4,238 research outputs found

    Preliminary basic performance analysis of the Cedar multiprocessor memory system

    Get PDF
    Some preliminary basic results on the performance of the Cedar multiprocessor memory system are presented. Empirical results are presented and used to calibrate a memory system simulator which is then used to discuss the scalability of the system

    Evaluation of the Cedar memory system: Configuration of 16 by 16

    Get PDF
    Some basic results on the performance of the Cedar multiprocessor system are presented. Empirical results on the 16 processor 16 memory bank system configuration, which show the behavior of the Cedar system under different modes of operation are presented

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    PROFET: modeling system performance and energy without simulating the CPU

    Get PDF
    The approaching end of DRAM scaling and expansion of emerging memory technologies is motivating a lot of research in future memory systems. Novel memory systems are typically explored by hardware simulators that are slow and often have a simplified or obsolete abstraction of the CPU. This study presents PROFET, an analytical model that predicts how an application's performance and energy consumption changes when it is executed on different memory systems. The model is based on instrumentation of an application execution on actual hardware, so it already takes into account CPU microarchitectural details such as the data prefetcher and out-of-order engine. PROFET is evaluated on two real platforms: Sandy Bridge-EP E5-2670 and Knights Landing Xeon Phi platforms with various memory configurations. The evaluation results show that PROFET's predictions are accurate, typically with only 2% difference from the values measured on actual hardware. We release the PROFET source code and all input data required for memory system and application profiling. The released package can be seamlessly installed and used on high-end Intel platforms.Peer ReviewedPostprint (author's final draft

    Control speculation for energy-efficient next-generation superscalar processors

    Get PDF
    Conventional front-end designs attempt to maximize the number of "in-flight" instructions in the pipeline. However, branch mispredictions cause the processor to fetch useless instructions that are eventually squashed, increasing front-end energy and issue queue utilization and, thus, wasting around 30 percent of the power dissipated by a processor. Furthermore, processor design trends lead to increasing clock frequencies by lengthening the pipeline, which puts more pressure on the branch prediction engine since branches take longer to be resolved. As next-generation high-performance processors become deeply pipelined, the amount of wasted energy due to misspeculated instructions will go up. The aim of this work is to reduce the energy consumption of misspeculated instructions. We propose selective throttling, which triggers different power-aware techniques (fetch throttling, decode throttling, or disabling the selection logic) depending on the branch prediction confidence level. Results show that combining fetch-bandwidth reduction along with select-logic disabling provides the best performance in terms of overall energy reduction and energy-delay product improvement (14 percent and 10 percent, respectively, for a processor with a 22-stage pipeline and 16 percent and 13 percent, respectively, for a processor with a 42-stage pipeline).Peer ReviewedPostprint (published version
    • …
    corecore