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ABSTRACT

All the mainstream mobile operating systems provide a web container, called

“WebView”. This Web-based interface can be included as part of the mobile application to

retrieve and display web contents from remote servers. WebView not only provides the

same functionalities as web browser, more importantly, it enables rich interactions between

mobile apps and webpages loaded inside WebView. Through its APIs, WebView enables

the two-way interaction. However, the design of WebView changes the landscape of the

Web, especially from the security perspective.

This dissertation conducts a comprehensive and systematic study of WebView’s impact

on web security, with a particular focus on identifying its fundamental causes. This

dissertation discovers multiple attacks on WebView, and proposes new protection models

to enhance the security of WebView. The design principles of these models are also

described as well as the prototype implementation in Android platform. Evaluations are

used to demonstrate the effectiveness and performance of these protection models.
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1

1. INTRODUCTION

Over the past three years the smartphone and tablet industry has seen tremendous growth.

A Pew Research Center’s survey in 2013 showed that 56 percent of adults in the U.S. now

have smartphones, and the majority of 25-34 and 18-24 year olds now own smartphones

(81% and 79% respectively) [1]. Because of the appealing features of these mobile devices,

more and more people now own either a smartphone, a tablet, or both. A critical factor

that has contributed to the wide-spread adoption of smartphones and tablets is their

software applications (simply referred to as apps by the industry). These apps provide

many innovative functionalities of mobile devices. There are many apps on the market for

both smartphones and tablets: In July 2013, Google announced that there are 1 million

apps in the Google Play store [2]; In October 2013, Apple says that more than 1 million

apps are in the App Store [3]. The number is still increasing at a fast rate.

1.1 Pervasive Use of WebView

Among these apps, many are web-based. Namely, they have the demand to get

contents from web servers using the standard HTTP protocol, display web contents, and

allow users to interact with web servers. But there are significant differences. Browsers are

designed to be generic, and their features are independent from web applications. Most

web-based apps, on the contrary, are customized for specific web applications. Because
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they primarily serve their intended web applications, they can implement features that are

specific to those applications. For example, Facebook Mobile is developed specifically for

Facebook to provide an easier and better way—compared to Facebook’s web interface—to

view Facebook content, interact with its servers, and communicate with friends. Because

of the richer experience gained from these customized “browsers”, most users prefer to use

them on mobile devices, instead of the actual browsers. Many popular web applications

have their dedicated apps, developed in-house or by third parties. Another demand for

mobile app developers is that they are forced to contend with a multitude of mobile phones

and OS branches. App developers get inundated with demands to find that sweet bridge of

communication and design something that appeals to all of the OS camps. One of the

solutions is to allow developers to write code in platform-neutral HTML and JavaScript

that can be displayed in any device, and any system.

To satisfy these demands as well as to respond to the challenge of supporting multiple

platforms, all the mainstream mobile operating systems provide a web container. This

Web-based interface can be included as part of the apps to retrieve and display web

contents from remote servers. This technology, called WebView, packages the basic

functionalities of browsers—such as page rendering, navigation, JavaScript execution—into

a class. Apps requiring these basic browser functionalities can simply include the WebView

library and create an instance of WebView class. By doing so, apps essentially embed a

basic browser in them, and can thus use it to display web contents or interact with web

applications.

It is called WebView [4] on Android [5], UIWebView [6] on iOS [7], WindowsBrowser [8]

on Windows Phone [9], Cascades.WebView [10] on BlackBerry 10 [11], Mojo.WebView [12]
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on Palm WebOS [13], and Webview [14] on Symbian [15]. In this dissertation, we use

WebView for simplicity because we mainly focus on Android platform. The use of

WebView is pervasive. Around 70% [16,17] of Android apps from Google Play embed at

least one WebView component in them. We identified 10800 apps which contain WebView

from the 14674 Android apps we collected from Google Play.

1.2 WebView Customization

WebView not only provides the same functionalities as web browser, more importantly,

it enables rich interactions between mobile apps and webpages loaded inside WebView.

With these interaction mechanisms, mobile apps become more powerful than the

traditional browsers. They can fully customize with respect to how and what contents are

displayed based on the needs, as well as provide additional features beyond what is

provided by the webpage. What truly makes customization possible is the APIs provided

by the WebView. Through its APIs, WebView enables the two-way interaction: From

apps to web pages, apps can invoke JavaScript code within web pages or insert their own

JavaScript code into web pages; apps can also monitor and intercept the events occurred

within the webpage, and respond to them. From web pages to apps, apps can register

interfaces to WebView, so JavaScript code in the webpage can invoke these interfaces.

With such a two-way interaction mechanism between apps and web pages, apps become

more powerful than the traditional browsers. They can customize their interfaces based on

the web contents and the screen size, as well as provide additional features beyond what is

provided by the web application, giving users a much richer experience than the generic
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browsers. For example, Facebook mobile makes it easy to stay connected and share with

friends, share status updates from the home screen, chat with friends, look at friends’ walls

and user information, check in to places to get deals, upload photos, share links, check

messages, and watch videos. These features, implemented in Java or Object C, are beyond

what Facebook can achieve with the traditional web interface, through JavaScript and

HTML.

1.3 WebView Security

We will discuss the fundamental problems in the WebView design in this subsection. At

the same time as mobile apps give users a much richer experience using WebView than the

generic browsers, WebView exposes a larger attack surface to untrusted mobile apps.

Malicious mobile applications can compromise private web contents of the pages loaded

inside WebView. My study shows that a huge number of mobile apps are potentially under

attack. If the situation is not improved, the problem will get worse. What makes the

scenario even worse is that mobile app developers may not be the ones that own the

webpage. For example, one of the most popular Facebook apps for Android is called

FriendCaster, which is developed by Handmark, not Facebook. It is hard for users to notice

it. As a result, once they log into their accounts using Facebook page loaded inside the

embedded WebView, their whole Facebook contents can be compromised by attackers.
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1.3.1 Weakening of Trust Computing Base (TCB)

The pervasive use of WebView and mobile devices has actually changed the security

landscape of the Web. For many years, we were accustomed to browsing the Web from a

handful of familiar browsers, such as IE, Firefox, Chrome, Safari, etc., all of which are

developed by well-recognized companies, and we trust them. Such a paradigm has been

changed on smartphones and tablets: thanks to WebView, apps can now become browsers,

giving us hundreds of thousands “browsers”. Most of them are not developed by

well-recognized companies, and their trustworthiness is not guaranteed. As we all know,

security in any system must be built upon a solid Trusted Computing Base (TCB), and

web security is no exception. Web applications rely on several TCB components to achieve

security; an essential component is browser. A Browser is a critical component in the

Trusted Computing Base (TCB) of the Web: Web applications rely on browsers on the

client side to secure their web contents, cookies, JavaScript code, and HTTP requests. The

main reason we use those selected browsers is that we trust that they can serve as a TCB,

and that their developers have put a lot of time into security testing. When shifting to

those unknown “browsers”, the trust is gone, and so is the TCB. We do not know whether

these “browsers” are trustworthy, whether they have been through rigorous security

testing, or whether the developers even have adequate security expertise.

WebView technology in the mobile operating system changes the TCB picture for the

Web because WebView is not isolated from Android applications; on the contrary,

WebView is designed to enable a closer interaction between Android applications and web

pages. Essentially, WebView-embedding Android applications become the customized
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browsers, but these browsers, usually not developed by well-recognized trusted parties,

cannot serve as a TCB anymore. If a web application interacts with a malicious Android

application, it is equivalent to interacting with a malicious browser: all the security

mechanism it relies on from the browser is gone.

WebView’s loadUrl API is commonly used to inject script directly into WebView

without security checks. If the parameter string starts with ‘javascript:’, WebView will

execute the string within the context of the current webpage inside WebView. The purpose

of this feature is to allow mobile developers to extend the functionalities of the webpage,

giving users a much richer browsing experience. Therefore, the injected script has the same

power as the one from the page. It can manipulate the page’s DOM objects and cookies,

interact with any page script, send AJAX requests to the server and etc. The powerful

script injection attack makes a huge impact. However, without injecting script, malicious

mobile apps can still compromise the web content inside WebView. For example, Android

applications can monitor events occurred within WebView. This is done through the hooks

provided by the WebViewClient class. Attackers can install hook functions to hooks, and

they are triggered when their intended events have occurred inside WebView. Once

triggered, these hook functions can access the event information, or may change the

consequence of the events. For example, delegation functions for the

shouldOverrideUrlLoading hook are triggered when a navigation event happens. They

can take over the control of the navigation such as changing the destination URL to

malicious websites.

However, this is different from the situation when attackers have compromised the

whole browser by controlling the native binary code of the browser. In such a situation,
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attackers control everything in the browser. Malicious Android applications, however, only

override the limited portion of the APIs in WebView, and the rest of WebView can still be

protected by the underlying system. It is more like the usage of “iFrame”, which is used to

let websites embed pages from other domains; the web browser enforces the Same Origin

Policy to isolate each other if they come from a different domain. Similar to the WebView

situation, a malicious webpage can embed a page from Facebook into one of its iframes, the

content of the Facebook page will be rendered and displayed. With the underlying access

control mechanism enforced by the trusted native browser code, the Facebook page cannot

be compromised by its hosting page. Similarly, if WebView is provided to applications as a

blackbox (i.e no APIs), it can still be counted as a TCB component for the Web even if it

is embedded into a malicious application, because isolation mechanism provided by

WebView is implemented using WebKit, which is trustworthy.

1.3.2 Weakening of Trust Displaying Base (TDB).

From the security perspective, there is one thing that clearly separates WebView from

the other UI components, such as button, text field, etc. In those UI components, the

contents within the components are usually owned by or are intended for the applications

themselves. For example, the content of a button is its label, which is usually set by

applications; the content of a text field is usually user inputs, which are fed into

applications. Therefore, there is no real incentive for applications to attack the contents of

these components. WebView has changed the above picture. In mobile systems, the

developers of applications and the owners of web contents inside WebView are usually not
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the same. Contents in WebView come from web servers, which are usually owned by those

that differ from those who developed the mobile applications. It should be noted that

before Facebook released its own applications for iPhones and Android phones, most users

used the applications developed by third parties (many are still using them). Because of

such an ownership difference, it is essential for all mobile platforms to provide the

assurance to web applications that their security will not be compromised if they are

loaded into another party’s mobile applications.

A WebView component with better access control enforced on all the cross-component

communication channels guarantees that the integrity and confidentiality of the web apps

cannot be compromised even if they were loaded into the WebView embedded in a

malicious application. However, there is no access control enforced on the UI-based APIs

exposed by the WebView. Through these APIs, the malicious host app can manipulate the

display properties of the container and its inside contents. For example, the host

application can set the position and size of the container; the alpha value of the contents in

the container can also be decided by the host. Without access control on these UI-based

APIs, there is no trusted computing base to ensure visual security. We call this kind of

trusted computing base the Trusted Display Base (TDB).

The Touchjacking attacks we will explain in the Chapter 5 reveal how the attackers

compromise the integrity of the web page only using the UI-based APIs inherited by the

WebView class.
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1.3.3 Holes on the WebView Sandbox.

Another important security feature of browsers is sandbox, which contains the behaviors

of web pages inside the browsers, preventing them from accessing the system resources or

the pages from other origins. Unfortunately, WebView enables web application’s JavaScript

code to invoke Android application’s Java code (or iOS application’s Objective-C code).

Allowing apps to bind an interface to WebView fundamentally changes the security of

browsers, in particular, WebView allows apps to punch “holes” on the sandbox, breaking

the sandbox model adopted by all browsers. Because of the risk of running untrusted

JavaScript programs inside browsers, all browsers implement an access control mechanism

called sandbox to contain the behaviors of these programs. When an application uses

addJavascriptInterface to attach an interface to WebView, it breaks browser’s sandbox

isolation, essentially creating holes on the sandboxes. Through these holes, JavaScript

programs are allowed to access system resources, such as files, databases, camera, contact,

locations, etc. Once an interface is registered to WebView through

addJavascriptInterface, it becomes global: all pages loaded in the WebView can call

this interface, and access the same data maintained by the interface. This makes it possible

for web pages from one origin to affect those from others, defeating SOP.

1.4 Thesis and Contributions

This dissertation’s thesis is this: This dissertation systematically analyzes the

security of WebView design, and proposes principles to design a secure

Web-container, which can be embedded in an untrusted mobile applications.
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In support of this thesis, this dissertation describes the following contributions:

1. Attacks on WebView in the Android System. The WebView technology in the

Android system enables apps to bring a much richer experience to users, but

unfortunately, at the cost of security. The design of WebView changes the landscape

of the Web, especially from the security perspective. We have identified that two

essential pieces of the Web’s security infrastructure are weakened if WebView and its

APIs are used: the Trusted Computing Base (TCB) at the client side, and the

sandbox protection implemented by browsers. We have discussed a number of attacks

on WebView, either by malicious apps or against non-malicious apps. Although we

have not observed any real attack yet, through our case studies, we have shown that

the condition for launching these attacks is already matured, and the potential

victims are in the millions; it is just a matter of time before we see real and

large-scale attacks.

2. Touchjacking Attacks. Even if the APIs designed specifically for WebView are

secured by adding extra access control, WebView is still in danger. This is because

WebView inherits many UI-based APIs from its super classes which designed for the

general-purposed user interface (UI) components, and these APIs can be abused as

well, although in a very different way. We describe several attacks based on the

inherited APIs. We show that using these APIs, attackers can compromise the

integrity and confidentiality of the web contents inside WebView blackbox. The

impact of the attacks on UI-based APIs is quite significant, as all the platforms that
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we have studied, including Android, iOS, and Windows Phone, are vulnerable to

these attacks.

3. SecWebView: Secure WebView in the Android System. Current access

control on WebView is inadequate to protect webpages in WebView embedded in

neither trusted nor untrusted mobile apps. Our comprehensive study on the practical

usage of injected script among 600 Android apps shows a call for research to study

what kind of access control system is adequate for this emerging type of web

containers. We investigate which sub-component of WebView causes the weakening

of the TCB. We introduce WebView permissions and propose a fine-grained access

control mechanism for the powerful WebView APIs. We use a separate JavaScript

virtual machine (Android World) to isolate injected script. We are the first to propose

a bridge to support communication across JavaScript VMs. We have implemented

our scheme in Android and have evaluated its effectiveness and performance.

4. Mediums: Visual Integrity Preserving Framework. The UI redressing attack

and its variations have spread across several platforms, from web browsers to mobile

systems. We study the fundamental problem underneath such attacks, and formulate

a generic model called the container threat model. We believe that the attacks are

caused by the system’s failure to preserve visual integrity. From this angle, we study

the existing countermeasures and propose a generic approach, Mediums framework,

to develop a Trusted Display Base (TDB) to address this type of problems. We use

the side channel to convey the lost visual information to users. From the access

control perspective, we use the dynamic binding policy model to allow the server to
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enforce different restrictions based on different client-side scenarios. We implement

our solutions in Android 4.0.3 system and our evaluation demonstrates encouraging

results.

5. Contego: Capability-based Access Control for Web Browsers & WebView.

Webpages in web browsers can access multiple web-related resources, and WebView

exposes more and more application and system resources to the webpages. However,

a web page can simultaneously contain entities with varying levels of trustworthiness.

The Same-Origin Policy (SOP) policy adopted by the Web does not provide access

control on the interaction within a page. Contego framework introduces

capability-based access control model for client-side web components (e.g., web

browsers and WebView). Contego can conduct a a finer-grained access control and

dynamically adjust the privileges based on environment conditions; webpage

developers can assign different sets of small privileges to the contents with different

levels of trustworthiness.

1.5 Dissertation Organization

The remainder of the thesis is organized as follows:

• Chapter 2 provides a tutorial on Android WebView component.

• The related works of Web security and Android security are reviewed in Chapter 3.

• Chapter 4 describes the attacks we identified on WebView in the Android System.
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• Chapter 5 illustrates the attacks we identified on sandboxed WebView component by

using the UI-based inherited APIs.

• Chapter 6 instantiates the framework to rebuild WebView TCB to prevent attacks

from malicious mobile application.

• Chapter 7 demonstrates the framework to preserve visual integrity for web containers.

• Chapter 8 studies how to adopt capability-based access control to web engine design

to provide finer-grained in-page access control for both browser and WebView.

• Chapter 9 concludes the dissertation and discusses the future researches.
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2. BACKGROUND

Since this dissertation only focuses on WebView in Android platform, this section gives a

brief tutorial on Android’s WebView component and discusses the architecture of

WebView. This background information is important to better understand the work I did

in this dissertation.

2.1 Tutorial on Android WebView

In Android platform, WebView is a subclass of View, and it is used to display web

contents. Using WebView, Android applications can easily embed a powerful browser

inside. WebView is not only to be used to display web contents, but also to interact with

web servers. Embedding a browser inside Android application can be easily done using the

following example (JavaScript is disabled by default within WebView, the second

statement enables the JavaScript execution for the WebView.):

WebView webView = new WebView(this);

webView.getSettings().setJavaScriptEnabled(true);

Once the WebView is created, Android apps can use its loadUrl API to load a web

page if given a URL string. The following code loads the Facebook page into WebView:

webView.loadUrl("http://www.facebook.com");
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What makes WebView exciting is not only because it serves simply as an embedded

browser, but also because it enables Android applications to interact with web pages and

web applications, making web applications and Android applications tightly integrated.

There are three types of interactions that are widely used by Android applications; we will

discuss them in the rest of this subsection.

2.1.1 Event monitoring

Android applications can monitor the events occurred within WebView. This is done

through the hooks provided in the WebViewClient class. WebViewClient provides a list of

hook functions, which are triggered when their intended events have occurred inside

WebView. Once triggered, these hook functions can access the event information, and may

change the consequence of the events.

To use these hooks, Android apps should first create a WebViewClient object, and then

tell WebView to invoke the hooks in this object when the intended events have occurred

inside WebView. WebViewClient has already implemented the default behaviors—basically

doing nothing—for all the hooks. If we want to change that, we can override the hook

functions with our own implementation. Let us see the code in the following:

WebViewclient wvclient = new WebViewClient() {

// override the "shouldOverrideUrlLoading" hook.

public boolean shouldOverrideUrlLoading(WebView view,String url){

if(!url.startsWith("http://www.facebook.com")){

Intent i = new Intent("android,intent.action.VIEW", Uri.parse(url));
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startActivity(i);

}

}

// override the "onPageFinished" hook.

public void onPageFinished(WebView view, String url) { ... }

}

webView.setWebViewClient(wvclient);

In the example above, we override the shouldOverrideUrlLoading hook, which is

triggered by the navigation event, i.e., the user tries to navigate to another URL. The

modified hook ensures that the target URL is still from Facebook; if not, the WebView will

not load it; instead, the system’s default browser will be invoked to load the URL. In the

same example, we have also overridden the onPageFinished hook, so we can do something

when a page has finished loading.

2.1.2 Invoke Java from Javascript

WebView provides a mechanism for the JavaScript code inside it to invoke Android

apps’ Java code. The API used for this purpose is called addJavascriptInterface.

Android apps can register Java objects to WebView through this API, and all the public

methods in these Java objects can be invoked by the JavaScript code from inside WebView

(Before Android 4.2). For the apps in Android 4.2 and above, only methods explicitly

marked with the ‘@JavascriptInterface’ annotation are accessible to JavaScript code
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within the WebView. The ‘@JavascriptInterface’ annotation must be added to any

method that is intended to be exposed via the bridge (the method must be public as well).

In the following example, two Java objects are registered: FileUtils and

ContactManager. Their public methods are also shown in the example. FileUtils allows

the JavaScript code inside WebView to access the Android’s file system, and

ContactManager allows the JavaScript code to access the user’s contact list.

webView.addJavascriptInterface(new FileUtils(), "FUtil");

webView.addJavascriptInterface(new ContactManager(), "GC");

...

// The FileUtils class has the following methods:

@JavascriptInterface /* Needed in Android 4.2 and above */

public int write (String filename, String data, boolean append);

@JavascriptInterface

public String read (filename);

...

// The ContactManager class has the following methods:

public void searchPeople (String name, String number);

public ContactTriplet getContactData (String id);

...

Let us look at the FileUtils interface, which is bound to WebView in the name of

FUtil. JavaScript within the WebView can use name FUtil to invoke the methods in
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FileUtils. For example, the following JavaScript code in a web page writes its data to a

local file through FUtil.

<script>

filename = ’/data/data/com.livingsocial.www/’ + id +’_cache.txt’;

FUtil.write(filename, data, false);

</script>

2.1.3 Invoke JavaScript From Java

In addition to the JavaScript-to-Java interaction, WebView also supports the

interaction in the opposite direction, from Java to JavaScript. This is achieved via another

WebView API called loadUrl. If the URL string starts with "javascript:", WebView

will execute this code within the context of the page inside WebView. For example, the

following Java code adds a “Hello World” string to the page, and then sets the cookie of

the page to empty.

String str="’<div><h2>Hello World</h2></div>’";

webView.loadUrl("javascript:document.appendChild("+str+");");

webView.loadUrl("javascript:document.cookie=’’;");

It can be seen from the above example that the JavaScript code has the same privilege

as that in the web page: they can manipulate the page’s DOM objects and cookies, invoke

the JavaScript code within the page, send AJAX requests to the server, etc. The purpose
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of the API loadUrl is to allow Android applications to extend the functionalities of web

applications, giving users a much richer browsing experience.

2.2 The Architecture of Android WebView

We have discussed how to use WebView in Android applications; in this subsection, we

explain the architecture of WebView component in Android system.

Fig. 2.1.: Architecture of Android WebView

Figure 2.1 shows the WebView architecture, which can be interpreted by its name Web

and View. Specifically speaking, WebView expands the view component by building it on

the top of a web component, and redefines it as a WebView. The “Web” part (called C++

Layer) contains the code that deals with web-related tasks; The “View” part (called Java

Layer) is bunch of Java classes that wrap the underlying Web part, and expose APIs to

mobile apps. The two layers communicate with each other through JNI. For example,

loadUrl is a WebView API exposed to mobile apps by Java class android.webkit.WebView
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to navigate the page inside WebView. This API invokes the native method nativeLoadUrl

which is defined in the native WebKit library via JNI. This is because the native library is

the component actually processes web-related tasks, such as page navigation.

2.2.1 Android WebView - Java Layer

Figure 2.2 shows the architecture of WebView Java layer. There are two threads to run

the code in the Java layer. UI thread contains the code that has a closer interaction with

the mobile apps; the WebView class, which is the component embedded inside mobile apps

and exposes the majority of APIs to mobile apps, must runs in the UI thread. Another

thread is WebViewCore thread, which runs the code that has a closer interaction with the

native WebKit library.

Fig. 2.2.: Architecture of WebView Java Layer

These two threads communicate with each other by sending messages. For example,

WebView object can send message to WebViewCore object in another thread. After

WebViewCore disposes the message, it will send response back to UI thread by invoking
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the callback functions defined in the CallbackProxy class. Another important class is

BrowserFrame which is created by the WebViewCore class. In native WebKit library, an

entire webpage is represented by a hierarchy of Frame objects. Each instance of

BrowserFrame class represents a Frame object. All the messages related to certain frame

from native library will be sent to the BrowserFrame object that represents that frame.

The main purpose of Java layer of WebView component is to provide multiple

customization points so that mobile applications can add their own behaviors. For

example, by creating and setting a WebChromeClient subclass, mobile apps can customize

WebView behavior when something that might impact the UI happens, such as progress

updates and JavaScript alerts. By creating and setting a WebViewClient subclass, mobile

apps can customize WebView behavior when things happen that impact the rendering of

the content, such as errors, form submissions or page navigation. Mobile apps can also

modify WebView settings by calling APIs provided by the WebSettings class. As figure 2.2

shows, these callback mechanisms are implemented by registering Java classes to the native

C++ WebView layer. Both WebChromeClient and WebViewClient class can be invoked by

WebKit. Whenever the events happen inside WebKit, WebKit invokes the corresponding

callback Java functions and passes the related event information to the callback functions.

2.2.2 Android WebView - C++ Layer

In this subsection, we will introduce the native C++ layer of WebView. The C++ layer

of Android WebView component is the WebKit library (libwebcore.so) which implements

the complex tasks of loading and displaying web contents. WebKit creates all the necessary
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models and view classes used to represent and display the incoming web contents. WebKit

views are designed to handle multiple frames, each with their own scroll bar, and many

MIME types. The native layer of WebView is the actual implementation that performs the

web-related tasks and the Java layer of WebView is the component that provides the APIs

to mobile apps.

Binding Between WebView Java and Native Layers. WebView establishes channel

to bind the two layers together. Therefore, each essential class in WebView Java Layer

binds to a C++ class defined in the native WebKit library. Through this binding channel,

mobile app’s invocation to Java APIs can manipulate the web contents inside the native

layer, and the web-related resources can be retrieved from the native layer to the Java layer

or further returned to the mobile apps.

In Android WebView, this binding between Java and C++ class is accomplished using

the Java Native Interface (JNI) mechanism. Java code running inside the Dalvik virtual

machine sandbox cannot directly invoke C++ method in the native WebKit library. The

native WebKit code needs to register C++ class to the Java class through JNI, and only

the code in that Java class can invoke the exposed methods defined in that C++ class.

Each essential Java class in WebView is bound to the corresponding native WebKit class,

and these Java classes maintain a Native Object Pointer to the native WebKit class

associated to it. Java class can use this native object pointer to invoke the native C++

menthods. In another direction, native C++ class also can invoke the method defined in

the associated Java class through reflection. Figure 2.3 shows the binding of essential

WebView classes.
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Fig. 2.3.: Binding between WebView Java and Native Layer

For example, WebFrame C++ class (defined in the file WebCoreFrameBridge.cpp) is

bound to the BrowserFrame Java class through JNI. Each WebFrame instance maintains a

pointer (mJavaFrame) pointing to the callback functions in BrowserFrame class.

Whenever a frame-related resource is changed inside WebKit, such as frame navigation, the

corresponding WebFrame instance for that frame will first find the Java BrowserFrame

instance bound to it through the pointer mJavaFrame; and than it will invoke the callback

functions registered for this event.

Another example is the JavaBridge C++ class, which is corresponding to the

JWebCoreJavaBridge Java class. WebView binds these two classes to manage timer events

occured inside the native library. Similarly, binding between CookieManager C++ class

and CookieManagerClassic Java class is used to handle the events related to cookies.

The WebCoreResourceLoader C++ class and the corresponding LoadListener Java

class is bound to exchange the events when loading web resources.

WebCoreResourceLoader class is the actual implementation that handles the resource
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events in WebKit, such as downloading or canceling a resource. Through the bindings,

these events will be passed to the Java classes and trigger the callback functions defined in

the Java class (e.g., CancelMethod and DownloadFileMethod).

2.3 PhoneGap Framework

A mobile application is a software application that runs on mobile devices, such as

smartphones and tablets. In most mobile operating systems, mobile apps are written using

a language chosen by the OS. For example, Android chooses Java, iOS chooses Objective

C, and Windows Phone chooses C#. Applications written using the platform-selected

language are called native mobile apps, because they are natively supported by the OS.

Native mobile apps have several advantages. They are more effective at integrating the

unique features of the mobile device into apps, such as the telephone, voice recorder and

camera. They can offer better performance and richer user experience. Unfortunately, the

development of native mobile applications is expensive and laborious, because developers

often need to learn several different programming languages in order to support multiple

platforms, and porting the code from one platform to another is not an easy task [18–20].

One of the solutions is to allow developers to write code in platform-neutral HTML and

JavaScript that can be displayed by any device, any system. Because the OS cannot

natively support HTML5-based applications, middleware is needed for such applications to

run on these platforms. Several such middlewares have been developed, including

PhoneGap [21], RhoMobile [22], Appcelerator [23], WidgetPad [24], MoSync [25], etc.

Because PhoneGap is the most popular one [26], we use PhoneGap to represent this entire



25

class of middlewares. This way, developers only need to develop one version of applications

that can run on multiple platforms, and it will be much easier for developers to develop

applications for them.

WebView technology is essential for PhoneGap-like middlewares. Web container is

designed to host web contents, but it is not sufficient to support HTML5-based mobile

applications. Because of its purpose, web container allows its inside contents to only access

the resources related to the Web (e.g. cookies, HTML5 local storage, etc.); many of the

device resources are beyond the reach of the content inside web container. This is achieved

by the sandbox built into all web containers; without it, contents from malicious web sites

can pose great threats to the system. Unfortunately, this design makes it impossible to use

the web container to host mobile applications, because these applications need to access

device resources, such as camera, bluetooth, contact list, SMS, phone functions, etc. To

solve this problem, a bridge has to be added to web container, allowing JavaScript code

inside to access the native system resources.

PhoneGap helps developers create HTML5-based mobile apps using the standard web

technologies. Developers write apps in HTML pages, JavaScript code, and CSS file. The

PhoneGap framework by default embeds a WebView instance in the app, and relies on this

WebView to render the HTML pages and execute JavaScript code.

PhoneGap consists of two parts (Figure 2.4): the framework part and the plugin part,

with the framework part serving as a bridge between the code inside WebView and the

plugin modules, and the plugin part doing the actual job of interacting with the system

and the outside world. For each type of resources, such as Camera, SMS, WiFi and NFC,

there is one or several plugins. Currently, the PhoneGap framework includes 16 built-in



26

Fig. 2.4.: The PhoneGap Architecture

plugins for apps to use directly. However, if an app’s needs cannot be met by these plugins,

developers can either write their own plugins or use third-party PhoneGap plugins.

Currently, there are 183 third-party plugins available, and the number will definitely

increase.

A plugin is mainly written in the language natively supported by its hosting mobile

system, but to make it more convenient for JavaScript to invoke plugins, many plugins

provide a companion JavaScript library for apps. Moreover, some plugins also have demo

JavaScript code that teaches developers how to use the plugins and display the return

data. When JavaScript code inside WebView needs to access system or external resources,

it calls the APIs provided in the plugin library. The library code will then call the

PhoneGap APIs, and eventually, through the PhoneGap framework, invoke the Java code

in the corresponding plugin. When the plugin finishes its job, it returns the data back to
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the page, also through the PhoneGap framework. That is how JavaScript code inside the

WebView gets system or external resources. Figure 2.4 depicts the entire process.
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3. RELATED WORK

3.1 Browser Security

This section summarizes research efforts to improve the client-side web security. Several

research proposals have considered alternate web browser architectures. Although this

dissertation focuses on WebView security, we can borrow some ideas from these proposals.

3.1.1 New Browser Architectures

Several recent studies propose new browser architectures. The OP [27] web browser

isolates each web page instance and various browser components using OS processes.

Tahoma [28] isolates each instance of a web application inside the browser using separate

virtual machines. SubOS [29] is proposed to improve browser security with multiple

processes with no discussion on the granularity of the process model. Chromium and

Gazelle are two new web browsers that use an architecture in which the browser is

separated into two portions: kernel and applications. The Gazelle [30] is a secure browser

constructed as a multi-principal OS to improve the security. The open-source browser,

Google Chrome [?, 31], presents a multi-process browser architecture. It has two modules

to separate protection domains: a browser kernel and a rendering engine, which runs with

restricted privileges in a sandbox. Internet Explorer 8 [32] introduces a multi-process

architecture as well that can improve fault tolerance, resource management, and
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performance. Reis et. al [33] discusses four architectural principles for ensuring security of

web programs.

With mobile browsers playing more and more important roles in daily life [34], browsers

themselves have become an active area of research. Microbrowsers designed for surfing the

Internet on mobile devices have become more and more popular [35]. Initially, research

focuses on how to optimize web content to be effectively rendered on mobile

browsers [36,37]. Recently, a lot of work focuses on analyzing the existing mobile browser

models and proposing multiple new models. The paper [38] discusses two patterns of full

browsers and C/S framework browsers, and proposes a new collaborative working style for

mobile browsers. The work [39] presents a proxy-based mobile web browser with rich

experiences and better visual quality.

Although this dissertation focuses on the security problem on WebView, the solution to

enhance WebView security can borrow ideas from the existing works on client-side web

architecture. The design of SecWebView framework in chapter 6 compares the current

WebView architecture and web browser architecture.

3.1.2 Fine-grained access control on Browser

There are numerous studies that focus on enforcing fine-grained access control at

client-side. Several research proposals improve security properties of a subset of JavaScript,

so that web apps can safely allow script from the third-party entity. For example, the

Google Caja [40] project uses an approach based on transparent compilation of JavaScript

code into a safe subset with libraries that emulate DOM objects. A lightweight
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self-protecting (rewriting-based) method [41] is introduced to prevent inappropriate

behaviour caused by the third-party script. JSand [42] and AdSafe [43] use a safe subset of

JavaScript to mediate the interaction between advertisement script and page script. Other

foundational studies of the subset of JavaScript are reported in the papers by Politz et

al. [44], Anderson et al. [45], Yu et al. [46], and Guarnieri et al. [47].

There are numerous studies [48] to limit the privilege of third-party JavaScript in web

applications: For example, Conscript [49] proposes a client-side advice system to provide a

fine-grained access control framework on JavaScript objects at runtime. Content Security

Policy [50] enforces content restriction rules to specify how third-party content interacts on

their web sites. Escudo [51,52] and Contego [53] frameworks propose a ring-based and

capability-based model to provide finer-grained access control within a webpage.

TreeHouse [54] sandboxes JavaScript code by virtualizing the browser’s API. A reference

monitor, called JCShadow [55], is proposed to enable fine-grained access control within a

JavaScript virtual machine. Object View [56] designs an aspect system to support sharing

in a browser JavaScript environment by creating object proxies, called views. For the

integrated third-party advertisements, AdJail [57] and WebJail [58] propose several

isolation mechanisms that enable publishers to transparently interpose themselves between

advertisements and end users. However, none of them use JavaScript virtual machine to

achieve the isolation but still maintain the cross-context interaction.

Although existing fine-grained in-page access control works are designed for browser,

their idea can be applied on WebView since the web-part of WebView is also built on web

engine. The design of SecWebView framework in chapter 6 discusses why the existing
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works on in-page access control are not suitble for WebView case, and why SecWebView

design is distinguished from them.

3.1.3 Mitigation Methods.

Several mitigation methods has been proposed to address certain web security issues.

Cross-site-request forgeries (CSRF). In CSRF attacks, a malicious web site interferes

with a victim user’s ongoing session with a trusted website. The malicious web site tricks

the web browser into attaching a trusted site’s authentication credentials to malicious

requests targetting the trusted site. Several studies have proposed different methods for

preventing CSRF [59–61]. A common adopted approach is to use the session ID as the

secret validation token, since browsers prevent script of one domain from accessing the

cookies from another domain. CSRFx [62], CSRFGuard [63], and NoForge [64] take the

Session-Dependent approach by validating the supplied CSRF token which is associated

with the user’s session identifier on every request. But it requires the server to maintain a

large state table to store the existing states.

Cross-site scripting (XSS). Cross-site scripting (XSS) vulnerabilities are among the

most common and serious web application vulnerabilities [65,66]. Attackers launch XSS

attacks by injecting a malicious JavaScript program into a trusted webpage. Any victim

user who visits the affected web page will execute the malicious script with the same power

as the script from the page. Prevention against such an attack has been extensively

researched [67–71]. A simple mechanism called Browser-Enforced Embedded Policies

(BEEP) is proposed [72] to embed a policy inside webpages that specifies which scripts are
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allowed to run. The noncespaces [73] framework allows a web application to randomize the

XML namespace prefixes of tags in each document before delivering it to the client in order

to distinguish between trusted and untrusted content. The work in [74] develops a

black-box technique based on syntax- and taint-aware policies to accurately detect and

block most injection attacks.

Code Injection in Browser. Recent work of Liu et al. [75] proposes security mechanism

to protect malicious extensions from damaging the whole browser system by limiting the

access to sensitive web contents. The Chrome [76] browser developed a multi-component

extension to enforce the least privilege and privilege separation principles.

3.1.4 Clickjacking Attacks.

Attacks. The idea of clickjacking attacks is to use trick by attackers to allure users to

click/touch the clickable objects (e.g., buttons) of the victim page which they are not

intend to do. We will give a comprehensive explanation on various kinds of clickjacking

attacks [77–84] in section 7.1. In the same section, we formulate that the fundamental

cause of the clickjakcing attacks is the system’s failure to preserve the visual integrity of

the webpage loaded inside the web container.

Existing Solutions based on Step. Figure 5.4 illustrates all of the existing solutions to

solve the visual integrity problem, and we will use the clickjacking attack as an example.

For mobile platform cases, the browser is equivalent to the application, and WebView is

equivalent to the iframe.
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The first three steps (step 1, 2, 3) in Figure 5.4 show the users try to visit a malicious

website www.attack.com. After the client-side browser receives the response from the

remote server, it will parse the contents in the response (step 4). When the parser

encounters an iframe or frame tag, it will notify the browser to trigger another request to

the address specified in the iframe tag, and the URL is www.victim.com in our example

(step 5). By doing so, browser will parse the response of the second request and render the

iframed webpage inside the host webpage (step 6, 7, 8). When the user was tricked to

perform a click on the overlapping area, the attacker successfully reroute the event to the

victim page. Once the click event acts at the page, it triggers a request to the victim server

with the credential attached automatically by the browser. As a result, those unexpected

actions will cause damage to the user’s account space on the victim server.

For each step after step 5, solutions were proposed to prevent the attack.

1. One-time URLs. By introducing an unguessable secret to the URL of the victim

page, the attack can be prevented. (Step 5)

2. X-Frame-Option header. By setting the X-Frame-Option header, the victim page

can forbid itself to be embedded in the iframe. (Step 6)

3. Framebuster/FrameKiller. By embedding a piece of javascript code at the very

beginning of the webpage, the victim webpage can bust out from the iframe. (Step 7)

4. Banning Feature. By banning the particular techniques used by the webpage

container, such as transparent feature, the browser alleviates the risk of the attacks.

(Step 8)
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Fig. 3.1.: Existing Solutions

5. Automate Click Test. By implementing an automatic click detection framework

within the browser, it is possible to detect all potential vulnerable points to

determine if there is a confused deputy situation at each clickable point. (Step 9)
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6. Additional Action. By requiring users to either mark a checkbox, fill in some

passwords, or solve a CAPTCHA in addition to clicking the button will make it

harder for the clickjacker. This is because attacker has to convince users to take more

actions. (Step 11)

7. Metadata. By sending the victim server along with the metadata about the

particular interaction detail, the victim server could choose to reject the suspicious

request. (Step 13,14)

Existing Solutions based on Enforcer. We can further classify the existing

solutions based on where the access control takes over.

• Client-Side Solution: Some solutions [85–87] purely depend on the client-side

framework such as the web browser which can be enforced at Step 8, 9 and 11. For

example, by banning some particular features of the container, such as the

transparent feature, the web browser can alleviate the risk of the attacks. Some

well-known projects include the ClearClick component in the NoScript [88] Firefox

plug-in and the Anti-Clickjacking component in the GuardedID project [87]. The

Automate Click Test [86] approach is also implemented at the client side. All these

solutions enhance the security by either temporarily or permanently banning features

of the container. As we have analyzed in this dissertation, the fundamental flaw is

not the feature of container.

• Server-Side Solution: Several solutions were proposed to modify the server-side

code to defeat the attacks on visual integrity. No change to the client side is needed.
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One solution is to prevent web pages from being loaded into the container, and thus

thwart the attacks. By embedding a piece of javascript code at the very beginning of

the webpage, the webpage using Framebuster [89] can bust out from the iframe.

However, this approach is not very reliable [90]. Another solution is to add an

unguessable secret to the URL of each web page, so the navigation can only start

from certain trusted pages [91]. A third solution is to ask users to take additional

actions, such as requiring the user to mark a checkbox, type in password, or solve a

CAPTCHA, before clicking on the important button. These actions make it harder

for clickjackers, as they now have to trick users into taking those actions. The last

two solutions require significant changes on the server-side code.

• Hybrid Solution: A hybrid solution is to let the server side set the policy on visual

integrity, and depend on the browser to enforce the policy (Step 6, 14). Some

well-known projects include X-Frame-Options [92] which allow the server to set the

X-Frame-Option header to forbid itself from being embedded into the iframe. Our

dynamic binding approach takes a similar tactic, but provides a finer granularity. We

have already distinguished our work from some well-known projects in section 7.3.3.

3.2 Android Security

This section summarizes research efforts to improve the Android system security.



37

3.2.1 Android’s Security Architecture

There are several studies focusing on Android’s security architecture [93–97]. The

work [98] discussed potential improvement for the Android permission model, empirically

analyzed the permissions in 1100 Android applications and visualized them using

self-Organizing Map. Enck et al. [99] proposes the Kirin security service for Android, which

performs lightweight certification of applications to mitigate malware at installation time.

Several vulnerabilities in Android’s security framework are reported in [100–103] can be

used to launch an attack to escalate application-level privilege. Enck et al. [104] proposes

“TaintDroid”, an efficient, system-wide dynamic taint tracking and analysis system capable

of simultaneously tracking multiple sources of sensitive data. Felt et al. [105] have built a

tool called “Stowaway”, which automatically detects excess privilege when installing

third-party Android applications. A systematic analysis of the threats in the Android

Market was conducted by [106].

3.2.2 Privilege Separation in Android.

Several works [107–113] attempt to separate third-party components of mobile

applications: AdSplit [108] extended Android to allow an application and its advertising to

run as separate processes. AdDroid [109] introduced a system service to separate

permissions for advertisements. Leontiadis et al. [110] used separate applications to

constrain advertising libraries with IPC to support communications instead of screen

sharing. Jeon et al. [111] proposed to split common permissions into finer-grained

permission to achieve least of privilege. Vidas et al. [112] looked to Android as a specic
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instance of mobile computing. They discussed the Android security model and some

potential weaknesses of the model, and then proposed mitigations for the identified

vulnerabilities. Felt et al. [113] surveyed the current state of mobile malware in the wild

3.3 WebView

Before my study on WebView container, there are only few articles and books that

discuss WebView technology. For example, several books [?, 114,115] about Android

contain chapters introducing how to use WebView, although none has addressed the

security problems of WebView. Some discussions on WebView’s security problems can be

found at mainstream security-related websites like ZDNet [116], and the most relevant

discussions were published as blogs [117–119]. However, none of them did a systematic

study on the security of WebView technology.

After my several studies [16,83,120,121], more and more works focus on WebView

security [122–125]. The work [126,127] investigates user privacy in Android Ad library,

including the ones that use WebView as the component to load advertisements. The

work [128] investigates how to enhance the visual security cues for WebView-based Android

applications to provide user perception and understanding of current security situations.

The work [129] discusses the methods to launch an XSS attack on WebView. The blog [130]

exploits another attack to compromise Android applications from malicious webpages

inside WebView. The work [17] revisits WebView security. The work [131] proposes

frameworks to enforce the origin-based access control in hybrid web/mobile applications.
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4. WEBVIEW SECURITY

WebView is an essential component in both Android and iOS platforms, enabling

smartphone and tablet apps to embed a simple but powerful browser inside them.

However, before my study described in this dissertation, there is no systematically study on

WebView security. This and next section discuss our systematically investigation on

WebView security.

Like browsers, WebView implements an access control mechanism called Sandbox,

which is the basic security principle of the Web. The purpose of the WebView sandbox is

to contain the behaviors of the untrusted JavaScript programs running inside WebView.

The sandbox basically achieves two objectives: isolate web pages from the system and

isolate the web pages of one origin from those of another. The first objective mainly

enforces by restricting APIs exposed from JavaScript virtual machine; The second

objective mainly enforces the Same-Origin Policy (SOP).

WebView sandbox not only contains the behaviors untrusted JavaScript program, but

also prevent the external programs to temper the data and code inside the sandbox. For

example, in Android WebView architecture, Java code in the untrusted mobile apps cannot

directly invoke the methods defined in the native WebKit library or access JavaScript

runtime. This is because the JNI mechanism prevent the Java code to do it. 1

1Although the native code in the mobile app can directly access the native WebView code, we did not
consider it in this dissertation. This assumption is reasonable since only 4% of benign apps contain native
code [132].
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However, to achieve a better interaction between apps and their embedded “browsers”,

WebView provides a number of APIs, allowing code in apps to invoke and be invoked by

the JavaScript code within the web pages, intercept their events, and modify those events.

These APIs actually break the WebView sandbox in a controlled way. This is because the

ONLY way that mobile apps can customize the WebView for their intended web

applications is through the APIs provided by WebView. Therefore, in this dissertation, to

investigate the security of WebView, we systematically study all of the APIs exposed by

WebView.

4.1 WebView APIs

Based on their purposes, all the WebView APIs can be divided into two main

categories (see Figure 4.1). One type is the APIs implemented by the classes associated

with WebView. These APIs are designed for applications to interact with the web contents.

We call this type of APIs the web-based APIs. Examples of these APIs include loadURL,

addJavascriptinterface and etc. The other type of APIs are those inherited. WebView is a

specialized user interface (UI) component, and like others, such as buttons and text fields,

it is designed as a subclass of the more generic UI components, such as the View class. As

results, WebView inherits its super classes’ APIs. We call this type of APIs the UI-based

APIs.
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Fig. 4.1.: WebView APIs Classification

4.1.1 Web-based APIs

The classes in the android.webkit package jointly expose a number of APIs to the

applications for better manipulation and control over the web contents inside WebView.

Those APIs are quite useful for application developers to embed and customize

“browser-like” components within applications, and thus enrich the functionalities of

applications. We will not go over all those APIs; we only describe those that are related to

security.

• Webpage-Android Communication. Android WebView provides a bidirectional

communication channel between the webpage environment inside WebView and the

native Android application runtime. For example, WebView provides a mechanism

for the JavaScript code inside it to invoke Android apps’ Java code. The API used

for this purpose is called addJavascriptInterface. Android applications can

register Java objects to WebView through this API, and all the public methods in
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these Java objects can be invoked by the JavaScript code from inside WebView. In

addition to the JavaScript-to-Java interaction, WebView also supports the interaction

in the opposite direction, from Java to JavaScript. This is achieved via another

WebView’s loadUrl API. If the URL string starts with “javascript:”, followed by

JavaScript code, the API will execute this JavaScript code within the context of the

web page inside WebView.

• Webpage-related Hooks. Android applications can monitor the webpage

navigation and rendering events occurred inside WebView. This is done through the

hooks provided by the WebViewClient class. These hooks will be triggered when

their intended events occur inside WebView. Once triggered, these hooks can access

the event information, and may change the consequence of the events. For example,

by overloading the hook shouldOverrideURL, Android applications can intercept and

modify the destination URL when the user tries to navigate to another web page or

site.

• Webpage Credentials. All the credentials and private data of webpages are stored

in an internal database, which is isolated from Android applications. However,

WebView exposes many APIs to allow applications to fetch or modify the sensitive

webpage contents in the internal database. For example, Android applications can

directly inject arbitrary username-password pair for any domain into the internal

database through the API savePassword, the certificate of a webpage can also be

injected through the API setCertificate, user’s personal private information (e.g.
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browsing history) can be extracted using the API copyBackFormardList, cookies can

be accessed using CookieManager.setCookie, and so on..

4.1.2 UI-based APIs

The android.webkit package includes a number of classes, most of which inherit

directly from java.lang.Object, which is the root of all classes in Java. The APIs

inherited from this root class do not pose much risk. An outlier among these classes is the

WebView class, which is the main UI class in the package. This class inherits the APIs from

several classes. Moreover, WebView also implements seven interfaces, with six of them

coming from the android.view package, and one from android.graphics.

Among all the classes and interfaces inherited by WebView, the most significant class is

Android.view.View, which is commonly used by Android applications. The View class

represents the basic building block for user interface components; it usually occupies a

rectangular area on the screen and is responsible for drawing and event handling. This

class serves as the base for subclasses called widgets, which offers fully implemented UI

objects, like text fields and buttons. WebView is just a customized widget.

Our attacks focus on the APIs provided by Android.view.View. These APIs can be

classified into several categories, all of which are the basic functionalities designed for

native Android UI objects. We will illustrate some of the commonly used APIs in this View

class. It should be noted that some of the APIs inherited from the View class are

overridden in the WebView class, but we still count them as the UI-based APIs.
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• Layout Management. One of the basic features of Android UI objects is to provide

basic methods to handle the screen layout management. For example, a view object

has a location (expressed as a pair of left and top coordinates) and two dimensions

(expressed as a width and a height). Android applications can use the methods, such

as layout, setX, and setMinimumHeight, to configure locations.

• Event Processing. Each Android view object is responsible for drawing the

rectangular area on the screen that it occupies, and handling the events in the area.

Views allow clients to set listeners through hooks that will be notified when

something interesting happens to the view. Besides intercepting the events, the view

class also exposes methods for Android applications to pass motion events down to

the target view.

• Focus Manipulating. The Android framework will handle moving focus in response

to user input. To force focusing on a specific view, applications can call

requestFocus() of that view.

• Properties Setting. Other advanced features related to appearance could be the

background color or alpha property of WebView, like methods setBackgroundColor

and setAlpha.

4.2 Attacks on Web-based APIs

This section explains the attacks on Web-based APIs. These attacks are categorized

based on two threat models, depicted in Figure 4.2. We give a high-level overview of these
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models here, leaving the attack details to later sections. It should be noted that we will not

discuss the attacks that are common in the Web, such as cross-site scripting, cross-site

request forgery, SQL injection, etc., because these attacks are not specific to WebView:

WebView is not immune to them, nor does it make the situation worse.

(a) Attacks From Malicious Webpages (b) Attacks From Malicious Apps

Fig. 4.2.: Threat Models

Attacks from Malicious Web Pages. We study how malicious web pages can attack

Android applications. In this attack model, we assume that apps are benign, and they are

intended to serve a web application, such as Facebook. These apps can be both first-party

(owned by the intended web application) and third-party (owned by an independent

entity). The objective of attackers is to compromise the apps and their intended web

application. To achieve this, the attackers need to trick the victim to load their web pages

into the apps, and then launch attacks on the target WebView. The attack is depicted in

Figure 4.2(a). Getting the victim to load attacker’s web pages is not very difficult, and it

can be done through various means, such as emails, social networks, advertisements, etc.
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Attacks from Malicious Apps. We study how malicious apps can attack web

applications. In this threat model, we assume that an attacker owns a malicious app,

designed specifically for a web application, e.g., Facebook. The goal of the attacker is to

directly launch attacks on the web application. The attack is depicted in Figure 4.5(b).

Obviously, these attacks only make sense for third-party apps. To prepare for such attacks,

the attacker needs to allure users to use their apps for the intended web application.

Although sounded difficult, the above goal is not difficult to achieve at all, and many

apps from the Android market have already achieved that, although none of them is

malicious to the best of our knowledge. For example, one of the most popular Facebook

apps for Android is called FriendCaster for Facebook, which is developed by Handmark,

not Facebook; it has been downloaded for 500,000 times. The app uses WebView to

browse Facebook.

4.3 Attacks From Web Pages

4.3.1 Attacks through Holes on the Sandbox

Among all WebView’s APIs, addJavascriptInterface is probably the most

interesting one. It enables web application’s JavaScript code to invoke Android

application’s Java code (or iOS application’s Objective-C code). Section 2 has already

given examples on how the API is used.

Allowing apps to bind an interface to WebView fundamentally changes the security of

browsers, in particular, it breaks the sandbox model adopted by all browsers. Because of

the risk of running untrusted JavaScript programs inside browsers, all browsers implement
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an access control mechanism called sandbox to contain the behaviors of these programs.

The sandbox basically achieves two objectives: isolate web pages from the system and

isolate the web pages of one origin from those of another. The second objective mainly

enforces the Same-Origin Policy (SOP).

When an application uses addJavascriptInterface to attach an interface to

WebView, it breaks browser’s sandbox isolation, essentially creating holes on the

sandboxes. Through these holes, JavaScript programs are allowed to access system

resources, such as files, databases, camera, contact, locations, etc. Once an interface is

registered to WebView through addJavascriptInterface, it becomes global: all pages

loaded in the WebView can call this interface, and access the same data maintained by the

interface. This makes it possible for web pages from one origin to affect those from others,

defeating SOP.

Opening holes on the sandbox to support new features is not uncommon. For example,

in the previous Web standard, the contents in two frames with different domains are

completely isolated. Introducing cross-frame communication for mashup applications to

exchange data opens a hole on the sandbox. However, with the proper access control

enforced on the hole, this new feature was perserved and protected. The WebView’s new

feature, however, was not properly designed. The objective of this paper is not against this

feature, on the contrary, by pointing out where the fundamental flaw is, we can preserve

Web’s feature and at the same time make it secure.

Attacks on the System. We will use DroidGap [133] as an example to illustrate the

attack. DroidGap is not an application by itself; it is an open-source package used by many
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Android applications. Its goal is to enable developers to write Android apps using mostly

WebView and JavaScript code, instead of using Java code. Obviously, to achieve this goal,

there should be a way to allow the JavaScript code to access system resources, such as

camera, GPS, file systems, etc; otherwise, the functionalities of these apps will be quite

limited.

DroidGap breaks the sandbox barrier between JavaScript code and the system through

its Java classes, each providing interfaces to access a particular type of system resources.

The instances of these Java classes are registered to WebView through the

addJavascriptInterface API, so JavaScript code in WebView can invoke their methods

to access system resources, as long as the app itself is granted the necessary permissions.

The following code shows how DroidGap registers its interfaces to WebView.

private void bindBrowser(WebView wv){

wv.addJavascriptInterface(new CameraLauncher(wv, this), "GapCam");

wv.addJavascriptInterface(new GeoBroker(wv, this), "Geo");

wv.addJavascriptInterface(new FileUtils(wv), "FileUtil");

wv.addJavascriptInterface(new Storage(wv), "droidStorage"); }

In the code above, DroidGap registers several Java objects for JavaScript to access

system resources, including camera, contact, GPS, file system, and database. Other than

the file system and database, accesses to the other system resources need special privileges

that must be assigned to an Android app when it is installed. For instance, to access the

camera, the app needs to have android.permission.CAMERA. Once an app is given a

particular system permission, all the web pages—intended or not—loaded into its

android.permission.CAMERA
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WebView can use that permission to access system resources, via the interfaces provided by

DroidGap. If the pages are malicious, that becomes attacks.

Assume there is an Android app written for Facebook; let us call it MyFBApp. This app

uses DroidGap and is given the permission to access the contact list on the device. From

the DroidGap code, we can see that DroidGap binds a Java object called ContactManager

to WebView, allowing JavaScript code to use its multiple interfaces, such as

getContactsAndSendBack, to access the user’s contact list on the Android device.

As many Android apps designed to serve a dedicated web application, MyFBApp is

designed to serve Facebook only. Therefore, if the web pages inside WebView only come

from Facebook, the risk is not very high, given that the web site is reasonably trustworthy.

The question is whether the app can guarantee that all web pages inside WebView come

from Facebook. This is not easy to achieve. There are many ways for the app’s WebView

to load web pages from a third party. In a typical approach, the attacker can send a URL

to their targeted user in Facebook. If the user clicks on the URL, the attacker’s page can

be loaded into WebView2, and its JavaScript code can access the ContactManager interface

to steal the user’s personal contact information.

Another attack method is through iframes. Many web pages nowadays contain iframes.

For example, web advertisements are often displayed in iframes. In Android, the interfaces

binded to WebView can be accessed by all the pages inside it, including iframes. Therefore,

any advertisement placed in Facebook’s web page can now access the user’s contact list.

Not many people trust advertisement networks with their personal information.

2There are mechanisms to prevent this, but the app developers have to specifically build that into the app
logic.
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It should be noted that DroidGap is just an example that uses the

addJavascriptInterface API to punch “holes” on the WebView’s sandbox. As we will

show in our case studies, 30% Android apps use addJavascriptInterface. How severe

the problems of those apps are depends on the types of interfaces they provide and the

permissions assigned to them.

The LivingSocial app is designed for the LivingSocial.com web site. It uses

DroidGap, but since the app does not have the permission to access the contact list, even if

a malicious page is able to invoke the ContactManager interface, its access to the contact

list will be denied by the system. The app is indeed given the permission to access the

location information though, so a malicious page can get the user’s location using

DroidGap’s GeoBroker interface.

Attacks on Web Applications. Using the sandbox-breaking addJavascriptInterface

API, web applications can store their data on the device as files or databases, something

that is impossible for the traditional browsers. Using DroidGap, the LivingSocial app

binds a file utility object (FileUtils) to WebView, so JavaScript code in WebView can

create, read/write, and delete files—only those belonging to the app—on the device. The

LivingSocial app uses this utility to cache user’s data on the device, so even if the device

is offline, its users can still browse LivingSocial’s cached information.

Unfortunately, if the LivingSocial app happens to load a malicious web page in its

WebView, or include such a page in its iframe, attackers can use FileUtils to manipulate

the user’s cached data, including reading, deletion, addition, and modification, all of which

LivingSocial.com
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are supported by the interfaces provided by FileUtils. As results, the integrity and

privacy of user’s data for the LivingSocial web application is compromised.

Like LivingSocial, many Android apps use the registered interfaces to pull web

application-specific data out of WebView, so they not only cache the data, but also use

Java’s powerful graphic interface to display the data in a nicer style, providing a richer

experience than that by the web interface. The danger of such a usage of

addJavascriptInterface is that once the data are out of WebView, they are not

protected by the sandbox’s same-origin policy, and any page inside, regardless of where it

comes from, can access and potentially modify those data through the registered interfaces,

essentially defeating the purpose of the same-origin policy.

4.3.2 Attacks through Frame Confusion

In the Android system, interactions with several components of the system are

asynchronous, and require a callback mechanism to let the initiator know when the task

has completed. Therefore, when the JavaScript code inside WebView initiates such

interactions through the interface binded to WebView, JavaScript code does not wait for

the results; instead, when the results are ready, the Java code outside WebView will invoke

a JavaScript function, passing the results to the web page.

Let us use DroidGap’s ContactManager interface as an example: after the binded Java

object has gathered all the necessary contact information from the mobile device, it calls

processResults, which invokes the JavaScript function contacts.droidFoundContact,

contacts.droidFoundContact
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passing the contact information to the web page. The invocation of the JavaScript function

is done through WebView’s loadUrl API. The code is shown in the following:

public void processResults(Cursor paramCursor){

string result = paramCursor.decode();

string str8 = new StringBuilder().append("javascript:

navigator.contacts.droidFoundContact(...)").

localWebView.loadUrl(str8);

}

The JavaScript function contacts.droidFoundContact in the example is more like a

callback function handler registered by the LivingSocial web page. The use of the

asynchronous mode is quite common among Android applications. Unfortunately, if a page

has frames (e.g. iframes), the frame making the invocation may not be the one receiving

the callback. This interesting and unexpected property of WebView becomes a source of

attacks.

Frame Confusion. In a web page with multiple frames, we refer to the main web page as

the main frame, and its embedded frames as child frames. The following example

demonstrates that when a child frame invokes the Java interface binded to the WebView,

the code loaded by loadUrl is executed in the context of the main frame.

Object obj = new Object() {

public void showDomain() {

mWebView.loadUrl("javascript:alert(document.domain)");

}
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};

mWebView.addJavascriptInterface(obj, "demo");

The code above registers a Java object to the WebView as an interface named “demo”,

and within the object, a method “showDomain” is defined. Using loadUrl, this method

immediately calls back to JavaScript to display the domain name of the page.

When we invoke window.demo.showDomain() from a child frame, the pop-up window

actually displays the domain name of the main frame, not the child frame, indicating that

the JavaScript code specified in loadUrl is actually executed in the context of the main

frame. Whether this is an intended feature of WebView or an oversight is not clear. As

results, the combination of the addJavascriptInterface and loadUrl APIs creates a

channel between child frames and the main frame, and this channel opens a dangerous

Pandora’s box: if application developers are careless, the channel can become a source of

vulnerability, one that does not exist in the real browsers.

(a) Attack from child frame (b) Attack from main frame

Fig. 4.3.: Threat Models
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Attack from Child Frame. In this attack, we look at how a malicious web page in a

child frame can attack the main frame. We use the LivingSocial app as an example. This

app loads LivingSocial’s web pages into its WebView (in the main frame), and we

assume that one of their iframes has loaded the attacker’s malicious page. This is not

uncommon because that is exactly how most advertisements are embedded. The main

objective of the attacker is to inject code into the main frame to compromise the integrity

of LivingSocial. Web browsers enforce the Same Origin policy (SOP) by completely

isolating the content of the main frame and the child frame if they come from different

origins. For example, the Javascript code in the child frame (www.advertisment.com)

cannot access the DOM tree or cookies of the main frame (www.facebook.com). Therefore,

even if the content inside iframe is malicious, it cannot and should not be able to

compromise the page in the main frame.

As we have shown earlier, LivingSocial binds CameraLauncher to its WebView. In

this class, a method called failPicture is intended for the Java code to send an error

message to the web page if the camera fails to operate.

public class CameraLauncher{

public void failPicture(String paramString){

String str = "javascript:navigator.camera.fail(’";

str += paramString + "’);";

this.mAppView.loadUrl(str);

}

}
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Unfortunately, since failPicture() is a public method in CameraLauncher, which is

already binded to WebView, the method is accessible to the JavaScript code within

WebView, from both child and main frames. In other words, JavaScript code in a child

frame can use this interface to display an error message in the main frame, opening a

channel between the child frame and the main frame. At the first look, this channel may

not seem to be a problem, but those who are familiar with the SQL injection attack should

have no problem inserting some malicious JavaScript code in ‘paramString’, like the

following:

x’); malicious JavaScript code; //

As results, the malicious code embedded in paramString will now be executed in the

main frame; it can manipulate the DOM objects of the main frame, access its cookies, and

even worse, send malicious AJAX requests to the web server. This is exactly like the

classical cross-site scripting attack, except that in this case, the code is injected through

WebView, as illustrated in Figure 4.3(a).

Attack from Main Frame. In this attack, we look at how a malicious web page in the

main frame can attack the pages in its child frames. We still use the LivingSocial as an

example. We assume that the attacker has successfully tricked the LivingSocial app to

load his/her malicious page into the main frame of its WebView. Within the malicious

page, LivingSocial’s web page is loaded into a child frame. The attacker can make the

child frame as large as the main frame, effectively hiding the main frame.
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Suppose that DroidGap uses tokens to prevent unauthorized JavaScript code from

invoking the interfaces registered to WebView: the code invoking the interfaces must

provide a valid token; if not, the interfaces will simply do nothing. An example is given in

the following:

public class Storage{

public void QueryDatabase(SQLStat query, Token token){

if(!this.checkToken(token)) return;

else { /* Do the database query task and return result*/ }

}

}

With the above token mechanism, even if the JavaScript code in the malicious main

frame can still access the QueryDatabase interface, its invocation cannot lead to an actual

database query. However, if the call is initiated by the LivingSocial web pages—which

have the valid token—from the child frame, the invocation is legitimate, and will lead to a

query. Unfortunately, when the query results are returned to the caller by the app, using

loadUrl, because of the frame confusion problem, the query results are actually passed to

the main frame that belongs to the attacker. This creates an information-leak channel.

Figure 4.3(b) illustrates the attack.
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4.4 Attack From Malicious Apps

For the attacks in this section, we assume that attackers have written an intriguing

Android application (e.g. games, social network apps, etc.), and have successfully lured

users to visit the targeted web application servers from its WebView component.

4.4.1 The Problem: Trusted Computing Base

As we all know, security in any system must be built upon a solid Trusted Computing

Base (TCB), and web security is no exception. Web applications rely on several TCB

components to achieve security; an essential component is browser. If a user uses a browser

that is not trustworthy or is compromised, his/her security with the web application can be

compromised. That is why we must use trusted browsers, such as IE, Firefox, Chrome,

Safari, etc.

WebView in the Android operating system changes the TCB picture for the Web,

because WebView is not isolated from Android applications; on the contrary, WebView is

designed to enable a closer interaction between Android applications and web pages. Using

WebView, Android applications can embed a browser in them, allowing them to display

web contents, as well as launch HTTP requests. To support such an interaction, WebView

comes with a number of APIs, enabling Android application’s Java code to invoke or be

invoked by the JavaScript code in the web pages. Moreover, WebView allows Android

applications to intercept and manipulate the events initiated by the web pages.

Essentially, WebView-embedding Android applications become the “customized

browsers”, but these browsers, usually not developed by well-recognized trusted parties but
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potential malicious apps, cannot serve as a TCB anymore. If a web application interacts

with a malicious Android application, it is equivalent to interacting with a malicious

browser: all the security mechanism it relies on from the browser is gone. In this section,

we will present several concrete attacks.

However, this is different from the situation when attackers have compromised the

whole browser by controlling the native binary code of the browser. In such a situation,

attackers control everything in the browser; Malicious Android applications, however, only

override the limited portion of the APIs in WebView, and the rest of WebView can still be

protected by the underlying system. It is more like the usage of “iFrame”, which is used to

let websites embed pages from other domains; the web browser enforces the Same Origin

Policy to isolate each other if they come from a different domain. Similar to the WebView

situation, a malicious webpage can embed a page from Facebook into one of its iframes, the

content of the Facebook page will be rendered and displayed. With the underlying access

control mechanism enforced by the trusted native browser code, the Facebook page cannot

be compromised by its hosting page. Similarly, if WebView is provided to applications as a

blackbox (i.e., no APIs), it can still be counted as a TCB component for the Web even if it

is embedded into a malicious application, because isolation mechanism provided by

WebView is implemented using WebKit, which is trustworthy.
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Fig. 4.4.: Attack Methods

4.4.2 Attack Methods

There are several ways to launch the attacks on WebView. We classified them in two

categories, based on the WebView features that were taken advantaged of. The categories,

illustrated in Figure 4.4, are described in the following:

• JavaScript Injection: Using the functionalities provided by WebView, an Android

app can directly inject its own JavaScript code into any web page loaded within the

WebView component. This code, having the same privileges as that from the web

server, can manipulate everything in the web page, as well as steal its sensitive

information.

• Event Sniffing and Hijacking: WebView provides a number of hooks (APIs) to

Android apps, allowing them to better interact with the web page. Attackers can

intercept these APIs, and launch sniffing and hijacking attacks from the outside of

WebView, without the needs to inject JavaScript code.
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The categories of attacking methods are presented in a decreasing order of severity: if

attackers can achieve JavaScript injection, they do not need to use the second method.

This indicates that some of the WebView features are more powerful than others. To fully

understand the impact of WebView design on security, we study the potential attacks

associated with each feature, rather than focusing only on the most powerful feature.

4.4.3 JavaScript Injection

Using WebView’s loadUrl() API, Android application can inject arbitrary JavaScript

code into the pages loaded by the WebView component. The loadUrl() API receives an

argument of string type; if the string starts with “javascript:”, WebView will treat the

entire string as JavaScript code, and execute it in the context of the web page that is

currently displayed by the WebView component. This JavaScript code has the same

privileges as that included in the web page. Essentially, the injected JavaScript code can

manipulate the DOM tree and cookies of the page.

WebView has an option named javascriptenable, with False being its default value;

namely, by default, WebView does not execute any JavaScript code. However, this option

can be easily set to True by the application, and after that, JavaScript code, embedded in

the web page or injected by the application, can be executed.

There are many ways to inject JavaScript code into web page using loadUrl(). We

give two examples here to illustrate the details.

JavaScript Code Injection. The following Java code constructs a string that contains a

short JavaScript program; the program is injected into the web page loaded by WebView.
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When this program is executed in the context of the web page, it fetches additional

(malicious) code from an external web server, and executes it.

String js = "javascript:var newscript

= document.createElement(\"script\");";

js += "newscript.src=\"http://www.attack.com/malicious.js\";";

js += "document.body.appendChild(newscript);";

mWebView.loadUrl(js);

In the above example, the malicious code malicious.js can launch attacks on the

targeted web application from within the web page. For example, if the web page is the

user’s Facebook page, the injected JavaScript code can delete the user’s friends, post on

his/her friends’ walls, modify the user’s profiles, etc. Obviously, if the application is

developed by Facebook, none of these will happen, but some popular Facebook apps for

Android phones are indeed developed by third parties.

Extracting Information From WebView. In addition to manipulating the

contents/cookies of the web page, the malicious application can also ask its injected

JavaScript code to send out sensitive information from the page. The following example

shows how an Android application extracts the cookie information from a targeted web

page [117].

class MyJS {

public void SendSecret(String secret) {

... do whatever you want with the secret ...
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}

}

webview.addJavascriptInterface(new MyJS(), "JsShow");

webview.setWebViewClient(new WebViewClient() {

public void onPageFinished(WebView view, String url){

view.loadUrl("javascript:window.JsShow.SendSecret(document.cookie)");

}

}

In the Java code above, the malicious application defines a class called MyJS with a

function SendSecret, which receives a string as the parameter. The program then registers

an instance of MyJS to WebView. On finishing loading the page, the application, using

loadUrl, invokes window.JsShow.SendSecret, passing as the parameter whatever

sensitive information the attacker wants to extract out of page. In this case, the cookie

information is sent out.

4.4.4 Event Sniffing and Hijacking

Besides the powerful interaction mechanism between Android applications and web

pages, WebView also exposes a number of hooks to Android applications, allowing them to

intercept events, and potentially change the consequences of events. The WebViewClient

class defines 14 interfaces [134], using which applications can register event handlers to

WebView. When an event was triggered by users inside WebView, the corresponding

handler will be invoked; two things can then be done by this handler: observing the event
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and changing the event, both of which can be achieved from outside of WebView without

the need for JavaScript injection.

Event Sniffing: With those 14 hooks, host applications can know almost everything that

a user does within WebView, as long as they register an event handler. For example, the

onLoadResource hook is triggered whenever the page inside WebView tries to load a

resource, such as image, video, flash contents, and imported css/JavaScript files. If the host

application registers an event handler to this hook, it can observe what resources the page

is trying to fetch, leading to information leak. Hooks for other similar web events are

described in the following:

• doUpdateVisitedHistory: Notify the host Android application to update its visited

links database. This hook will be called every time a web page is loaded. Using this

hook, Android applications can get the list of URLs that users have visited.

• onFormResubmission: Ask the host Android application if the browser should

re-send the form. Therefore, the host application can get a copy of the data users

have typed in the form.

Using WebView hooks, host applications can also observe all the keystrokes, touches,

and clicks that occur within WebView. The hooks used for these purposes include the

following: setOnFocusChangeListener, setOnClickListener, and setOnTouchListener,

Event Hijacking: Using those WebView hooks, not only can Android applications

observe events, they can also hijack events by modifying their content. Let us look at the

page navigation event. Whenever the page within the WebView component attempts to



64

navigate to another URL, the page navigation event occurs. WebView provides a hook

called shouldOverrideUrlLoading, which allows the host application to intercept the

navigation event by registering an event handler to this hook. Once the event handler gets

executed, it can also modify the target URL associated with the event, causing the

navigation to a different URL. For example, the following code snippet in an Android

application can redirect the page navigation to www.malicious.com.

webview.setWebViewClient(new WebViewClient() {

public boolean shouldOverrideUrlLoading(WebView view, String url) {

url="http://www.malicious.com";

view.loadUrl(url); return true;

}

};

The consequence of the above attack is particularly more severe when the victims are

trying to navigate to an "https" web page, believing that the certificate verification can

protect them from redirection attack. This belief is true in the DNS pharming attacks, i.e.,

even if attacks on DNS can cause the navigation to be redirected to a fraudulent server, the

server cannot produce a valid certificate that matches with the URL. This is not true

anymore in the above attack, because the URL itself is now modified (not the IP address

as in the DNS attacks); the certificate verification will be based on the modified URL, not

the original one. Several other WebView hooks can also lead to the event hijacking attacks,

but we will not enumerate them in this dissertation.

www.malicious.com
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For example, if a page within WebView tries to access https://www.goodbank.com, the

malicious application can change the URL to https://www.badbank.com, basically

redirecting the navigation to the latter URL. WebView’s certificate verification will only

check whether or not the certificate is valid using www.badbank.com, not

www.goodbank.com.

4.5 Case Studies

To understand how risky the situation in Android system is, we turned our attention to

the Android Market. Our goal is not to look for malicious or vulnerable apps, but instead

to study how Android apps use WebView. We would like to see how ubiquitous the

WebView is in Android apps, and how many apps depend on WebView’s potentially

dangerous features.

4.5.1 Sample Collection & Methodology

Apps on the Android Market are placed into categories, and we chose 10 in our studies,

including Books & Reference, Business, Communication, Entertainment, Finance, News &

Magazines, Shopping, Social, Transportation, and Travel & Local. We picked the top 20

most downloaded free apps in each category as the samples for our case studies. 3

Each Android app consists of several files, all packaged into a single APK file for

distribution. The actual programs, written in Java, are included in the APK file in the

form of Dalvik bytecode. We use the decompilation tool called Dex2Jar [135] to convert

3The Sample was collected in 2012.

https://www.goodbank.com
https://www.badbank.com
www.badbank.com
www.goodbank.com


66

the Dalvik bytecode back to the Java source code. Due to the limitations of the tools, only

132 apps were successfully decompiled, and they serve as the basis for our analysis. We

realized that Dex2jar has some limitations, but it was the best available tool that we could

find. Since our case studies are mostly done manually, the limitations of the tool, other

than reducing the number of samples, will unlikely affect our results.

4.5.2 Usage of WebView

We first study how many apps are actually using WebView. We scan the Java code in

our 132 samples, looking for places where the WebView class is used. Surprisingly, we have

found that 86 percent (113 out of 132) of apps use WebView. We plot our results in

Figure 4.5(a). Percentage for each category is plotted in Figure 4.5.

For the attacks from malicious apps, it only makes sense if the apps and their targeted

web applications belong to different entities, i.e., only the third-party apps have

motivations to become malicious. Among the 113 apps that use WebView, 49 are

third-party apps; despite the fact, these 49 apps are quite popular among users. Based on

the data from the Android Market, their average rating is 4.386 out of 5, and their average

downloads range from 1,148,700 to 2,813,200. Although these apps are not malicious, they

are fully capable of launching attacks on their intended web applications. When that

happens, given their popularity, the damage will be substantial.
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4.5.3 Usage of the WebView Hooks

Some of the WebView APIs are security sensitive. To understand how prevalent they

have been used, especially by third-party apps, we have gathered statistics on their usage,

and depict the results in Figure 4.5(c), in which we group them based on the types of

attacks we discussed in Section 4.4.

Among the 49 third-party apps, all use loadUrl, 46 use shouldOverrideUrlloading,

and 25 use addJavascriptInterface. We also found that the other APIs, including

doUpdateVisitedHistory, onFormResubmission, and onLoadResource are relatively less

popular. Overall, our results show that WebView’s security-sensitive APIs are widely used.

If these apps are malicious, the potential damages are significant.

(a) WebView Usage Among Apps (b) WebView Usage Based On Categories

(c) API Usages by Third-Party Apps (d) Source Code Investigation

Fig. 4.5.: WebView Usage
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4.5.4 Usage of addJavascriptInterface

Attacks from malicious web pages are made possible by the use of the

addJavascriptInterface API in Android apps, first-party and third-party. We would like

to see how many apps actually use this API. We randomly chose 60 apps from our sample

pool, decompiled them into Java code, and then searched for the usage of the API.

Figure 4.5(d) depicts the results, showing that 30 percent of these apps (18 of them) do use

the API.

Using the addJavascriptInterface API does not automatically make an app

potentially vulnerable. To make attacks possible, attackers need to somehow get their

malicious pages into the victim’s WebView. This goal may not be achievable. WebView

provides an hook called

shouldOverrideUrlLoading, which is triggered every time a navigation event occurs

inside WebView. Android apps can implement their own logic to process the navigation

event.

Using this hook, apps can restrict what pages can be loaded into WebView, by checking

whether the navigation destination URL is allowed or not; if not, they can simply change

the URL, or invoke the default browser in the system to display the URL, rather than

doing so in WebView. With such a mechanism, an app for Facebook, for example, can

ensure that all the pages displayed in its WebView are from Facebook, essentially

preventing malicious external pages from being loaded into WebView.

We have studied the 18 Android apps that use addJavascriptInterface, and see how

they treat the navigation event. Among them, 7 use the API in the admob package,
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developed by Google for displaying advertisement. Google did a good job in restricting the

WebView in admob to only display advertisements; if users click on one of the ads, admob

will invoke the default Android browser to display the target page, not in its WebView.

Among the rest 11, which use addJavascriptInterface in their own logic, 6 treat the

navigation event similarly to admob, and the other 5 do allow their WebViews to load

external web pages, making them potentially vulnerable. Our results are depicted in

Figure 4.5(d).

Although using the shouldOverrideUrlLoading API does help apps defend against

some attacks from malicious pages, it does not work if the malicious pages are inside

iframes. The API is only triggered when an navigation event occurs within the main frame

of the page, not the child frame. That is, even with the restriction implemented in the

API, a page can still load arbitrary external pages within its child frames, making the

attacks possible.

Fig. 4.6.: WebView Usage in Android Applications
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4.5.5 WebView Usage Revisit

In July 2012, we collected a larger sample which consists of the top 500 free apps in

each category in Google Play (14674 apps). Unlike the evaluation we did in the previous

study, we used a tool to scan the Dalvik bytecode of the apps to identify the usage of

WebView and its APIs among the apps.

We identified 10800 (73.6%) apps which contain WebView from the 14674 Android

apps, and the result is similar to the one we got from the smaller sample set. We also

collect the information of the powerful Web-based APIs as Figure 4.6 shows.

4.6 Attacks on UI-based APIs

We will discuss the attacks on UI-based APIs in the next section.
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5. TOUCHJACKING ATTACK

To enable interactions, WebView implements several APIs, allowing mobile application

code (from outside WebView) to interact with the web contents, and JavaScript code (from

inside WebView) to interact with the mobile application contents. Section 4 pointed out

that the Web-based WebView APIs, if not properly protected, can lead to security

problems [16]. That section also explained how those malicious apps launch attacks on the

web contents inside WebView by taking advantage of lacking of access control on those

web-based APIs and hooks. However, once a better access control is enforced on the

communication channel, the attacks can be defeated which is not difficult to achieve. For

example, WebView’s Web-based API loadURL is one of the most dangerous APIs used by

attacks in Chapter 4. An easy solution is to modify this API and restrict it to load trusted

script only, instead of allowing it to inject arbitrary JavaScript codes.

Assume such an access control system can be implemented in WebView, and all the

vulnerable APIs of WebView are protected, the question is whether WebView is safe now.

A complete access control by WebView should control all the potential interaction channels

between applications and WebView. The objective of this section is to study whether the

UI-based APIs inherited by WebView can pose risks to the contents that reside inside the

WebView, and the feasibility of attacks using the UI-based APIs. As Figure 5.1 illustrated,

our attacks will not use any of the web-based APIs designed for WebView. In other words,
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even if the problems described in Chapter 4 are fixed, there are still ways to attack the

contents inside WebView blackbox.

5.1 Security Concerns on UI-based APIs.

As we all know, when software components are reused (e.g., through libraries or class

inheritance), their features, although safe and appealing for other systems, may bring

danger to new systems. For WebView, it was not clear whether these inherited UI-based

APIs pose any threat in the new systems, especially whether they can be used by malicious

applications to attack the contents inside WebView. There has been no study to

investigate the security impact of those UI-based APIs inherited by WebView, mostly

because these UI-based APIs have not appeared to be problematic to other UI components.

After studying WebView, we realized that the attacks conducted by Luo et al. only covered

one type of interaction, not all.

From the security perspective, there is one thing that clearly separates WebView from

the other UI components, such as button, text field and etc. In those UI components, the

contents within the components are usually owned by or are intended for the applications

themselves. For example, the content of a button is its label, which is usually set by

applications; the content of a text field is usually user inputs, which are fed into

applications. Therefore, there is no real incentive for applications to attack the contents of

these components. WebView has changed the above picture.

In mobile systems, the developers of applications and the owners of web contents inside

WebView are usually not the same. Contents in WebView come from web servers, which
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Fig. 5.1.: Touchjacking Threat Model

are usually owned by those that differ from those who developed the mobile applications.

It should be noted that before Facebook released its own applications for iPhones and

Android phones, most users used the applications developed by third parties (many are

still using them). For example, one of the most popular Facebook apps for Android is

called FriendCaster for Facebook, which is developed by Handmark, not Facebook.

Because of such an ownership difference, it is essential for all mobile platforms to provide

the assurance to web applications that their security will not be compromised if they are

loaded into another party’s mobile applications.

A WebView component with better access control enforced on all the cross-component

communication channels can be treated as a blackbox. The mobile system guaranteed that

the integrity and confidentiality of the web applications cannot be compromised even if

they were loaded into the WebView embedded in a malicious application. Although users

may not fully trust the third-party mobile apps, they fully trust the system once they make
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sure that they are using the WebView. The similar trust assumption is made when users

view private contents in an iframe which is embedded in a third-party mashup web

application. This is because users trust the isolation mechanism enforced by the browser to

constraint the access from the host webpage if it comes from a different domain.

5.2 Attack Overview

This section discusses the overview of the two types of attacks that can manipulate

WebView’s touch events. The first type of attack is called Event-Simulating Attacks,

which uses WebView’s UI-based APIs to generate a faked touch event and dispatch it to

the victim webpage inside WebView. The second type of attack is called Touchjacking

Attacks, which takes advantage of social engineering techniques using WebView’s UI-based

APIs to redirect user-generated touch event from one WebView to another WebView.

All of the attacks we discribed in this section are under the same attack model as it is

explained in this section. The position technique discribed in this section is the key

technique to launch the attacks.

5.2.1 Attack Model

For all of the attacks described in this paper, we have the following assumptions:

1. We are concerned about potential malicious applications in mobile

devices. As we pointed out, the developers of the apps and the owner of the web

contents inside WebView are usually not the same. It is quite common for web

contents to be loaded into an untrusted environment.
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2. We assume that users clearly know they are using WebView. Users make

sure they are using the secured blackbox WebView instance to access web contents,

and they trust that the mobile system can isolate the contents inside WebView from

those from outside.

3. We assume that the effective access control mechanism is already enforced

on the Web-based APIs exposed by the WebView. As we mentioned before,

Web-based APIs are powerful to control the web contents inside WebView. We

assume a perfect redesigned access control model has been implemented on WebView

to isolate the contents inside WebView from outside world. This assumption clearly

distinguish the work in this section from that in Chapter 4, because under such an

assumption, the attacks describe in Chapter 4 will not be threats any more.

4. We assume that the UI-based APIs are accessible by the apps. WebView is

a specialized user interface (UI) component, and like others, such as buttons and text

fields, it is designed as a subclass of the more generic UI components, such as the

View class.

5. We assume that malicious apps are only granted with one permission. It

should be noted that to successfully launch the attacks described in this paper,

malicious Android applications only need one permission

Android.permission.INTERNET. This permission is widely granted to 86.6% of free

(and 65% of paid) Android applications [105]. Generally speaking, these attacks are

relatively easy to launch and difficult to detect, since they only require one very

common and less-dangerous permission.
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5.2.2 Positioning Method

In order to carry out the attacks in this section, attackers need to carefully position the

certain HTML HTML elements (e.g. a button) of the targeted webpage. By default, after

being loaded into a WebView, the webpage will be displayed inside the WebView. If the

size of the webpage is larger than the size of the WebView, only the most top-left area of

the webpage will be displayed initially. Only using the traditional positioning methods that

facilitate clickjacking attack in browsers is not enough to meet the positioning requirement

for Touchjacking attacks. We describe some positioning techniques.

Pixel Coordination. Android applications can use the following APIs to position a web

page to a specific position inside WebView: scrollBy, scrollTo, pageDown, pageUp. The

method scrollBy(x,y) scrolls the page by x pixels horizontally and y pixels vertically; the

method scrollTo(x,y) scrolls the page to the (x, y) position. The method pageDown

and pageUp scroll the display area to the top and bottom of a webpage. Attackers can also

use the websetting APIs to change the font size or zoom level of the webpage, such as

setTextSize and setDefaultZoom.

URL Fragment Identifier. Using pixel coordinates to position a target can be

inaccurate due to other factors, such as rendering differences between browsers and font

size differences between platforms. A solution to this problem is to use the URL fragment

identifiers to position anchor elements of the webpage. Anchors and URL fragments are

commonly used together to link to a particular section of the text within an HTML

document. When a URL containing a fragment identifier is loaded, a browser will scroll the

page so that the anchor is at the top of the viewable area. An anchor can be created in two
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ways, either by adding a ‘name’ attribute to an ‘a’ tag, or by adding an ‘id’ attribute to

any element. The following example shows how to navigate to the specific div tag using

URL fragment identifiers.

5.3 Event-Simulating Attacks

As we described in the previous section, like all of the view-based Android UI objects,

the WebView class inherits a number of methods from the View class, including the ones

needed by the event-dispatching mechanism in Android. As Figure 5.2(b) shows, all of the

view-based UI class should expose APIs that are needed by the event dispatch mechanism

in Android. For example, in Figure 5.2(b), once the user’s keystroke event is put into

KeyInputQueue in WindowManager, WindowManagerService will fetch the event from the

queue and dispatch it to the currently focused UI object, which is the <input> field of the

webpage in our example. To achieve this goal, WindowManager will invoke the

dispatchKeyEvent method of each view-based objects along the path until the currently

focused <input> field is reached.

(a) Event Dispatching APIs (b) Event Dispatching Mechanism

Fig. 5.2.: Event Dispatching Mechanism and APIs
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For the above mechanism to work, dispatchKeyEvent has to be exposed to other

classes, and also to Android applications. As results, applications can simulate a keystroke

event, and then invoke this API to dispatch the event to the currently focused UI object. If

an HTML object inside WebView is the currently focused UI object, it can receive such a

simulated event, not knowing whether it is a real or fake one. Malicious applications can

therefore inject arbitrary events to the web contents inside WebView.

Event Dispatching APIs. We list all the APIs inherited by WebView from the View

class for the event dispatching purpose; these methods are exposed to Android

applications. The APIs are listed in Figure 5.2(a). By using those APIs, attackers can

simulate a variety of user events, and dispatch them to the webpages inside WebView. We

will focus on two of the basic APIs dispatchKeyEvent and dispatchTouchEvent. We

use an attack example to illustrate how to use them to perform basic user operations, such

as input, click, select, and highlight.

(a) Load Facebook (b) Status-Update Page (c) Type Malicious Mes-
sage

(d) Final Result

Fig. 5.3.: Event-Simulating Attacks on WebView
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Attack Example on Facebook. To launch the event-simulating attack on Facebook, a

malicious Android application needs to load Facebook into its WebView, and convince the

user to log into Facebook from this application (it is quite common for users to use a

third-party application to log into their Facebook accounts). Figure 5.3(a) illustrates this

first step.

After the Facebook page is loaded, the attacker can simulate a touch event on the

Status button. As the result, the webpage will be navigated to the Status Update

webpage (see Figure 5.3(b)). The malicious applications will simulate a touch event to

select the text field on this page, and then simulate a sequence of key stroke events, which

result in a text message “Hacked By Touchjacking Attack!” being typed into the text field.

Figure 5.3(c) shows the result.

In the last step, the malicious application needs to simulate another touch event on the

Share button. This results in the button being clicked, and the updated status being

submitted to Facebook. After this step, the victim user’s Facebook status will be updated

with the contents generated by the malicious application. Figure 5.3(d) shows the final

result. Obviously, we can use similar attacks to post malicious messages on the walls of the

victim’s friend, deleting the victim’s photos, etc.

The code for launching the attack is listed in the following. The logic of the code is

quite simple. For example, in Line 5, MotionEvent.ACTION DOWN and

MotionEvent.ACTION UP generate a touch event at the coordinate (52, 95), where the

status button is. This event is then dispatched to WebView using the

dispatchTouchEvent API.
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1: /* Simulate Touch Event for STATUS button */

2: long downTime = SystemClock.uptimeMillis();

3: final float x = (float) 52, y = (float) 95;

4: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

5: downTime, MotionEvent.ACTION_DOWN, x, y, 0));

6: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

7: downTime + 20, MotionEvent.ACTION_UP, x, y, 0));

8:

9: /* Simulate Touch Event to select the texfield */

10: long downTime = SystemClock.uptimeMillis();

11: final float x = (float) 113, y = (float) 156;

12: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

13: downTime, MotionEvent.ACTION_DOWN, x, y, 0));

14: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

15: downTime + 20, MotionEvent.ACTION_UP, x, y, 0));

16:

17: /* Simulate Sequence of Keystroke Events*/

18: mWebView.dispatchKeyEvent(new KeyEvent

19: (KeyEvent.ACTION_DOWN, KeyEvent.KEYCODE_H));

20: ... ... ... ... ... ... ...

21: mWebView.dispatchKeyEvent(new KeyEvent

22: (KeyEvent.ACTION_DOWN, KeyEvent.KEYCODE_K));

23:

24: /* Simulate Touch Event for SHARE button */
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25: downTime = SystemClock.uptimeMillis();

26: final float x = (float) 426, y = (float) 35;

27: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

28: downTime, MotionEvent.ACTION_DOWN, x, y, 0));

29: mWebView.dispatchTouchEvent(MotionEvent.obtain(downTime,

30: downTime + 20, MotionEvent.ACTION_UP, x, y, 0));

5.4 Touchjacking Attacks

In this section, we describe how to let users generate touch events, and how to hijack

those events for malicious purposes. We call this type of attacks the Touchjacking

attack. We describe three attacks; based on their different attack strategies, we give them

different names.

Fig. 5.4.: Touchjacking Attack Overview

We give a brief overview of the three attacks here, and explain the details later in this

section. Figure 5.4 illustrates the attacks.
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1. WebView Redressing Attack. In this attack, malicious applications put a smaller

WebView on top of a larger one, making the smaller one look like an element (e.g.

button) within the larger one.

2. Invisible WebView Attack. In this attack, malicious applications overlay an

invisible WebView on top of a visible one, causing users to see the visible one, but

operate on the invisible one.

3. Keystrokejacking Attack. In this attack, malicious applications overlay some

native UI objects on the top of the HTML elements inside WebView; while the user

believe that they are typing in the field that belongs to a web page, they are actually

typing in a field that belongs to the malicious applications, which can steal the

information typed by the users.

5.4.1 WebView Redressing Attack

Generally speaking, the idea behind the WebView redressing attack is to seamlessly

merge two or more WebView containers, making them look like one. When the

non-suspicious user reacts to the contents inside WebView by clicking some links or

buttons, because what the user clicks on may belong to a different page in another

WebView, the user is tricked into reacting to the contents in another WebView, and those

contents are not even displayed to the user.

The attack consists of two or more WebViews (we will use two in our description). One

of the WebViews is called the outer WebView, and the other is called the inner WebView.

The inner WebView loads the malicious webpage, and it is intentionally made small, so it
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(a) Outer WebView (b) Inner WebView (c) What User Sees (d) Login Dialog

Fig. 5.5.: WebView Redressing Attack Example

only displays a very small portion of the webpage to users. This is important, as the

attackers do not want the users to see the entire page, which reveals the malicious intents.

The malicious application can use the positioning method described above to display a

specific part of the page (such as a button) to users.

The outer WebView is larger, and is for the users to view web contents. Attackers

overlay the inner WebView on top of the outer WebView, and make it cover a selected area

of the outer WebView. Because the inner WebView is small and has no obvious

boundaries, the inner WebView looks like part of the elements on the webpage inside the

outer WebView. If users react to the contents in the outer WebView, and clicks on the

buttons within the inner WebView, they are actually reacting to the contents in the inner

WebView. This is dangerous, as the users never got a chance to see the contents that they

have reacted upon.

Case Study. We demonstrate the WebView redressing attack using an example.

Facebook has been a major spam target; one of the goals of the spammers is to find ways

to post links or other information on Facebook user’s walls. Just like email spams, no
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matter what improvement the company makes, spammers have always been able to find

new ways to cause problems. We will demonstrate a new way to launch the “likejacking

attack” [79] by using the WebView redressing technique, so that the users can be tricked

into “Like”ing spam pages.

In this attack scenario, assume that the malicious Android application is written for

New York Times. Normally, only the outer WebView is visible and users will use this

WebView to visit the articles at www.nytimes.com (see Figure 5.5(a)). The malicious

Android application can insert the inner WebView at any time when the user navigates to

the New York Times page. The inner WebView contains the spam article, with a Like

button (see Figure 5.5(b); we did not show the spam article in the figure). The attackers

need to pre-calculate the location of the inner WebView (Figure 5.5(b)) to redress the

webpage inside the outer WebView.

After the redressing, what the user sees is shown in Figure 5.5(c). Clearly, it is quite

difficult for the user to see that the Like button is not part of the New York Times page. If

the user really likes this article and wants to share it through Facebook, he/she will click

on the Like button, not knowing that the button is associated with a different article

hidden in another WebView.

If the user has not logged into Facebook yet from this application, once clicking on the

Like button of the inner WebView, a dialogue window (which is a new WebView instance)

will be popped up with the Facebook’s login page inside (see Figure 5.5(d)). Since it is

hard for the user to realize that the dialog window is not popped up by the outer

WebView, the user may very likely log into Facebook, and eventually share the article that

he/she has never seen.
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It is also likely that the user may have already logged into Facebook from the inner

WebView (due to the clicking of some legitimate Like buttons). Because cookies are shared

among all the WebView instances within the same Android application, clicking on the

Like buttons in another WebView will not result in the pop-up dialogue window; instead,

the “like” request will be automatically sent to Facebook with the valid cookies.

(a) Visible WebView (b) Invisible WebView (c) User’s View

Fig. 5.6.: Invisible WebView Attack Example

5.4.2 Invisible WebView Attack

Both Android and iOS systems allow applications to set transparency on WebView

(UIWebView) objects. Low opacity may result in the webpage inside WebView being

hardly visible, or completely invisible. In Android 3.0, applications can use the method

setAlpha to set the opaque level of the WebView object. Every native Android UI object

maintains the alpha property and exposes the setter and getter to applications. Since the

WebView class was derived from the View class, it also inherits this property. It should be

noted, when a WebView object is transparent (i.e. alpha value equals to 0), it is
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transparent visually, not physically, i.e., users can still touch/click on the page inside a

transparent WebView. The following code demonstrates how to set the WebView

transparent.

WebView mWebView = (WebView) findViewById(R.id.webview);

mWebView.setAlpha(0);

The transparency feature is intended for generic UI components, and it brings no harm

to them; however, when this feature is inherited by WebView, it poses great danger to the

web contents inside WebView. We describe how this feature can be used for attacks.

In this attack, malicious Android applications need to have two WebView instances:

one visible and the other invisible. The visible WebView will load an attractive webpage

that is controlled by attackers, and the purpose of this page is to entice users to perform

touch actions. For example, this web page can be a small game. Another WebView is

invisible, and it loads the targeted webpage. The invisible WebView is put on top of the

visible one. Therefore, when the user touch something that is apparently in the visible

WebView, the touch actually goes to the invisible one, because it is on the top.

To successfully launch the touchjacking attack, attackers need to first calculate the

position where user may perform the touch action. Since the attacker controls the visible

webpage, it is not hard to predict the position and precisely overlay the UI in the targeted

webpage inside the invisible WebView object on top of specific position. Attackers can use

the positioning techniques mentioned in the beginning of this section to control the place of

the clickable elements (e.g. button, link).
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Case Study 1. In this attack example, we repeat the case study in the previous

subsection, but using the transparency technique to achieve the same goal. We assume that

the malicious Android application is written for New York Times, and the user is currently

reading an article from there. This time, the article itself has a legitimate Like button to

facilitate sharing via Facebook (see Figure 5.6(a)).

Attackers create another WebView (invisible), and load the spam page inside it. This

page contains an article that the spammers want the user to share with their Facebook

friends, and there is a Like button on this page (Figure 5.6(b) shows this spam page, but

we did not show the spam article inside).

The malicious application then overlays the invisible WebView on top of the visible one.

Using the positioning techniques, the attackers can make the two Like buttons in both

WebViews be placed at exactly the same location on the screen, i.e., they completely

overlap. Because of the transparency, what the user sees is exactly the same as that in

Figure 5.6(a).

When the user clicks on the Like button, the click event goes to whatever is on the top,

i.e., the transparent WebView, not the one for New York Times. As results, the spam

article is shared to the user’s Facebook friends. This consequence is the same as that in the

WebView redressing attack.

Case Study 2. If the user also uses the malicious application to log into his/her online

accounts (such as Facebook), the attack can be much more severe. We use Facebook to

demonstrate how to use the Invisible WebView attack to hijack the touch events and trick

users into deleting friends from their Facebook accounts.



88

(a) Initial Visible Web-
View

(b) Visible WebView (c) Invisible WebView (d) What User Sees

Fig. 5.7.: Invisible WebView Attack Example

Before the attack is launched, users have logged into their Facebook accounts from the

visible WebView, and are viewing their Facebook pages (Figure 5.7(a)). At this time, the

invisible WebView is not overlaid yet. When the user clicks a link shared by his/her friend,

WebView will navigate to another webpage (Figure 5.7(b)); this webpage is not malicious,

but the attacker needs to know the possible click points. At the same time, the application

needs to overlay the invisible WebView on the top, and inside the WebView should be the

Facebook webpage (Figure 5.7(c)).

Attacker can also precisely put the UNFRIEND link of the transparent Facebook page on

the top of the DOWNLOAD button of the visible WebView. If the user wants to download the

video as shown in Figure 5.7(d), the user needs to click the DOWNLOAD button. Because the

UNFRIEND button is on the top, this button is actually clicked, and user’s some friends will

be deleted from the friend list.

Although the user has never actually logged into Facebook account using the invisible

WebView, since the cookies are shared among all WebView instances within the same
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Android application, the UNFRIEND request from the webpage in the invisible WebView

will be able to attach the Facebook cookies and cause the deletion of the user’s friend.

5.4.3 Keystroke Hijacking Attack

In the previous attacks, attackers redirect the user’s actions toward the webpage in a

WebView instance that is different from what the user sees. In this attack, we will

demonstrate how attackers can redirect those actions to the native Android UI objects (e.g.

a text field) that is completely controlled by the malicious applications. If the user’s

actions involve secrets (e.g. passwords), the attacker can get the secrets.

(a) Native UI Only (b) WebView Only (c) User’s View

Fig. 5.8.: Keystroke Hijacking Attack Example

The attack is based on the fact that the HTML UI objects inside WebView and the

Android native UI objects are based on the same GDI (skia), and the exterior appearance

of the HTML UI objects look similar to their related native UI objects. For example, the

HTML input field looks almost the same as the text editing widget EditText, which is a

native UI component of Android. Therefore, if we put a native UI object on top of the
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HTML UI object of the same type, users will not be able to tell the difference. If they

decide to type into what appears to be a part of the webpage, they will be typing into the

native UI object that belongs to the attackers.

To successfully launch the attack, the attackers should precisely overlay the native

Android UI objects on top of the HTML objects of the web page inside WebView, with

exactly the same size and location. Since the layout of the victim page is almost stable in

many cases (e.g. login pages), attackers can quite easily calculate the size and position of

the targeted UI objects within the webpage.

Case Study. We use Gmail as an example to demonstrate how the attack works. We

separately display the two layers of layout in the malicious applications. Figure 5.8(a) is

the upper layer, consisting of two EditText native UI components. Figure 5.8(b) is the

lower layer, consisting a WebView with the Gmail login page inside. When being displayed

on the screen, the two EditText UI components will exactly overlap with the two input

fields on the Gmail login page. When users type the username and password, they actually

type in the EditText UI components, which are accessible by the attacker.

Users may be aware of the attack once they finish the input actions and submit the

form, because the actual HTML input objects are empty, and an error message will be

displayed. To further disguise that, the attackers should also add a fake submit button

(native UI object). Once the fake button is clicked, the malicious application should ask

WebView to navigate to an error page, displaying something like “Page cannot be

displayed due to network problems”. After the users go back to the previous page, the
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malicious application remove all the overlaid native UI objects, so the users can proceed

without raising suspicions.

5.5 Attacks on Other Platforms

To see whether the attacks we identified in this paper work on the platforms other than

Android, we have tried the attacks on iOS (version 4.3.2) and Windows Phone 7. All the

three types of Touchjacking attacks work on iOS and Windows Phone 7.

Attacks on iOS. All Touchjacking attacks work on the iOS platform. For the

event-simulating attack, unlike Android, iOS does not provide APIs to dispatch key/touch

events events to UIWebView. Therefore, we were not able to directly simulate key/touch

events in UIWebView.

Attacks on Windows Phone. All Touchjacking attacks work at Windows Phone

platform. However, for the event-simulating attacks, similar to iOS, Windows Phone does

not provide any API support for programmatically invoking an event.

Fig. 5.9.: Attacks on mobile platforms
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6. SECWEBVIEW: PREVENT SCRIPT INJECTION ATTACK

FROM MALICIOUS APPS TO WEBVIEW

At the same time as mobile apps give users a richer experience using WebView than

generic browsers, WebView exposes a larger attack surface to attackers. JavaScript

injection from untrusted mobile apps to pages inside WebView is the most severe

vulnerability. WebView’s loadUrl API is commonly used to inject arbitrary script directly

into WebView without any constraint, and the injected script can be executed with the

same power of the page’s script by design. It can manipulate the page’s DOM objects and

cookies, interact with any page script, send AJAX requests to the server and etc. The

powerful script injection attack makes huge impact. However, without it, malicious mobile

apps can use the hook mechanism provided by the WebView to monitor the event

occurred in the WebView. Attackers can install callback functions to WebView hooks, and

they are triggered when their intended event has occurred. Once triggered, these callbacks

can access the event information, or may change the consequence of the events. For

example, callback functions on hook shouldOverrideUrlLoading can take over the control of

the page navigation such as changing the destination URL.

What makes the threat much severer is that the current access control on WebView is

inadequate to protect webpages in WebView regardless of whether it is embedded trusted

or untrusted mobile apps. The cause is that mobile app developers are not always the ones

that own the webpage loaded inside. For the Trusted mobile app, such as Google’s official
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Gmail app, users only trust the mobile app to inject script to the webpage owned by

Google (e.g. gmail.com and youtube.com). However, if this app loads online banking page

inside it, users may be concerned about their bank account privacy being leaked to Google.

Usually, users may want to visit pages in the WebView embedded in the UnTrusted mobile

apps, because these apps customize their interfaces based on the web contents or the screen

size and give users a much richer experience than using the generic browsers. Many

popular web apps have their dedicated apps, developed in-house or by third parties. For

example, one of the most popular Facebook apps for Android is called FriendCaster, which

is developed by Handmark, not Facebook. But users have to take the risk that untrusted

apps can inject script to compromise the webpage they are visiting using the app.

Our study shows that more than 61000 mobile apps potentially inject script to

WebView. The user’s sensitive information of the page is potentially under attack. If the

situation is not improved, the problem will get worse; more and more mobile apps will

embed WebView to load pages in the future based on the trend of mobile app

development [136]. A recent report from Gartner claims that HTML5-based mobile and

hybrid apps will split the market share with native mobile apps by 2016 [137].

The objective of this chapter is to propose a noval framework, SecWebView (SECure

WebView), to prevent the pages inside WebView from the existing threats. This chapter

identifies that current WebView design adopts an improper access control model, and

conducts several studies to justify the model used in SecWebView. This chapter also

discusses the principles followed in SecWebView design before explains the design detail

and uses a comprehensive evaluation to prove the new design is secure.
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6.1 The Problem

My work [16] in this dissertation pointed out that the fundamental problem making

WebView vulnerable is the weakening of the Trust Computing Base (TCB). Since security

in any system must be built upon a solid TCB, web apps rely on multiple TCB

components to achieve security on the client-side. Browser developed by well-recognized

companies we use every day, such as Chrome, Firefox, IE, Safari, etc, is a critical

component in the TCB of the Web. The pervasive use of WebView has actually changed

the security landscape of the Web. My work in [16] did not narrow down to answer who is

responsible for the weakening of the TCB, and how to solve the problem. This section will

answer the following three questions:

• Is the problem an architecture issue, design issue or implementation

issue?

• What is the proper architecture/design/implementation for WebView?

• How to develop the proper architecture/design/implementation for

WebView?

I answer the question in this part by comparing the architecture and design of

WebView and Browser.

6.1.1 Similarity Between Browser and WebView

Browser and WebView share the similar architecture. Browser is a program with a

graphical user interface for displaying HTML files; WebView is an UI element that hosts
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HTML content within a mobile application. Since both of them need to process and render

web contents, browser and WebView are built upon a component to deal with the

web-related tasks. This component is called Web Engine (see Figure 6.1), 1 which follows

the W3C standard to process web contents (e.g., fetching, parsing and rendering the web

contents from remote servers). Usually, web engine is composed of a Rendering System

that produces visual representation for a given URI, a JavaScript Interpreter that

interprets and executes JavaScript, a Data Persistence that stores various data associated

with the browsing session and a Networking Module that handles network tasks.

Browser and WebView not only use web engine but also extend its basic functionalities

to provide richer user experience. In both of their architecture, they encapsulate the

underlying web engine code, and extend web engine by building components on the top of

it to provide new features. For example, in browser architecture (Figure 6.1 left-side),

browser develops Browser Engine component to encapsulate web engine, and further

extends it to provide browser features, such as externsion and plugin. Therefore, besides

simply displaying web contents, browser can support primitive browsing actions (forward,

back, and reload) and provide hooks for viewing various aspects of the browsing

session (page-loading progress and settings). In the WebView case, it architecture can be

interpreted by its name Web and View (Figure 6.1 right-side). The Web part of WebView

is the web engine to process the web contents. The View part wraps web engine code to

the Java classes so that web engine can be extended as a native UI element in mobile

system. In other words, WebView expands the View component by building it on the top

of the Web part, and redefines it as a WebView.

1In Android, system browser and WebView share the same web engine code.
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Fig. 6.1.: Browser and WebView Architecture

Instead of refactoring the source code of web engine directly, both browser and

WebView extend web engine through the APIs exposed by it. In order to be easily

integrated, web engine exposes public APIs to external programs so that they can get

involved in loading, displaying and manipulating web contents based on their needs. These

public APIs are built in the embedding layer of web engine, called Embedding APIs.

Both browser and WebView consume these embedding APIs to customizing the behaviour

of web engine, so that they can provide new features beyond what web engine can achieve.

Browser and WebView share the similar architeture to use the same web engine, and

extend it by customizing the behaviour of it through the same embedding APIs. Therefore,

it is not an architeture issue of WebView to cause the weakening of the TCB. To answer

whether it is a design or implementation issue, we further explore the different between the

design of browser and WebView.
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6.1.2 Different Between Browser and WebView

The major different between browser and WebView is the way that they utilize web

engine’s embedding APIs. Protecting embedding APIs is important to maintain web engine

as an TCB, since ‘some’ of them are not subject to the ‘security principle’ of web engine.

Browser protects them well and maintains the TCB, but WebView fails and results in a

weakened TCB.

We know that only the well-known web engines, such as WebKit on Safari, Blink on

Chrome, Gecko on Firefox and Trident on IE, can serve as solid TCBs. It is not only

because we trust the companies (e.g., Google and Microsoft) that developed them, but also

because significant efforts and security tests have been applied to ensure that they strictly

follows the security principle of the Web, known as Same Origin Policy (SOP). SOP

isolates the web contents of one origin from the contents of another origin, so that

malicious pages cannot compromise the contents from any other origin. Therefore,

well-known web engines guarantee that only the trust entity can access the sensitive web

contents (e.g., cookies, DOM) stored inside the web engine.

However, some of the embedding APIs are not subject to SOP, and they can

manipulate web contents from any origin when invoked by external programs. Therefore,

we call them Privileged APIs. We identify two types of privileged APIs.

• In-context Script Evaluation. External programs can invoke some privileged APIs

to evaluate arbitrary strings as JavaScript codes in a given context of web engine.

The executeScript() API defined in the class WebFrame is one of the examples.

These privileged APIs are designed to support the ‘javascript’ resource identifier



98

scheme (the scheme encodes script code in a resource identifier) [138], which provides

a mean to run custom script code when the resource identifier is dereferenced.

• Delegation Hooks. Some privileged APIs are exposed as hooks for the external

programs to customize WebKit behaviors, such as the event-handling of

onPageFinished and Touch-Event events. For example, to intercept the navigation

event, or even change the consequence of the events, external programs can register

callback functions to the hooks for the navigation event.

Due to the power of the privileged API, in order to maintain web engine as an TCB, it

is important to protect them from untrusted code. Although both browser and WebView

expose privileged APIs to untrusted entities, the way they protect them is different. For

example, browser enforces different access control model when exposes privileged APIs to

different entities. When user explicitly invokes these APIs through browser UI, no privilege

check is performed since user’s action is trusted. However, browser checks corresponding

permissions for extensions to ensure only the trusted extensions by users can accesses these

APIs. Untrusted extensions, the ones is not granted corresponding permissions, are blocked

to access privileged APIs.

However, in the WebView scenario, WebView exposes the same privileged API to

mobile apps. For example, the loadURL() API is extended from the executeScript()

privileged API as we explained before. The current design of WebView does not enforce

any access control to protect the privileged APIs. As the result, untrusted mobile apps can

bypass the security principle of WebView by invoking the privileged APIs and weaken the



99

WebView TCB. Obviously, WebView design choose an improper access control model, and

it is a design flaw.

6.2 Preliminary Studies

We found the answer the first question as the problem is a design issue, and it is due to

the improper access control model to protect privileged APIs. The second question can be

rephrase as: What is the proper access control model to protect privileged

APIs in WebView design? To answer this question, we did several preliminary studies on

how and why mobile apps need to access privileged APIs. We also investigate the access

control models used by browser to protect privileged APIs for different types of component.

If the usage of privileged APIs in WebView case has similarity with the usage in browser

case, we can borrow idea from browser design.

6.2.1 Practical Usages of privileged APIs in WebView

For the two types of privileged APIs, the usage of delegation hooks is straightforward.

Mobile apps intercepts few number of events inside WebView, and run their callback

functions. The impact of this type of privileged APIs is limited. We are more interested in

the type of Script Evaluation privileged APIs, which is exposed as the WebView’s API

loadUrl. It is because the practical usage may be limited, although injected script is

powerful in theory, including interacting with the user, controlling the browser and altering

the document content.
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Therefore, we investigated 600 android apps from Google Play ; we select top 20 apps

across 15 different categories (e.g. Entertainment, Productivity, Utilities). By scanning the

disassembled apps code, we identified all apps that may inject script. But we captured the

actual injected script at runtime, because the script can be dynamically generated by

mobile apps. We formulate four practical usages to inject script and understand how it

interacts with web content.

Statistics. In our case study, we found 28% of apps do not use WebView and 42% embed

WebView but do not inject script. 180 apps (30%) inject script including 87 to local files,

75 to http scheme, 18 to blank page, but 0 to https page. However, we believe the

percentage of apps injecting script is much higher, because we found several usages in Java

SDK, which are imported by millions of mobile apps. Libraries include Millennial-Media,

MobClix, OpenFeint and PhoneGap (figure 6.2(b)), which are imported by more than

60000 apps. For example, although 3500 apps inject script to WebView by including

OpenFeint, but all of them are from a single category, Game, from Google Play. Since we

only choose top 40 apps from each categories, the number of apps that inject script to

WebView is much higher.

Usage 1: Enhance Visualization of Page. Injected script is used to reformat the

layout or themes of the page to best fit a smart-phone’s smaller screen size. Since not all

the webpage supports this auto-resizing feature, mobile apps need to inject script to

perform the actions like modifying DOM. For example, the e-book app Alice’s

Adventures in Wonderland, which displays book contents in WebView, injects the

following script to change the font and color of the page contents or background color.
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Fig. 6.2.: Script Injection Statistics

private void setupColor() {

wv.loadURL("javascript:(function () {

b=document.body; b.style.background=‘black’;

b.style.color=‘white’;

e = document.getElementsByTagName(‘a’);

for(i=0;i<e.length;i++){

e[i].style.color=‘red’;}

})()");

}

Usage 2: Redirect Device/App’s Events to Page. Injected script is also used to

redirect device’s and app’s events to the page. Due to the design of WebView, pages inside

WebView cannot receive the events occurred in the device and app, such as the volume

down/up button is pressed and the mobile app is retrieved from/put into the background.

These events is important, especially for HTML5-based mobile apps, such as
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PhoneGap [21] apps. In order to behave like a native app, PhoneGap apps need to react

when these actions occurred (e.g., webpage needs to pop up menu when users press the

device’s menu key). An easy way is to inject script into the page and encode the name of

the event (e.g.,menubutton, fireDocEvent) in the script, as the following script shows:

public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_VOLUME_UP)

wv.loadUrl("javascript:cordova.fireDocEvent(’volumeupKey’);");

else if (keyCode == KeyEvent.KEYCODE_MENU)

wv.loadUrl("javascript:cordova.fireDocEvent(’menuKey’);");

} // Similar injected code for other events.

Usage 3: Send Device Resources to Page. WebView sandbox prevents the page

inside it directly access system resources (e.g., Contact, Calendar). These resources are

important for the pages to provide rich user experience. For example, MobClix, an

advertisement network, uses these resources to provide more accurate advertisement. The

mobile apps that would display commercials need to import MobClix’s SDK, and the SDK

will fetch AD pages and load them into WebView. MobClix will inject script into the AD

pages with contact and geolocation resources embedded, as following code snippet shows:

location = locationManager.getLastKnownLocation("gps");

JSONObject.put("altitude", location.getAltitude());

JSONObject.put("latitude", location.getLatitude());

mWebview.loadUrl("javascript:eval(’" + gpsDataCallback

+ "(" + JSONObject.toString() + ")’);");
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Although addJavaScriptInterface provides a way to pass this barrier, some mobile

apps choose to not use it due to the lack of finer-grained access control.

Usage 4: Send Mobile App Data to Page. Similar to device resources, pages inside

WebView are isolated from mobile app’s resources. Mobile app’s data is also important for

some mobile apps, such as OpenFeint which is a social gaming network product used by

3500 mobile apps. By importing its Java SDK, developers can add social networking

aspects with minimal effort. To easily support multiple mobile platforms, OpenFeint reuses

its JavaScript library which is executed in a hidden WebView to interact with back-end

server. OpenFeint needs to use the current mobile app’s environment information to

initiate its JavaScript library. Therefore, mobile apps inject script to the WebView by

invoking clientBoot callback function with environment information as parameter. When

mobile apps need to send request to server, they inject script to the WebView and invoke a

JavaScript callback function completeRequest with request information as parameter, which

actually constructs and sends the request.

public void loadInitialContent(String env) {

mWebNav.loadUrl("javascript:OF.init.clientBoot(’"+env+"’)");

}

public void apiRequest(Map<String, String> op) {

mWebNav.loadUrl("javascript:OF.api.completeRequest("+

requestID+","+statusCode+","+response+")");

}
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6.2.2 Protection on Privileged APIs in Browser

Modern browsers are not just limited to these basic functionalities; browsers build other

components on the top of the browser engine, such as extension and plugin, to further

extend the functionality of browser and provide richer user experience. Although some of

these untrusted components can still access privileged APIs, browser enforce different

access control models to protect the APIs to maintain browser as an solid TCb. we

formulated three models used in browser design.

Users Model. Browser UI component (e.g., address bar) enables the users to interact

with webpage from any origin in the browser, and this is achieved by invoking web engine’s

privileged APIs. However, no security check is enforced on this component, because

Browser UI is written in native code, which cannot be tampered by the script in the

malicious page. In other words, ONLY users can explicitly trigger the UI events. For

example, when users navigate to an URI in JavaScript scheme (url starts with the

“javascript:”), such as typing into browser’s address bar or clicking a bookmarklet icon, the

script in the URI will be executed in the page displayed in the browser. Once users trigger

the action, Browser UI will invoke privileged APIs to execute the script and bypass the

SOP without any security check.

Widget Model. Modern browsers allow users to install widgets (i.e. extensions or

add-ons) to extend their functionalities. Widgets can access privileged APIs to customize

page from any origin, but they needs to declare corresponding permissions in the manifest

file. For example, Chrome extension can use API chrome.tabs.executeScript to inject script

to pages. In order to invoke this API, extension need to declare tabs and cross-origin
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permissions, and users need to grant these when installing the extension, as the following

code shows:

/* Extension Code*/

chrome.tabs.executeScript(tab,{file:"content_script.js"});

/* Extension’s Manifest File - manifest.json */

{..., "permissions": [ "tabs", "http://*/*" ], ... }

Plugin Model. Although plugins are isolated from the page, browsers allow plugin, such

as Silverlight, Java Applet, and Flash to inject JavaScript code to the host page. Browser

engine exposes privileged APIs to the plugins, but an explicit consent from the host page is

required to access them. For example, when a page embeds a Flash plugin using the object

tag, it needs to set the value of the allowScriptAccess property to true in order to consent

to script injection [139].

<!-- Embed A Flash Plugin -->

<object classid="clsid:d27cdb6e">

<param name="movie" value="player.swf">

<param name="type" value="application/x-shockwave-flash"/>

<param name="allowScriptAccess" value="always" />

</object>

<!-- Embed A Java Applet Plugin -->

<object classid="clsid:8AD9C840">

<param name="code" value="XYZApp.class">

<param name="type" value="application/x-java-applet">



106

<param name="scriptable" value="true">

</object>

<!-- Embed A Silverlight Plugin -->

<object classid="clsid:8b6e40A">

<param name="source" value="Silverlight.xap"/>

<param name="type" value="application/xx-silverlight-2"/>

<param name="enableHtmlAccess" value="true" />

</object>

6.3 SecWebView Model Design

To prevent the existing attacks on WebView from mobile apps, we propose

SecWebView framework. SecWebView framework is built on the existing WebView design

to enhance its security, and enforces new access control model on the WebView APIs which

could exposes privileged APIs. This and next section discuss the design of SecWebView

framework. This section mainly focuses on the access control model adopted by

SecWebView, and justifies why this model is suitable. Next section explains the system

design of SecWebView in order to achieve the new model.

6.3.1 Adversary Model

Attacker’s goal is to compromise the page loaded inside the WebView embedded in the

malicious mobile app. Common attacks on the Web, such as XSS, CSRF, and phishing
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attacks (e.g. faked WebView) [140] are not in our scope since the fundamental problem is

not the design of WebView.

WebView embedded in a malicious app is not equivalent to a compromised or malicious

browser. The architecture of WebView in Figure 6.1 shows that JNI mechanism isolates

the Java part and the native part of WebView. Malicious app can entirely control the Java

part, but still cannot access the native part of WebView which controls and stores the

sensitive web contents. However, compromised browser is equivalent to the case that

attackers exploit web engine flaw (e.g., buffer overflow) to control the native part of

WebView.

6.3.2 Access Control Model

SecWebView adopts the model similar to browser’s widget model. In order to customize

the webpages from certain origin through certain privileged API, mobile application needs

to declare permissions associated to that privileged API for that origin, in app’s

AndroidManifest.xml file. It is similar to how browser extensions declare privileges to

access privileged APIs. SecWebView introduces permissions associated with WebView to

Android permission system. During the install-time, SecWebView gives full view of the

requested WebView permissions to user, along with other Android permissions declared,

and user decides whether to grant them or not. SecWebView checks the corresponding

permissions at runtime when mobile apps access privileged APIs. Moreover, SecWebView

prompts user on per-use and per-site basis for the “high risk” actions from mobile apps.
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The following code shows the manifest file of a mobile app which declares all WebView

permissions for local pages, and the permissions to inject script to a separate context and

access DOM nodes if the page comes from the origin https://scissorsfly.com. By default,

no WebView permission is granted for the origins without explicit declaration.

<access origin="file://*">

<permission name="WebView.*">

</access>

<access origin="https://*.scissorsfly.com">

<permission name="WebView.LoadUrl.Isolated">

<permission name="WebView.Script.DOM">

</access>

(a) Warning prompt Case 1 (b) Warning prompt Case 2

Fig. 6.3.: SecWebView Runtime Prompt Warnings

Widget model depends on users to make an access control decision when installing the

app. The problem is whether they can make a correct one or not. Our investigation shows
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that WebView case is similar to browser extension case. The success of adopting this model

on extensions for both chrome [141] and firefox browsers reflects a positive answer. Browser

extensions generally inject script to the webpage on two scenarios: 1) Only inject to certain

pages (e.g., Gmail extension only needs to inject script to gmail page to customize it). 2)

Inject to any page but provide a specific functionality (e.g., Skype extension that injects

script to any page but only changes the phone number to a skype callable link). When

users install the extension, even non-programmer can have a roughly idea which sensitive

page resource is necessary for the extension. The study we explained in the previous

section shows that mobile apps inject script to WebView also under the same scenarios.

Similar model is proposed on web apps on mobile browsers [142]. In addition, WebView

is more suitable for this model because users would ONLY load the pages related to the

functionality of the mobile apps. It is impossible for users to load online banking page in

the WebView embedded in the gaming mobile app. Therefore, users can make access

control decision much easier and accuracy when installing mobile app that embeds

WebView than browser extension.

It is still possible for users to make an inappropriate install-time decision. SecWebView

provides extra access control on the “dangerous” actions to prompt users on a per-use,

per-site basis. The “dangerous” actions include the ones requiring high-risk permissions

listed in Figure 6.5 or the permissions not declared, and any customization on pages under

HTTPS scheme since it is rarely used in real world. Figure 6.3(a) shows the warning prompt

when app injects script to a page not declared in the manifest file; Figure 6.3(b) shows the

warning prompt when app injects script to a HTTPS page although it has already declared

the permissions for this origin.
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6.4 SecWebView System Design

The previous section explained the model adopted in SecWebView framework, and how

developers and uses use SecWebView. This section discusses the detail of the SecWebView

system design to achieve the new model.

6.4.1 SecWebView System Overview

SecWebView design follows several security principles. The first principle is to follow

the model we identified in the previous section. Therefore, we systematically investigate all

the WebView APIs that exposes the underlying web engine’s privileged APIs. SecWebView

introduces the permission associated to a group of WebView APIs that have a similar

functionality (See Figure 6.5). When invoking these APIs, SecWebView checks the

corresponding permission.

Among all of the WebView APIs, the loadUrl API is the most complicated one in term

of security. This API allows untrusted mobile apps inject arbitrary scripts, which increase

the the number of available entry points can be attacked. However, the versatile usages we

identified in the previous study indicate that we cannot simply block the script injection

feature. To follow the principle Minimizing attack surface, SecWebView pursues an

alternative direction to replace the loadUrl API. SecWebView introduces specialized APIs

to facilitate generic functionalities without code injection.

Since specialized APIs cannot replace script injection, finer-grained access control (i.e.

multi-level execution environments) on the injected script from the loadUrl API is needed.

Injected script can be executed either in the webpage’s JavaScript virtual machine
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Fig. 6.4.: Architecture of SecWebView

(Web-World) or in a separate JS virtual machine (Android-World). Sensitive page

contents (i.e. cookies, local storage and DOM) are isolated from Android-World, and

corresponding permissions are required to access them. In addition, due to the demands of

mobile apps, we provide a secure bridge between Android and Web World to enable script

in different JavaScript VMs to interact with each other.

The above principles can be applied to other mobile platforms in theory, since the core

parts of our design (e.g., Multiple Worlds and X-World Bridge) are built on the

mobile-systems independent web engine. Since only Android system is open-sourced, we
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only implemented our idea on Android WebView. Although web engine design on different

platforms follows the similar standard, the actual implementation may need to be modified.

6.4.2 Access Control on WebView APIs

WebView exposes Java APIs to untrusted mobile apps. Some of the APIs (e.g.,

loadUrl) eventually invoke the underlying web engine’s privileged APIs. SecWebView

enforces permission checks on these APIs to ensure that the mobile app only gains the

privileges it declared. We systematically identified all of these WebView APIs and defines

corresponding WebView permission as Figure 6.5 shows.

Hooks provided in the WebViewClient class expose web engine’s privileged APIs

(delegation hook) to mobile apps. Apps can monitor the event occurred for every webpage

within WebView through these hooks. Two types of WebView hook permissions are

defined. One permission is WebView.Hook.Event; this one is required to use the hooks

that can only monitor the WebView events, such as onPageFinished. Another permission is

WebView.Hook.URL, which is required to use the hooks that can change the consequence of

WebView events (e.g. shouldOverrideUrlLoading).

Some specialized SecWebView APIs are implemented using web engine’s privileged

APIs. In order to use them, apps need to declare corresponding permissions as well. For

example, the permission WebView.SpecAPI.Message is required to invoke the specialized

API postMessage; and the permission WebView.SpecAPI.invokeJS will be checked to

access the specialized API invokeJSFunction.
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For the WebView APIs that could inject script (e.g., loadUrl), SecWebView provides

multi-level execution environment and enforces finer-grained access control on the injected

script. This is because these APIs are complicated in terms of security than the previous

APIs we discussed. We will explain them in next subsection.

Fig. 6.5.: WebView Permissions

6.4.3 Alternative method for loadUrl API

At the same time when untrusted mobile apps customize WebView to provide rich user

experience by injecting JavaScript code, it increases security risks in WebView design. The

number of WebView Java APIs exposed to the apps is outnumbered by the number of

JavaScript APIs that are accessible to the injected script; and it leads to a larger attack

surface. Although the study in Section 6.2 indicates that we cannot simply turn off this

feature, we observe that the four practical usages do not necessarily require apps to inject

script into WebView. The first usage (enhancing visualization) may be more challenging

without injected JavaScript, because what it needs can be application dependent. The rest

of the usages are generic functionalities.
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Therefore, SecWebView provides Specialized APIs. The purpose of these APIs is to

facilitate the mobile apps to accomplish the generic tasks without injecting script. It can

reduce the amount of code running and the number of available entry points that can be

attacked by untrusted apps. Specialized APIs include: (1) API WebView.dispatchEvent to

allow mobile apps to dispatch events by passing the name of the customized event such as

system volume up/down. (2) API WebView.postMessage to allow mobile apps to send

data to the pages inside WebView by passing the data as arguments. (3) API

WebView.invokeJSFunction to allow mobile apps to invoke a JavaScript function defined

in a webpage that is explicitly exposed.

6.4.4 Fine-grained Access Control on loadUrl API with Multiple Worlds

Simple introducing a permission for script injection WebView APIs is not enough,

because the injected script can access any webpage contents. A finer-grained access control

to constrain the power of the injected script is needed. The challenge is to limit the

interaction between the injected script and the script comes from the page. If the injected

script executes in the same JavaScript runtime as the page script, it is hard to find an

effective and practical way to isolate them [143,144]. That is the reason why web engine is

designed to evaluate scripts from different origin in the different JavaScript virtual machine

(VM) (called Runtime or Context); so web engine can follow the Same Origin Policy to

constrain the power of the script from different origin.

Android World. With the permission WebView.LoadUrl.WebPage declared, mobile apps

can still inject script to JavaScript runtime for page’s script (named Web World). In
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additions, SecWebView provides multi-level execution environment. It can execute the

injected script in a separate JavaScript VM (named Android World) with the permission

WebView.LoadUrl.Isolated declared. Mobile developers can explicitly indicate the World

to execute the injected script when calling API loadUrl. We customize Barth et al.’s [145]

isolated-world mechanism, which is designed to protect page from malicious extension.

SecWebView creates a separate JavaScript VM for Android World ; later injected script to

current page will be evaluated in the this VM.

The design of Android World can completely isolate the page’s script with injected

script; and we will discuss how to enable the limited communication between the two

worlds in the next subsection. We also need to limited the power of the injected script to

other web resources. Therefore, we conduct a systematically study on all the web

resources, identify the sensitive ones and improve the isolated-world mechanism design to

satisfy the demands of WebView case. For example, saved sensitive data by the page (e.g.,

Cookies and Web Storage) and in-memory sensitive data (e.g., Document object model or

DOM which is a data structure to represent page contents) need to be protected. Each DOM

node has a corresponding JavaScript implementation object, which is a reference of the

DOM node. This reference is required to access the DOM node properties. In

SecWebView, without the permission WebView.Script.DOM declared, none of the reference

of DOM node is visible to the script in Android World. Injected script can only get a

NULL pointer when accessing window.document object. Similar protection mechanism is

used for Cookies and Web Storage.

Some web resources are not sensitive and do not need to be protected. Native

JavaScript APIs (e.g., XMLHttpRequest API that helps page to send Ajax requests) and
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build-in APIs (e.g., Math library) do not contain any domain specific contents. Another

type of object is registered Java object which is implemented by mobile apps.

Therefore, invoking them using injected script does not escalate any privilege. We do not

enforce security check for these non-sensitive objects.

6.4.5 Bridge to Connect Multiple Worlds

We discussed that SecWebView isolates the injected script by executing it in an

separated JavaScript VM (Android World). However, the case study we did indicates that

interaction between injected and page script is needed. In this section, we will explain our

design to satisfy this demand. The goal of the design is to provide a bridge to support

secure communication between Web World and Android World. Based on our

investigation, existing mobile apps only require to invoke certain callback functions defined

by page script to customize a webpage. They do not need to access the function body or

overwrite it.

Contributions in the Bridge Design

It is challenging to design such a bridge because it violates the design principle and the

security principle of the JavaScript engine. The purpose of introducing the concept

Context by JavaScript engine is to completely isolate the script from different origins.

Based on this design principle, JavaScript virtual machine (VM) is designed as a

sandbox in which script can only perform web-related actions within its VM. Therefore,

script in one VM cannot directly access objects in another VM since it does not have the
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reference of the object in another VM. In addition, no communication mechanism and API

was designed for cross-VM interaction. Although the postMessage API allows interaction

between frames on the client, typically done by having one frame use an ¡iframe¿ to load

another frame, it is just purely text-based message delivery with no reference involved

which is not what we want to design.

To prevent one page from obtaining JavaScript pointers that belong to other security

origin, JavaScript engine uses object capability discipline to enforce the same-origin

policy. One of the security principles of JavaScript engine is that malicious script is unable

to interfere with objects in foreign security origins without reference to these objects.

Paper [146] demonstrates that a single JavaScript reference that leaks to foreign security

origins may lead to the whole VM to be compromised. This is because JavaScript objects

inherit many of their properties from a prototype object. From one leaked reference, attack

can follow the prototype chain to exploit the objects in the whole foreign context. If

SecWebView supports cross-world communication, references leaking is the key part for the

security of the bridge. We should allow script to invoke functions in other security origins

without letting it get any references that seem controversial to the security principles of

JavaScript engine.

6.4.6 Cross-World Bridge Design

We can change the core of JavaScript engine or build a layer on the top of it to achieve

our goal. The second approach is more JavaScript engine independent. We use V8 used by

WebView in Android to explain. Any C++ application can embed V8 and access V8 API
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defined in the header include/v8.h. The V8 API provides basic functions to manipulate

JavaScript objects inside V8 engine, such as compiling and executing script and accessing

C++ methods and data structures. Since different JavaScript engine uses different

mechanism to compile and execute script, we can avoid to change the core of JavaScript

engine if we take advantage of APIs exposed by different engines.

We use caller to represent the injected script in Android World and callee to refer to

the JavaScript function defined by the page in Web World. To establish the bridge, we

must support the channel from caller to bridge and from bridge to callee. The value

returned from callee will be transmitted in the opposite way.

From Caller to Bridge: The first design issue is to provide a channel for the caller to

send invocation request to the bridge. Since caller is the script running inside VM sandbox

and bridge is native code outside VM, the standard way is to expose a native JavaScript

API such as DOM APIs and Ajax XMLHttpRequest API. SecWebView introduces new

native JavaScript API called window.invokeXVMFunc. As the examples code in

Figure 6.6 and section 6.5.2 show, caller sends the callee information as parameter when

invoking this API to notify bridge.

From Bridge to Callee: After the bridge receives the cross-context invocation request, it

needs to find a way to invoke the callee. Both indirect and direct approach can be done

using V8 APIs. The indirect approach is to compile (using API v8::Script::Compile)

string into script and execute (using API v8::Script::Run) it. This string contains the

callee name and parameters. However, it is hard to prevent script injection from malicious

parameters and there is no way to invoke the anonymous functions. Therefore,
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SecWebView adopted the direct approach using V8 API v8::Function::Call. This API

requires the callee’s context and reference. Context of callee is the Web World context

which is maintained inside bridge. Bridge also needs to get the callee reference from the

callee information in the invocation request sent by caller. We will discuss more about this

important step in the next part.

Fig. 6.6.: Architecture of the Cross-World Bridge

Cross-World Reference Table

One of the key parts of the bridge is the cross-vm reference table (Ref-Table). We

mentioned in the previous subsection that the bridge needs the reference of the callee

method to invoke it. However, the caller, untrusted injected script, cannot obtain any of
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the object that from different virtual machine because it violates security principle, and it

causes reference leaking [146]. Therefore, SecWebView maintains a Ref-Table to retrieve

reference of the callee method. Moreover, since we do not want to inject script to invoke

arbitrary method from Web world, SecWebView requires page script to register the method

that can be invoked by the injected script, and the reference of the registered method will

be stored in the Ref-Table. Therefore, the Ref-Table is the place we enforce access control

because it is a single entry point during cross-vm invocation, and we guarantee that only

the registered method reference is in the Ref-Table.

SecWebView introduces a native JavaScript API called addJavaInterface under the

global window object. This API allows webpage script in the Web World to explicitly

register functions that can be invoked by the injected script in the Android World. Since

web apps know which functions have to be exposed to injected script to customize webpage

and users trust web apps, users implicitly grant the access to the registered JavaScript

function. When page script registers the function to bridge through addJavaInterface, it

needs to provide two parameters: a string as alias and the reference of the registered

method. Our framework inserts a new entry to the Ref-Table to store this pair. In

figure 6.6, we show a solid example code that how webpage register method foo.bar to the

bridge and how the Ref-Table looks like after registration.

6.4.7 Security Analysis

Attacks from Malicious Java Code. All of the app’s Java code is running inside Dalvik

VM, and the only way to access SecWebView framework runtime is through JNI. Access
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control is enforced at all of sensitive native web engine methods bound to JNI, and security

checks are also written in native code. Therefore, malicious Java code cannot compromise

the runtime of our framework. Moreover, WebView maintains sensitive web content in

local databases named webview.db and webviewcache.db. There is no legitimate and

reasonable usage for the access from apps code, and only few Java APIs can be used (i.e.

File I/O, SQLiteDatabase class). We applied a straightforward solution to prevent this by

adding a filter for these two database names to the Java APIs without side-effects. In this

way, we secure the WebView and framework storage.

Attacks from Malicious Native Code. Native code can tamper with the app process’

stack and heap memory and bypass our access control, and it runs in the same process as

the mobile app’s Java code. Malicious mobile apps contains native code can bypass

SecWebView’s security check. However, only 4% of benign apps contain native code [132].

We do not consider the apps with malicious native code in our design.

Attacks from Malicious injected JavaScript. We should also explain how to prevent

attacks to the Reference Table itself. It is located at bridge native C++ code and there is

no API exposed to neither Java nor JavaScript code. To avoid child frame page sending

cross-context request by calling API invokeXVMFunc, this API only exposes to Android

World virtual machine. Child frame even cannot tamper the Reference Table by calling

addJavaInterface (i.e. overwrite existing entries registered by main frame), since each

frame or each JavaScript VM owns its Reference Table. To prevent reference leaking,

SecWebView only supports primitive data type for the parameters and returned value,
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which is enough to meet existing needs. Therefore, our design can successfully support

cross-vm communication without reference leaking.

6.4.8 Compatibility

Legacy apps can still run on SecWebView without modification but cannot be protected

by SecWebView framework; developers only need to put minimal efforts to modify a legacy

app in order to use SecWebView.

Run Legacy apps on SecWebView. Since SecWebView supports all of the APIs in

current WebView design, legacy mobile apps do not need to be changed to be run on

SecWebView. However, the access control model regressed back to the a per-use, per-site

basis model. If SecWebView detects the invocation to the original loadURL API (only one

parameter), it prompts users to decide whether allows script injection to current page.

This is because legacy apps do not declare any permission, and SecWebView design

prompts warning to users in this scenario (Figure 6.3(a)).

Modify Legacy App for SecWebView. Turning a legacy app to use SecWebView is

quite easy. Mobile app developers ONLY need to change the manifest files, and declare

corresponding permissions for origins. There is no need to change source code if they do

not need to use specialized WebView APIs. When calling original WebView loadURL API

as legacy app did (not specify which world to inject into), SecWebView will choose the

highest level privileged declared for that origin.
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(a) Before Attack (b) After Attack (c) Prevent Attack (d) Before Ac-
tion

(e) After Action

Fig. 6.7.: How to Use SecWebView to Protect Webpages

6.5 Evaluation

In this section, we evaluate our work on three aspects: effectiveness, feasibility and

performance. Our evaluation assessed the following: (1) resistance to existing attacks by

malicious apps. (2) compatibility with legacy mobile apps with script injection. (3)

performance overhead.

6.5.1 Defense Effectiveness

We evaluate the effectiveness of SecWebView in addressing attacks. We identify two

attack scenarios: One benign application with vulnerability and one malicious app that

extracts the page contents by injecting script.

Prevent Iframe Script Injection Attack

Iframe Script Injection Attack identified in the paper [16] shows how malicious

child frame page injects script to main frame page. For example, application LivingSocial
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binds instance of CameraLauncher class to WebView as the following code shows

(Figure 6.7(a)). Once registered, both child and main frame page can invoke any function

in this class. In this class, a method called failPicture is intended for app code to send an

error message to the web page if the camera fails to operate. If malicious child frame page

invokes this method by passing the paramString parameter as the following: x’);

mIframe.postMessage(document.body, url);//, it can inject script to main frame. The

underline part of the string paramString is the injected script which uses postMessage API

to send page contents to malicious iframe page as Figure 6.7(b) shows.

public class CameraLauncher{

public void failPicture(String paramString){

String str = "javascript:navigator.camera.fail(’";

str += paramString + "’);";

this.mAppView.loadUrl(str);

}

}

Prevent attack by specialized SecWebView APIs. The fundamental problem of

this attack is because mobile apps construct the injected script to main frame from

untrusted inputs. It is a common hacking technique to inject script and can be mitigated

using sanitization and input escaping. However, in our cases, mobile apps do not need to

inject script to perform this task. To completely prevent the attack, apps can take

advantage of the SecWebView specialized API invokeJSFunction exposed by passing
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paramString as an argument to that API (code below). When child frame launches the

same attack, no script is injected and child frame still same as Figure 6.7(a).

public class CameraLauncher{

public void failPicture(String paramString){

this.mAppView.invokeJSCallbacks

("navigator.camera.fail", paramString);

}

}

Mitigate attack by Configuration. Even maintaining the vulnerable

implementation, mobile app can reduce the impact of the attack by declaring least of

SecWebView permissions. Since injected script only needs to invoke page-defined functions,

mobile app only needs to declare the permission WebView.LoadUrl.Isolated. As a result,

child frame still can inject script to separate Android World context instead of to main

frame page context. After launching the attack, malicious script cannot access any

sensitive contents, such as DOM, cookies and page script, but only the functions registered

by main frame page, as Figure 6.7(c) shows.

Protect Malicious Mobile Apps

Forcing untrusted mobile apps to declare corresponding permissions to interact with the

webpage contents is important to protect users. Taking an untrusted mobile app called 9

WHEEL SLOT MACHINE from thrid-party market not Google Play as example, this app
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injects script into the WebView to extract the whole webpage HTML source code out (code

below). We do not find a legitimate purpose for this usage.

javascript:window.HTMLOUT.showHTML(’<head>’+document.

getElementsByTagName(’html’)[0].innerHTML+’</head>’);

Although the consequences of injected script is impossible to be noticed by users, users

can protect themselves by closing look at the manifest file. Based on the name and

description of this mobile apps, users can easily predict that they must not load https page

and may not even load http page. It seems suspicious to user if app declares the permission

to inject script to page’s context.

<access origin = "file://*">

<permission name="WebView.*">

</access>

<access origin = "http://*">

<permission name="WebView.LoadUrl.Iso">

</access>

6.5.2 Building Mobile Apps using SecWebView

We analyzed several mobile applications, and created SecWebView configurations for

securing them. We analyzed the demands to inject script in these mobile apps and

understood their security requirements. It is convenience for them to configurate the

declaration in the manifest file, as the decision tree in Figure 6.8 illustrates.
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Fig. 6.8.: Config Decision Tree

Use SecWebView to Enhance Visualization. We explained how injecting script

enhances visualization in section 6.2.1. We use the same eBook app to demonstrate how

developers use SecWebView to perform the same task. In original app, once users select

Inverse Color (Figure 6.7(d)) item in the menu, eBook app will inject script to change the

themes of the book display (Figure 6.7(e)). Instead of allowing mobile apps to inject script,

the remote page from eBookSample.com can define a function setupColor() that performs

all the DOM modification and register it to the cross-world bridge.

/* Webpage define setupColor function and register it */

function setupColor(theme) { /*Change DOM Style*/ };

// Register function setupColor.

window.addJavaInterface("setupColor", setupColor);

/** How Mobile Apps invoke this function **/

class MenuHandler {

public void onInverseColorSelect(){

mWebView.invokeJSFunction("setupColor", "dark");
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/* Alternative way to use Injected Script*/

mWebView.loadURL("javascript:setupColor()","isolated");

}

}

Fig. 6.9.: Application Overhead

6.5.3 Performance

The evaluation environment is Samsung Nexus S phone with Exynos 3110 processor,

512 MB Mobile DDR RAM and Android OS version 4.0.3. We use Android benchmark

tool AnTuTu to evaluate the System Overhead, both CPU and memory overhead are below

0.8% (since most of the changes are inside webkit library). We measured the application

overhead including the performance to inject script and interact with bridge. Figure 6.9

compares this overhead to the time for common JavaScript operations (e.g., query DOM

node or access DOM property). Comparing to the huge number of times to perform these
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common JavaScript operations, page may only register functions once to the bridge and

they are invoked only few times. Therefore, the overhead introduced by SecWebView can

be ignored.



130

7. MEDIUMS: VISUAL INTEGRITY PRESERVING

FRAMEWORK

On May 31 2010, hundreds of thousands of Facebook users have fallen for a

social-engineering trick which allowed a clickjacking worm to spread quickly over Facebook

during that holiday weekend. The trick, which uses a clickjacking exploit, means that

visiting users are tricked into “LIKING” a page without necessarily realizing that they are

recommending it to all of their Facebook friends.

The phenomenon of such a proliferation of attacks without proper protections is hard to

understand. Since the first bug report on the negative usage of iframe by [147],

Clickjacking attacks with various forms have been proposed. They take advantage of

transparent iframes. The similar technique has also been extended to the mobile

platforms [83]. Although many countermeasures have been proposed to deal with this type

of problems [89,148,149], we are more interested in knowing what fundamental flaw has

caused such attacks, so we can develop countermeasures that directly address the

fundamental flaw.

The objective of this chapter is to explains our study to find out the fundamental

problem underneath such attacks, and formulate a generic model called the container

threat model. We believe that the attacks are caused by the system’s failure to preserve

“visual integrity”, i.e., to ensure what users perceive is the same as what the system “see”,

so users’ actions are based on the correct interpretation of the information presented to
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them. From this angle, we study the existing countermeasures and propose a generic

approach, Mediums framework, to develop a Trusted Display Base (TDB) to address this

type of problems. We use the side channel to convey the lost visual information to users.

From the access control perspective, we use the dynamic binding policy model to allow the

server to enforce different restrictions based on different client-side scenarios.

7.1 Motivation

In this section, we briefly review an attack vector called Visual-hijacking which is

caused by the compromise of visual integrity. Visual-hijacking is a set of attacks that uses

various visual techniques to trick users into unwittingly clicking on disguised user-interface

(UI) elements on the screen, usually resulting in damage to the victim. We formulate the

visual integrity problem into a common attack model named Container-based Visual Attack

Model. We treat all the variations of the visual-hijacking attacks equally in this section

when we explain our solutions.

7.1.1 Existing Attacks Using Iframe

The most famous attack caused by the compromise of visual integrity was introduced

by Robert Hansen and Jeremiah Grossman in 2008. The technique is called

Clickjacking [77], which takes advantage of the CSS design specification “opacity”. The

attack uses multiple transparent or opaque layers to trick a user into clicking on a button

or link in a page, while the user’s actual intention is to click on a different page. Using a

similar technique, keystrokes can also be hijacked. With a carefully crafted combination of



132

stylesheets, iframes, and text boxes, a user can be led to believe that they are typing in the

password field on the pages associated with their email or bank accounts, but instead, they

are typing in an invisible frame controlled by the attacker.

However, it is not always necessary to make elements invisible to compromise the visual

integrity of a page. The UI redressing [78] attack is an example. The main idea of the UI

redressing attack is to seamlessly merge two or more webpages, making them look like one,

tricking users into perform an action that is different from the users’ intentions. This user

interface (UI) redressing method is especially useful when there are buttons with

nonspecific text like “Download”, “Click here” or “Exit”. Another variant of clickjacking is

to use JavaScript to make a small transparent iframe to follow the mouse cursor. For this

attack, it is not important where a user moves his mouse, the click will always occur in the

invisible iframe.

Many proof-of-concept attacks based on the clickjacking techniques have also been

published. Facebook Likejacking [79] uses visible Facebook Like buttons to redress the

contents, and thus tricks users of a website into posting a Facebook status update for a site

that they did not necessarily like. Twitter Tweetbomb [80] uses the same technique to

attack the Twitter network. Combining the invisible element technique with HTML5 File

API, Filejacking [81] uses the invisible technique to get the user’s uploaded private files.

Flash Settings are also another victim to Clickjacking.
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7.1.2 Existing Attacks on WebView

Similar attacks have been extended to the mobile platforms. Using iframes, the attacks

on the mobile platforms are similar to those on the desktop platforms. However, on the

mobile platform, similar attacks can be launched without iframes. TapJacking [82] is an

example, and it occurs when a malicious application displays a fake user interface (via an

Android component called Toast), to hide the real interface underneath. When users

interact with this interface, the interaction events actually go to the real interface

underneath (e.g. a phone dialer). Using this technique, an attacker can potentially trick a

user into making purchases, making expensive phone calls, clicking on ads, granting

permissions, or even deleting data from the phone.

Confused deputy attacks can also be applied to another type of web container, the

WebView. The WebView technology packages the basic functionalities of browsers into a

class. Similar to iframe, which allows one web application to be embeded in another

potentially untrusted web application, WebView allows a web application to be embedded

in a potentially untrusted Android application. For most cases, the owner of the Android

application is not the same as the owner of the web application inside WebView.

Technologies similar to WebView are adopted by various mobile platforms, including iOS

and Windows Phone, although the corresponding classes are called different names. For

the sake of simplicity, we only use the term WebView throughout this paper.

Attack the Touchjacking [83], which can be launched successfully to redirect user’s

touch-screen event to the target WebView, triggering actions on the web page inside the

targeted WebView. Similar to clickjacking attacks, the attacker can develop a malicious



134

Android application with multiple WebView instances embedded. The attacker puts a

visible or invisible WebView instance above another instance to redress the webpage inside

WebView, and redirects user’s touch screen events. The attack works on all popular mobile

platforms, including iOS, Android, and Windows Phone.

7.1.3 Miscellaneous Attacks

According to the security blogger [84], a new technique called Cursorjacking was

demonstrated. It deceives users by using a custom cursor image, where the pointer was

displayed with an offset, so the displayed cursor was shifted to the right from the actual

mouse position. With clever positioning of page elements, attackers can direct user’s clicks

to the desired elements. Since our work only focuses on the mobile devices, Cursorjacking

is not in our scope.

7.2 Container Threat Model

We use a generic model called the web container threat model to model the attacks on

visual integrity across different platforms. All the attacks described in the previous section

take place under a similar scenario: The victim application is embedded in another

application via the components provided by the system. These components are the

essential part that makes the attack successful. We use the term Container to refer to

these components in this paper. The application that holds the container is called host

application, and the application loaded into the container is called guest application. For

example, in the iframe container case, the main page is the host, and the pages loaded
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into the iframes are the guest. In the Android WebView container case, the Android

application is the host, and the web page inside WebView is the guest.

It should be noted that for the iframe and WebView containers, even though the

attacker has all the privileges of the host app [150], the integrity of the data in the

containers is still preserved, because of the sandbox access control mechanisms provided by

these system components. The users’ credentials of the guest webpage will be stored inside

the container, which is a part of the system (browser or mobile system). Namely, the host

application cannot directly tamper with the contents in their containers. Although

WebView does provide mechanisms in its current design to allow the host to tamper with

the data in the container [16], those channels will soon be secured in future versions. The

attacker only has the access to the UI-based APIs of the container for the layout purpose.

Those APIs are designed for the general view-based UI objects in the system.

7.2.1 Weaken of Trusted Display Base

As we all know, security in any system must be built upon a solid Trusted Computing

Base (TCB), and web security is no exception. Web applications rely on several TCB

components to achieve security. In the container threat model, a secure container must

serve as the TCB to allow web pages to be embedded in a untrusted host without

compromising the data integrity. To achieve this goal, a well-designed container needs to

enforce access control on exposed APIs that allow the host to interact with the container.

However, there is no access control enforced on the UI-based APIs exposed by the

container. Through these APIs, the malicious host app can manipulate the display
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properties of the container and its inside contents. For example, the host application can

set the position and size of the container; the alpha value of the contents in the container

can also be decided by the host. Without access control on these UI-based APIs, there is

no trusted computing base to ensure visual security. We call this kind of trusted computing

base the Trusted Display Base (TDB). We will discuss why the weaken of TDB can lead

to the compromise of visual integrity, and eventually lead to security breaches. We will

explain how our Midiums framework rebuild solid TDB on container as well. Before that,

we need to understand how users interact with systems.

7.2.2 Visual Information Loss

Visual data are maintained within the system (i.e., browsers for the iframe case and

mobile operating systems for the WebView case). The system clearly knows which domain

controls which pixel on the screen, even though there are multiple layers. The system then

uses the screen as the channel to convey (i.e. display) information to users; users get the

information through their eyes, and then form their own understanding of the visual data.

Users’ subsequent actions within the system are based on their understanding. If an attack

can intentionally cause users to mis-interpret the displayed information, user’s actions may

not match their intentions, we say that the visual integrity is compromised.

In the attacks discussed in this paper, contents in the containers are web pages, which

come from a web server, and are displayed to the user through browsers and containers.

During this process, webpage contents need to be encoded and decoded in two transmission

channels. The first channel is from the server to the client system through the network,
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and the communication schema is the HTML standard. The second channel is from the

system to the user through the screen, using the visualization as the communication

schema. The whole picture is shown in Figure 7.1. We will go through each channel to

explain why the second channel has flaws.
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Fig. 7.1.: Fundamental Problem Exploit

Server To Client: After the server constructs a web page, it sends the page through

the network to the client system, using the HTML standard. The client system gets all the

page information by parsing the HTML documents; it then creates a DOM tree to store

the information. After this step, both data and visual integrity of the web app are

preserved since the client knows all the information.

Client To User: The only media that the client system uses to send the contents to

the user is through the screen. The client should render the content received from the

server and display them on the screen. The user will receive the information by watching

the contents on the screen. However, some of the visual information will be lost during the

transmission, and this is the place where visual integrity can be compromised.

Taking the Touchjacking attack as an example, the attackers overlay the transparent

victim page in one WebView on top of another. The view tree maintained by the Android

system for the application has a clear idea that the underneath visible WebView takes
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control of the display contents and the top transparent one is responsible for user events.

When displayed on the screen, the overlaid and invisible information is lost on the screen.

This is because the actual layout is multi-dimensional, but the results are flattened into a

two-dimensional screen; information of the other dimension is lost. In other words, if the

client system were able to display the information in a 3D screen, the user will get the lost

information and the attack can be easily defeated.

7.3 Rebuild Trusted Display Base

As we discussed in the previous section, the weaken of Trusted Display Base (TDB) is

due to the lack of access control on the UI-based APIs exposed by the container. As the

result, visual information is lost and the visual integrity is compromised.

7.3.1 The Mediums Framework

In order to rebuild TDB, we propose a generic solution, the Mediums framework, to

defend against the attacks on visual integrity. The Mediums 1 framework consists of two

solutions. In the first solution, we use side channels to convey the lost visual information to

users. In the second solution, we know that sometimes the lost visual information cannot

be completely conveyed to users, so we developed an enhanced access control model to

complement the side channel solution.

1Our framework helps users to see the objects they cannot see due to the visual information lost. It is served
as the Mediums who has the power to communicate with the invisible things such as spirits of the dead or
with agents of other world.
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Three key components in the design of Mediums framework are: Environment Monitor,

Side-Channel Notifier and Dynamic Binding Engine. Environment Monitor is the module

to intercept each UI event performed by the user before it reaches the rendering engine.

This monitor analyzes the potential visual information lost at the place the UI event

happened and returns the level of dangerous to the framework. Once Mediums framework

receives the signal from Environment Monitor, it triggers Side-Channel Notifier and

Dynamic Binding Engine to minimize the impact by notifying user the dangerous of

visual integrity compromise through side-channels or dynamically binding the access

control policy defined by the server. We will explain why these two approaches can

successfully rebuild TDB later.

It is important to notice that Mediums focues on attacks under Web Container Threat

Model. Mediums does not target on any specific container but is a more generic solution to

deal with how to rebuild TDB to preserve the visual integrity of the webpage in the

container. Only EnvironmentMonitor depends on the UI architecture of the platform (i.e.

Android UI module in WebView case and browser rendering engine in iframe case).

However, the design of Side-ChannelNotifier and DynamicBindingEngine is platform

independent. Therefore, although we only implement and evaluate Medium framework for

WebView case, it can also be applied to iframe case without changing the design.

7.3.2 Visualization Enhancement

As we just said, the fundamental problem that causes the compromise of visual

integrity is the loss of visual information when the system conveys its information to the

Environment Monitor
Side-Channel Notifier
Dynamic Binding Engine
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user. Therefore, the best solution is to enhance the communication channel to reduce the

information loss, so what users learn is identical to what the system knows and Mediums

framework builds the TDB.

Several solutions were proposed to permanently or temporarily disable the visualization

features to prevent the information loss. For example, the X-Frame-Option HTTP header

allows the guest web app to prevent the container from being invisible. However, those

solutions solve the problem at the cost of user experience. Instead of banning these

features, we propose to use side channels to make up for the lost information. We will

describe some of the side channels that are suitable for this goal.

Color and Shape: The color of browsers or system UI objects can be used as side

channels to convey the lost visual information. In particular, for the web browsers in

desktops/laptops, we can use the color and shape of the cursor as a side channel (see

Figure 7.2). For example, we can also use the color of the cursor to prevent the UI

redressing attacks. If the user moves the mouse from one object to another object, and

these two objects belong to two different layers, the color of the mouse will change to alert

the user. This way, the user knows that these two objects belong to two different layers,

even though one of them is transparent to user. Some attacks do not use the overlapping

and transparency techniques; they simply construct a new page using multiple iframes, and

put them in at the same layer. The framework can change the color of the cursor if the

cursor pointed at the objects from different domains. The shape of the cursor can convey

the lost visual information as well, but the framework should give each shape a meaning

representing which visual information is lost. For example, if the mouse hovers on an area

that has multiple layers, the shape of the mouse should change, telling the users that there
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are multiple layers in this area. If the top-layer is transparent (a typical technique used by

the clickjacking attack), the shape of the mouse should change to convey the information.

(a) Click on the SAFE area (b) Click on the DANGEROUS area

Fig. 7.2.: Side Channel on Browser

In some scenarios such as cursorjacking attack, the real cursor is hidden by malicious

host apps, and a faked cursor is drawn on the screen. In this case, if we do allow cursors to

be hidden by apps, we need to use another channel; we can use the color of the address

bar or the icon next to the address bar. These UI objects are trusted and cannot be

tampered or hidden by the host applications in the desktop scenario. Figure 7.2(a) shows

the color and shape of the address bar and the icon when the cursor is not hidden or

overridden and it points to a safe area. When the attacks such as cursorjacking were

launched, the color and shape of the address bar and icon will change as shown in

Figure 7.2(b).

Mobile Device Sensors: Some side channels used by desktops/laptops may not be

available for mobile devices. For example, there is no cursor on the screen for most mobile

systems. However, most mobile devices have embedded sensors, such as accelerometer or

vibrator; they can be used as side channels. In our implementation, we have chosen the

vibrator, speaker and flashlight as our side changes. For example, when the user

touches a display area that has overlapping WebViews, the system will vibrate the device;

if the user touches on a transparent overlaid area, the device will beep. Those three types
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of sensors are only for the proof-of-concept purposes, and they can be extended to other

types of sensors.

(a) Viberation Channel (b) Beeper Channel (c) Toast Channel (d) Status Bar Channel

Fig. 7.3.: Side Channel on Mobile Devices

System UI: We can use the unique display features of mobile system as side channels.

Toast mechanism in Android can be used: a toast notification is a message that pops up on

the surface of the window; it only fills the amount of space required for the message and the

user’s current activity remains visible and interactive. The notification automatically fades

in and out, and does not accept interaction events. If the Mediums framework detects that

the user’s current touch event is in an area with potential information loss, a toast message

shown in Figure 7.3(c) will pop up. The status bar is another choice for side channels. An

application can add an icon (with an optional message) to the system’s status bar, which

is normally located at the top of the screen. The color and content of the icon will alert

users about a potential visual information lost. Users can read more details about the lost

visual information by clicking on the status bar. Compared to the toast and sensor

approach, the notification message is more persistent and stays there much longer (see



143

Figure 7.3(d)). It is also important to notice that those system UIs are triggered by the

Mediums framework so that it is impossible for the attackers to block this side-channel.

Security Concerns: There are several attacks that can be launched against our

Mediums framework. First, attacker can intercept user’s events before the Mediums

framework gets the event. Malicious host applications can intercept the user events

through the hook APIs exposed by the container. For example, by invoking the method

setOnKeyListener of WebView, Android applications can register an event handler callback

function, which will be triggered when a key is pressed in this WebView. To defeat this

attack, we enforce the access control before the event hits the hook, guaranteeing that the

monitor cannot be bypassed.

Moreover, to minimize the impact of unintended UI event, Mediums framework records

whether users have performed click on each WebView instance or not. If framework detects

that it is the first time for the user to click on the WebView instance with potential visual

information lost, Mediums will discard this UI event and trigger the side-channel notifier to

alert user. Users do not have to confirm that they indeed want to complete the action. If

user believes the visual information lost is by design and wants to perform click on it, they

just need to repeat the same action on the WebView isntance again. Mediums framework

would not trigger the side-channel notifier since it has already saved user’s choice on this

WebView instance.

Second, attackers can attempt to block our side channels. Mediums framework will

detect whether current side-channel is disabled by user or attacker, and automatically

switch to other side-channel to notify user. For example, if the users turn off the speaker or
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ringtone, the framework needs to switch to the toast or status bar as the side channel

which cannot be blocked by the attacker.

7.3.3 Dynamic Binding Framework

Even if we can use side channels to convey the lost dimension, users may still ignore

them, as they are indeed different from an actual dimension. In these cases, a good system

should be more intelligent in deciding whether it should allow users to conduct certain

actions or not. Although a number of solutions have been proposed [88,89], they seem to

depend on ad hoc policies that can solve one type of problems, but it is difficult to be

applied to other similar problems. The reason is that these solutions were not developed

from the access control angle. Our framework allows us to treat the visual integrity

problem as an access control problem, and can thus lead to a more generic solution.

Policy models decide when a click or touch action should be allowed or denied. Ideally,

if the visual integrity is more likely to be compromised, the control on the access should be

more restricted. There are two types of policy models: static binding model and dynamic

binding model.

Static Binding Policy Model: In the static binding policy model, the access control

policy is set when server constructs the webpage. The policy can be set and enforced by the

client side or the server side, but they both suffer from the reliability and accuracy issues.

In the client only model, the client side sets and enforces the access control policy.

Several work took this approach [88]. From the policy’s reliability perspective, since the

enforcer is at the client side, which is the place where all the access actions take place, by
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gathering all the environment information at the moment when the action happens, the

enforcer can effectively enforce the access control policy. However, from the accuracy

perspective, when the client sets the policy without the support from the server, they

cannot take the contents in the container into consideration. This may lead to the

granularity problem and affect the accuracy of the policies.

In the server only model, the policy is set and enforced by the web server. The

widely adopted solution Framebuster [89] took this approach. Two major barriers make

this access control policy either inaccurate or unreliable. Due to the lack of real-time

environment information at the client side, when the server sets the policy, it is hard to

predict the visualization environment when the user’s action takes place. For the reliability

issue, since the action happens at the client side, without the support from the specifically

designed client framework, the servers do not have sufficient information to set the correct

policy; this will reduce the reliability [90].

Dynamic Binding Policy Model: We propose to use a dynamic binding policy

framework to solve the above problems. In this model, the server sets different access

control policies for different client-side conditions. Although none of the existing works

formally defined this policy model, some of the existing solutions, such as

X-Frame-Options [92], take this approach. With the support of the browser that recognizes

this new HTTP header, the web server can decide whether its pages can be loaded into the

iframe or not. The recent project [149] proposed to allow the web application to use

Sensitive-UI to mark the objects that do not want to be overlapped.

The limitations of those solutions are the following: The X-Frame-Options solution only

deals with one situation, i.e., whether the page is loaded in the container or not. The
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Sensitive-UI solution only supports one action no matter what the client-side situation was.

Moreover, the client-side environment can be dynamically changed. It is highly possible

that the container does not overlap with others when the page was first loaded, but it

overlaps with others when user performs click actions later. Since the server cannot predict

the client-side situation when the access takes place, this framework should allow the web

developers to define policies that depend on the runtime conditions on the client side.

Therefore, to support more accurate finer-grained access control policy in this model, we

propose to use the dynamic binding framework.

Dynamic binding framework pre-defined several client-side scenarios that may cause

visual information loss, and for each scenario, it sets actions to alleviate the loss. The web

developers can associate the policy to the whole webpage or certain DOM objects based on

the contents of the webpage. For example we can integrate the Contego [53] model to

Mediums framework to enable the web developers to assign subset of privileges to specific

DOM element of the webpage.

if (Senarios #1) Allow Privilege Subset 1

else if (Senarios #2) Allow Privilege Subset 2

else if (Senarios #3) Allow no Privilege

if (Senarios #4) Deny Privilege Subset 4

In WebView case, a concrete sample case is given in the following:

if (not in a WebView)

Allow {Clickable, Attach-Cookie}

else if (embedded in a overlapping WebView)

Allow {Clickable}

else if (embedded in an invisible WebView)

Allow {}
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7.4 Implementation

We have implemented the visualization enhancement framework using the side channel

solution and the dynamic binding solution in Android System (version 4.0.3). Figure 7.4

demonstrates the high-level architecture of our implementation.

Fig. 7.4.: Mediums Framework Overview

The UI-Event Monitor located in the RootView object of each application intercepts

every touch action performed by users, and invokes the Environment Monitor, which

traverses the view tree of the application to detect whether there is a potential visual

information loss or not. If there is a potential danger at the place where the touch action

occurs, and the user has not been notified enough times, the framework will discard the

event and trigger the protection mechanism to notify the users through side channels.

Otherwise, the event will be dispatched to the target UI object.
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7.4.1 UI-Event Monitor

The primary goal of the UI-event monitor is to intercept each UI event in the system

and check the potential visual information loss before the event affects the application. To

achieve this goal, he UI-event monitor needs to be placed somewhere in the event

dispatching path before the event reaches the application.

Android’s window management system is based on the client/server model, and it is

the key part of the Android event handling system. As Figure 7.5 shows, when the main

window was created by an activity, it will be inserted into the WindowManager instance.

Meanwhile, a WindowSession will be established and maintained between the client

(Activity) and the server (WindowManager). For communication purposes, both the client

and server need to have a subclass that implements the IWindow interface. User’s

interaction events are stored at the Event Queue in the kernel, and the WindowManager

will fetch the UI event from the kernel and process it. After being identified as a KeyEvent

or a TouchEvent by the WindowManager, the event is dispatched through the channel

WindowSession to the activity that is currently using the screen. The target activity has a

ViewRoot instance that serves as an event handler. After ViewRoot receives the event

object from the WindowManager, it can dispatch the event to the target UI view object.

Android’s GUI management system stores the view-based objects within an activity in

a structure called View Tree, and every UI object in the activity is represented as a node in

the view tree. ViewRoot gets the reference of the root node (called MainView) in the view

tree. MainView does not display anything on the screen; it is used to dispatch all types of

events from the ViewRoot to the target view in the tree. To start the dispatching process,
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the ViewRoot instance only needs to invoke the dispatchTouchEvent API exposed by

MainView, which will in turns invoke the event-dispatching APIs of its children nodes,

until the event reaches the final destination.

Fig. 7.5.: UI-Event & Environment Monitor

Since WindowSession is the only communication channel for the activity to get the UI

event, we can implement our UI-event Monitor at either side of the channel. We choose to

implement this monitor as a part of the ViewRoot class at the client side. The method

deliverPointerEvent in the ViewRoot class will get the root of the view tree and invoke

the deliverPointerEvent method of that view. The UI-event monitor will be triggered

before the event reaches the view tree, and by asking the Environment Monitor, it decides

whether the event should be discarded or dispatched. Both the dynamic binding engine

and side channel notifier will be invoked in the process.
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7.4.2 Environment Monitor

The Environment Monitor is a module in the ViewRoot class to measure the danger

level for the possible visual information loss. The module needs to extract the coordinate

of the touch event from the event object, and traverses the view tree to find out all the

views that contain this coordinate. Based on the predefined danger standard, the

Environment Monitor will return the alert level. In our current implementation, we define

the safe situation as the alert level 0; when a visible WebView instance overlaps with

another UI object, the alert level is 1; when an invisible WebView instance is present but

without overlapping with others, the alert level is 2; when an invisible WebView instance

overlaps with others, the alert level is 3. The higher the alert level is, the more dangerous

it is when the visual information is lost.

7.4.3 Side Channel Notifier

Once the UI-event monitor detects the potential visual information loss, it will check

whether the user has been notified for a pre-defined number of times. If so, i.e., the user

has been informed enough times, the notifier will not be triggered and the event will be

dispatched. This means that the user has decided to accept the potential risk, and there is

no need to continue “anonying” the user. Otherwise, side channel notification will be

triggered. In our prototype, the alert level 1 will trigger the Vibrator; the alert level 2 will

trigger the Vibrator and a Toast message; and the alert level 3 will trigger the Vibrator, a

Toast message, and System Alert Bar.
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7.4.4 Dynamic Binding Engine

The Dynamic Binding Engine will be triggered to dynamically bind the access control

policy defined by the web application inside WebView. To use the Mediums prototype, web

developers embed the dynamic policy in the HTTP headers and send to the WebView

along with the webpage contents. In order to recognize the new dynamic binding policy

header (i.e. the DBPolicy field), we need to modify the parser module to extract the value

of DBPolicy field, and return the policy information to the WebView instance. WebView

uses the WebKit rendering engine to parse and display web pages, and it is implemented as

a native C++ library (WebCore.so). The class WebUrlLoaderClient in the WebKit library

will fetch the response from the network driver; it then invokes the hook

didReceiveResponse, and the code registered to the hook will begin parse the whole

response. The Dynamic Binding Engine implements the code in this hook to retrieve the

policy in the DBPolicy field.

Since policies are retrieved by WebKit, we need to find a way to return it to the

WebView which is a Java class. The WebView Java package uses BrowserFrame class to

represent a frame of a page, and WebKit library uses WebFrame class to represent the

same concept. These two classes are binded togather through the JNI mechanism in

Android. Therefore, the WebKit library can invoke the callback functions implemented in

the C++ class WebCoreFrameBridge to return values from the native library to the Java

framework. We add a new callback function called jniSetPolicy for the WebKit library to

return the policy to the BrowserFrame instance. BrowserFrame will invoke the setPolicy
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function exposed by WebView class through the WebViewCore or CallbackProxy.

Figure 7.6 shows the process.

Fig. 7.6.: Dynamic Binding Engine

The dynamic policy should be stored at a secure place where cannot be tampered by

malicious apps. We add a private field policy in the WebView class to store the dynamic

policy set by the webpage. We also add a new protected methods setPolicy to allow the

WebKit to set the dynamic policy. It is important to note that the setPolicy method is

only accessible from the code within the android.webkit package in the Java framework.

Therefore, malicious Android applications cannot invoke this method or directly change the

value of private field policy in WebView class.

7.5 Evaluation

We evaluated the Mediums framwork on the Android platform to demonstrate how our

solution can effectively alleviate the visual hijacking attacks without sacrificing much user

experience. The evaluation environment is Samsung Nexus S phone with Samsung Exynos

3110 processor, 512 MB Mobile DDR RAM and 4.0-inch screen.
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7.5.1 Attack Scenarios

For our evaluation purpose, we wrote an Android application with various kinds of

Touchjacking in it. To users, the main purpose of this application is to to conduct surveys,

but behind the scene, the application tries to attack the user’s online web account. We use

two particular attacks, Keystroke Hijacking attack and Invisible WebView Touchjacking

attack in our experiments.

(a) What User Sees (b) UI on top

Fig. 7.7.: WebView overlapped with UI component

Figure 7.7 shows how was Keystroke Hijacking attack set up. In our app, we use a

WebView to load the WordPress login page, and on top of it, we put two text input fields

(native Android UI objects), each covering one text field on the web page. Therefore, the

users see what is shown in Figure 7.7(a), but when they type the username and password,

they actually type the information in those native UI objects (Figure 7.7(b)), which belong

to the host Android application.

Figure 7.8 demonstrates how the Invisible WebView Touchjacking attack works. The

WebView (Figure 7.8(a)) that loads a survey webpage is put underneath another
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transparent WebView. Figure 7.8(b) shows the transparent WebView (we intentionally

make the picture non-transparant so readers can see it). What the users sees on the screen

is a survey (Figure 7.8(a)), but when they select their choices, they actually click the

“Write a Post” link on the transparent WordPress webpage.

(a) Visable WebView (b) Transparent WebView

Fig. 7.8.: Transparent WebView Overlapping

7.5.2 Evaluation of Visual Enhancement

Experiment Setup

We used two Samsung Nexus S phones to do user experience study. We installed the

original system (Android 4.0.3) on one phone, and on the other phone, we installed the

modified Android that has our Mediums framework. We designed two similar Android

apps and both of them used the WebView component to load a survey web app in the

WebView component. The topics and questions in the survey are different but share the

similar layout. At certain pages in both survey apps, we overlapped both transparent
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WebView and visible native UI component to achieve the Touchjacking attack scenarios

described above.

We randomly choose the 86 participants in different places such as library, street,

restaurant and etc. The age of the participants ranges from 19 to 30. We also asked how

much they knew about mobile security before the test and the results shows in the

following subsections. We used survey app to distract participants’ attention from our goal

to test the side channel visualization. Before the test, we told participants that when they

found something abnormal they can ask us, we would give some suggestions, since we did

not want them to behave in a more (or less) trusting manner. Every participant was asked

to finish the survey on both smartphones, and we collected participants’ basic information

such as sex, age, education level and major, etc. Even if the attacks were launched

successfully during the evaluation, they would not cause real damage to the participant’s

account. We observe whether our framework can help users prevent the attacks or not.

Three major aspects can directly reflect the effectiveness of the side channel

visualization solution, and we will design experiments to evaluate them. These aspects are

formulated as the following questions:

• Can participants get the side channel signals generated by the Mediums Framework?

• Do participants have proper reactions to side channel signals?

• Does the solution affect user experience?
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Side Channel Usage Receive Signal Get Meaning Perform Click Attack Succeed
- 0 0 78 90.7%

T only 64 62 24 27.9%
V only 70 49 37 57.0%
V + T 77 75 11 12.8%

V + T + N 81 80 6 6.97%
V = Vibration Side Channel; T = Toast Side Channel; N = Notification Bar Side Channel

Table 7.1: Survey Results Among 86 Participants

User’s Information Acquistion

In our evaluation, we used three side channels to convey the lost visual information:

Vibration, Toast and Notification Bar. Among the 86 participants(Table 7.1), 81%

participants noticed the vibration and 74% were aware of the toast. When we combined

them together, 90% got the side channel signal. When we used the vibration, toast and

alert bar together, the number becomes 94%. We also records the the reason why more

participants miss the side-channel signals. This is because the viberation and toast only

last for short period of time.

User’s Reaction to Information

Another important factor that directly affects the success of our solution is whether the

users is aware of the danger after they receive the side channel signals. The users’ reactions

to the signals may vary depending on their knowledge about the mobile security. After

finishing two survey apps, we asked how much they knew about mobile security, such as

the clickjacking and touchjacking attacks. On a scale of 1 to 5, 1 means knowing nothing

and 5 means knowing much. Our results showed that the average rating was 1.76, which
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means most of participants know nothing or little about the clickjacking and touchjacking

attacks. This way, we can test the effectiveness of our secure mechanism for people even

without any knowledge. Table 7.1 shows the results we obtained. In the normal WebView

without any Mediums framework, 8 participants chose not to click, because most of them

know a lot about clickjacking and touchjacking, they thought it was not secure to perform

actions on these apps, so they gave up on the survey. Among the 70 participants who

noticed the vibration, only 49 (70%) chose not to click. Participants didn’t connect the

vibration to the potential danger because normal apps can vibrate too. Similarly, the toast

approach has a lower success rate 27.9%, which is better than vibration, but some

participants said that without vibration they did not notice the toast message. However,

using vibration, toast and alert bar together is the most reliable way to alert users, which

significantly dropped the touchjacking attack’s success rate to 6.97%.

Usability of Solution

We also need to evaluate how the side channel signals affect user experience We also

collected feedback on how annoyed the participants were when using apps in our

framework. On a scale of 1 to 5, being 1 means “not at all” and being 5 means “very

annoying”. The average rating was 1.65, which is the acceptable level.

The overhead introduced by our framework to monitor each UI event and check

environment is another factor that may affect user experience. We measured the overhead

using 100 applications from the Android Market, the range of the overhead per touch event

was from 0 to 6 milliseconds. The time basically comes from the view tree transversal,
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more precisely, it depends on the number of nodes in the view tree. The number of view

objects in the applications that we tested ranges from 10 to 89.

7.5.3 Evaluation of Dynamic Binding

We tested the performance on the smartphones for four web applications (phpBB3,

Collabtive, WordPress, and phpCalander) and shows the overhead introduced by Mediums

in Figure 7.9. In this section, we evaluate the defense to the attacks mentioned in 7.5.1 by

enforcing dynamic binding.

Place Client-side Scenarios Action Index Actions
1st not in WebView 0 Do Nothing
2nd loaded in WebView 1 Remove From Screen
3rd loaded in an overlapping WebView 2 Unclickable WebView
4th loaded in an invisible WebView 3 Visible WebView
5th loaded in an overlapping invisible WebView 4 Visible & Unclickable

Table 7.2: Mediums Scenarios and Action Definations

In order to prevent the Touchjacking, web developers set the policy header as

header(“DBPolicy: 00124”) in the php file (Only 1 line of code need to be added).

Each number of the DBPolicy value corresponds to one client-side situation defined by the

Mediums framework. The value of each digit represents the action that needs to be taken if

the client side satisfies the scenario. We use the definition in Table 7.2 to convert the

policy to the following readable form:

if (not in a WebView)

Do Nothing --> Take Action 0
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else if (loaded in a WebView)

Do Nothing --> Take Action 0

else if (loaded in an overlapping WebView)

Set WebView Visibility to ’Gone’ --> Take Action 1

else if (loaded in an invisible WebView)

Set WebView as Unclickable --> Take Action 2

else if (loaded in an overlapping invisible WebView)

Set WebView as Unclickable and Visible --> Take Action 4

Fig. 7.9.: Dynamic Binding Performance Overhead

To defend against the keystroke hijacking attack (see Figure 7.7), WordPress developers

can take the action to remove the WebView instance from the screen. Therefore, the 3rd

digit of the DBPolicy value is set to 1. As results, if the webpage is subject to the

keystroke hijacking attack, the dynamic binding engine detects the situation and enforces
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the dynamic policy. The WebView instance is removed from the screen, leaving only the

overlapped UI objects depicted in Figure 7.7(b). Therefore, user can clearly know that

they are under the attack and can stop.

To defend against the Invisible WebView Touchjacking attack depicted in Figure 7.8,

developers set the 5th number of the DBPolicy value to 4. This policy defines that if the

WebView is transparent and is overlapping with other objects, WebView instance should

be made unclickable and visible. Therefore, when the attack is launched, the screen will

look like that in Figure 7.8(b), clearly showing the attack intent.
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8. CONTEGO: CAPABILITY-BASED ACCESS CONTROL

FOR THE WEB

Over the last two decades since the Web was invented, the progress of its development has

been tremendous. From the early day’s static web to today’s highly dynamic and

interactive Web 2.0, the Web has evolved a lot, and there is no sign that the evolution will

slow down in the next decade: with the highly expected arrival of HTML5, WebView

technology and the so-called “Web 3.0”, the webpage will become more and more powerful,

sophisticated, and ubiquitous.

Early days Present (Web 2.0) Future (HTML5,                    ,“Web 3.0”) Timeline 
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Current situation: 83% of web applications are vulnerable 

Same Origin Policy: The model has never changed 

 Static                           Dynamic                 Even more dynamic 

Contents are trusted                      Trusted & Untrusted  contents mixed   

 Not much privilege               Contents have more and more privileges 

WebView 

Fig. 8.1.: The Evolution of the Web

Figure 8.1 depicts the change of the Web during the evolution. A clear trend

highlighted in the figure is the evolution of web contents from static to dynamic. With

more and more dynamic entities included in web pages, and more and more interaction

among these entities, a web page starts to behave like a system. If these entities are not
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equally trusted, their interactions must be mediated, and thus a well-designed access

control system is necessary to mediate the interactions within each web page. Another

trend highlighted in the figure is the evolution of the power of the web contents. It is not

sufficient for the client-side systems (e.g., browser and WebView) to just host web contents.

Webpages are allowed to access more resources at client-side. Besides the web-related

resources (e.g., cookies, DOM), HTML5 standard provides the new features so that

webpages can access HTML5 local storage, interact with local files via the File API, gather

geolocation information and etc. WebView technology provides a way for the webpages to

access mobile device’s resources, such as accessing camera, bluetooth, contact list, SMS,

phone functions, etc.

Therefore, the problem is that entities with various level of trustworthiness within a

page have the same privileges. With these privileges become more and more powerful, the

problem becomes even worse. Unfortunately, there is no such an in-page access control

system in the current Web that can solve this problem. In terms of access control, the Web

has adopted a policy called Same-Origin Policy (SOP). This policy protects entities of one

origin from those of others. However, it does not provide access control on the interaction

within a page.

Therefore, we propose Contego framework to solve this problem in this chapter. The

objective of this framework is to introduce capability-based access control model to the

Web, and achieve finer-grained in-page access control. We demonstrate how such a model

can be beneficial to the Web, and how common vulnerabilities can be easily prevented

using this model. Although we have only implemented this model in the Google Chrome



163

browser, and have conducted case studies and evaluation on our design and

implementation, this framework can be adopted on WebView as well.

8.1 Problem and Potential Solution

This section discusses the problem that Contego framework is trying to solve, and the

alternative ways to solove the same problem.

8.1.1 Problem

Varying levels of trustworthiness. When dynamic contents were first introduced, most

contents then were equally trusted because they were generated mostly by the websites

themselves. Today’s web has a totally different picture. A web page can simultaneously

contain entities with varying levels of trustworthiness. For example, advertisement entities

from a third-party and entities provided by users are less trustworthy than the entities

provided by the websites. Therefore, interactions between entities which are not equally

trusted must be mediated, and thus a well-designed access control system is necessary to

mediate the interactions within each web page. Unfortunately, there is no such an access

control system in the current Web. In terms of access control, the Web has adopted a

policy called Same-Origin Policy (SOP). This policy protects entities of one origin from

those of others. It does not provide access control on the interaction within a page. Such a

protection is unnecessary in the early day’s Web, because contents were mostly data.

Powerful Webpages Privilege. What makes the problem to be solved urgently is that

webpage owns more and more privileges. Client-side systems (e.g., browser and WebView)
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were designed to host web contents, render pages and execute script, but it is not sufficient.

With widely use of web technology, webpages are required to access resources outside the

client-side system to provide rich user experience.

Besides the APIs to access web-related resources (e.g., cookies, DOM), HTML5

standard designs and exposes new JavaScript APIs and HTML tags to web pages. For

example, HTML5 Web Storage API [151] is proposed to allow web pages use persistent

local storage. With this API, web pages can store named key/value pairs locally, within

the client-side system. Like cookies, this data persists even after navigating away from the

web site. HTML5 also provides a standard way to interact with local files, via the File API

specification [152]. With the File API, web pages could save a file reference while the user

is offline, or asynchronously read a file through JavaScript event handling. The HTML5

Geolocation API [153] is used for web pages to get the geographical information of a user.

Moreover, WebView technology provides a way for the webpages to access mobile

device’s resources, such as accessing camera, bluetooth, contact list, SMS, phone functions,

etc. As we explained in Section 2, Android WebView exposes an API called

addJavaScriptInterface, which allows mobile application to establish a bridge between web

page inside the WebView and the contents outside WebView. The bridge essentially

creates a hole on the sandbox of WebView, and allows JavaScript code inside to access the

mobile device resources.
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8.1.2 Potential Solutions

Without an in-page access control system in browsers, there is no way to directly

mediate the interaction among these entities. Web application developers are forced to find

alternatives. A common alternative is to conduct validation at the server side before

putting untrusted entities in a web page. For example, validation can attempt to remove

dynamic entities, disable dynamic entities, or restrict their behaviors. The objective of the

validation is to conduct the control at the server side, so when the entities arrive at the

browser side later, no undesirable access is possible. This approach is quite awkward,

because in typical access control, control is conducted when the access has already been

initiated. However, this alternative conducts “control” before any access is initiated.

Because the actual accesses are unknown, developers have to infer what potential accesses

are from the contents. This inferring process is quite error-prone, and has contributed to a

large portion of the high percentage of vulnerabilities in web applications [154]. The best

solution is to conduct access control after the access action is already initiated and thus

becomes known, but the current web does not have such an access control system. That is

a design mistake, and this mistake is one of the fundamental causes of the security

problems in the Web.

As the Web is still evolving, it is not too late to fix this design problem. Actually, there

are already efforts toward this goal. There are two types of approaches: one approach is to

propose specific features to incrementally build an access control system for the web. This

approach have resulted in various proposals [71–73,155–157], and the features that are

proven to be good will eventually be adopted. Another approach takes a holistic view: it
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treats the task as developing a complete access control system for web browsers, not as

developing pieces for such a system. Once this becomes the goal, there are lot of things

that we can learn from, such as the access-control design in operating systems, databases,

and many other computer systems.

A representative work of the holistic approach is the Escudo work [51]. Based on the

special needs in web applications, Escudo proposes a ring access control for web browsers.

Escudo is a start towards designing a good access control system for browsers, but there

are needs that cannot be easily satisfied by Escudo. Looking at the evolution history of

access control systems in operating systems, one lesson that we have learned is that one

model may not be able to fit all the needs. In current operating systems, many models

coexist. For example, in Linux, Access Control List (ACL), Capability, and Role-Based

Access Control (RBAC) coexist; in Windows 7, ACL, Capability, and Multi-level Access

Control coexist. These models jointly address the different protection needs in operating

systems. The fact that these particular models are chosen is the results of many years of

evolution in operating systems. We strongly believe that the Web will and should go down

a similar evolution path; sticking to the current SOP model prevents us from starting this

evolution path.

Motivated by the evolution of access control in operating systems, and by the

shortcomings of SOP and Escudo, we decided to study another model that has been widely

adopted by modern operating systems. This is the capability-based access control. The

main idea of capability is to divide the privileges in a system into smaller pieces, so they

can be assigned to the tasks based on the privileges they need. The capability allows us to
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follow the principle of least privileges, one of the essential principles in designing security

systems.

The benefit of having a capability-based access control model in browsers and WebView

is two-fold. First, by dividing the privileges of web contents into smaller pieces, web

browsers can conduct a a finer-grained access control. Second, because the privileges are

divided into smaller pieces, web application developers can assign different sets of small

privileges to the contents with different levels of trustworthiness. With this model, web

developers do not need to conduct the complicated and error-prone process to filter out

dangerous contents from the untrusted contents; instead, they can simply assign less

privilege (or no privilege at all) to the contents that are not so trustworthy. This is the

essence of the least-privilege principle. These three benefits will be discussed in more

details in the rest of the paper.

8.2 Access Control Models

8.2.1 The Needs

Access control is the ability to decide who can do what to whom in a system. An

access-control system consists of three components: principals, objects, and an

access-control model. Principals (the who) are the entities in the system that can

manipulate resources. Objects (the whom) are the resources in the system that require

controlled access. An access-control model describes how access decisions are made in the

system; the expression of a set of rules within the model is an access-control policy (the
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what). A systematic design of an access-control model should first identify the principals

and objects in the system.

Principals in a web page are elements that can initiate actions. There are several types

of principals inside a web page. (1) Dynamic contents, such as Javascript code, are obvious

principals. It should be noticed that Javascript code can be invoked in many different

ways: through an embedded script tag, being triggered by events, such as onload,

onmouseover, and time. (2) Many HTML tags in a web page can initiate actions, such as

a, img, form, iframes, button, meta 1, etc. These tags are considered as principals.

(3) Plugins can also initiate actions, so are also considered as principals. However, since

plugins usually have their own built-in access control mechanisms, this type of principals is

beyond the scope of this paper.

Objects include everything in a web page or those associated with a web page. Web

browsers represent the internal contents of a web page using a hierarchical data structure

called Document Object Model (DOM), and principals can use DOM APIs to access the

objects (called DOM objects) in a web page. DOM objects are obviously considered as

objects in our access control system. Cookies are another type of objects. Although they

are not included in a web page, they are associated with the web pages from the same

domain. Principals can access/modify cookies. Device resources are other type of objects,

such as camera, bluetooth, contact list, SMS, phone functions, etc.

Modern web applications are quite complicated. Typically, a server-side script combines

data and programs from several sources to create a web page. As a result, a web page is

1The meta tag is supposed to be put in the header of a web page only, but most web browsers accept it if it
is embedded in the body of the page. The Set-Cookie attribute in the meta tag can change cookies.
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composed of several principals and objects with varying levels of trustworthiness, and a

proper access-control model must recognize and support this diversity. Some portions of

the web page may contain user-supplied contents; principals arising from such HTML

excerpts should have limited privileges. For example, consider a blog application: a web

page may display a blog post with comments from other users. The original blog post and

the comments from users should be isolated from one another so that a deftly constructed

malicious comment cannot affect the original blog post.

8.2.2 The Escudo’s Ring Model

Escudo introduces a ring concept, which is borrowed from the Hierarchical Protection

Rings (HPR) [158] access control model. Rings in Escudo are labeled 0, 1, . . ., N , where N

is application dependent and defined by the developers of web applications. In the HPR

model, higher numbered rings have lesser privileges than lower numbered rings; namely,

ring 0 is the highest-privileged ring, and ring N is the least-privileged ring.

Escudo places all the principals and objects in a web page into these rings based on

their trustworthiness. To achieve this, Escudo introduces an attribute called ring for the

<div> tag to assign a ring label to each div region. Escudo-enabled browsers will then

enforce a simple access control rule based on these ring labels: principals at the ring p can

only access the objects at rings o if p ≤ o. This rule prevents the less trustworthy

principals from accessing (read and modify) the more trustworthy contents.

<div>
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8.2.3 Capability Model

There are two types of privileges within a web page. One is the privileges to access

certain objects (DOM objects and cookies), we call these privileges the object-based

privileges. The other type is the privileges to access certain actions, such as invoking AJAX

APIs, issuing HTTP POST requests, accessing cookies, etc. Whether a principal can access

these actions or not has security consequences. We call this type of privileges the

action-based privileges. Escudo can deal with the object-based privileges quite well, but it

is inappropriate for controlling the action-based privileges, because no specific objects are

associated to the action-based privileges. As a result, a principal in Escudo basically has all

the action-based privileges entitled to its origin, regardless of which ring it is in. This is a

clear violation of the least-privilege principle: if a Javascript code from a semi-trusted third

party only needs to send HTTP GET requests within the page, we should not give this

code the privilege to invoke AJAX APIs or send HTTP POST requests.

With the evolution of the Web, many new action-based privileges will be introduced.

AJAX is such an example, it is a newly introduced feature for the Web; being able to

conduct AJAX is therefore a new action-based privilege. HTML5 introduces many more

action-inducing tags, such as the <canvas> and <video> tags. These tags increase the

attack surface of HTML5-enabled web applications. Therefore, the privileges to initiate

these new HTML5 actions should not be given to every principal.

To secure the Web, controlling the uses of action-based privileges must be built into the

browser’s access control model. This is not the first time that we face this issue; operating

systems encountered the same issue long time ago. In operating systems, many

<canvas>
<video>
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applications require action-based privileges. For example, the ping program in Unix

requires the privilege to use raw sockets, the system backup programs require the privilege

to read all the files, etc. These programs use to be setuid programs, i.e., when they are

running, they have all the privileges of the root account. This is clearly a violation of the

least-privilege principle. The modern operating systems solved this problem using the

capability concept. The main idea of capability is to define a “token” (called capability) for

each privilege; a principal needs to possess the corresponding tokens if it wants to use

certain privileges. Because of these fine-grained capabilities, we can assign the least

amount of privileges to principals.

The Web has evolved to a stage where it becomes too risky to assign all the

action-based privileges to the principals within a web page. These privileges should be

separated, and assigned to principals based on their needs and trustworthiness. The

same-origin policy model does not separate these privileges, neither does Escudo. To

handle the web applications with ever-increasing complexity and to reduce the risks of web

applications, we believe that web browsers should adopt the capability model in its access

control. As a first step towards this direction, we have designed a capability-based access

control for web browsers; we have implemented our design in Google Chrome, and have

conducted case studies using our implementation.
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8.3 Capability for the Web

There are three major components in a capability-based access control: the list of

capabilities supported by the system, how capabilities are bound to principals, and how

access control is enforced. We will discuss each of these components in this section.

8.3.1 Capabilities

Learning from the history of capability design in Linux, we know that the development

of capabilities is an evolving process: in this process, rarely used capabilities may be

eliminated, more desirable capabilities may be added, new privileges may be introduced

when the system evolves, and so on. Therefore, we do not intend to come up with a list of

capabilities that are complete. We consider our efforts of introducing capabilities in web

browsers only as the first step in such an evolution. In this initial step, we have identified a

list of capabilities 2. They are classified into five categories:

• Capabilities to access sensitive resources, including bookmarks, Cookies, Certificates,

HTML5 LocalStorage, and Custom protocol handlers.

• Capabilities to access history resources, including Web Cache, History, Downloaded

items, Search box terms.

• Capabilities to access DOM elements, such as whether a principal is allowed to access

DOM objects, register an event handler, or to access the attribute settings of DOM

objects.

2Not all features in HTML5 are included in this paper, as HTML5 is still a work in progress.
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• Capabilities to send HTTP Requests, including Ajax GET/POST and HTTP

GET/POST requests.

• Capabilities to run Javascript programs or plug-in programs, including Flash, PDF,

Video, Audio, etc.

• Capabilities to to access device resources, such as camera, bluetooth, contact list,

SMS, phone functions, etc.

As a proof of concept, we have only implemented a subset of the above capabilities in

our prototype, including capabilities to set cookies, read cookies, use cookies (i.e. attaching

cookies to HTTP requests), capabilities to send AJAX GET/POST requests, capabilities

to send HTTP GET/POST requests, and capabilities to click hyperlinks and buttons. In

our system, we use a bitmap string to represent capability lists, with each position of the

bitmap string representing one specific capability. Figure 8.2 illustrates the specification of

the bitmap. The positions 1 to 9 defined the capability for to access web resources. The

positions 10 and 11 are the placeholders for the commonly used Android permission in

WebView case, and we will explain them in section 8.6.

Fig. 8.2.: Capability Bitmap
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8.3.2 Binding of Capabilities

To use capabilities in access control within a web page, web developers, when

constructing a web page, need to assign capabilities to the principals in the page, based on

the actual needs of principals. As we have discussed before, principals are DOM elements

of a web page. In Escudo, the HTML div tag is used for assigning the ring label to each

DOM element. HTML div tags were originally introduced to specify style information for a

group of HTML tags; Escudo introduces a new attribute called the ring attribute for the

div tag. To be consistent with Escudo, we take the same approach. We add another

attribute called cap for the div tag. This attribute assigns a capability list to all the DOM

elements within the region enclosed by its corresponding div and /div tags. An example is

given in the following:

<div cap="110101000">

... contents ...

</div>

In the above example, the privileges of the contents within the specified div region are

bounded by capabilities 1, 2, 4, and 6; namely no DOM elements within this region can

have any capability beyond these four.

8.3.3 Capability Enforcement

Enforcement in capability-based access control is well defined in the capability model:

an access action is allowed only if the initiating principal has the corresponding capability.
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The main challenge in a capability system is to identify the initiating principals and their

associated capabilities. In general, identifying principals is not so difficult: whenever an

action is initiated (either by Javascript code or by HTML tags), the browser can easily

identify the div region of the code or tags, and can thus retrieve the capabilities bound to

this region. Unfortunately, as a proverb says, the devil is in the details; identifying

principals is quite non-trivial. We describe details of capability enforcement in the

Section 8.5.

8.4 Ensuring Security

The key to capability enforcement is the integrity of the configuration (i.e., capability

assignment) provided by the application. We describe additional measures to prevent the

configuration from being tampered with.

Configuration Rule: Protecting against Node Splitting. Any security configuration

that relies on HTML tags are vulnerable to node-splitting attacks [72]. In a node-splitting

attack, an attacker may prematurely terminate a div region using </div>, and then start

a new div region with a different set of capability assignments (potentially with higher

privileges). This attack escapes the privilege restriction set on a div region by web

developers. Node-splitting attacks can be prevented by using markup randomization

techniques, such as incorporating random nonces in the div tags [71, 73].

Capability-enhanced browsers will ignore any </div> tag whose random nonce does not

match the number in its matching div tag. The random nonces are dynamically generated
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when constructing a web page, so adversaries cannot predict those numbers before they

insert their malicious contents into a web page.

Scoping Rule. When contents are from users, they are usually put into div regions with

limited privileges. However, user contents may include div tags with the capability

attributes. If web applications cannot filter out these tags, attackers will be able to create

a child div region with arbitrary capabilities. To prevent such an privilege escalation

attack, we define the following scoping rule:

Scoping Rule: The actual capabilities of a DOM element is always bounded

by the capabilities of its parent.

Formally speaking, if a div region has a capability list L, the privileges of the principals

within the scope of this div tag, including all sub scopes, are bounded by L. See the

following example (note that nonces are used for protecting against node-splitting attacks):

<div id="A" cap="101010000" nonce=893232>

... contents ..

<div id="B" cap="111110000" nonce=932398>

... contents ...

</div nonce=932398>

</div nonce=893232>

In the above example, the div region A is the parent of another region B, so B’s actual

capabilities is bounded by A’s capabilities (“101010000”), even though B’s capability
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attributes says “111110000”. Therefore, if A does not have a capability, B will not have it

either, regardless of whether the capability attribute of B includes that capability or not.

Access Rule for Node Creation/Modification. Using DOM APIs, Javascript

programs can create new DOM elements or modify existing DOM elements in any div

region. To prevent a principal from escalating its privileges by creating new DOM elements

or modify existing DOM elements in a higher privileged region, we enforce the following

access rule:

Access Rule: A principal with capabilities L can create a new DOM element

or modify an existing DOM element in another div region with capabilities L′

if L′ is a subset of L, i.e., the target region has less privilege than the principal.

Cross-Region Execution Rule. In most web applications, Javascript functions are often

put in several different places in the same HTML page. When a Javascript program from

one div region invokes a function in another div region, what should be considered as the

principal, and whose capabilities should be used? A simple design is to only treat the

initiating program as the principal, and use its capabilities in access control. A downside of

this design is that when the invoked function is in an area less trustworthy (i.e. having less

privileges) than the invoking program, the function will be actually invoked with higher

privileges than what it is entitled to.

To avoid the above situation, a modified design is to allow a Javascript program with

privilege A to invoke a function with privilege B, only if A is a subset of B. Namely, no

Javascript can invoke a function with less privilege. This way, we can always use the

initiating program’s privilege A throughout the entire execution.
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A more general solution is to allow the invocation regardless of what relationship A and

B has, but ensure that when the function is invoked, the privilege of the running program

becomes the conjunction of A and B, i.e., A∧ B. Namely, the privilege will be downgraded

if B has less privilege than A. After the function returns back to the caller, the privilege of

the running program will be restored to A again. We have implemented this general

solution in our prototype.

8.5 Implementation on Browser

Although the capability-based access control can be applied to both browser and

WebView, we only implemented it on browser. This section discusses the implementation

of Contego on browser, and the next section explains how to port it to WebView.

8.5.1 System Overview

In Google Chrome 3, there are four major components closely related to our

implementation: Browser Process (Kernel), Render Engine, Javascript Interpreter (V8),

and sensitive resources. We add two subsystems to Chrome: Binding System, and

Capability Enforcement System. Figure 8.3 depicts the positions of our addition within

Chrome.

Binding System. The purpose of binding system is to find the capabilities of a principal,

and store them in data structures where the enforcement module can access. In Chrome,

principals are identified in several components, including HTML parser (which parses the

3We use Version 3.0.182.1, simply because this is the version we had when we started the implementation.
We plan to port our implementation to the most recent version.
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Fig. 8.3.: System Overview

HTML code and generate DOM tree) and Javascript Interpreter (which compiles

Javascript code into V8 objects). We need to modify those components to bind capabilities

to principals when principals are created.

The capability information of each principal is stored inside the browser core. Only the

browser’s code can access the capability information; the information is not exposed to any

code external to the browser’s code base (e.g. Javascript code). At this point, we do not

foresee any need for the external code to access such information, so no API is provided by

the browser for the access of the capability information.

Effective Capabilities. When an access action is initiated within a web page, to conduct

access control, the browser needs to know the corresponding capabilities of this access. We

call these capabilities the effective capabilities. Identifying effective capabilities for actions
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is nontrivial: in the simplest case, the effective capabilities are those attached to the

principal that initiates the action. Javascript code makes the situation much more

complicated. A key functionality of our binding system is to keep track of the effective

capabilities within a web page. We will present the details later in this section.

Capability Enforcement. Our implementation takes advantage of the fact that every

user-level access to sensitive resources goes through the browser kernel, precisely, through

the local APIs. For example, AssembleRequestCookies() in the URLRequestHttpJob class

will be invoked to attach cookies to HTTP requests; XMLHttpRequest::send() will be

called for sending Ajax requests. We add the capability enforcement to these APIs. When

they are called, the enforcement system checks whether the effective capabilities have the

required capabilities for the invoked APIs.

Actions. Within a web page, there are two types of actions: (1) HTML-induced actions:

this type of actions are initiated by HTML tags, such as the HTTP requests caused by

<img>, <iframe>, <meta Set-Cookie>, submit buttons, etc. (2) Javascript-induced

actions: this type of actions are initiated by Javascript code. For both types of actions,

when they take place, we need to identify the effective capabilities that should be apply to

the actions.

8.5.2 HTML-Induced Actions

The effective capabilities of HTML-induced actions are the capabilities assigned to the

div region that the initiating HTML tags belong to. When a web page reaches a browser,

it will be parsed by the browser’s HTML parser. A main function of the parser is to

AssembleRequestCookies()
URLRequestHttpJob
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generate a DOM tree, and the contents of a web page will be placed in DOM objects in the

tree. The div regions will be represented as DOM objects.

The capability attributes introduced by us will be treated by the parsers as attributes

of a tag, just like any other attribute. After extracting the capability attributes, the HTML

parser will pass the information to our binding system, which maintains a shadow DOM

tree. This shadow DOM tree stored the capabilities of each DOM node, and it can only be

access by our binding system. Although Javascript programs can modify the attributes of

DOM objects through various APIs, these APIs cannot be used to modify the capability

attributes, as the values of the capability attributes are stored in the shadow tree, not the

original tree. No API is exposed to Javascript programs for accessing the shadow tree.

When an action is initiated from a HTML tag, the enforcement system identifies the

DOM object that the tag belongs to, retrieves the capabilities from its shadow object, and

finally checks whether the capabilities are sufficient to carry out the action or not. If not,

the action will not be carried out.

8.5.3 Javascript-Induced Actions

Identifying the effective capabilities of Javascript-induced actions is quite complicated.

This is because a running sequence of Javascript can span multiple principals with different

sets of capabilities. For example, the execution may start from the Javascript code in one

div region, but the code can invoke Javascript functions in other div regions. In this case,

the cross-region execution rule described in Section 8.4 will apply. For example, if A calls

B, B calls C, and C calls D, then when executing D, the effective capabilities are the
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conjunction of the capabilities of A, B, C, and D. When function D returns to C, the

effective capabilities will become the conjunction of the capabilities of A, B, and C.

We use a stack data structure in our binding system to store the effective capabilities in

the runtime (we call it the capability stack). When a Javascript program gets executed, the

capabilities of the corresponding principal will be pushed into the stack as the first element

of the stack. The top element of the stack is treated as the effective capabilities, denoted as

E. When a function in another principal (say principal B) is invoked, the updated effective

capabilities E ∧ Cap(B) will be pushed into the stack, where Cap(B) represents the

capabilities assigned to B. When the function in B returns, the system will pop up and

discard the top element of the stack.

The capability stack must be updated every time the principal of code changes during

the execution. Therefore, our binding system must be involved when the principal of

execution changes. Since the invocation of functions happens insider the Javascript

Interpreter (the V8 engine), the ideal solution is to build part of the binding system in V8:

when the HTML parser sees Javascript code, it identifies the capabilities of the principal,

and pass them into V8. This way, each function object within V8 is attached with a

capability list; when a function is invoked, V8 can push the effective capabilities into the

capability stack.

The situation is further complicated by another fact: V8 compiles Javascript code into

native code at run-time; therefore when a function invocation happens, it may not go

through the V8 engine, and thus our binding system cannot be triggered to update the

capability stack.



183

An alternative solution is to not modify the V8 engine, but instead to modify the

Javascript code. We introduce a code rewriting module, which rewrites code before sending

it to the V8 engine. The rewritten code first pushes the effective capabilities of the next

running principal into the capability stack before executing the invoked function, and pop

the top element from the capability stack right after the current function returns. To

accomplished this goal, we introduce two built-in Javascript functions:

void Cap_Push(capability, random_number);

void Cap_Pop(random_number);

Because the invocation of these two built-in Javascript function can change the runtime

effective capabilities, we cannot allow user’s code to call these functions; we can only allow

our rewriting module to add the invocation of these two functions into Javascript

programs. To achieve this goal, we pass a random number to these two functions. This

number is generated by our rewriting module for each page. When Cap_Push and Cap_Pop

are invoked, the numbers in their arguments must match with the random number held by

the browser kernel for that page. Since the contents of rewritten code are invisible to

Javascript code, and the random number is only known to the browser, it will be hard for

attackers to guess this random number; any invocation with a mismatched number will

cause the invocation to return without doing anything.

The following code gives an example on how the rewriting module wraps the JavaScript

function foo():

The call _tempAOP_12453.apply() will basically invoke the original function foo. The

code in the finally clause will be invoked upon the finish of the invocation.

Cap_Push
Cap_Pop
_tempAOP_12453.apply()
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Fig. 8.4.: Rewrite JavaScript Function to Enforce Capability

8.5.4 Event-Driven Actions

Some Javascript-induced actions are triggered by events, not directly by principals.

When these actions are triggered, we need to find the capability of the responsible

principals. There are three types of events: DOM-registered events, timer events, and

AJAX callback events.

DOM-Registered Events. In browsers, it is possible to register handlers for specific

event types and specific DOM nodes. Whenever the specified event occurs to the registered

DOM nodes, the handler for that event, if any, is called. In this situation, we need to

identify the responsible principals and their associated capabilities.

There are two ways to register handlers. One way is to do it statically through HTML

tags/attributes, and the other is to do it using Javascript. In the static method, event

handler is specified using HTML event attributes, such as onclick, onload, onclick, etc.
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The following HTML excerpt registers a block of code as an event handler to a button;

when the button is clicked, the code will be triggered:

<button onclick=" ... code ... ">

Another way to register handlers is to use Javascript. To register an event handler (say

onclick) for a DOM object (say dom obj), we can use the following Javascript code

(clickHandler is a Javascript function):

dom_obj.onclick = clickHandler;

Timer Events. Javascript can set timer events using various functions, such as

setTimeout() and setInterval(). These events are not tied to any DOM objects,

instead, they are directly tied to the global window object:

window.setTimeout (code, timeout);

window.setInterval(code, delay);

AJAX Callback Events. When AJAX sends out a request, it registers a callback

function to the system; the function will be invoked when the response comes back. A

typical way to register callbacks is shown in the following:

xmlhttp.onreadystatechange = function() { /*handler code*/}

Binding Capabilities to Event Handlers. Event handlers are triggered by the system

(i.e. the browser), not a particular principal. To identify which capabilities should be used

when executing the handlers, we need to find out who is responsible for registering the

setTimeout()
setInterval()
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event handlers. The capabilities should be the effective capabilities when the handlers were

registered. If they are registered via HTML, such as the onclick and onsubmit attributes,

then the capabilities for the handlers should be those entitled to their containing DOM

objects. If they are registered via Javascript, the capabilities for the handlers should be the

effective capabilities at the point of registration.

Fig. 8.5.: Event Mechanism in Chrome

Figure 8.5 shows how event registration and triggering work in Google Chrome.

Principals that are allowed to register events maintain an “eventListener vector” for each

type of events. Each item in the vector is an event handler. Each event-register operation

should go through the API addEventListener() (marked by number 1 in the figure); this

API inserts the event handler into the principal’s eventListener vector. The invocation of

event handler goes through the function HandleEvent() (marked by number 2 in the

figure).

We modified the addEventListener() function, so we can store the effective

capabilities into event handlers during the event registration. We also modified the
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function HandleEvent(), so when an event is triggered, we can retrieve the effective

capabilities from the event handler objects, and push them into the capability stack.

8.5.5 Backward Compatibility

Our implementation is backward compatible. There are two scenarios. First, when our

modified browser sees a web page without capability attributes, it knows that the page is

not enhanced with our capability model, and thus provides all capabilities to the contents,

basically going back to the same-origin policy. Second, if a web page is enhanced with our

capability tags, but is rendered by a browser that does not implement our capability model,

according to the standard, the browser will simply ignore those capability attributes.

8.6 Porting Implementation on Android WebView

Although we did not implement Contego framework on WebView, to port the existing

implementation on browser to Android WebView is not hard. Chrome browser and Android

WebView shares the same WebKit source code, and the implementation we explained in

the previous section is all related to the code within WebKit library. Therefore, we can

adopt the similar the design and implementation we did on browser directly to WebView.

However, there are several issues we need to deal with, in order to port Contego from

browser to WebView. The first issue is the “Binding of Capabilities” (Section 8.3.2) using

capability bitmap as figure 8.2 illustrates. However, the number of permissions on mobile

system is much larger than the number we identified for the Web. For example, Android

system has 148 system defined permissions, and allows mobile developer to define
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customized permission. Therefore, bitmap may not be the best way for web developers to

configure capability for each div tag. Implementation on WebView could allows web

developers to define a list of capability names separated in the “capList” attribute by space

as following:

<div cap="101010000" capList="Read_Contact Write_SMS">

... contents ...

</div>

The second issue is the “Capability Enforcement” (Section 8.3.3). Unlike the invocation

to access Web resources, the access to mobile device resources is check outside WebKit.

Therefore, to enforce the capability associated to Android permission, Contego framework

should enforce additional access control check outside WebKit. There are several ways to

achieve this goal, and the paper [20] already implemented how to enforce Android

permission bound to web frame. Similarly, we could extend Androids existing Reference

Monitor to check the effective capabilities when an application tries to access protected

resources, such as external storage, camera, contact, etc. In Android’s original reference

monitor, the application’s User ID (UID) is used to find out the permissions of the

application, and access control is conducted based on these permissions. To enforce our

access control model, we need to use Thread ID (TID) to find out the effective capabilities

of the current thread, and then conduct access control based on the effective capabilities.

This only involves small changes to the existing reference monitor. For backward

compatibility, if a thread does not have an effective capabilities list, access control will fall

back to the original Android access control model, so we will not break the existing
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applications. However, we ensure that every thread involved in the JavaScript-to-Java

invocation will have an effective capabilities list, even if the list is empty.

8.7 Case Studies and Evaluation

To evaluate how useful, effective, and easy-to-use the capability model is in securing

web applications, we have conducted case studies using a number of open-source web

application programs, including Collabtive, PhpBB2, PhpCalendar, and MediaWiki. For

each application, we focus on evaluating the following aspects: (1) defense against

Cross-Site Scripting attacks, (2) defense against malicious advertisement, (3) defense

against ClickJacking attacks, and (4) limiting the privileges of untrusted inputs. Due to

the page limitation, we cannot describe all our case studies in this paper. We will only

present several representative ones. Full details will be included in the extended version of

this paper.

8.7.1 The Orkut worm

On 25th September 2010, a new worm affecting Orkut emerged. The basic idea of this

worm is to inject a short Javascript code into the victim page using the onload event of

iframe. This code is a “bootstrapping” code; its sole purpose is to download and run the

attacking Javascript code from another site. Here is the key snippet of the code:

<iframe onload="a = document.createElement(’script’);

a.src = ’www.malicious.com/malware.js’;

document.body.appendChild(a)">
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</iframe>

Defending against this attack using capability is quite straightforward. Since this block

of HTML contents are inputs from users, they should be put in an area that does not have

much privilege. For example, they can be put in the following area:

<div cap="000000000" nonce="3433893">

<iframe onload="a = document.createElement(’script’);

a.src = ’www.malicious.com/malware.js’;

document.body.appendChild(a)">

</iframe>

</div nonce="3433893">

Because this region is not given any capability, there are several reasons why the

attacks will not be effective. First, because of the lack of HTTP-Request capabilities, no

HTTP request can be sent out from this region; therefore, the attacking code cannot be

downloaded. Second, even if the region is given the HTTP-Request capabilities, the

downloaded code will not gain more privileges; therefore, as long as the cookie-access

capability is not given to this region, no effective attack can be launched.

8.7.2 Untrusted input - AD Network

As a performance-based advertising network, admedia.com connects advertisers to

consumers across many channels. One of the channels is called affiliating in-text
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advertising; this is done by importing the following 3rd-party Javascript file into the host

page (i.e. the publisher).

<script src=’http://inline.admedia.com/?count=5&id=OzooNic’>

</script>

When visitors browse the host page, they will see the contents of the page as usual; but

when they scroll over the linked text, they will be able to see advertisements. The

imported 3rd-party Javascript code gets to determine which text will be linked and how

often. The Javascript code need to modify the page to achieve this effect.

Since this 3rd-party Javascript code was imported into the host page (publisher), it has

the same privilege as those coming from the publisher, i.e., it can do a great damage if the

code is malicious. Admedia.com claims that the code only adds hyperlinks to the page, so

it is against the principle of least privileges if the code is given the privileges beyond what

is needed to modify the page; there is no need to allow the code to access cookies, history,

etc. Web developers of the host page can limit the privileges assigned to the Javascript

code from Admedia.com using capabilities. The following example gives the code limited

capabilities:

<div cap="000001111" nonce="5528053">

<script src=’http://inline.admedia.com/?count=5&id=OzooNic’>

</script>

</div nonce="5528053">
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Javascript code from Admedia.com is only given four capabilities (HTTP GET/POST

and click capabilities), which are sufficient for the code to achieve its purpose. According

to the “access rule” discussed before, the code from Admedia.com is restricted to access

and modify the areas that have equal or less privilege. These should include most of the

text areas. If the code is unfortunately malicious, it can deface the web page for sure, but

due to the lack of privileges to access cookies, its damage is greatly limited.

8.7.3 Prevent XSS in Collabtive

Collabtive is an open-source web-based project management software intended for small

to medium-sized businesses and freelancers. This web application provides several channels

for users to interact with one another, including message posting, online chatting, project

assignment, and user feedback. To prevent Cross-Site Scripting (XSS) attacks, the

application has installed many filters and encoding schemes, but still attacks are possible.

We can instead use capabilities to defend against XSS attacks.

Modifying Collabtive to benefit from our capability model is quite easy because of the

Smarty template [159] used by Collabtive. Because the outputs of web applications are web

pages, they have to deal with how to construct web pages using HTML. This is called the

view part of web applications. In the past, the view part was often mixed together with the

rest of the program logics. Nowadays, thanks to the technologies such as Smarty, web

applications can separate the view part from the program logics. For instance, using

Smarty, web developers can define a view template file, which contains the majority of

HTML code, along with several holes to be filled later by programs.
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The assignment of capabilities is done on views. Therefore, if views are already

separated from the program logics, assigning capabilities becomes quite simple: we just

need to modify the template file. It only took several hours for us to finish the task for

Collabtive. The following shows a change we made to a template file called message.tpl in

Collabtive:

<div class="message-in"> <div class="message-in"

cap="000000000" nonce={$rand}>

{$message.text} -> {$message.text}

</div> </div nonce={$rand}>

The $message.text area is a hole in the template, and this hole will be filled when the

template is used. In Collabtive, $message.text will be filled with data provided by users,

and no privilege is needed in this hole. Therefore, we assign no capability to this hole.

Even if user’s inputs contain malicious contents (such as code or action-inducing HTML

tags), no damage can be achieved.

8.7.4 Performance Overhead

To evaluate the performance of our implementation, we have conducted experiments to

measure the extra cost our model brings to the Chrome. We measure how long it takes a

page to be rendered in our modified browser versus in the original browser. We use some of

the built-in tools in Chrome to conduct the measurement. In our evaluation, we tested four

web applications: Collabtive, phpBB2, phpCalendar and MediaWiki; we measure the total

time spent on rendering pages and executing JS code. The configuration of the computer is
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the following: Inter(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz, 3.24 GB of RAM. The

results are plotted in Figure 8.6.

Fig. 8.6.: Performance

The results show that the extra cost caused by the model is quite small. In most cases,

it is about 3 percent. For phpBB2, it is a little bit higher, because phpBB2 uses more

Javascript programs than the others.
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9. SUMMARY

In summary, this dissertation is the first systematic study on the security problems of

WebView. The objective of this work is to conduct a comprehensive and systematic study

of WebView’s impact on web security, with a particular focus on identifying its

fundamental causes. The ultimate goal is to design and implement a secure WebView

which c an be embedded in the untrusted Android application but still perserve the

integrity and privacy of the webpage inside.
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