9,458 research outputs found

    Immune epitope database analysis resource

    Get PDF
    The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide:MHC binding and T-cell epitope predictive tools have been added. As validated by different labs and in the first international competition for predicting peptide:MHC-I binding, their predictive performances have improved considerably. In addition, a new B-cell epitope prediction tool was added, and the homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface and can also be downloaded as software packages

    Immune epitope database analysis resource (IEDB-AR)

    Get PDF
    We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total of eight new tools were added, including two B-cell epitope prediction tools, four T-cell epitope prediction tools and two analysis tools

    IEDB-AR: immune epitope database - analysis resource in 2019

    Get PDF
    The Immune Epitope Database Analysis Resource (IEDB-AR, http://tools.iedb.org/) is a companion website to the IEDB that provides computational tools focused on the prediction and analysis of B and T cell epitopes. All of the tools are freely available through the public website and many are also available through a REST API and/or a downloadable command-line tool. A virtual machine image of the entire site is also freely available for non-commercial use and contains most of the tools on the public site. Here, we describe the tools and functionalities that are available in the IEDB-AR, focusing on the 10 new tools that have been added since the last report in the 2012 NAR webserver edition. In addition, many of the tools that were already hosted on the site in 2012 have received updates to newest versions, including NetMHC, NetMHCpan, BepiPred and DiscoTope. Overall, this IEDB-AR update provides a substantial set of updated and novel features for epitope prediction and analysis.Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Mahajan, Swapnil. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Yan, Zhen. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Kim, Haeuk. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Jespersen, Martin Closter. Technical University of Denmark; DinamarcaFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Greenbaum, Jason A. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Peters, Bjoern. University of California; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unido

    Influenza research database: an integrated bioinformatics resource for influenza research and surveillance.

    Get PDF
    BackgroundThe recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics.DesignThe Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature.ResultsTo demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks.ConclusionsThe IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics

    Curation of complex, context-dependent immunological data

    Get PDF
    BACKGROUND: The Immune Epitope Database and Analysis Resource (IEDB) is dedicated to capturing, housing and analyzing complex immune epitope related data . DESCRIPTION: To identify and extract relevant data from the scientific literature in an efficient and accurate manner, novel processes were developed for manual and semi-automated annotation. CONCLUSION: Formalized curation strategies enable the processing of a large volume of context-dependent data, which are now available to the scientific community in an accessible and transparent format. The experiences described herein are applicable to other databases housing complex biological data and requiring a high level of curation expertise

    Epitopes in ChEBI - A Collaboration with the IEDB

    Get PDF
    *ChEBI background:* Chemical Entities of Biological Interest (ChEBI) is a curated database of small chemical entities important in biosystems. As well as a description of entities, it provides a semantically rich knowledge base; and an internal hierarchy that organises the entities by their molecular structure types and potential rôles.

*The ChEBI-IEDB collaboration:* The Immune Epitope and Analysis Resource (IEDB) is a project supported by contract from the National Institute of Allergy and Infectious Diseases (NIAID). Its goal is to make epitope-related data on infectious diseases and immune disorders freely available to researchers worldwide. In June 2009, ChEBI began working with the IEDB on a project aimed at incorporating into ChEBI, by manual curation, a pilot subset of immunologically important chemicals identified as immune epitopes.

*The significance of the project:* Numerous reports attest to an increasing global prevalence of immune-related diseases, with a multiplicity of contributing factors. This situation underscores the need for cross-talk among the various scientific disciplines, and makes ChEBI involvement in this project particularly relevant. 

*Collaboration outcome:* That collaboration among curators working on different databases can be reciprocally beneficial has been amply demonstrated by the ChEBI-IEDB teamwork described: while the incorporated IEDB items have substantially enriched ChEBI, the latter’s multiplicity of synonyms, structure tree lay-out and expertise in describing non-peptidic epitopes have been equally useful to the IEDB in facilitating the search process.
*Status quo and plans:* We continue to refine our task of assisting the identification, understanding and utilisation of biologically meaningful chemical entities by engaging in further joint projects

    The Immune Epitope Database and Analysis Resource Program 2003–2018: reflections and outlook

    Get PDF
    The Immune Epitope Database and Analysis Resource (IEDB) contains information related to antibodies and T cells across an expansive scope of research fields (infectious diseases, allergy, autoimmunity, and transplantation). Capture and representation of the data to reflect growing scientific standards and techniques have required continual refinement of our rigorous curation and query and reporting processes beginning with the automated classification of over 28 million PubMed abstracts, and resulting in easily searchable data from over 20,000 published manuscripts. Data related to MHC binding and elution, nonpeptidics, natural processing, receptors, and 3D structure is first captured through manual curation and subsequently maintained through recuration to reflect evolving scientific standards. Upon promotion to the free, public database, users can query and export records of specific relevance via the online web portal which undergoes iterative development to best enable efficient data access. In parallel, the companion Analysis Resource site hosts a variety of tools that assist in the bioinformatic analyses of epitopes and related structures, which can be applied to IEDB-derived and independent datasets alike. Available tools are classified into two categories: analysis and prediction. Analysis tools include epitope clustering, sequence conservancy, and more, while prediction tools cover T and B cell epitope binding, immunogenicity, and TCR/BCR structures. In addition to these tools, benchmarking servers which allow for unbiased performance comparison are also offered. In order to expand and support the user-base of both the database and Analysis Resource, the research team actively engages in community outreach through publication of ongoing work, conference attendance and presentations, hosting of user workshops, and the provision of online help. This review provides a description of the IEDB database infrastructure, curation and recuration processes, query and reporting capabilities, the Analysis Resource, and our Community Outreach efforts, including assessment of the impact of the IEDB across the research community.Fil: Martini, Sheridan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido

    Determination of a predictive cleavage motif for eluted major histocompatibility complex class II ligands

    Get PDF
    CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido
    corecore