221 research outputs found

    Minimizing the impact of delay on live SVC-based HTTP adaptive streaming services

    Get PDF
    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for Over-The-Top video streaming services. Video content is temporally split into segments which are offered at multiple qualities to the clients. These clients autonomously select the quality layer matching the current state of the network through a quality selection heuristic. Recently, academia and industry have begun evaluating the feasibility of adopting layered video coding for HAS. Instead of downloading one file for a certain quality level, scalable video streaming requires downloading several interdependent layers to obtain the same quality. This implies that the base layer is always downloaded and is available for playout, even when throughput fluctuates and enhancement layers can not be downloaded in time. This layered video approach can help in providing better service quality assurance for video streaming. However, adopting scalable video coding for HAS also leads to other issues, since requesting multiple files over HTTP leads to an increased impact of the end-to-end delay and thus on the service provided to the client. This is even worse in a Live TV scenario where the drift on the live signal should be minimized, requiring smaller segment and buffer sizes. In this paper, we characterize the impact of delay on several measurement-based heuristics. Furthermore, we propose several ways to overcome the end-to-end delay issues, such as parallel and pipelined downloading of segment layers, to provide a higher quality for the video service

    Flow Level QoE of Video Streaming in Wireless Networks

    Full text link
    The Quality of Experience (QoE) of streaming service is often degraded by frequent playback interruptions. To mitigate the interruptions, the media player prefetches streaming contents before starting playback, at a cost of delay. We study the QoE of streaming from the perspective of flow dynamics. First, a framework is developed for QoE when streaming users join the network randomly and leave after downloading completion. We compute the distribution of prefetching delay using partial differential equations (PDEs), and the probability generating function of playout buffer starvations using ordinary differential equations (ODEs) for CBR streaming. Second, we extend our framework to characterize the throughput variation caused by opportunistic scheduling at the base station, and the playback variation of VBR streaming. Our study reveals that the flow dynamics is the fundamental reason of playback starvation. The QoE of streaming service is dominated by the first moments such as the average throughput of opportunistic scheduling and the mean playback rate. While the variances of throughput and playback rate have very limited impact on starvation behavior.Comment: 14 page

    QoE-aware inter-stream synchronization in open N-screens cloud

    Get PDF
    The growing popularity and increasing performance of mobile devices is transforming the way in which media can be consumed, from single device playback to orchestrated multi-stream experiences across multiple devices. One of the biggest challenges in realizing such immersive media experience is the dynamic management of synchronicity between associated media streams. This is further complicated by the faceted aspects of user perception and heterogeneity of user devices and networks. This paper introduces a QoE-aware open inter-stream media synchronization framework (IMSync). IMSync employs efficient monitoring and control mechanisms, as well as a bespoke QoE impact model derived from subjective user experiments. Given a current lag, IMSync's aim is to use the impact model to determine a good catch-up strategy that minimizes detrimental impact on QoE. The impact model balances the accumulative impact of re-synchronization processes and the degree of non-synchronicity to ensure the QoE. Experimental results verify the run-time performance of the framework as a foundation for immersive media experience in open N-Screens cloud

    Closing the gap: human factors in cross-device media synchronization

    Get PDF
    The continuing growth in the mobile phone arena, particularly in terms of device capabilities and ownership is having a transformational impact on media consumption. It is now possible to consider orchestrated multi-stream experiences delivered across many devices, rather than the playback of content from a single device. However, there are significant challenges in realising such a vision, particularly around the management of synchronicity between associated media streams. This is compounded by the heterogeneous nature of user devices, the networks upon which they operate, and the perceptions of users. This paper describes IMSync, an open inter-stream synchronisation framework that is QoE-aware. IMSync adopts efficient monitoring and control mechanisms, alongside a QoE perception model that has been derived from a series of subjective user experiments. Based on an observation of lag, IMSync is able to use this model of impact to determine an appropriate strategy to catch-up with playback whilst minimising the potential detrimental impacts on a users QoE. The impact model adopts a balanced approach: trading off the potential impact on QoE of initiating a re-synchronisation process compared with retaining the current levels of non-synchronicity, in order to maintain high levels of QoE. A series of experiments demonstrate the potential of the framework as a basis for enabling new, immersive media experiences

    Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications

    Full text link
    [EN] Newer social multimedia applications, such as Social TV or networked multi-player games, enable independent groups (or clusters) of users to interact among themselves and share services within the context of simultaneous media content consumption. In such scenarios, concurrently synchronized playout points must be ensured so as not to degrade the user experience on such interaction. We refer to this process as Inter-Destination Multimedia Synchronization (IDMS). This paper presents the design, implementation and evaluation of an evolved version of an RTCP-based IDMS approach, including an Adaptive Media Playout (AMP) scheme that aims to dynamically and smoothly adjust the playout timing of each one of the geographically distributed consumers in a specific cluster if an allowable asynchrony threshold between their playout states is exceeded. For that purpose, we previously had also to develop a full implementation of RTP/RTCP protocols for NS-2, in which we included the IDMS approach as an optional functionality. Simulation results prove the feasibility of such IDMS and AMP proposals, by adopting several dynamic master reference selection policies, to maintain an overall synchronization status (within allowable limits) in each cluster of participants, while minimizing the occurrence of long-term playout discontinuities (such as skips/pauses) which are subjectively more annoying and less tolerable to users than small variations in the media playout rate.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10. Authors also would like to thank the anonymous reviewers that helped to significantly improve the quality of the paper with their constructive comments.Montagud, M.; Boronat, F. (2012). Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications. Computer Networks. 56(12):2912-2933. https://doi.org/10.1016/j.comnet.2012.05.00329122933561

    A Framework for Generating HTTP Adaptive Streaming Traffic in ns-3

    Get PDF
    Accepted short paperInternational audienceVideo streaming is today one of the most relevant service in mobile Internet, which represents around 50% of total mobile data traffic. Consequently, researchers perform huge efforts to design and propose new mechanisms and archi-tectures to improve video streaming in mobile networks. In this regard, simulation is a relevant step to test and validate those new mechanisms and models. ns-3 is one models of the most widely used network simulator due to its rich library of network and its vast user community. Despite of its relevance, ns-3 lacks of realistic traffic source. This paper presents a HTTP Adaptive Streaming traffic generator framework for mobile networks in ns-3. Its design and validation are presented, as well as some possible evolution directions and future works

    Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization

    Full text link
    Traditionally, the media consumption model has been a passive and isolated activity. However, the advent of media streaming technologies, interactive social applications, and synchronous communications, as well as the convergence between these three developments, point to an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of consumers, independently of their location and the nature of their end-devices, can be immersed in a common virtual networked environment in which they can share multimedia services, interact and collaborate in real-time within the context of simultaneous media content consumption. In most of these multimedia services and applications, apart from the well-known intra and inter-stream synchronization techniques that are important inside the consumers playout devices, also the synchronization of the playout processes between several distributed receivers, known as multipoint, group or Inter-destination multimedia synchronization (IDMS), becomes essential. Due to the increasing popularity of social networking, this type of multimedia synchronization has gained in popularity in recent years. Although Social TV is perhaps the most prominent use case in which IDMS is useful, in this paper we present up to 19 use cases for IDMS, each one having its own synchronization requirements. Different approaches used in the (recent) past by researchers to achieve IDMS are described and compared. As further proof of the significance of IDMS nowadays, relevant organizations (such as ETSI TISPAN and IETF AVTCORE Group) efforts on IDMS standardization (in which authors have been and are participating actively), defining architectures and protocols, are summarized.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10, and by TNO, under its Future Internet Use Research & Innovation Program. The authors also want to thank Kevin Gross for providing some of the use cases included in Sect. 1.2.Montagud, M.; Boronat Segui, F.; Stokking, H.; Van Brandenburg, R. (2012). Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization. Multimedia Systems. 18(6):459-482. https://doi.org/10.1007/s00530-012-0278-9S459482186Kernchen, R., Meissner, S., Moessner, K., Cesar, P., Vaishnavi, I., Boussard, M., Hesselman, C.: Intelligent multimedia presentation in ubiquitous multidevice scenarios. IEEE Multimedia 17(2), 52–63 (2010)Vaishnavi, I., Cesar, P., Bulterman, D., Friedrich, O., Gunkel, S., Geerts, D.: From IPTV to synchronous shared experiences challenges in design: distributed media synchronization. Signal Process Image Commun 26(7), 370–377 (2011)Geerts, D., Vaishnavi, I., Mekuria, R., Van Deventer, O., Cesar, P.: Are we in sync?: synchronization requirements for watching on-line video together, CHI ‘11, New York, USA (2011)Boronat, F., Lloret, J., García, M.: Multimedia group and inter-stream synchronization techniques: a comparative study. Inf. Syst. 34(1), 108–131 (2009)Chen, M.: A low-latency lip-synchronized videoconferencing system. In: SIGCHI Conference on Human Factors in Computing Systems, CHI’03, ACM, pp. 464–471, New York (2003)Ishibashi, Y., Tasaka, S., Ogawa, H.: Media synchronization quality of reactive control schemes. IEICE Trans. Commun. E86-B(10), 3103–3113 (2003)Ademoye, O.A., Ghinea, G.: Synchronization of olfaction-enhanced multimedia. IEEE Trans. Multimedia 11(3), 561–565 (2009)Cesar, P., Bulterman, D.C.A., Jansen, J., Geerts, D., Knoche, H., Seager, W.: Fragment, tag, enrich, and send: enhancing social sharing of video. ACM Trans. Multimedia Comput. Commun. Appl. 5(3), Article 19, 27 pages (2009)Van Deventer, M.O., Stokking, H., Niamut, O.A., Walraven, F.A., Klos, V.B.: Advanced Interactive Television Service Require Synchronization, IWSSIP 2008. Bratislava, June (2008)Premchaiswadi, W., Tungkasthan, A., Jongsawat, N.: Enhancing learning systems by using virtual interactive classrooms and web-based collaborative work. In: Proceedings of the IEEE Education Engineering Conference (EDUCON 2010), pp. 1531–1537. Madrid, Spain (2010)Diot, C., Gautier, L.: A distributed architecture for multiplayer interactive applications on the internet. IEEE Netw 13(4), 6–15 (1999)Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: providing consistency for replicated continuous applications. IEEE Trans. Multimedia 6(1), 45–57 (2004)Hosoya, K., Ishibashi, Y., Sugawara, S., Psannis, K.E.: Group synchronization control considering difference of conversation roles. In: IEEE 13th International Symposium on Consumer Electronics, ISCE ‘09, pp. 948–952 (2009)Roccetti, M., Ferretti, S., Palazzi, C.: The brave new world of multiplayer online games: synchronization issues with smart solution. In: 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 587–592 (2008)Ott, D.E., Mayer-Patel, K.: An open architecture for transport-level protocol coordination in distributed multimedia applications. ACM Trans. Multimedia Comput. Commun. Appl. 3(3), 17 (2007)Boronat, F., Montagud, M., Guerri, J.C.: Multimedia group synchronization approach for one-way cluster-to-cluster applications. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 177–184, Zürich (2009)Boronat, F., Montagud, M., Vidal, V.: Smooth control of adaptive media playout to acquire IDMS in cluster-based applications. In: IEEE LCN 2011, pp. 617–625, Bonn (2011)Huang, Z., Wu, W., Nahrstedt, K., Rivas, R., Arefin, A.: SyncCast: synchronized dissemination in multi-site interactive 3D tele-immersion. In: Proceedings of MMSys, USA (2011)Kim, S.-J., Kuester, F., Kim, K.: A global timestamp-based approach for enhanced data consistency and fairness in collaborative virtual environments. ACM/Springer Multimedia Syst. J. 10(3), 220–229 (2005)Schooler, E.: Distributed music: a foray into networked performance. In: International Network Music Festival, Santa Monica, CA (1993)Miyashita, Y., Ishibashi, Y., Fukushima, N., Sugawara, S., Psannis K.E.: QoE assessment of group synchronization in networked chorus with voice and video. In: Proceedings of IEEE TENCON’11, pp. 393–397 (2011)Hesselman, C., Abbadessa, D., Van Der Beek, W., et al.: Sharing enriched multimedia experiences across heterogeneous network infrastructures. IEEE Commun. Mag. 48(6), 54–65 (2010)Montpetit, M., Klym, N., Mirlacher, T.: The future of IPTV—Connected, mobile, personal and social. Multimedia Tools Appl J 53(3), 519–532 (2011)Cesar, P., Bulterman, D.C.A., Jansen, J.: Leveraging the user impact: an architecture for secondary screens usage in an interactive television environment. ACM/Springer Multimedia Syst. 15(3), 127–142 (2009)Lukosch, S.: Transparent latecomer support for synchronous groupware. In: Proceedings of 9th International Workshop on Groupware (CRIWG), Grenoble, France, pp. 26–41 (2003)Steinmetz, R.: Human perception of jitter and media synchronization. IEEE J. Sel. Areas Commun. 14(1), 61–72 (1996)Stokking, H., Van Deventer, M.O., Niamut, O.A., Walraven, F.A., Mekuria, R.N.: IPTV inter-destination synchronization: a network-based approach, ICIN’2010, Berlin (2010)Mekuria, R.N.: Inter-destination media synchronization for TV broadcasts, Master Thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Network architecture and Services, Delft University of Technology (2011)Pitt Ian, CS2511: Usability engineering lecture notes, localisation of sound sources. http://web.archive.org/web/20100410235208/http:/www.cs.ucc.ie/~ianp/CS2511/HAP.htmlNielsen, J.: Response times: the three important limits. http://www.useit.com/papers/responsetime.html (1994)ITU-T Rec G. 1010: End-User Multimedia QoS Categories. International Telecommunication Union, Geneva (2001)Biersack, E., Geyer, W.: Synchronized delivery and playout of distributed stored multimedia streams. ACM/Springer Multimedia Syst 7(1), 70–90 (1999)Xie, Y., Liu, C., Lee, M.J., Saadawi, T.N.: Adaptive multimedia synchronization in a teleconference system. ACM/Springer Multimedia Syst. 7(4), 326–337 (1999)Laoutaris, N., Stavrakakis, I.: Intrastream synchronization for continuous media streams: a survey of playout schedulers. IEEE Netw. Mag. 16(3), 30–40 (2002)Ishibashi, Y., Tsuji, A., Tasaka, S.: A group synchronization mechanism for stored media in multicast communications. In: Proceedings of the INFOCOM ‘97, Washington (1997)Ishibashi, Y., Tasaka, S.: A group synchronization mechanism for live media in multicast communications. IEEE GLOBECOM’97, pp. 746–752 (1997)Boronat, F., Guerri, J.C., Lloret, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. J. 40(2), 285–319 (2008)Ishibashi, I., Tasaka, S.: A distributed control scheme for group synchronization in multicast communications. In: Proceedings of International Symposium Communications, Kaohsiung, Taiwan, pp. 317–323 (1999)Lu, Y., Fallica, B., Kuipers, F.A., Kooij, R.E., Van Mieghem, P.: Assessing the quality of experience of SopCast. Int. J. Internet Protoc. Technol 4(1), 11–19 (2009)Shamma, D.A., Bastea-Forte, M., Joubert, N., Liu, Y.: Enhancing online personal connections through synchronized sharing of online video, ACM CHI’08 Extended Abstracts, Florence (2008)Ishibashi, Y., Tasaka, S.: A distributed control scheme for causality and media synchronization in networked multimedia games. In: Proceedings of 11th International Conference on Computer Communications and Networks, pp. 144–149, Miami, USA (2002)Ishibashi, Y., Tomaru, K., Tasaka, S., Inazumi, K.: Group synchronization in networked virtual environments. In: Proceedings of the 38th IEEE International Conference on Communications, pp. 885–890, Alaska, USA (2003)Tasaka, S., Ishibashi, Y., Hayashi, M.: Inter–destination synchronization quality in an integrated wired and wireless network with handover. IEEE GLOBECOM 2, 1560–1565 (2002)Kurokawa, Y., Ishibashi, Y., Asano, T.: Group synchronization control in a remote haptic drawing system. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 572–575, Beijing, China (2007)Hashimoto, T., Ishibashi, Y.: Group Synchronization Control over Haptic Media in a Networked Real-Time Game with Collaborative Work, Netgames’06, Singapore (2006)Nunome, T., Tasaka, S.: Inter-destination synchronization quality in a multicast mobile ad hoc network. In: Proceedings of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1366–1370, Berlin, Germany (2005)Brandenburg, R., van Stokking, H., Van Deventer, M.O., Boronat, F., Montagud, M., Gross, K.: RTCP for inter-destination media synchronization, draft-brandenburg-avtcore-rtcp-for-idms-03.txt. In: IETF Audio/Video Transport Core Maintenance Working Group, Internet Draft, March 9 (2012)ETSI TS 181 016 V3.3.1 (2009-07) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Service Layer Requirements to integrate NGN Services and IPTVETSI TS 182 027 V3.5.1 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IPTV Architecture; IPTV functions supported by the IMS subsystemETSI TS 183 063 V3.5.2 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IMS-based IPTV stage 3 specificationBrandenburg van, R., et al.: RTCP XR Block Type for inter-destination media synchronization, draft-brandenburg-avt-rtcp-for-idms-00.txt. In: IETF Audio/Video Transport Working Group, Internet Draft, Sept 24, 2010Williams, A., et al.: RTP Clock Source Signalling, draft-williams-avtcore-clksrc-00. In: IETF Audio/Video Transport Working Group, Internet Draft, February 28, 201

    How to Perform AMP? Cubic Adjustments for Improving the QoE

    Full text link
    [EN] Adaptive Media Playout (AMP) consists of smoothly and dynamically adjusting the media playout rate to recover from undesired (e.g., buffer overflow/underflow or out-of-sync) situations. The existing AMP solutions are mainly characterized by two main aspects. The first one is their goal (e.g., keeping the buffers¿ occupancy into safe ranges or enabling media synchronization). The second one is the criteria that determine the need for triggering the playout adjustments (e.g., buffer fullness or asynchrony levels). This paper instead focuses on a third key aspect, which has not been sufficiently investigated yet: the specific adjustment strategy to be performed. In particular, we propose a novel AMP strategy, called Cubic AMP, which is based on employing a cubic interpolation method to adjust a deviated playout point to a given reference. On the one hand, mathematical analysis and graphical examples show that our proposal provides superior performance than other existing linear and quadratic AMP strategies in terms of the smoothness of the playout curve, while significantly outperforming the quadratic AMP strategy regarding the duration of the adjustment period and without increasing the computational complexity. It has also been proved and discussed that higher-order polynomial interpolation methods are less convenient than cubic ones. On the other hand, the results of subjective tests confirm that our proposal provides better Quality of Experience (QoE) than the other existing AMP strategies.This work has been funded, partially, by the “Fondo Europeo de Desarrollo Regional (FEDER)” and the Spanish Ministry of Economy and Competitiveness, under its R&D&I Support Program, in project with Ref. TEC2013-45492-R.Montagud, M.; Boronat, F.; Roig, B.; Sapena Piera, A. (2017). How to Perform AMP? Cubic Adjustments for Improving the QoE. Computer Communications. 103:61-73. https://doi.org/10.1016/j.comcom.2017.01.017S617310
    • …
    corecore