Minimizing the Impact of Delay on Live SVC-based
HTTP Adaptive Streaming Services

Niels Bouten, Steven Latré, Jeroen Famaey, Filip De Turck
Department of Information Technology, Ghent University - iMinds
Gaston Crommenlaan 8/201 B-9050 Ghent, Belgium
Email: niels.bouten@intec.ugent.be

Abstract—HTTP Adaptive Streaming (HAS) is becoming the
de-facto standard for Over-The-Top video streaming services.
Video content is temporally split into segments which are offered
at multiple qualities to the clients. These clients autonomously
select the quality layer matching the current state of the net-
work through a quality selection heuristic. Recently, academia
and industry have begun evaluating the feasibility of adopting
layered video coding for HAS. Instead of downloading one file
for a certain quality level, scalable video streaming requires
downloading several interdependent layers to obtain the same
quality. This implies that the base layer is always downloaded
and is available for playout, even when throughput fluctuates
and enhancement layers can not be downloaded in time. This
layered video approach can help in providing better service
quality assurance for video streaming. However, adopting scalable
video coding for HAS also leads to other issues, since requesting
multiple files over HTTP leads to an increased impact of the
end-to-end delay and thus on the service provided to the client.
This is even worse in a Live TV scenario where the drift on the
live signal should be minimized, requiring smaller segment and
buffer sizes. In this paper, we characterize the impact of delay on
several measurement-based heuristics. Furthermore, we propose
several ways to overcome the end-to-end delay issues, such as
parallel and pipelined downloading of segment layers, to provide
a higher quality for the video service.

I. INTRODUCTION

HTTP Adaptive Streaming (HAS) is becoming the de-
facto standard for Over-The-Top video streaming services.
This shift was mainly induced by the advantages offered
by HTTP-based streaming: reliable transmission over TCP,
reuse of existing caching infrastructure and compatibility with
NATs and firewalls. Initially, the HTTP-based video protocols
required downloading the entire video file before playout.
Later, progressive download techniques allowed playout to
begin after a sufficient amount of data was stored in the
buffer. However, when congestion arised in the network, these
protocols were not able to cope with buffer starvations, leading
to playout gaps, which have a negative impact on the provided
service quality. The third evolution in HTTP-based stream-
ing, being HAS, tackles these shortcomings by splitting the
content into segments which are encoded at different quality
levels. Client heuristics then decide at which quality rate
the next segment should be downloaded, taking into account
network statistics, buffer filling and device characteristics.
HAS therefore provides service assurance, at a reduced quality,
if congestion occurs in the network.

Traditionally, Advanced Video Coding (AVC) is used to
encode the different segments, introducing a significant amount
of redundancy across quality representations. Scalable Video

Werner Van Leekwijck
Alcatel-Lucent Bell Labs
Copernicuslaan 50
B-2018 Antwerp, Belgium

Coding (SVC) can cope with these issues of content re-
dundancy by creating dependencies between the base and
enhancement layers. Adopting SVC in HAS significantly im-
proves caching and bandwidth efficiency at the server side,
while reducing the risk of running into frame freezes at
the client, since for every segment the base layer is always
downloaded. Furthermore, since SVC requires multiple layers
to be downloaded, quality rate adaptations can be performed
at higher granularity, since throughput fluctuations can now be
detected earlier, allowing heuristics to react faster.

However, there are several drawbacks to adopting SVC
in HAS [1], [2]. First, separating the video flow into several
SVC layers introduces a coding penalty, which leads to an
encoding overhead of approximately 10% per enhancement
layer. Second, when downloading multiple layers per segment,
we are generating more requests at the client to download
subsequent layers of a single segment. These request-response
cycles introduce a wait time between the reception of the last
byte of the previous segment layer and the first byte of the next
segment layer, which is equal to the round trip time (RTT).
Third, when considering Live TV over HAS, the segment
sizes should be as small as possible to reduce the latency
on the broadcast signal. These smaller segments increase the
decision granularity even further, but at the same time increase
the idle time between two consecutive downloads, negatively
impacting the service quality for the user.

In this paper we propose and compare several AVC and
SVC-based client heuristics and evaluate their behavior in a
Live TV setting where client side buffers need to be small to
reduce latency on the broadcast signal, while still providing
service assurance. The heuristics decide on the best quality
to download next, for the video streaming service, based on
low level monitoring data such as bandwidth measurements
and the status of the client’s play-out buffer. Furthermore we
propose and compare several download scheduling approaches
such as sequential, pipelined and parallel HTTP downloading
and their ability to reduce the impact of latency on service
delivery. Additionally, we investigate the impact of high round
trip times on SVC-based HAS streaming in a Live TV setting.

The remainder of this paper is structured as follows.
Section II provides an overview of relevant work, followed
by an overview of existing adaptation heuristics in Section III
and of a novel SVC-based heuristic, specifically designed for
small buffers in Section IV. Section V discusses how adapting
the download scheduling can improve the quality and service
assurance. Section VI elaborates on the experiment setup and
evaluation results, which are summarized in Section VII.

II. RELATED WORK

The increased popularity of video consumption over the
Internet has led to the development of a range of protocols
that allow adaptive HTTP-based video streaming. Some of
the major players have introduced their own protocols, server
and client software such as Microsoft’s Silverlight Smooth
Streaming [3], Apple’s HTTP Live Streaming [4] and Adobe’s
HTTP Dynamic Streaming [5]. More recently, a standard-
ized solution has been proposed by MPEG, called Dynamic
Adaptive Streaming over HTTP (DASH) [6]. Even though
differences exist between these implementations, they adopt
the same design principles. The video is split into several
segments, encoded at different quality rates. These segments
are offered by a web server and are transmitted over standard
HTTP connections. The intelligent video client uses a selection
heuristic to dynamically adapt the quality, based on the current
network statistic, buffer filling and other device characteristics.

Optimizations of HAS-based delivery can be performed
at the server, the network or the client. At the server side,
optimizations are focussed on the encoding scheme. Tradi-
tional deployments of HAS use the H.264/AVC codec for
creating the different representations of the video. For each
representation a separate file needs to be stored at the video
server, leading to an increased storage penalty due to the re-
dundant information. Adopting a Scalable Video Codec (SVC)
extension to H.264/AVC [7] or High Efficiency Video Coding
(HEVC) [8], allows alleviating the storage issues with AVC at
the server, while improving caching efficiency. Huysegems et
al. discuss the advantages of using SVC instead of AVC, such
as guaranteed playout during fluctuations since the base layer is
always downloaded and a reduction in bandwidth and storage
requirements at the server [2]. However, important challenges
for SVC are indicated to be the encoding overhead of SVC
and the increased vulnerability to high round trip times. In
this paper, we focus on these high round trip times and how
their negative impact on SVC-based HAS can be reduced.

Liu et al. present an in-network optimization of HAS
for 3GPP networks. By parallelizing the download and re-
quest of HAS segments, a better resource utilization can be
achieved [9]. Bouten et al. have discussed how a network
provider can manage the quality that is offered to the clients
in a HAS environment [10]. The solution takes into account
subscription parameters and device parameters to restrict the
qualities that are offered to the client. An autonomic delivery
framework is presented in previous work [11], [12], which
allows to reduce the consumed bandwidth by grouping unicast
HAS sessions sharing the same content into a single multicast
session. In this paper, we focus on measures at the client side
rather than the network with a focus on the scheduling of
segment requests in networks with high round trip times.

Each commercial HAS implementation comes with an
existing video client heuristic of its own. Akhshabi et al.
compare several commercial and open source HAS players
and indicate significant inefficiencies in each of them [13].
Several heuristics have been proposed in literature as well,
each focussing on a specific deployment. Liu et al. discuss
a video client heuristic that is suited for CDNs by comparing
the expected segment fetch time with the experienced segment
fetch time to ensure a response to bandwidth fluctuations in
the network [14], while Adzic et al. present a client heuristic
which is tailored for mobile environments [15]. Jiang et

al. aimed to develop an efficient, fair and stable heuristic
by randomizing chunk scheduling to avoid synchronization,
stateful bitrate selection and delayed update to avoid instabil-
ity [16], and compared their approach to commercial players.
Generic algorithms exist for selecting the next video quality
to download, using a priority-based scheme where base layers
receive higher priority in download scheduling compared to
the enhancement layers [17]. Andelin et al. provide a heuristic
which was specifically designed for SVC and using a slope
to define the trade-off between downloading the next segment
and upgrading a previously downloaded segment [18].

In this paper, several heuristics are evaluated that are
either based on commercial players, algorithms described in
literature or designed from scratch. Furthermore we focus on
how downloads should be scheduled in networks suffering
from high round trip times and compare sequential, pipelined
and parallel download schedulers.

III. STATE OF THE ART RATE ADAPTATION HEURISTICS
In this section we summarize the state of the art rate

adaptation heuristics for AVC and SVC-based HAS. For an

extensive description of these heuristics, we refer to [1].

A. AVC Microsoft’s Smooth Streaming Heuristic

The heuristic for AVC video streaming is based on an
open source version of the algorithm of the Microsoft Smooth
Streaming (MSS) video player !. The heuristic can be config-
ured using 3 thresholds: the panic (P), lower (L) and upper (U)
threshold. There are two states: buffering and steady state. Dur-
ing the buffering state, quality decision is based on measured
throughput and can only be increased with one level. When the
buffer level is equal to or exceeds L+ (U — L) /2, the heuristic
goes into steady state. If during the steady state, the buffer
filling level is slowly changing but lower than L, the quality
level is decreased. When the buffer filling level is between
L and U and quickly increasing or when the buffer filling
level exceeds the upper threshold U, the heuristic attempts
to improve the quality level if the throughput measurements
indicate that the next segment can be downloaded in time. If
the buffer filling level drops under the panic threshold P or
the buffer filling level is quickly decreasing and lower than L,
the next segment is downloaded at the lowest quality level and
the heuristic returns to buffering state.

B. SVC MSS Heuristic

The AVC MSS heuristic can also be used for SVC-based
HAS when the quality decisions are translated into subsequent
layer downloads. SVC MSS however, allows adapting the
quality decisions in between two consecutive layer downloads.
Thanks to the finer granularity, SVC MSS is able to cancel
the download of one or more enhancement layers when the
measured throughput indicates that they will not arrive in time
for playout.

C. SVC Slope Heuristic

The SVC Slope heuristic exploits two main advantages
of SVC-based HTTP adaptive streaming. First, SVC video
streaming allows more fine grained decisions as the quality
decision can be adapted after every download of a layer
rather than every segment. Second, since SVC video layers are
interdependent, the heuristics can decide either to download

'Source available fromhttps:/slextensions.svn.codeplex.com/svn/trunk/
SLExtensions/AdaptiveStreaming

Quality
Level

History Max Buffer size t(s)

Fig. 1: Illustration how a steeper slope prioritizes backfilling
over prefetching.

the base layer of a new segment or to increase the quality of
a previously downloaded segment by downloading additional
enhancement layers. This backfilling is also possible with
AVC, but since the redundant data is downloaded again, this
affects the efficiency of the heuristic drastically.

Andelin et al. proposed a slope-based SVC heuristic [18],
where the backfilling is limited by a moving buffer slope. The
slope can be configured to give priority to either prefetching
(downloading lower quality layers for future segments) or
backfilling (downloading additional enhancement layers for
buffered segments). This configuration is done by defining a
slope in the heuristic: the steeper the slope, the more backfill-
ing will be chosen over prefetching. Similarly, the flatter the
slope, the more prefetching will be done for future segments.
This filling behavior is illustrated in Figure 1, which shows
the segment and layer download order for a configuration .S;
of the slope parameter.

IV. SVC ADAPTATION HEURISTIC FOR SMALL BUFFERS

A novel heuristic for scalable video was designed that is
able to cope with small buffer sizes, which are common in a
Live TV scenario. To be able to optimize service quality for the
end-user, three factors are important for the client: 1) avoiding
frame freezes and gaps in video playout, 2) ensuring quality
stability limiting the number of quality switching occurrences
and 3) allowing high quality streaming. The SVC cursor based
algorithm is designed to avoid gaps and limit quality switches
while trying to provide the highest possible quality. This is
accomplished by using two distinct cursors: segment cursor
and quality cursor, defining which segment is under consider-
ation for the next decision and the goal quality respectively.
Limiting the number of switches is further accomplished by
using a timeout for the quality improvement decision. The
segment cursor advances to the next segment when a) all
qualities up to the quality cursor are downloaded for the
current segment cursor or b) the layer under consideration
cannot be downloaded in time. When a layer will not be
downloaded in time for playout, the quality cursor is decreased
and the improvement timer is reset. The quality cursor can
only be incremented when all lower layers of every segment
are downloaded and the improvement timer has timed out.
The segment cursor is then moved based on the estimations
of the arrival times of these enhancement layers and their
playout times, evaluated from right to left. When some of the
enhancement layers are estimated to be downloaded before
their respective playout time, we increment the quality cursor
and start downloading from left to right as shown in Figure 2,
after which the improvement timer is reset. So when the quality
cursor is increased, a backfilling operation updates the buffer

Quality
Level

noAe|d
inpbag

-
©

B &
BO00EED
BEHO00EME

QualCur

History Max Buffer size t(s)

Fig. 2: Tllustration of the backfilling operation by SVC Cursor
when the quality cursor was improved.

to the required quality level.

V. DELAY-OPTIMIZED DOWNLOAD SCHEDULING

As discussed, adopting layered video coding has several
advantages for HAS. But at the same time, there is a major
drawback when considering networks with high RTTs. Since
multiple layers per segment need to be downloaded, more
request/response cycles are induced when downloading the
subsequent segment layers. As a result, there is a wait time
between receiving the last byte of the previous segment layer
and the first byte of the next segment layer. This idle-time
is equal to the RTT. When HAS is applied to a Live TV
scenario, the drift on the broadcast signal is to be kept as
small as possible to enable the streaming for live events and
the use of second screen applications. As a consequence, the
segment size should be as small as possible. When reducing
the segment size however, the impact of the idle-time between
downloading two consecutive segments even increases. When
the RTT is 50msec and a 5-layer SVC video representation is
used with a 1 second segment size, the idle-time accounts for
250msec when downloading the highest quality representation,
which is one fourth of the available download window. This
example shows the importance of alleviating the impact of RTT
on SVC HAS in Live TV scenarios. This can be achieved by
applying pipelined or parallel download scheduling, both of
which are able to eliminate the incurred idle times.

A. Pipelined Scheduling

HTTP pipelining is a technique in which multiple HTTP
requests are sent on a single TCP connection without wait-
ing for the corresponding responses. Kaspar et al. proposed
Pipelining to improve progressive downloading, the predeces-
sor of HAS [19]. Pipelining all requests at once will of course
not yield a viable solution, since we then sacrifice the ability
for fast response to network changes. We propose to estimate
the RTT and to schedule the next request RTT seconds before
the current download will be finished. This technique allows
postponing the decision on which segment layer to download
as long as possible, while still eliminating the idle time
between two consecutive downloads. With perfect estimations
of download time and RTT, the delay could be completely
eliminated as shown in Figure 3(a). However with varying
RTT, this will not be the case and RTT will be overestimated
or underestimated most of the time. When overestimating the
RTT, the decision on which segment layer to download is taken
too early and conditions could change during this period. But
as illustrated in Figure 3(b), the overestimation of the RTT
cannot be noticed at the client side which has no indication of
the request being queued at the server. When underestimating
the RTT however, there is a gap between the two consecutive

RTT too
large

—= {—
E e o e 0

'RTT too
/ small

Fig. 3: Overview of estimation with pipelining a) accurate
estimation b) overestimation c¢) underestimation.

Thread 1

Thread 1

I L2 I L4 Thread 2

Fig. 4: Illustration of the delay masking behavior of parallel
scheduled segment layer downloads.

downloads, which can be measured at the client side. Adding
this measurement to the estimated RTT, yields an accurate
estimation for the RTT as shown in Figure 3(c). The proposed
approach for the pipelined scheduling is to linearly decrease
the estimated delay until an underestimation is perceived
(t first_byte_s —tiast_byte_s—1 > 0), and an accurate estimation
for the delay can be established.

B. Parallel Scheduling

Another approach to avoid idle time between consecutive
downloads is to request several segments at the same time
using parallel TCP connections. This allows request/response
cycles to interleave with active downloads, reducing the idle
time. A simplified example of this masking behavior is shown
in Figure 4. An additional advantage of parallel download
scheduling is the improved performance when using parallel
TCP connections. However, since now the segment layer
downloads are requested over concurrent TCP connections,
they compete for the available bandwidth and the download
times are proportional to the number of threads. The disadvan-
tage is of course that the base layers take longer to complete
and thus an increased risk of buffer starvations. Therefore, the
number of parallel threads needs to be limited.

VI. EXPERIMENTAL RESULTS

The performance of the video client heuristics and down-
load schedulers was evaluated using the NS-3 network sim-
ulator? in combination with the Network Simulation Cradle®.
Figure 5 illustrates the used network topology with N clients
connected to the HAS Server via a router. Each client has
a playout buffer of P seconds which is varied during the
experiments and has a connection link with bandwidth B.. The
shared bandwidth B and the total RTT R are varied during
the experiments.

The simulations were conducted using the traces of a
variable bitrate (VBR) video file, encoded both for H.264/AVC

2NS-3 Network Simulator - http://www.nsnam.org/
3WAND Network Research Group: Network Simulation Cradle -
http://research.wand.net.nz/software/nsc.php

HAS Client
°°¢ Playout
Buffer P

Bandwidth

HAS Server

HAS Client
Playout
Buffer P

Fig. 5: Experimental setup offering a HAS-based video stream-
ing to N clients. The parameters By, B., P, R are varied.

and H.264/SVC using the JSVM 9.19.15 Encoder. The video
has a frame rate of 30fps and GOP size of 32 frames, which
leads to a minimum segment size of 1.06667s when using I-
frame segmentation. The clients were started using a Weibull
startup process with average 900 seconds and shape 2.5.

A. Comparison of Adaptation Heuristics

Figure 6 shows the total buffer starvation in seconds, the
average playout quality level and the total number of switches
for an increasing buffer size P. All four client heuristics are
compared using a sequential download scheduler. For a buffer
size of 1 segment (P = 1.1s), AVC MSS remains in panic
mode, since only one segment fits in the buffer and it needs
to be played out completely before the next segment is able to
fit in the buffer. This causes AVC MSS to always download
the lowest quality, which explains the low number of switches
and buffer starvations. For a two segment buffer however, AVC
MSS constantly switches between buffering and steady state,
constantly switching between representations, which explains
the large increase in the number of switches. We can thus
conclude that for AVC MSS, a minimum buffer size of 3 seg-
ments is required to obtain acceptable quality while avoiding
quality oscillations. For small buffers, SVC Slope is able to
yield the highest quality, but at the cost of a high number
of switches and buffer starvations, diminishing stability and
quality assurance. For buffer sizes of 3 segments and up, AVC
MSS yields higher quality than the SVC algorithms. This can
be attributed to two reasons. First, the overhead introduced by
the SVC encoding causes a higher load on the bottleneck B;.
Second, for a larger bottleneck B;, as illustrated in Figure6(b),
the problems of the SVC-based algorithms persists because
of the vulnerability of SVC to high delays. These delays in
combination with the increased number of request-response
cycles of SVC-based algorithms limit the throughput causing
lower efficiency and thus a lower average quality. SVC Cursor
is able to minimize buffer starvation time and the number of
switches, while yielding the highest quality for buffer sizes
containing 2 or more segments. SVC Slope tends to yield
lower quality, more frequent switches and a higher overall
gap time. We attribute this to the difficulty of configuring the
slope parameter for the varying situations. Overall, it can be
concluded that SVC Cursor outperforms all other SVC-based
heuristics in terms of quality, switches and buffer starvations,
therefore we use this heuristic for the subsequent results.

B. Impact of Download Scheduling

As shown in the previous results, SVC-based HAS suffers
from high RTTs, leading to inefficient use of the available
throughput and reducing the benefits of SVC-based HAS in

-
S

T AvC Mss - Avcmss
12 T svcmss Sl F-I svcwMss

T+ SvC Slope T+ svC Slope
10 F-4 svc cursor F-d svc cursor

»

=
total buffer starvation (s)
w

total buffer starvation (s)

average played quality
average played quality

0.5- T AvC Mss 0.5 T AvC mss
F-T svc cursor F-I SvCCursor
T-I SVC Cursor Pipelined -1 SVC Cursor Pipelined
F-I SVC Cursor Parallel F-I SVC Cursor Parallel
E 0.0k: L L L T T T 0.0k: L L T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 1.0 15 2.0 25 3.0 35 4.0 4.5 1.0 15 2.0 2.5 3.0 35 4.0 4.5 1.0 1.5 2.0 25 3.0 35 4.0 4.5
buffer (s) buffer (s) buffer (s) buffer (s)
2.0 2.0 1 T T T 1 T T
3 T4 AVC MSS 3 T4 AvC MSS
) 140} F- svc Cursor 14017 F-I svc cursor
N N I " = T-I SVC Cursor Pipelined|| ., T-1 SVC Cursor Pipelined
2 1.5 2 L5F e K 120 F-9 SVC Cursor Parallel £ 1201 F-9 SVC Cursor Parallel
S S £ £
; I g 31000 3000
> > . ° ©
3 L0r 2 1.0f, 5 80 5 80)
a |y a i 2 2
o . o
g |7 g é 60 g 60k
$os T3 AVCMsS % ol T AVCMss T 4l T 40l
I svcwmss F-I svcMss = £
I+1 SVC Slope T+1 SVC Slope 20} 2ot /0 Nl TTNEme—al
F-I svc cursor FI svc cursor P— R T
0.0 0.0 ok = ok e
1.0 15 2.0 2.5 3.0 35 4.0 4.5 1.0 15 2.0 25 3.0 35 4.0 4.5

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 ’1.70 15 2.0 25 3.0 35 4.0 4.5

buffer (s) buffer (s)

I T AvC Mss T AvC Mss
F-I svcwmss F-I svcwmss
2001, T-1 svc Slope 2001y T-1 svc Slope

F1 svccursor F-1 svc cursor

-
I
S

=
o
S

total number of switches
total number of switches

w
=

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 1.70 15 2.0 25 3.0 35 4.0 4.5
buffer (s) buffer (s)

(a) (b)

Fig. 6: Total buffer starvation (s), average played quality level
and total number of switches in function of the buffer size
P (s) with B, = 10Mbps, N = 20, R = 50ms and (a)
Bs; = 50Mbps (b) Bs = 100Mbps.

terms of caching efficiency and server bandwidth utilization.
Therefore we suggest more optimized HAS-scheduling by
using HTTP Pipelining and parallel downloads. Figure 7 shows
the results for the same configurations as before, but with
the pipelined and parallel scheduled variants of SVC Cursor.
Here we can clearly see the advantages of using optimized
scheduling for SVC-based HAS for high RTTs. SVC Cursor
Pipelined and Parallel are able to improve the quality level,
while lowering the number of quality switches at the same
time. When the bottleneck is tight (Bs = 50Mbps), the
quality yielded by SVC based HAS is only slightly lower than
when using AVC-based HAS, this is caused by the encoding
overhead of SVC. But when we take a look at the 100Mbps
scenario, SVC-based HAS is able to outperform AVC-based
HAS, in terms of switches and average quality. Even when the
buffer only contains 2 segments, the quality level and number
of switches are at an acceptable level.

C. Impact of Delay

Figure 8§ illustrates the impact of high RTTs on the different
base algorithms and on the SVC Cursor algorithm in combi-
nation with pipelined and parallel scheduling for a buffer con-
taining 3 segments. These graphs show that parallel scheduling
in combination with SVC Cursor is able to outperform AVC
MSS in terms of average quality when delay increases, while
yielding comparable buffer starvations and a lower number
of switches (graphs omitted due to space limitations). This
enables service providers to deploy SVC-based HAS services,
benefitting from higher caching efficiency, while avoiding the

buffer (s) buffer (s)

(a) (d)

Fig. 7: Average played quality level and total number of
switches in function of the buffer size P (s) with B, =
10Mbps, N = 20, R = 50ms and (a) By, = 50Mbps (b)
By = 100Mbps.

2.0

-
n

average played quality
S

o.5t{FH Avcmss o.5t{F Avc mss
F-I svcwmss F-I svccursor
T~T SVC Slope I~ SVC Cursor Pipelined
F-94 svc Cursor F-d svc Cursor Parallel
0.0 0.0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
delay (ms) delay (ms)
(a) (b)

Fig. 8: Average played quality level in function of the RTT R
(s) for By = 100Mbps, B, = 10Mbps, N = 20 and P = 3.3s

drawbacks of SVC-based HAS in a high delay setting.

D. Impact of Parallel Threads

The behavior of AVC MSS and SVC Cursor in combination
with parallel scheduling is illustrated in Figure 9. These
results show that with increasing number of threads, parallel
scheduling yields higher quality and lower switches for both
AVC MSS and SVC Cursor. However, AVC MSS suffers from
higher gap time with an increasing number of parallel threads,
while SVC Cursor is able to lower the total buffer starvation
time, while increasing quality and minimizing the number of
switches.

It can be concluded that for Live TV, the smallest possible
buffer should at least contain 2 segments to attain acceptable
service quality. The evaluations have shown that we were
indeed able to reduce the impact of high RTTs on SVC-based
HAS by using parallel downloads. Furthermore, our novel SVC
Cursor heuristic is able to outperform existing heuristics when
considering a Live TV setting with small buffers.

VII. CONCLUSION
This paper quantitatively reveals the drawbacks of using
SVC-based HAS Live streaming in high delay networks and
proposes techniques to tackle these issues. The root causes
of these are 1) the encoding overhead, yielding larger data

T Avcmss
4 F I AvC MSS Parallel .

T-I svc cursor
2.0
1.5 R S S
S/ T

F-I svc Cursor Parallel
1.0
o F-I AVC MSS Parallel

I 0.5 ,
S I+1 svc cursor
F——F{F1 svc cursor Paralel
i i
1 3

2
threads (#)

- AvCMss

total buffer starvation (s)
total buffer starvation (s)

1.5

1.0

average played quality

< I :
o

average played quality

0.5t F AvC Mss

F-I AvC MSS Parallel
T+ svc Cursor

F- SVC Cursor Parallel

0.5 FH AvC Mss

F-I AvC MSS Parallel
T+ svC Cursor

F-J SVC Cursor Parallel

o 1 2 3 4 o 1 2 4
threads (#) threads (#)
T AVCMSS
T T T T I
I AVC MSS Parallel
.20 I“‘ 1 1 1 20 — e BT sve cursor
% % '\ F-I SVC Cursor Parallel
£40 T T £40 \
a T AvC Mss a *
S0 F I AVC MSS Parallel ° 30 A
g T-I SVC Cursor] F 1 t {
€ € \
€ F-1 svccursor Paraliel|| § '
20 €20 Y
3 s I |z R
8 - E N
10 ‘{ _________ I 10 <
[
0 0
0 1 2 4 0 1 2 3 4
threads (#) threads (#)
(@) (b)

Fig. 9: Impact of the number of parallel threads with B, =
10Mbps, N = 20, R = 100ms, P = 4.4s and (a) B; =
50Mbps (b) Bs = 100Mbps, for AVC MSS and SVC Cursor
in combination with sequential and parallel scheduling.

transfers to attain the same quality as with AVC based HAS
and 2) the increased request-response rate in SVC-based HAS,
which as a result of the high RTT’s, leads to inefficient use of
the available bandwidth. This paper proposes to overcome the
second issue by using HTTP Pipelined and Parallel download
schedulers, eliminating the idle time between two consecutive
downloads. Next to the schedulers, we also propose a cursor
based SVC client heuristic, which outperforms existing SVC-
based heuristics for small buffer sizes. The experimental results
have shown that even with small buffer sizes, the combination
of SVC Cursor with parallel scheduling is not only able
to overcome the issues in high delay networks, but is even
capable of achieving higher quality with less frequent switches
than AVC-based HAS. For a buffer size of 3 segments,
parallel and pipelined scheduling improve the quality with
about 14%, while reducing the number of switches with a
factor 4 compared to the sequential scheduling. Hence, the
combination of our novel SVC Cursor heuristic in combination
with parallel download scheduling is able to outperform the
state of the art heuristics by alleviating the drawbacks of SVC-
based HAS while retaining the higher decision granularity and
other advantages.

ACKNOWLEDGMENT
Niels Bouten is funded by a Ph.D. grant of the Agency for
Innovation by Science and Technology (IWT). This research
was partially performed within the iMinds MISTRAL project
(under grant agreement no. 10838). Alcatel-Lucent was par-
tially funded by IWT project 110112.

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck, “On
the merits of SVC-based HTTP adaptive streaming,” in Proceedings of
the seventh IFIP/IEEE International Symposium on Integrated Network
Management, may 2013.

R. Huysegems, B. De Vleeschauwer, T. Wu, and W. Van Leekwijck,
“SVC-based HTTP adaptive streaming,” Bell Labs Technical Journal,
vol. 16, no. 4, pp. 2541, 2012.

Microsoft, “Smooth streaming: The official microsoft IIS site,”
http://www.iis.net/download/SmoothStreaming.

R. Pantos and W. May, “HTTP Live Streaming,” 2012. [Online].
Available: http://tools.ietf.org/html/draft- pantos-http-live-streaming- 10

Adobe, “HTTP dynamic streaming: Flexible de-
livery of on-demand and live video streaming,”
http://www.adobe.com/products/httpdynamicstreaming/.

T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, ser. MMSys *11. New York, NY,
USA: ACM, 2011, pp. 133-144.

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” in IEEE Transactions on
Circuits and Systems for Video Technology In Circuits and Systems for
Video Technology, 2007, pp. 1103-1120.

H. Choi, J. Nam, D. Sim, and I. Bajic, “Scalable video coding based
on high efficiency video coding (hevc),” in Communications, Computers
and Signal Processing (PacRim), 2011, aug. 2011, pp. 346 -351.

C. Liu, I. Bouazizi, and M. Gabbouj, “Parallel adaptive HTTP media
streaming,” in Proceedings of 20th International Conference on Com-
puter Communications and Networks, 31 2011-aug. 4 2011, pp. 1 —6.

N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck, “QoE optimization through in-
network quality adaptation for HTTP adaptive streaming,” in 8th In-
ternational Conference on Network and Service Management (CNSM).
IEEE, 2012, pp. 336-342.

N. Bouten, S. Latré, W. Meerssche, B. Vleeschauwer, K. Schepper,
W. Leekwijck, and F. Turck, “A multicast-enabled delivery framework
for QoE assurance of over-the-top services in multimedia access net-
works,” Journal of Network and Systems Management, pp. 1-30, 2013.

N. Bouten, S. Latré, W. Van De Meerssche, K. De Schepper,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck, “An au-
tonomic delivery framework for HTTP adaptive streaming in multicast-
enabled multimedia access networks,” in Fifth IFIP/IEEE Workshop
on Distributed Autonomous Network Management Systems (DANMS),
2012. 1IEEE, 2012, pp. 1248-1253.

S. Akhshabi, A. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” ACM
MMSys, vol. 11, pp. 157-168, 2011.

C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate adapta-
tion for dynamic adaptive streaming over HTTP in content distribution
network,” Signal Processing: Image Communication, vol. 27, no. 4, pp.
288 — 311, 2012.

V. Adzic, H. Kalva, and B. Furht, “Optimized adaptive HTTP streaming
for mobile devices,” in SPIE Optical Engineering+ Applications. Inter-
national Society for Optics and Photonics, 2011, pp. 81 350T-81 350T.

J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE,”
Technical report, Carnegie Mellon University, 2012.

T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge, and
T. Wiegand, “Priority-based media delivery using SVC with RTP and
HTTP streaming,” Multimedia Tools and Applications, vol. 55, pp. 227—
246, 2011.

T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala,
“Quality selection for dynamic adaptive streaming over HTTP with
scalable video coding,” in Proceedings of the 3rd Multimedia Systems
Conference. ACM, 2012, pp. 149-154.

D. Kaspar, K. Evensen, P. Engelstad, and A. Hansen, “Using HTTP
pipelining to improve progressive download over multiple heteroge-

neous interfaces,” in IEEE International Conference on Communica-
tions (ICC), 2010. 1IEEE, 2010, pp. 1-5.

