition through the design of robust surfaces. Some promising robust

surfaces include double roughness, non-communicating roughness, and re-entrant cavity

surfaces. Analytical and experimental research has corroborated the strong effect of surface

morphology on the impact behavior of a water droplet and its ability to bounce off the

surface. Jung and Bhushan [79] formulated an expression for the critical velocity of the

droplet (based on the capillary pressure and the Bernoulli pressure) beyond which water

droplets transition to a Wenzel state on textured surfaces. Varanasi et al. [80] developed

a pressure-balance model to arrive at a condition for droplet infiltration into the air gap

between the surface structures. Denser textured surfaces are expected to provide greater

capillary pressure and superior resistance to Wenzel wetting of impacting droplets. To

better understand the effect of these robust surfaces, a thorough understanding of the

droplet states and the transition mechanisms under EW actuation is required. Bahadur

and Garimella [81] developed an energy minimization framework to predict the apparent

contact angle of a droplet in the Cassie and Wenzel states on a structured surface under

the action of EW forces. The modified sessile Cassie and Wenzel contact angles are given

by:

cos θec = (−1 + φ (1 + cos θ0 + η)) , (6.3)

cos θew = rm (cos θ0 + η) , (6.4)
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where φ is the area fraction covered by the microstructures, rm is the true area of the surface

to the apparent area, and the electrowetting number η is defined as:

η =
εV 2

2σd
. (6.5)

Here, d is the dielectric thickness, ε is the dielectric constant, V is voltage applied, and

σ is coefficient of surface tension of the liquid.

Bahadur and Garimella later conducted experiments to validate the energy minimization-

based model, to understand different aspects of the Cassie-Wenzel transition, and to analyze

the reasons for the lack of reversibility of the transition. The existence of a critical volt-

age and the reversibility of the Cassie-Wenzel transition were explained in terms of the

presence of an energy barrier. The energy minimization methodology and its application

to predicting droplet states on superhydrophobic surfaces are summarized in Bahadur and

Garimella [81].

6.3 RF Switch

Based on the concept described in previous section, CPW capacitive RF switch was

designed. Schematic of one of our test devices is shown on Fig. 6.3. This device was designed

as two port transmission line (TL) using superhydrophobic structured surface on the top of

the RF signal line to be able to measure stub capacitance change due to tunable wetting.

In that situation, RF signal line was used also for electowetting actuation. Switch design

is shown in Fig. 6.3 and Fig. 6.4. Circuit model was simulated on ADS and 3-D model

confirmed with HFSS.

As shown in Fig. 6.3, when a surface becomes rough, air can remain trapped inside

the texture, so that a droplet sits on a composite surface consisting of solid and air. The

liquid only contacts its substrate at the top of the asperities. The curvature shape of

the liquid can be modified using electrowetting effect, without the need for mechanical

systems. Upon applying a voltage between the electrode on the substrate and the liquid

metal drop, an electric field is generated that pulls down the liquid surface. The surface
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Fig. 6.3: Schematic of capacitive RF switch.

bends until the Laplace pressure caused by the resulting curvature of the interface balances

the electric Maxwell stress. This allows the construction of a very simple RF tunable

system in which capacitance change easily accomplished with electrical signals instead of

mechanical assemblies.

Superhydrophobic surfaces were prepared in cleanroom using microfabrication tech-

niques. Fabrication was consisted of four steps: 1st layer, metallization (Cr/Cu/Ni); 2nd

layer insulator silicon nitride; 3rd layer, hydrophobic rectangular pillar (10 µm thick SU8);

last step was 100 µm thick SU8 frame as a membrane border. Fabrication of these devices

is also inexpensive and easier than MEMS counterparts. Figure 6.5 shows the fabricated

device.

RF measurement set-up was built with 150 um pitch RF probes and bias tees to protect

VNA to DC currents. Capacitance change observed by VNA for any given actuation voltage.
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Fig. 6.4: Circuit model of capacitive RF switch.

Measurement results are well corralated with circuit model. Test set-up and measurement

results are shown in Fig. 6.6.
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Chapter 7

Conclusions and Future Work

Reconfigurable antennas consist of two main building blocks: radiation elements and

reconfiguration mechanisms. In this work, development of new reconfiguration technol-

ogy is addressed. Electrowetting on dielectric (EWOD) based digital microfluidics has been

demonstrated as a novel reconfiguration technique for antennas. Theoretical and experimen-

tal proof is used to show that this technique allows discrete volumes of liquid to be precisely

controlled as independent units within microstructures. Three different reconfiguration

techniques are presented. The first approach is based on the unique metamaterial trans-

mission line structures, which are leading to antenna miniaturization. Coplanar Waveguide

(CPW) metamaterial TLs were designed and used as digital microfluidic platforms, where

tunable resonance frequency was demonstrated for RF/microwave applications. The second

methodology is based on annular slot antenna integration with a microfluidic chip which

consists of EWOD platform having mercury droplet within it. This droplet was spread out

by electrostatic actuation thereby resulting in reversible reconfigurable impedance proper-

ties. The third methodology was proposing a tunable component using superhydrophobic

micro-structured surfaces. These surfaces, along with tunable wetting techniques can be

used for transition from the superhydrophobic Cassie state to the normal Wenzel wetting

state to build a variable capacitive device (analog varactor, a switched capacitor) or a low-

loss switch. The advantage of using first two techniques lies in the fact that they negate the

use of bias lines as opposite to RF-MEMS, PIN diodes, lumped elements, and varactors.

This has the effect of minimizing perturbations affecting the radiation properties of the an-

tenna structure. The broad impact of this study is a step towards bringing electrowetting

technology to the antenna design where fluidic based antennas could be realized with low

cost and complexity.
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A future study should focus on the nature of the Cassie-Wenzel transition through more

detailed measurements. Such a study is expected to enhance the current understanding of

the nature and dynamics of the Cassie-Wenzel transition and impact the development of

reconfigurable antennas, which have the Cassie-Wenzel transition as a microfluidic opera-

tion.
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Sessile Droplet Morphology

A droplet at micro-scale has the form of a spherical shape in order to minimize its

surface energy if only surface tension is considered at the droplet-solid interface. Figure

A.1 shows the cross section view of a liquid droplet dispensed on a hydrophobic surface.

The volume V of such a droplet is a function of four parameters, θ, a, R, h, where θ is

the contact angle, a is the contact radius (i.e., the radius of the circular base), R is the

curvature radius (i.e., the sphere radius), and h is the height of the droplet. The height of

the droplet, h, and contact radius, a, are expressed:

h = R+R cos (π − θ) = R (1− cos θ) , (A.1)

h = R× cos
(
θ − π

2

)
= R× sin (π − θ) = R× sin θ. (A.2)

The volume of a droplet (Fig. A.2) can be obtained the integration of Eq. (A.3).

V =

∫ R

−(h−R)
πr2dz =

πh2

3
(3R− h) (A.3)

Combining Eqs. (A.1), (A.2), and (A.3), the height of a droplet can be calculated by:

h = R (1− cos θ) =

(
3

√
3V

π (2− 3 cos θ + cos3 θ)

)
(1− cos θ) . (A.4)

For the same volume of a droplet, its height can be determined by the contact angle,

which can be measured directly from the goniometer.
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Fig. A.1: Cross section view of a micro-drop dispensed on a hydrophobic surface.

Fig. A.2: Schematic of a droplet for volume integration.
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