408 research outputs found

    Hatékony rendszer-szintű hatásanalízis módszerek és alkalmazásuk a szoftverfejlesztés folyamatában = Efficient whole-system impact analysis methods with applications in software development

    Get PDF
    Szoftver hatásanalízis során a rendszer megváltoztatásának következményeit becsüljük, melynek fontos alkalmazásai vannak például a változtatás-propagálás, költségbecslés, szoftverminőség és tesztelés területén. A kutatás során olyan hatásanalízis módszereket dolgoztunk ki, melyek hatékonyan és sikeresen alkalmazhatók nagyméretű és heterogén architektúrájú, valós alkalmazások esetében is. A korábban rendelkezésre álló módszerek csak korlátozott méretben és környezetekben voltak képesek eredményt szolgáltatni. A meglévő statikus és dinamikus programszeletelés és függőség elemzési algoritmusok továbbfejlesztése mellett számos kapcsolódó területen értünk el eredményeket úgy, mint függőségek metrikákkal történő vizsgálata, fogalmi csatolás kutatása, minőségi modellek, hiba- és produktivitás előrejelzés. Ezen területeknek a módszerek gyakorlatban történő alkalmazásában van jelentősége. Speciális technológiákra koncentrálva újszerű eredmények születtek, például adatbázis rendszerek vagy alacsony szintű nyelvek esetében. A hatásanalízis módszerek alkalmazásai terén kidolgoztunk újszerű módszereket a tesztelés optimalizálása, teszt lefedettség mérés, -priorizálás és változás propagálás területeken. A kidolgozott módszerek alapját képezték további projekteknek, melyek során szoftvertermékeket is kiegészítettek módszereink alapján. | During software change impact analysis, we assess the consequences of changes made to a software system, which has important applications in, for instance, change propagation, cost estimation, software quality and testing. We developed impact analysis methods that can be effectively and efficiently used for large and heterogeneous real life applications as well. Previously available methods could provide results only in limited environments and for systems of limited size. Apart from the enhancements developed for the existing static and dynamic slicing and dependence analysis algorithms, we achieved results in different related areas such as investigation of dependences based on metrics, conceptual coupling, quality models and prediction of defects and productivity. These areas mostly support the application of the methods in practice. We have contributions in the fields of different special technologies, for instance, dependences in database systems or analysis of low level languages. Regarding the applications of impact analysis, we developed novel methods for test optimization, test coverage measurement and prioritization, and change propagation. The developed methods provided basis for further projects, also for extension of certain software products

    Analyzing Android Browser Apps for file:// Vulnerabilities

    Full text link
    Securing browsers in mobile devices is very challenging, because these browser apps usually provide browsing services to other apps in the same device. A malicious app installed in a device can potentially obtain sensitive information through a browser app. In this paper, we identify four types of attacks in Android, collectively known as FileCross, that exploits the vulnerable file:// to obtain users' private files, such as cookies, bookmarks, and browsing histories. We design an automated system to dynamically test 115 browser apps collected from Google Play and find that 64 of them are vulnerable to the attacks. Among them are the popular Firefox, Baidu and Maxthon browsers, and the more application-specific ones, including UC Browser HD for tablet users, Wikipedia Browser, and Kids Safe Browser. A detailed analysis of these browsers further shows that 26 browsers (23%) expose their browsing interfaces unintentionally. In response to our reports, the developers concerned promptly patched their browsers by forbidding file:// access to private file zones, disabling JavaScript execution in file:// URLs, or even blocking external file:// URLs. We employ the same system to validate the ten patches received from the developers and find one still failing to block the vulnerability.Comment: The paper has been accepted by ISC'14 as a regular paper (see https://daoyuan14.github.io/). This is a Technical Report version for referenc

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant

    ATTACKS AND COUNTERMEASURES FOR WEBVIEW ON MOBILE SYSTEMS

    Get PDF
    ABSTRACT All the mainstream mobile operating systems provide a web container, called ``WebView\u27\u27. This Web-based interface can be included as part of the mobile application to retrieve and display web contents from remote servers. WebView not only provides the same functionalities as web browser, more importantly, it enables rich interactions between mobile apps and webpages loaded inside WebView. Through its APIs, WebView enables the two-way interaction. However, the design of WebView changes the landscape of the Web, especially from the security perspective. This dissertation conducts a comprehensive and systematic study of WebView\u27s impact on web security, with a particular focus on identifying its fundamental causes. This dissertation discovers multiple attacks on WebView, and proposes new protection models to enhance the security of WebView. The design principles of these models are also described as well as the prototype implementation in Android platform. Evaluations are used to demonstrate the effectiveness and performance of these protection models

    A Data Flow Tracker and Reference Monitor for WebKit and JavaScriptCore

    Get PDF
    Browser security revolves around the same-origin policy, but it does not defend against all attacks as evidenced by the prevalence of cross-site scripting attacks. Rather than solve that attack in particular, I have opted for a more general solution. I have modified WebKit to allow data flow tracking via labels and to allow security-sensitive operations to be allowed or denied from JavaScript

    A Practical Blended Analysis for Dynamic Features in JavaScript

    Get PDF
    The JavaScript Blended Analysis Framework is designed to perform a general-purpose, practical combined static/dynamic analysis of JavaScript programs, while handling dynamic features such as run-time generated code and variadic func- tions. The idea of blended analysis is to focus static anal- ysis on a dynamic calling structure collected at runtime in a lightweight manner, and to rene the static analysis us- ing additional dynamic information. We perform blended points-to analysis of JavaScript with our framework and compare results with those computed by a pure static points- to analysis. Using JavaScript codes from actual webpages as benchmarks, we show that optimized blended analysis for JavaScript obtains good coverage (86.6% on average per website) of the pure static analysis solution and nds ad- ditional points-to pairs (7.0% on average per website) con- tributed by dynamically generated/loaded code

    Privacy Implications of Health Information Seeking on the Web

    Full text link
    This article investigates privacy risks to those visiting health- related web pages. The population of pages analyzed is derived from the 50 top search results for 1,986 common diseases. This yielded a total population of 80,124 unique pages which were analyzed for the presence of third-party HTTP requests. 91% of pages were found to make requests to third parties. Investigation of URIs revealed that 70% of HTTP Referer strings contained information exposing specific conditions, treatments, and diseases. This presents a risk to users in the form of personal identification and blind discrimination. An examination of extant government and corporate policies reveals that users are insufficiently protected from such risks
    corecore