

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19920005385 2020-03-17T14:16:33+00:00Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42814715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

n

Evaluation of the cedar mei:lory system:
configuration 16 x 16*

K. Gallivan, W. Jalby, H. Wijshoff

RUU-CS-91-16
June 1991

19 SET. 1991	 -

Id,

dos * sod Utrecht University
Department of Computer Science

F
Padualaan 14, P.O. Box 80.089,

771 3Ny 	 3508 TB Utrecht, The Netherlands,
Tel.:... + 31 - 30 - 531454

Evaluation of the cedar memory system:

configuration 16 x 16*

K. Gallivan, W. Jalby, H. Wijshoff

Technical Report RUU-CS-91-16
^.June 1991

Department of Computer Science
Utrecht University

P.O.Box 80.089
3508 TB Utrecht
The Netherlands

I S ^, ►J ^' Cod

EVALUATION OF THE CEDAR MEMORY
SYSTEM: CONFIGURATION 16 x 16*

K. Gallivan', W. Jalbytt, H. Wijshoff$

t Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, USA

tt !RISA, University of Rennes, France
Department of Computer Science, Utrecht University,

the Netherlands

Abstract

In this paper we present some basic results on the performance of the Cedar
multiprocessor system. Empirical results are presented on the 16 processor-
16 memory bank system configuration, which show the behavior of the Cedar
system under different modes of operation.

1 Cedar description
The architecture of the Cedar system is characterized by the use of cluster-based
computational and memory hierarchies. The basic Cedar cluster, a modified Alliant
FX/8 provides the first two levels of the computational hierarchy — vector processing
within each computational element (CE) and concurrency within the cluster. The
highest level of parallelism is, of course, across multiple clusters. In the 16 x 16 con-
figuration each of the four clusters has 4 CE's, causing the useful peak performance
of this system to be 34 x 4 = 136 Mops.

The lowest level of the memory hierarchy comprises the storage private to each
CF. This includes a 16 KB instruction cache and 2 KB vector register storage (eight
vector registers each of which hold thirty two elements). The CE's in each cluster
share a 512 KB cache (two boards of 256 KB each). These caches form the second

'This work was supported by the Department of Energy under Grant No. DE-FG02-85ER25001,
the National Science Foundation under Grant No. NSF 69-20891, the NASA Ames Research Center
under Grant No. NASA NCC 2-559, Cray Research Inn. and Alliant Computer Systems.

level of the hierarchy, Data ac these two levels is accessible at a rate necessary to
satisfy the dernands for data of the pipelined functional units on all of the CE's.

The next level, cluster memory, can contain up to four memory boards per
cluster. Note that this is half the number possible on a standard Alliant FCC series
r.aachine.. Four of the slots were required to facilitate communication with global
memory. The present standard cluster memory board has a size of 8 MB, however,
32 MB boards are available from Alliant;, and these may be used later to upgrade
cluster memory.

The highest level of the hierarchy, global memory, is shared by all or the clusters
and contains one memory module for each CE in the system. The global memory
board contains one 2 MB memory module and a synchronization processor (discussed
below). Therefore, the size of global memory of the 16 x 16 system is 16 x 2 MBytes

32 MBytes. Each global memory module is pipelined and can return a 64-bit
word every two cycles for a bandwidth of 2.94 MW/s. The latency for a particular
memory reference within a module is four cycles.

The processors and the global memory are connected via the Global Intercon-
nection network (see Figure 1), which comprises two unidirectional packet-switched
networks. The basic component of the network is am 8-by-8 crossbar with 80-bit
data path that includes a 64-bit data word. Notice that the processors have direct
access to the global memory; they do not communicate through an intermediate
level of memory as with the cluster cache-memory hierarchy. Since only 16 memory
modules and processors are used in the four cluster system, not all of the connections
possible between the two stages are necessary.

The basic transactions of the network are

Read: address and control to global memory; address and control and data
from global memory.

• Write: address and control and data to global memory; acknowledgment from
global memory.

• Synchronization: can require a packet of up to four words.

Each CE communicates with the Global Interconnection network via a private
Global Interface board across the cluster crossbar. In addition to providing access
to the global memory, the GIB's also contain hardware to perform two crucial global
memory functions: the dispatching of synchronization operations and the prefetch of
global memory data. In the former case, the GIB monitors the outstanding writes to
global memory from the CE issuing the synchronization instruction. When all of the
acknowledgments of these writes return to the GIB the synchronization instruction
proceeds and information is sent to the appropriate memory module.

The prefetch unit on each GIB provides each CE with a method of offsetting
the relatively long latency of a global memory reference. The GIB contains a 4
KB prefetch data buffer where the data is stored until accessed by the CE or some

2

N

O
N

fD

O
a.

Figure 1: The Cedar interconnection network

other action invalidates its data. This buffer is direct-mapped within a page and
has a valid/invalid bit per location. It also contains other memory-mapped registers
including: length register, stride register (in bytes), address register and a 32-bit
mask register. Two instructions control the operation of the prefetch. The first,
ldstprf, is a microcoded instruction that loads an address and starts the prefetch. It
is assumed, of course, that the other appropriate registers have been loaded. The
second is a memory mapped instruction that turns the prefetch unit off. This is
done by clearing memory loca-lion __CEDAR$PO_.

The prefetching of data can be started in two ways. The ldstprf starts it explicitly.
It is also possible to start it implicitly by loading all of the registers appropriately
and issuing a vmove from global memory. Setting the prefetch length register causes
the implicit arming of the prefetch unit, so it shculd be the last register loaded.
When the next vector access of global memory occurs, the address is automatically
leaded in the prefetch address register and the prefetching begins.

One complicating factor about the prefetch unit is that it works with physical
addresses only. This is a result of it being detached from the CE, which performs
the virtual to physical translation. As a result, when the prefetch unit crosses a
page boundary it must stop until it sees the physical address of the nuxt element
in the vector. This address is issued by the CE when the data element is accessed
by the CE and therefore it is not really prefetched at all. Subsequent elements in
the vector on the same page are then prefetched. When a restart of the prefetch
unit occurs, the data which is contained in the prefetch buffer is invalidated in
prc• mration to receive elements from the new page. This is necessary since the
buffer is direct-mapped within a page. Thc-:efore, in order for prefetch to be useful
when page boundaries are crossed, it is important to copy data in the prefetch buffer
to registers or cluster memory.

Another factor that must be considered when assessing the usefulness, of the
prefetch buffer is that it is not saved at context switches. When your task is sus-
pended due to the end of the time-slice or page faults, the contents of the prefetch
buffer is lost.

The improvement in performance realized by using the prefetch unit can be
significant. One CE fetching a vector of length 32 with unit stride (assuming no
other CE is prefetching and the presence of more than one memory module) requires
about 43 cycles — 12 for the first word to return and 1 cycle for each subsequent
word. The same operation without prefetch requires about 208 cycles for a speedup
of 4.8. Of course, in practice various other considerations such as contention and
strides can affect the bandwidth achieved.

At this point it is possible to describe the physical memory space as seen from a
particular CE. The 32-bit address allows access to

• 2 GB (31-bits) of cluster memory shared with CE's in the same cluster.

• 2 GB - 8 KB of global memory shared with all CE's.

4

• 8 KB (two pages) of special memory locations private to each CE and located
on the CE's GIB, These locations include;

— prefetch buffer and prefetch registers,

-- synchronization unit locations, and

-- locations for memory-mapped instructions.

Synchronization is provided in hardware at the cluster and global'.evel, Test-and-
vet atoir,ic operations are supported in both levels, enabling users to write their own
busy-wait synchronization routines. The concurrency control bus provides low-cost
synchronization for parallel loops within a cluster. A concurrent loop involving all
of the CE's in a particular cluster can be started in less than 10 cycles, and a CE can
get its next iteration of the loop in lesU than 5 cycles, The assignment of iterations
allows iteration j to be given to a CE only after all iterations i < j have been
assigned but not necessarily completed. There are eight synchronization registers
shared by the CE's within a cluster which can be used to pass synchronization from
an iteration to an. iteration with higher i:adex - advance and await synchronization.
These registers allow the higher iteration to continue within 5 cycles of the posting
by the lower iteration.

The synchronization processor on each memory board in cooperation with the
GIB's of each CE provide synchronization at the global memory level. Its capabilities
are related to the synchronization primitives discussed in (3), The synchronization
primitives operate on a (key, data) pair in global memory. The primitive requires
the specification of a logical test and a test-key, if the test requires two operands.
If the test succeeds, an operation is performed on the (key, data) pair. Some of
these operations require the user to supply another operand here denoted key-2.
Tne operations supported include

• read key field of pair,

• write key-2 into key field,

• add/subtract 19-bit constant to key field,

• add/subtract :.ey-2,

• logical operations on key field and key-2,

• the result field of the operation can be read before or after the operation is
performed,

• and a read or write of the data field may be done.

2 Description of experiments

2.1 The LOAD/STORE kernels
The memory system has been explored by a generalization to the Cedar architecture
of earlier work done within a cluster for the purposes of characterization and perfor-
mance prediction, [1, 2]. This approach makes use of a set of parameterized memory
access kernels informally referred to as the LOAD/STORE kernels. In order to pre-
dict performance on Cedar these memory syste rra kernels must be augmented with
a similar set, of kernels which isolate the effect of the control constructs available on
Cedar.

The kernels were built in order to investigate the behavior of the memory system
stressed by various memory request streams, They were parameterized in a manner
which respects the following constraints:

It must be possible to adjust the set of parameters in such a way to emulate
memory requests sequences arising from real codes.

The parameters have to be chosen so they can be varied independently in order
to analyze precisely the behavior of the memory system and its interaction with
the memory request stream.

Our study is restricted to a steady state analysis, i.e., each CE loops around
the same piece of code (which by construction will have exactly the same pattern
of memory requests) a large number of times. The main reasons for concentrating
on steady state analysis were to limit the number of possible parameters affecting
the behavior and to reduce the number of cases which are pathologically difficult to
analyze. There are ways to approximate the effect of transient behavior on Cedar
for performance prediction but they are beyond the scope of this paper,

The main parameters that were varied during the experiments are:

1. Number of CE's and Clusters

2. Mode of request on each CE: scalar, vector without prefetch, vector block
prefetch (implicit and explicit)

3. Type and pattern of requests: various LOAD, STORE combinations such as,
LOAD, STORE, LOAD-STORE, U'•AD-LOAD-S ORE, etc.

4. Temporal distribution of requests

5. Spatial distribution of requests: stride and offset

6. Scheduling

6

Let us examine in turn each of these parameters and their potential effect on the
memory system; behavior,

The number of CE's and Clusters issuing requests is the most obvious parameter
to vary the workload imposed on the memory. However, it should be noted, that
a priori for a same number of CE's requesting, the partitioning of the active CE's
across the clusters may have a nonnegligible impact. For example given 4 GE's
active, the behavior maybe different if the 4 CE's belong to the same cluster or if
they are evenly distributed across the clusters.

The mode of request obviously affects the issue rate of the requests but it also
alters the way they are handled. In scalar mode and vector miode without prefetch,
the processor can have at most 2 outstanding requests to global memory pending at
any time. Since vector mode implies that a series of independent fetches are required
2 outstanding requests are maintained for the duration of the vector instruction. In
scalar mode, however, the number of outstanding requests maintained over a series
of instructions depends upon resource dependencies, Each request may have to pay
the full cost of latency.

When prefetch is used the prefetch unit can issue and handle several outstanding
requests to global memory. The number of outstanding requests a_.l1rwed by the
prefetch unit is controlled by leng(h of the prefetch block, bpl, which can range from
1 byte to 512 64-bit words. The prefetch unit can be used in two modes: implicit and
explicit. In both modes, a burst of bpl requests is emitted by the prefetch unit at a
rate of 1 request per 1.5 cycle. In implicit mode for a LOAD, the CE then attempts
to transfer elements, in order, from the prefetch buffer into vector regist•,trs. If the
next data element in order has not arrived in the prefetch buffer the CE stalls until
the data is available. (Data returning from global memory, however, is loaded into
the prefetch buffer any order by the prefetch unit.) The implicit mode, therefore, is
effectively an accelerated global memory vector load instruction.

In explicit mode, the CE is allowed to continue executing any instructions fol-
lowing the prefetch start which does not involve the prefetch unit, e.g., operations
involving registers or cluster memory. At some point, however, the CE will attempt
to access the data that was prefetched and it will then behave in a manner identical
to the implicit prefetch.

The type of request, LOAD or STORE, affects the significance of the mode of
request. In the care. of loads, the discussion above applies. On the other hand,
requests for writes are emitted as fast as the processing of the particular instruction
allows, e.g., every cycle for a vector write, The CE does not wait for an acknowl-
edgment of a write completion. The GIB/CE pair has an explicit instruction, that
is used for synchronization purposes, which stalls the CE until all outstanding write
requests for the CE have completed. In this paper, we will will concentrate LOAD
requests.

The pattern of memory request is intended to study the effect of interleaving
vector LOADS and STORES. The reason for studying the mixing the types of
requests is that they result in different traffic patterns on the forward and reverse

7

networks, In the case of a TOAD (STORE) regvest, a packet of one word (two
words) traverses the forward network and a packet of two words (one word) travels
back from mom-.ay across the reverse network. This asymmetry may generate a
difference in perfo vr ► ance between a long sequence of LOADS followed by a sequence
of STORES and a sequence interleaving LOADS and ,STORES, The first sequence
heavily loads the reverse network initially, during the LOAD sequence, then the
forward network, during the STORE sequence. The second .sequence achieves a
better temporal balance on both networks.

The temporal distribution mainly refers to the variation in issue request rate.
This is achieved i; two ways. Inside a block prefetch request (implicit or explicit),
the use of different vector mask values :allows us to emulate various distributions.
For example, a mask set to the value 010101 will in be in fact equivalent to issuing a
request every other cycle. More cot),plex patterns allow the generation small bursts
of requests.such as 11110000 The insertion of a variable number of null operations,
NODS, between the prefetch blocks allows us to vary the distribution at a higher
level. (This level is more useful from a performance prediction point of view).

The spatial distribution essentially covers the way the banks are addressed. The
simplest parameter is the stride. It affects the order in which the memory banks are
accessed as well as the number of distinct memory banks T -cessed. For example,
assuming that every processor starts in the same bank (0), striding by 2 will concen-
trate all the requests to tb a even numbered banks. Another parameter used to affect
the spatial distribution is the offset, This parameter selects the bank in which each
processor starts its requests and is typically a function of the processor number, i.e.,
it depends upon which cluster a CE is in and its local CE number 0 < p < 3. As
is seen below, the careful selection of these parameters can significantly affect the
bandwidth from global ,ner Tory.

Since our experimental templates use loops as the basic control construct, the
iteration scheduling also plays a key role, Two types of scheduling have been stud-
ied: self scheduling in which the iterations of the loop are dynamically allocated
to each processor, and static; scheduling where the iterations assigned to a given
processor are determined a priori. In this last -,Lheme, the number of iterations is
equally distributed among the processors, Therefore any load imbalance with that
scheme will allow to detect asymmetries in the behavior of each processor. This is
particularly significant in networks where conflict arbitration is based on processor
numbers. The results below are all from tests which used self-scheduling.

2.2 Description of a basic LOAD/STORE kernel
The code which implements the vector-concurrent prefetch version of the LOAD
kernel is typical. The other forms are simple modifications. (The crucial portions
of the kernels are implemented in assembler but are given below in a high-level
language.)

The code comprises several nested loops. The outermost loop distribute the work

8

Table 1: Parameters for experiments.

N; 512.
Si 1512
Sb! 32, 64, 128, 256, 512
I, 0, 128, 256, 384, 512, 640, 768, 896, 1024

1536, 2048, 2560, 3072, 3584, 4096

among the clusters: each cluster will run exactly the same code. (This loop has been
implemented to minimize as much as possible the associated overhead.) Inside each
cluster, a loop over Ni iterations is executed where each iteration consists of a CF
performing Si memory accesses as a series of prefetches with block size Sq. The
temporal distribution of access is controlled by the insertion of Noes at key points
in the iteration. The values of the parameters used in the experiments is given in
Table 1.

Loop over clusters
DO i = 1, Ni Parallel loop over iterations
(self-scheduled within a cluster)

Pla:	 Prologue (executed only once on each CE)
Plb:	 Preparation of the iteration
P2: Execution of I„%, NOPS

DO j 1, [S;l Sb fl Loop over block fetches (sequential on a CE)
P3: Enabling a block fetch of Sb1 words

DO k = 1, fSbpl321
P4: Vector LOAD of 32 elements

ENDDO
ENDDO

ENDDO
End loop

Figure 2: Basic LOAD template code.

The code for the basic LOAD kernel is shown in Figure 2.2 The loop is decom-
posed itself into 5 major segments:

1. Pla: This code corresponds to the setup of the loop on a cluster. It is executed
once by each CE at the beginning of the loop.

2. Plb: This phase covers the loading of all the parameters necessary to the
execution of an iteration on one CE. It is executed on each iteration.

Loop over clusters
DO i = 1, N; Loop over iterations
(self-scheduled withi,i a cluster)

P1a:	 Prologue (executed only once on each CE)
Plb:	 Preparation of the iteration

ND = fS,lsbf1
DO j = 1, NB Loop over block fetches (sequential on a CE)

P2: Enable and start a block prefetch of Sbj words
P3: Execution of 1,,./NB NOPS

DO k = 1, rSb,/321
P4	 'Vector LOAD of 32 elements

ENDDO
ENDDO

ENDDO
End loop

Figure 3: The explicit prefetch template code.

3. P2: this section of code consists of a sequence of T„o^, NOP instructions to
control the temporal distribution.

4. P3: The block prefetch mode is enabled here, allowing the CE/GIB to perform
memory requests in blocks of Sb1 words,

5. P4: This Section of code loads Nbf rSbf/321 blocks into the vector register from
the prefetch buffer. It is needed because of the vector register length of 32.

Note that the above described basic kernel issues prefetches implicitly. In the next
section we will describe how this kernel can be modified to issue explicit prefetch
instructions together with other modifications to this basic kernel.

2.3 Variants of the LOAD kernels
The basic LOAD kernel is easily altered to generate the variants needed to study
Cedar. The modifications needed to perform explicit instead of implicit prd tches
can be obtained by distributing the NOP instructions at the iteration block level in
the implicit form evenly among the prefetch blocks, see Figure 3. For the purpose
of comparison, care must be taken to keep the total amount of NOP instructions
to be equal in both the implicit prefetch code and the explicit prefetch code. This
kernel allows us to simulate masking latency with CE activity not involving accesi4^,:s
to global memory.

Other modifications are obtained by making the following changes to the basic
LOAD kernel.

10

• The STORE kernels are simply obtained by replacing the LOAD instruction
by a STORE instruction. Combinations of LOAD and STORE instructions
are obtained likewise.

• The scalar kernels are derived by substituting a sequence of scalar loads in
place of the vector LOAD/STORE instruction..

• The vector LOADS with no prefetch were generated by suppressing the in-
structions which enable the prefetch buffer.

• Variation in the temporal distribution was obtained by varying the I„oP pa-
rameter.

• Variation in the spatial distribution were generated by assigning to the vector
increment registers different values and changing the starting address of the
vector request.

2.4 Control and Synchronization Kernels
The synchronization instructions appropriate for large and medium grain parallelism
are:

• event-post/event-wait,

• lockon/lockoff,

• set-Block/clear_glock.

These instructions all may involve activity on the operating system level. They do
not exploit the capabilities of the Cedar synchronization processor except for the
global memory test -and -set instruction..

The event -post /event -wait and the lockon/lockoff always involve action
by the operating system. When a task wait for an event or attempts to lock a lock
variable, the status of the task changes from ready to not-ready. Upon the posting
of the required event the synchronization routine causes tht operating system to
reclassify all of the tasks waiting for the event from not-ready to ready status. In the
case of a lockoff call releasing a lock variable, the synchronization routine reclassifies
at most one of the waiting tasks. The synchronization routine does not make use
of a cross-cluster interrupt. As a result, even after a synchronization routine has
reclassified a task to ready-status, the task may still have to wait a considerable
period of time before a clusters scheduler process polls the global ready queue and
restarts the task.

At the other extreme, a busy-waiting approach could be used to avoid the in-
volvement of the operating system. However, this has the potential disadvantage of
the waiting tasks needlessly consuming many cycles and perhaps preventing other

11

tasks from performing useful v'FSrk. The set _glock. f clear_glock routines attempt
a compromise approach. The routine set_q.tock first attempts a busy wait for a
short period of time or test other conditions before involving the operating system.
The operating system executes a DAWDLE operation. The DAWDLE operation does not
change the status of the waiting task, rather it places it at the end of the ready
queue.

The kernels which were used for the synchronization experiments are all varia-
tions of the following form:

DO i = 1, N Loop to ensure correct timings
CALL helper-task (Start up a second Task)

Synchronize both clusters
for initial alignment of both tasks
Get Time-Rtamp

DO j = 1, Konst
CALL lockoff(alll)
CALL lockon (blll)
Wait for x milliseconds
(no memory activity involved)

ENDDO
ENDDO

End loop

The second task (helper-task) executes the following program:

DO i = 1, N Loop to ensure correct timings
Synchronize both clusters
for initial alignment of both tasks

DO j = 1, Konst
CALL lockon (alll)
CALL lockoff(blll)
Wait for x milliseconds
(no memory activity involved)

ENDDO
ENDDO

End loop

3 Experimental Results

In this section, we present selected results of the global memory experiments and give
some analysis of the behavior of the system as a function of the various parameters.

12

3.1 Basic performance limits
Key considerations in interpreting the results below are the underlying performance
limits implied by the components of the memory system and the experimental set
up. In this section we summarize these limits.

The CE's within each cluster are vector processors which can, ;,1 pJnciple, ex-
ecute two floating point operations per cycle. (A cycle is 170 ns, j This implies a
peak execution rate of 11.76 Mflops per CE. If one takes into account the startup of
the chained vector instructions which perform the computations the effective peak
rate drops to 8.56 Mflops per CE, In practice, a reasonable rule of thumb is that
28 to 35 Mflops per cluster is the most one can expect, Since each CE has one
port to the cluster memory system, a clustier cache is designed to have a hardware
limiting access rate of 8 64-bit words per cycle or 47 MW/s. For the 16 CE con-
figuration we have only 4 CE's per cluster and therefore the hardware limit on the
cluster-cache/4-CE combination is 23.5 MW/s. The cluster memory has a hardware
limiting access rate of 4 words per cycle or 23.5 MW/s.

Each global memory bank can deliver 1 word every two cycles for a rate of
2.94 MW/s per bank. A network link can transfer two words per cycle. However,
since on a read (write) an address/data two-word pair must be transferred in 'he
reverse (forward) network, a link can be thought of as effectively transferring 1 word
per cycle or 5.94 MW/s per link. The 4 interstage network links in each direction
therefore are the bottleneck for this -;onfiguration. The GIB/CE pair operating
in prefetch mode can issue a request to the network and absorb a returning data
word from the network in 1.5 cycles for a potential demand of 3.92 MW/s per CE.
When prefetch is not used the performance is limited by the number of outstanding
requests to memory a CE allows (presently 2). A cost of roundtrip latency of about
13 cycles is paid per pair of words yielding approximately 1 MW/s per CE.

Table 2 summarizes the hardware limits for each of the components of the mem-
ory system and the aggregate limit for a 16 CE/memory bank Cedar configuration.
Clearly, when all CE's are accessing data only the cluster cache level can satisfy the
data demands of the vector functional units. Of course, if a very small number of
CE's are accessing data then global memory with prefetch can almost satisfy the
data demand since the GIB is designed to issue requests at the CE peak rate.

Table 3 shows the relative performance degradation of each level of the memory
hierarchy with the cluster cache level taken as 1. The hardware rates indicate that
the most remote level of the hierarchy is 6 times farther than the cache. They also
predict that the potential improvement by using the prefetch unit to offset latency
does not bring global memory in line with the cluster memory access rate due to
the network link bottleneck.

13

Component Unit rate Aggregate rate
Cluster cache/4-CE 23.5 94

Cluster memory/4-CE 23.5 94
Network link 5.94 23.8
Memory bank 2.94 47

GIB/CE
w/o prefetch ^:1 .:: 16
w/ prefetch 3.92 62.7

Table 2: Hardware limiting access rates in MW/s.

Component Slowdown
Cluster cache /4-CE 1

Cluster memory /4-CE 1
Global memory

w/ prefetch 4
w/o prefetch . 6

Table 3: Relative performance degradation of memory hierarchy based on hardware
rates.

3.2 Basic memory performance.
The performance of the cluster memory hierarchy has been characterized in detail
and an attendant performance prediction strategy developed elsewhere, (1, 2), and
will not be repeated in detail here. As expected, the performance varies considerably
for each of the parameters listed above. For comparison purposes, Table 4 contains
the basic performance of a single cluster memory system for a stride 1 access using
an iteration block of 512 (as is used for the global memory experiments) and 0
NOPs. Note that this implies an aggregate cluster memory vector read bandwidth
of approximately 37 MW/s which is a factor of 2.5 below the hardware limit.

Table 5 shows the basic global memory vector read bandwidths for various num-
bers of CEs distributed across different numbers of clusters. No prefetching is used.
The results are the averaged values over several observations using 0 nops per itera-
tion block of 512 writes. problem. Note that the 16 CE performance comes close to
the hardware limit of 16 MW/s. The basic performance for scalar reads are shown
in Table 6. Note for both of these modes of operation there is almost no contention.

Table 7 shows the basic global memory vector read bandwidths, with implicit
prefetch turned on, for various numbers of CEs distributed across different numbers
of clusters. The results are the averaged values over several observations using 0

14

Type Processors_

Vector read
1 4

Vector write 2.0 5,6

Scalar read 1.2 1	 5.3

Table 4: Basic cluster memory bandwidths in MW/s.

Total CEs Clusters Bandwidth
1 1 0.98 (1.0)
2 2 1.92 (1.9)
3 3 2.86 (2.9)
4 1 3.95 (4.0)
4 4 3.81 (3.9)
8 2 7.68 (7.8)
12 3 10.8 (11.0)
16 4 13.4 (13.7)

Table 5: Global memory vector read w/o prefetch bandwidths and speedups.

nops and a prefetch block length of 32 and 512 and an implicit prefetch strategy.
Here we see that the b p.ndwidth is clearly limited by the maximum throughput of
the network links (23.8 MW/s). Actually we see that the performance speedup
starts really breaking down at 8 CE's (speedup = 5.4), and going from 8 CE's to
16 CE's the speedup only increases to 6.1. Note that overall the aggregate cluster
bandwidth is faster than the global bandwidth by a factor of slightly more than 2.

Table 8 shows the basic global memory vector stores bandwidths for various
numbers of CE's distributed across different numbers of clusters. The results are
the averaged values over several observations using 0 nops per iteration block of 512
writes. No dummy test and set was performed each iteration to check for completion
of outstanding writes. Clearly, the vector stores outperform the vector loads and
very quickly approach the hardware limit of the 4 network links. As a result, there
is very little increase in speedup when going from 8 to 16 CE's.

3.3 Global memory prefetch performance
Figures 4 and 5 show the implicit prefetch bandwidth with different prefetch block
sizes as a function of the sparsity of access implied by the NOP values, for 1 and 16
CE's respectively. The sparsity, p, is NODS /512 and measures the number of extra

15	 6,

IT.

Total CEs Clusters Bandwidth
1 1 0.71 (1.0)

2 ^2 1.39 (1.9)
3 3 2.08 (2.9)

4 1 2.85 (4.0)

4 4 2.77 (3.9)

8 2 5.48 (7.7)
12 3 8.07 (11.4)
16 4 10.22 (14.4)

Table 6: Global memory scalar read bandwidths and speedups.

Total. CEs Clusters pf=32 pf=512
1 1 3.00 (1.0) 3.41 (1.1)

2 2 5.54 (1.8) 6.20 (2.1)

3^ 3 7.39 (2.5) 8.10 (2.7)
4 1 11.04 (3.7) 12.05 (4.0)

4 4 8.80 (2.9) 9.04 (3.0)

8 2 14.70 (4.9) 16.33 (5.4)

12 1	 3 1 16.73 (5.6) 17.64 (5.9)

16 1	 4 1 18.05 (6.0) 18.39 (6.1)

Table 7: Basic global memory vector read bandwidths in MW/s and speedups.

cycles added per data element fetch in the block of 512 elements that a CE fetches
on a single iteration using various prefetch block sizes. If p = 0 then there are no
added dead cycles, i.e., the access is as dense as possible. As p increases the sparsity
of the access increases and the amount of contention is decreased. (Of course, the
value of p only reflects the sparsity within an iteration block. The other cycles due to
loop control and other CE overhead also contribute dead cycles to increase sparsity
but those are fixed for all of the experiments.)

If contention is not a significant factor the observed bandwidth should be a
hyperbolically decreasing function of p as is seen for p = 1. When contention is a
problem, however, increasing the sparsity may reduce contention and the general
shape of the bandwidth curve is decreasing but concave. This is due to the fact
that the reduction in contention improves the effective bandwidth more than the
additional cluster work,; represented by NODS, decreases the effective bandwidth.
The change in the shape; of the curves for p = 16 compared to p = 1 illustrates
the effect of contention. The more intense the contention for the configuration the

16

40

20

00

80

60

40

20

,00

.80

,60

^l

.20

.00—

^T,60-

7

3

3

7

i

1

1

1

1

^i=1ze_
vim► _ $6

ptbf = 312

density

Vread
MW/1

0.00	 2.00	 4,00	 6.00	 8.00

Figure 4: Implicit prefetch vector read bandwidth p = 1.

17

MW/6

8.00

7.00 — ^ —

`•6.00

4.00 M

3,00— —+

\2.00

1.00 • ^ `,^

0.00

9.00—

8.00

7.00

Vread

PfM 128

P& 156 _ .
PaZ 511 —

density
0.00	 2.00	 4.00	 6.00	 8.00

Figure 5: Implicit prefetch vector read bandwidth p = 16.

18

Total CEa Clusters Bandwidth-
1 1 4.08 (1.0)
2 2 7.35 (1.8)
3 3 9,51 (2.3)
4 1 14.4 (3.5)
4 4 11.0 (2,7)
8 2 19,8 (4,9)
12 3 21.3 (5.2)
16 4 20.9 (5.1)

Table 8; Basic global memory vector stores bandwidths in MW/s and speedups.

longer the concave region persists along the sparsity axis.
The slight variation in performance due to the change of prefetch block size is

due to the fact that the overhead and latency (setting up the registers in the prefetch
unit and waiting for the return of the first word back) are less significant. The longer
prefetch block sizes also imply more intense use of the global network. Therefore,
when contention is significant the larger prefetch block sizes will be more sensitive to
p, However, since the small number of interstage links are a very strong bottleneck
the effect is much less pronounced than expected.

For a fixed prefetch block size, the data cube formed by triples, /bandwidth,
density, processors), illustrates the trends in performance of the global memory as
the amount of contention varies. Figures 6 and 7 show the bandwidth vs. sparsity
face of the cube for prefetch block sizes of 32 and 512 using implicit prefetching.

For up to 4 CE's, contention is relatively insignificant. It is interesting to note,
however, that 4 CE's active across 4 clusters (i.e. 1 CE per cluster) is much worse
than 4 CE's within a cluster. Such a difference in behavior is explained by the initial
shuffle connection between the CE's and the first stage crossbars. In the first case,
the 4 active CE's are connected to the same crossbar switch while in the second
case, the 4 active CE's are connected to two different crossbar switches. Therefore,
the first connection pattern will create a much worse local contention problem in the
associated crossbar switch. It can be seen that if the sparsity increases this effect
diminishes as expected. Therefore, the bandwidths of the two 4 CE configurations
converge.

In Figures 8 and 9 the speedup versus CE's is plotted for the prefetch block sizes
of 32 and 512. Each curve corresponds to a different sparsity of requests. These two
figures clearly show that the speedup becomes near linear if the sparsity is greater
or equal to 4. Another effect which can be observed is that the the increase in
speedup gain is more pronounced for prefetch block size of 512 rather than for 32.
This is caused by the fact that the amount of loop overhead is much less for the

19

19.00

\17.00

16.00
1

15.00 `

14.00

13,00 ^

12.00— `

11.00—

~0.00 `%

9.00

8.00— ,` ` •

7.00

6.00

5.00
\ ...

4.00

3.00.— `

2.00

1.00
...............

---.

0,00

77=.p= 2 _.

P=3--

p=4
p = Mnc^

P=12 ^

p - I^

density0.00	 2.00	 4,00	 6.00	 8.00

Vread
Wig

Figure 6: Implicit prefetch vector read bandwidth p f = 32,

20

19.00

8.00 ^

7.00

6.00

SAO

4.00 ` _
r

3.00
S

2.00

1.00

0.00 -

9.00 ,
^^

8.00

7.00 \	

\ ~^^°6.00 ^`^

` \\
n

4.00 ^...,......

3.00 —mot

2.00 , _

1.000

0,00

pT-
.P

s
Z.

P= 3-

P = 4
p=4me

P-=-

12 .,

P:7 to

density
0.00	 2100	 4.00	 6.00	 8.00

Vread
Mwi.

Figure 7: Implicit prefetch vector read bandwidth p f = 512,

21

•.

wr.....r—^.^s...^.r. _,:.-rr ..rte—

/	 •,

00
lr	 .01

15.00

14.00

13.00

12.00

11.00

10.00

9.00

9.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

,00 -

d4._ 006

.KAY ^. ^s W

ate'= a:oa`

procs.

Ycead

5.00	 10.00	 15.00

Figure 8: Implicit prefetch vector read speedup pf = 32.

larger prefetch block size, increasing the effect of inserting NOP's instructions in the
kernel.

Another representation of the speedup curves is given in Figures 10 and 11,
where the speedup is being presented as a function of the sparsity. Each curve
corresponds to a different number of CE's. (Note that the data for 4 CE's split
across 4 clusters is included in these curves.) In this case a perfect linear speedup
would be reflected by horizontal curves around 2, 3, 4, 8, 12, and 16, and as such
the deviation from optimal speedup is clearly indicated by these curves. For 2, 3,
and 4 CE's the speedup is near optimal. Again it can be seen that the multi—cluster
4 CE's speedup is far from optimal when sparsity is small.

The bandwidth can be normalized such that the amount of time is shown per
data element fetched. The result of this normalization is shown in Figures 12 and 13,
where the number of CE's times the reciprocal of the bandwidth for implicit prefetch-
ing with prefetch block sizes 32 and 512 are plotted against density. From these

22

epwdup

15.00

1 4.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3,00

2.00

1.00

dMS. 0.00

dcru, 03b' ...
den.. 006

law A;-1.R
dou, x

procs.

Of

r ,•

r .'

/ ,'
/,3

^,.
r,•

/0

r	 ,'/r	 t^

5.00	 10,00	 15,00

vread

Figure y : Implicit prefetch vector read speedup p, = 512,

23

15100 —

14.00 —

3.00 —

oo

2,00 —

f
1,00

......... .

0,00 —

0,

9.00 — ------

7.00

6,00—

5.00

Coo —

3 100 —
2.00 —

P
-^w-j ---
P=

7 "*nC—

P=

-W

8.006.00 	
densityU.UU 2.00 4.00

Vread
speed"

f

Figure 10: Implicit prefetch vector read speedup p = 32.

24
I

Vread
q—dnP

5.00-- /

4.00

3.00 /
/

/2.00
...

/1.00

0.00

,.9.00

8.00 -^-

.7.co —

6.00

I5.00 -

4.00— -

3.00

2.00

J
0.00	 2.00	 4.00	 6.00	 8.00

Figure 11: Implicit prefetch vector read speedup p f = 512.

density

p= 2
-p _ .I...
P= 4--
p=4mc
P = 8
p= 12
P- 16

25

curves can be seen that the normalized bandwidth of 1 CE and 4 CE's closely
match each other and that the deviation from these curves occurs at 8 CE's or
more. This is not surprising because the bandwidth of the four interstage network
links are the hottleneck of the memory system. Thus, the request rate of up to 4
CE's can be easily satisfied by the network,

The above described results were all for the implicit prefetch experiments. From
the memory standpoint of view, the behavior of the implicit and explicit prefetch
should behave very similar because in essence the issue rate is the same. In figure 14
the ratio of explicit over implicit prefetch performance is shown. The main advantage
of the explicit prefetch is to utilize the cycles lost, due to stalls in the CE, for other
computational activities. As long as the amount of contention is small, the difference
between the implicit and explicit prefetch performance is only due to the masking of
the latency for the first word back. As can be seen from figure 14 the improvement
of the explicit prefetch over the implicit prefetch is very minor in this case, i.e. the
curve representing 4 CE's in one cluster). This points to the fact that latency for
the first word is not that significant for the long prefetch block size of 512. As
contention increases stalls due to out of order arrival of data becomes significant.
This effect is can be masked using explicit prefetch. This is wLy the performance
increase for the 4 CE's in different, cluster and 8 CE's is more pronounced. It can
be seen, that, when the sparsity is low (more contention), the performance of the
explicit prefetch is .about 20 %. However, if sparsity increases this effect is nullified,
and even a performance drop of about 20 % occurs.

3.4 Load/Store combination templates
Next to the LOAD and STORE experiments as described before, experiments were
also run with different combinations of LOAD/STORE instructions, i.e. L,LL,LS,
and LLS. These experiments were done in steady state mode from global memory,
with a vector of a given length sent to each cluster and accessed using all of the CE's
available in each. The concurrent loop had each CE accessing a template of length
32 with a given number of NOFs per iteration. These NOPs per iteration relate to
the sparsity of the previous sections by

p = NOPs/(32 * k),

where k is the total number of vector register LOADs and STOREs, e.g. for LLS k
would be equal to 3. The prefetching strategy used was that of the Cedar Fortran
compiler, i.e., the prefetch registers are loaded for each vector access, prefetch is
started immediately before the vmove instruction and turned off immediately after.
So this form of prefetching is related to implicit prefetching except that the length
of the prefetch block is always equal to the length of the vector register, i.e. 32.
Figures 15 through 17 illustrate the behavior of the different LOAD/STORE combi-
nations. As can be seen The LS—combination is outperforming the LL—combination

26

S/MW
P. T_
-P^ -4----
P^ a--
P 1 —
P

2.20

2.10

2.00

1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

density

f

/01

s

i

Vread

0.00	 2.00	 4.00	 6.00	 8.00

Figure 12: Implicit prefetch vector read p/BW pf = 32.

with a factor of 50 % if the sparsity is low. This is because the LS.-combination
the balances the data traffic volume evenly over the forward and backward network,
whereas the LL-combination doubles the volume of data traffic requirements on
the forward network. Because of the saturation of the network bandwidth, there is
no observed difference in performance between the LS-combination and the LLS-
combination.

3.5 Stride e'ects
The basic load template was run with 0 nops and the stride varying from 1 to 16 by
increments of 1 to assess the effect of stride on convention. All of the CE's access
their first element in bank 0, i.e. an offset of 0 for all CE's. Figures 18 to 21 illustrate
the performance as stride varies for a given number of processors.

The effect of striding is directly related to the number of memory banks being

27

S/W
P.

p= g—
P--7 1f- —
P = 16,_.

2.10

2.00

1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20

1.10

1.00

0,90

0.80

0.70

0.60

0.50

0.40

0.30

density

AA

i

J/

i
i

ii

Vread

0.00	 2.00	 4.00	 6.00	 8.00

Figure 13: Implicit prefetch vector read p /BW pf = 512.

addressed by the CE's. This number of memory banks is equal to

16/GCD(stride,16),

and the curves clearly demonstrate this, with the 16 CE case to be the most pro-
nounced. For all the curves the performance of the stride 16 experiments turn out
to be extremely close to the hardware limiting bandwidth for one global memory
bank, i.e. 2.94 MW/s. The difference of the bandwidth obtained when addressing
8 memory banks (with stride, suck that 16/GCD (stride, 16) = 2), compared to ad-
dressing 16 memory banks is far less than a factor of 2. This again is caused by the
limiting bandwidth of the 4 interstage network links.

3.6 Synchronization Experiments
Three types of multicluster synchren;!, adon routines were benchmarked:
event -post /event _wait, lockon/lockoff, and set_glock/clear_glock. Two

28

1.18 -

1.16

,

1.12 — L_! '
^	 I	 1 A

1.10 I	 C	 1 `^	
10,

^ _

1.08

1.04

1.02— \\ / 1

1.00—

0.96
\ '

0.96

0.94—

0.92 `

0.90 i

0.88
I

D.86

Vread
Y

P= 4
p = 4mc '
P= g--
p= 16

density0.00	 2.00	 4.00	 6.00	 8.00

Figure 14: Explicit/Impbcit p f = 512.

29

^•w	Iw.w	 Z00.00	 300.00	 400.00	 500.00

P= 4
--

p= 12

P=_16_

nops

18.0

17.0

16.0

15.0

14.0(

13,0(

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.0)

3.00

2.00

MW/S	
LL

Figure 15: Load-Load bandwidth vs. hops.

30

LS
MWH

7.3.00

22.00

21100--

20,00

19.00

18,00

\17.00

16.00 ,^ \

14.00

13.00

,• ` \12,00

I L00 '• ^ \

10,00

`9100—

8.00

7.00

6,00

S.00

4.00 _

3,00

2.00 _

p=—

P=
8 ..

P- 12

p= 16

0.00	 100.00	 200.00	 300.W	 400.00	 500.00	
nops

Figure 16: Load-Store bandwidth vs. nops.

31

LLS
MW/I

u.W

21.00

20.00

19.00 `

18.00 `

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

P= 4

P = 8 --

pT 12

P=-16—

0.00	 100.00	 200.00	 300.00	 400.00	 500.00	
nops

Figure 17: Load-Load-Store bandwidth vs. nops.

32

1.00

0.50

0.00

9.50

9.00

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

--

4.00

3.50

3.00

2.50

P—

stride

Load
MWIS

5.00	 10.00	 15.00

Figure 18: Load with 0 nops with nonunit strides, p = 4.

33

5.00	 10.00	 15.00

-F-r—

suide

Load
Wh

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

Figure 19: Load with 0 nops with nonunit strides, p = 8.

Ji

WIN

18,00

17.00

16.00

15,00

14.00

13.00

12.00

11.00

10,00

9.00

5,00

7.00

6,00

5,00

4.00

3,00

5.00	 10.00	 15.00

77 =

stride

Lead

Figure 20: Load with 0 nops with nonunit strides, p = 12.

35

Load
Mw/i

18.00

17,00

16.00

5,00

x,00

3.00

2.00

1.00

0.00

9.00

8.00

7.00

6.00

5.00

(.00

3.00

5.00	 10.00	 15.00
stride

Figure 21: Load with 0 nops with nonunit strides, p = 16.

36

clusters were used to execute 10 and 50 iterations with each iteration having a
given execution time r. The average time, t, per iteration is plotted versus T in
the curves below, Table 9 contains the linear regression coefficients for each syn-
chronization type, i.e,, coefficients of the function t ^ * ,r + B. The y-intercept
B can be taken as an estimate of the synchronization overhead. Notice the sub-
stantial difference between those which involve the runtime status queues acid the
approach which uses DAWDLE. It should also be noted that the linear regression for
the DAWDLE-based approach is biased towards iteration sizes which cause DAWDLE to
be used. For more tightly couple situations where the initial buy-wait loop succeeds
in seizing the lock the cost of synchronization can be reduced to a few microseconds.

The data upon which the regressions are based are given in Figures 22, 23,
and 24, The expected trends are illustrated. The event -post /event -wait and
lockon/lockoff curves show stability of results for large r. The instability for
small r is due to the uncertainty of the polling mechanism discussed above. Note
that the set_q.lock/clear_glock pair produces an extremely stable set of results.

Type Samples A B
Events 32 1.008e-03 0.202

Lockon/off 32 1.015e-03 0.180

Qlocks 32 1.019e-03 0.002

Table 9: Linear regression coefficients for synchronization.

References
[1] K. GALLIVAN, D. GANNON, W. JALBY, A. MALONY, AND H. WIJSIIOFF,

Behavioral characterization of multiprocessor memory systems, in Proc. 1989
ACM SIGMETRICS Conf. on Measuring and Modeling Computer Systems, New
York, 1989, ACM Press, pp. 79-89,

[2] K. GALLIVAN, W. JALBY, A. MALONY, AND H. WIJSHOFF, Performance
prediction of loop constructs on multiprocessor hierarchical memory systems, in
Proc, 1989 Intl. Conf. Supercomputing, New York, 1989, ACM Press, pp. 433-
442.

[3] C.-Q. ZHU AND P.-C. YEW, A scheme to enforce data dependence on large
multiprocessor systems, IEEE Trans. Softw. Eng., SE-13 (June 1987), pp. 726-
739.

37

Events
7'une

2.20

2.00

t,eo

1,60

1.40
i

1.20 '

1.00 -

o.eo '

0.60

0.40 •

0.20

0.00

-A,0.00	 0.50	 1.00	 1.50	 2.00

Figure 22: Event posting synchronization,

38

Lockon/ofr
Time

2,20

2.00

1.80

1,60

1.40
1

1.20 -

1,00

0.80
i

0,60

0.40

0.20

D.00

0.00	 0.50	 1.00	 1,50	 V— 2.00

Figure 23: Lockon/off synchronization.

39

Time	
Qlock

2.10

2.00

1.90

1.80

1.70

1.60

1.50 --.

1.40

130

1.20

1.10

1.W --

0.90

0.80

0.70

0.60

0.50

0.40--

030

0.20

D.10

D.00

3.10
u.uu	 0.50	 1.00	 1.50	 J^ 2.00

Figure 24: Qlock synchronization.

40

	1992005385.pdf
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif

