67 research outputs found

    NAOMOBBY, desarrollo de una herramienta software basada en visión por computador y robótica para apoyar la rehabilitación en terapias físicas de miembros superiores

    Get PDF
    Nowadays, 21% of Colombian population, and the 35% of the population in Cauca Valley have limited movement of body, arms, hands or legs. Then, the quality of life of these people is highly affected, since they have limitations in daily living activities. Physical rehabilitation therapies allow the restoration of movement and maximum functional capacity in people. Successful physical therapies depend on empathy and motivation with the rehabilitation process (RP), then the more empathy of patients with the RP, the more patient willingness regarding the rehabilitation therapy. Motivation is crucial in rehabilitation, and it is used as a fundamental rehabilitation out-come. This work has the aim to present the software tool called NAOMOBBY to support physical rehabilitation therapies of shoulder, elbow and wrist joints. NAOMOBBY includes a GUI for therapist, a Kinect sensor and an interactive humanoid robot NAO to increase the patient willingness regarding the RP. NAOMOBBY includes the following modules: configuration/management, movement reproduction, and results report using GAS methodology. NAOMOBBY was tested using quantitative and field tests. Quantitative tests measure the error in the Kinect sensor of the NAO robot joint motions to bring users a suitable feedback. Quantitative results were obtained using three basic functional motions. The mean square error for these three motions were 0,373%, 0,096%, and 1,129% respectively. Field tests were conducted at the SURGIR neuro-rehabilitation center using 3 physiotherapists who considered the NAOMOBBY software tool as a novel, easy to use, and that encourage patients to perform the physical therapy.Actualmente, el 21% de la población en Colombia y el 35% de la población del Valle del Cauca tiene limitaciones en el movimiento del cuerpo, brazos, manos o piernas. Entonces, la calidad de vida de estas personas está altamente afectado, ya que ellas tienen limitaciones al desarrollar actividades del diario vivir. La rehabilitación a través de la terapia física, permite la restauración del movimiento y la máxima capacidad funcional en las personas. Terapias físicas exitosas dependen de la empatía y motivación con el proceso de rehabilitación (PR), entonces entre más alta la empatía de los pacientes con el PR, más alta la disposición será de los pacientes en relación con la terapia de rehabilitación. Motivación es crucial en rehabilitación, y es usado como un resultado determinante de la rehabilitación. Este trabajo tiene el objetivo de presentar la herramienta software llamada NAOMOBBY para soportar las terapias de rehabilitación física de las articulaciones de hombro, codo y muñeca. NAOMOBBY incluye una GUI para terapeutas, un sensor Kinect y un robot interactivo humanoide NAO con el fin de incrementar la disposición del paciente hacia el PR. NAOMOBBY incluye los siguientes módulos: configuración y gestión, reproducción de movimiento y reporte de resultados usando la metodología GAS. NAOMOBBY fue probada usando pruebas cuantitativas y de campo. Las pruebas cuantitativas miden el error en el sensor Kinect de los movimientos de las articulaciones del robot NAO, con el fin de brindar a los usuarios una adecuada realimentación. Los resultados cuantitativos fueron obtenidos usando tres movimientos funcionales básicos. Los errores cuadráticos medios de estos tres movimientos fueron 0,373%, 0,096%, y 1,129% respectivamente. Las pruebas de campo fueron realizadas en el centro de neuro-rehabilitación SURGIR usando 3 fisioterapeutas quienes consideraron a la herramienta software NAOMOBBY como novedosos, fáciles de usar y que motiva a los pacientes a realizar la terapia física

    NAOMOBBY, desarrollo de una herramienta software basada en visión por computador y robótica para apoyar la rehabilitación en terapias físicas de miembros superiores

    Get PDF
    Nowadays, 21% of Colombian population, and the 35% of the population in Cauca Valley have limited movement of body, arms, hands or legs. Then, the quality of life of these people is highly affected, since they have limitations in daily living activities. Physical rehabilitation therapies allow the restoration of movement and maximum functional capacity in people. Successful physical therapies depend on empathy and motivation with the rehabilitation process (RP), then the more empathy of patients with the RP, the more patient willingness regarding the rehabilitation therapy. Motivation is crucial in rehabilitation, and it is used as a fundamental rehabilitation out-come. This work has the aim to present the software tool called NAOMOBBY to support physical rehabilitation therapies of shoulder, elbow and wrist joints. NAOMOBBY includes a GUI for therapist, a Kinect sensor and an interactive humanoid robot NAO to increase the patient willingness regarding the RP. NAOMOBBY includes the following modules: configuration/management, movement reproduction, and results report using GAS methodology. NAOMOBBY was tested using quantitative and field tests. Quantitative tests measure the error in the Kinect sensor of the NAO robot joint motions to bring users a suitable feedback. Quantitative results were obtained using three basic functional motions. The mean square error for these three motions were 0,373%, 0,096%, and 1,129% respectively. Field tests were conducted at the SURGIR neuro-rehabilitation center using 3 physiotherapists who considered the NAOMOBBY software tool as a novel, easy to use, and that encourage patients to perform the physical therapy.Actualmente, el 21% de la población en Colombia y el 35% de la población del Valle del Cauca tiene limitaciones en el movimiento del cuerpo, brazos, manos o piernas. Entonces, la calidad de vida de estas personas está altamente afectado, ya que ellas tienen limitaciones al desarrollar actividades del diario vivir. La rehabilitación a través de la terapia física, permite la restauración del movimiento y la máxima capacidad funcional en las personas. Terapias físicas exitosas dependen de la empatía y motivación con el proceso de rehabilitación (PR), entonces entre más alta la empatía de los pacientes con el PR, más alta la disposición será de los pacientes en relación con la terapia de rehabilitación. Motivación es crucial en rehabilitación, y es usado como un resultado determinante de la rehabilitación. Este trabajo tiene el objetivo de presentar la herramienta software llamada NAOMOBBY para soportar las terapias de rehabilitación física de las articulaciones de hombro, codo y muñeca. NAOMOBBY incluye una GUI para terapeutas, un sensor Kinect y un robot interactivo humanoide NAO con el fin de incrementar la disposición del paciente hacia el PR. NAOMOBBY incluye los siguientes módulos: configuración y gestión, reproducción de movimiento y reporte de resultados usando la metodología GAS. NAOMOBBY fue probada usando pruebas cuantitativas y de campo. Las pruebas cuantitativas miden el error en el sensor Kinect de los movimientos de las articulaciones del robot NAO, con el fin de brindar a los usuarios una adecuada realimentación. Los resultados cuantitativos fueron obtenidos usando tres movimientos funcionales básicos. Los errores cuadráticos medios de estos tres movimientos fueron 0,373%, 0,096%, y 1,129% respectivamente. Las pruebas de campo fueron realizadas en el centro de neuro-rehabilitación SURGIR usando 3 fisioterapeutas quienes consideraron a la herramienta software NAOMOBBY como novedosos, fáciles de usar y que motiva a los pacientes a realizar la terapia física

    NAOMOBBY, desarrollo de una herramienta software basada en visión por computador y robótica para apoyar la rehabilitación en terapias físicas de miembros superiores

    Get PDF
    Nowadays, 21% of Colombian population, and the 35% of the population in Cauca Valley have limited movement of body, arms, hands or legs. Then, the quality of life of these people is highly affected, since they have limitations in daily living activities. Physical rehabilitation therapies allow the restoration of movement and maximum functional capacity in people. Successful physical therapies depend on empathy and motivation with the rehabilitation process (RP), then the more empathy of patients with the RP, the more patient willingness regarding the rehabilitation therapy. Motivation is crucial in rehabilitation, and it is used as a fundamental rehabilitation out-come. This work has the aim to present the software tool called NAOMOBBY to support physical rehabilitation therapies of shoulder, elbow and wrist joints. NAOMOBBY includes a GUI for therapist, a Kinect sensor and an interactive humanoid robot NAO to increase the patient willingness regarding the RP. NAOMOBBY includes the following modules: configuration/management, movement reproduction, and results report using GAS methodology. NAOMOBBY was tested using quantitative and field tests. Quantitative tests measure the error in the Kinect sensor of the NAO robot joint motions to bring users a suitable feedback. Quantitative results were obtained using three basic functional motions. The mean square error for these three motions were 0,373%, 0,096%, and 1,129% respectively. Field tests were conducted at the SURGIR neuro-rehabilitation center using 3 physiotherapists who considered the NAOMOBBY software tool as a novel, easy to use, and that encourage patients to perform the physical therapy.Actualmente, el 21% de la población en Colombia y el 35% de la población del Valle del Cauca tiene limitaciones en el movimiento del cuerpo, brazos, manos o piernas. Entonces, la calidad de vida de estas personas está altamente afectado, ya que ellas tienen limitaciones al desarrollar actividades del diario vivir. La rehabilitación a través de la terapia física, permite la restauración del movimiento y la máxima capacidad funcional en las personas. Terapias físicas exitosas dependen de la empatía y motivación con el proceso de rehabilitación (PR), entonces entre más alta la empatía de los pacientes con el PR, más alta la disposición será de los pacientes en relación con la terapia de rehabilitación. Motivación es crucial en rehabilitación, y es usado como un resultado determinante de la rehabilitación. Este trabajo tiene el objetivo de presentar la herramienta software llamada NAOMOBBY para soportar las terapias de rehabilitación física de las articulaciones de hombro, codo y muñeca. NAOMOBBY incluye una GUI para terapeutas, un sensor Kinect y un robot interactivo humanoide NAO con el fin de incrementar la disposición del paciente hacia el PR. NAOMOBBY incluye los siguientes módulos: configuración y gestión, reproducción de movimiento y reporte de resultados usando la metodología GAS. NAOMOBBY fue probada usando pruebas cuantitativas y de campo. Las pruebas cuantitativas miden el error en el sensor Kinect de los movimientos de las articulaciones del robot NAO, con el fin de brindar a los usuarios una adecuada realimentación. Los resultados cuantitativos fueron obtenidos usando tres movimientos funcionales básicos. Los errores cuadráticos medios de estos tres movimientos fueron 0,373%, 0,096%, y 1,129% respectivamente. Las pruebas de campo fueron realizadas en el centro de neuro-rehabilitación SURGIR usando 3 fisioterapeutas quienes consideraron a la herramienta software NAOMOBBY como novedosos, fáciles de usar y que motiva a los pacientes a realizar la terapia física

    Go virtual to get real: virtual reality as a resource for spinal cord treatment

    Get PDF
    Abstract: Increasingly, refined virtual reality (VR) techniques allow for the simultaneous and coherent stimulation of multiple sensory and motor domains. In some clinical interventions, such as those related to spinal cord injuries (SCIs), the impact of VR on people′s multisensory perception, movements, attitudes, and even modulations of socio‐cognitive aspects of their behavior may influence every phase of their rehabilitation treatment, from the acute to chronic stages. This work describes the potential advantages of using first‐person‐perspective VR to treat SCIs and its implications for manipulating sensory‐motor feedback to alter body signals. By situating a patient with SCI in a virtual environment, sensorial perceptions and motor intention can be enriched into a more coherent bodily experience that also promotes processes of neural regeneration and plasticity. In addition to the great potential of research, the most significant areas of interest concern is managing neuropathic pain, motor rehabilitation, and psychological well‐being

    Beyond the Screen: Reshaping the Workplace with Virtual and Augmented Reality

    Full text link
    Although extended reality technologies have enjoyed an explosion in popularity in recent years, few applications are effectively used outside the entertainment or academic contexts. This work consists of a literature review regarding the effective integration of such technologies in the workplace. It aims to provide an updated view of how they are being used in that context. First, we examine existing research concerning virtual, augmented, and mixed-reality applications. We also analyze which have made their way to the workflows of companies and institutions. Furthermore, we circumscribe the aspects of extended reality technologies that determined this applicability

    Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement

    Full text link
    As life expectancy is mostly increasing, the incidence of many neurological disorders is also constantly growing. For improving the physical functions affected by a neurological disorder, rehabilitation procedures are mandatory, and they must be performed regularly. Unfortunately, neurorehabilitation procedures have disadvantages in terms of costs, accessibility and a lack of therapists. This paper presents Immersive Neurorehabilitation Exercises Using Virtual Reality (INREX-VR), our innovative immersive neurorehabilitation system using virtual reality. The system is based on a thorough research methodology and is able to capture real-time user movements and evaluate joint mobility for both upper and lower limbs, record training sessions and save electromyography data. The use of the first-person perspective increases immersion, and the joint range of motion is calculated with the help of both the HTC Vive system and inverse kinematics principles applied on skeleton rigs. Tutorial exercises are demonstrated by a virtual therapist, as they were recorded with real-life physicians, and sessions can be monitored and configured through tele-medicine. Complex movements are practiced in gamified settings, encouraging self-improvement and competition. Finally, we proposed a training plan and preliminary tests which show promising results in terms of accuracy and user feedback. As future developments, we plan to improve the system's accuracy and investigate a wireless alternative based on neural networks.Comment: 47 pages, 20 figures, 17 tables (including annexes), part of the MDPI Sesnsors "Special Issue Smart Sensors and Measurements Methods for Quality of Life and Ambient Assisted Living

    Quantitative Assessment of Gait During Rehabilitation Using an Instrumented Treadmill

    Get PDF
    Kinetic gait analysis of subacute stroke is a relatively unexplored area of study. Chronic stroke literature on the subject is extensive but does not capture the time period where the extent of recovery is greatest. Translating methods of gait analysis seen in research to a clinical setting is subject to many additional requirements which have previously prevented such investigations. The work presented in this thesis represents the first investigation using NeuroRecoVR, a new instrumented treadmill facility located within an inpatient rehabilitation gym. Working directly with inpatient physiotherapists, this study examines kinetic based gait parameters to quantify levels of impairment in subacute stroke. Recovery is most readily seen in changes in the walking speed of an individual, with many other gait parameters changing alongside walking speed. Therefor the relationships for all parameters of interest to walking speed are investigated in both neurologically intact controls (n = 14) and those undergoing rehabilitation for subacute stroke (n = 15). Parameters including spatiotemporal measures, forces, impulses, center of mass trajectory, center of pressure variability, and measures of symmetry were calculated for both groups. Subacute stroke participants have higher levels of asymmetry, increased instability, and altered gait dynamics compared to neurologically intact controls. The extent of recovery for each parameter was examined in a subset of stroke patients who took part in instrumented treadmill training over 1-2 months of rehabilitation (n = 4; mean ±SD age = 65 ±17; mean ±SD days post stroke at first session = 79 ±67). These participants showed improvements in stability, walking speed, and symmetry over the course of rehabilitation. These results show the benefit and potential for the use of kinetic analysis for aspects of both research and rehabilitatio

    A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's Gait

    Full text link
    Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to do something and transforms them into a control command for controlling external devices. The feelings described by the participants when they control a self-avatar in an immersive virtual environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar (ownership illusion). It has recently been shown that inducing the ownership illusion and then manipulating the movements of one’s self-avatar can lead to compensatory motor control strategies. In order to maximize this effect, there is a need for a method that measures and monitors embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong ownership illusion. This is particularly true given that reaching a high level of both BCI performance and embodiment are inter-connected. To reach one of them, the second must be reached as well. Some limitations of many existing systems hinder their adoption for neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most systems allow the user to take single steps or to walk but do not allow both, which prevents users from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or self-paced), which prevents users from progressing from machine-dependent to machine-independent walking. Overcoming the aforementioned limitations can be done by combining different control modes and options in one single system. However, this would have a negative impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool. In this case, there will be a need to enhance BCI performance. For such purpose, many techniques have been used in the literature, such as providing modified feedback (whereby the presented feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as more data becomes available). This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility of measuring the level of embodiment of an immersive self-avatar, during the performing, observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting visual feedback that conflicts with the desired movement of embodied participants. The objective of study 2 was to develop and validate a BCI to control single steps and forward walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in cue-paced and self-paced modes. Different performance enhancement strategies were implemented to increase BCI performance. The data of these two studies were then used in study 3 to construct a generic classifier that could eliminate offline calibration for future users and shorten training time. Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD) from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with the contralateral limb or stopped walking before the participant stopped (modified feedback). In study 2, participants completed a 4-day sequential training to control the gait of an avatar in both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking (continuous control mode). The avatar moved as a response to two calibrated regularized linear discriminant analysis (RLDA) classifiers that used the μ power spectral density (PSD) over the foot area of the motor cortex as features. The classifiers were retrained after every session. During the training, and for some of the trials, positive modified feedback was presented to half of the participants, where the avatar moved correctly regardless of the participant’s real performance. In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results of study 1 show that subjective levels of embodiment correlate strongly with the power differences of the event-related synchronization (ERS) within the μ frequency band, and over the motor and pre-motor cortices between the modified and regular feedback trials. Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced BCI in both modes. For the cue-paced BCI, the average offline performance (classification rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback group. For self-paced BCI, the average performance was 83% at switch control and 92% at continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models performed as well as models obtained from participant-specific offline data. The results show that there it is possible to design a participant-independent zero-training BCI.Les interfaces cerveau-ordinateur (ICO) ont été utilisées pour contrôler la marche d'un égo-avatar virtuel dans le but d'être utilisées dans la réadaptation de la marche. Une ICO décode les signaux du cerveau représentant un désir de faire produire un mouvement et les transforme en une commande de contrôle pour contrôler des appareils externes. Les sentiments décrits par les participants lorsqu'ils contrôlent un égo-avatar dans un environnement virtuel immersif démontrent que les humains peuvent être incarnés dans un corps d'un avatar (illusion de propriété). Il a été récemment démontré que provoquer l’illusion de propriété puis manipuler les mouvements de l’égo-avatar peut conduire à des stratégies de contrôle moteur compensatoire. Afin de maximiser cet effet, il existe un besoin d'une méthode qui mesure et surveille les niveaux d’incarnation des participants immergés dans la réalité virtuelle (RV) pour induire et maintenir une forte illusion de propriété. D'autre part, atteindre un niveau élevé de performances (taux de classification) ICO et d’incarnation est interconnecté. Pour atteindre l'un d'eux, le second doit également être atteint. Certaines limitations de plusieurs de ces systèmes entravent leur adoption pour la neuroréhabilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systèmes permettent à l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas à un utilisateur de passer des pas à la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmé (cue-paced) ou auto-rythmé (self-paced). Surmonter les limitations susmentionnées peut être fait en combinant différents modes et options de commande dans un seul système. Cependant, cela aurait un impact négatif sur les performances de l’ICO, diminuant ainsi son utilité en tant qu'outil potentiel de réhabilitation. Dans ce cas, il sera nécessaire d'améliorer les performances des ICO. À cette fin, de nombreuses techniques ont été utilisées dans la littérature, telles que la rétroaction modifiée, le recalibrage du classificateur et l'utilisation d'un classificateur générique. Le projet de cette thèse a été réalisé en 3 études, avec objectif d'étudier dans l'étude 1, la possibilité de mesurer le niveau d'incarnation d'un égo-avatar immersif, lors de l'exécution, de l'observation et de l'imagination de la marche, à l'aide des techniques encéphalogramme (EEG), en présentant une rétroaction visuelle qui entre en conflit avec la commande du contrôle moteur des sujets incarnés. L'objectif de l'étude 2 était de développer un BCI pour contrôler les pas et la marche vers l’avant d'un égo-avatar dans la réalité virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmés et auto-rythmés. Différentes stratégies d'amélioration des performances ont été mises en œuvre pour augmenter la performance (taux de classification) de l’ICO. Les données de ces deux études ont ensuite été utilisées dans l'étude 3 pour construire des classificateurs génériques qui pourraient éliminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation. Vingt participants sains différents ont participé aux études 1 et 2. Dans l'étude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affiché dans un casque de RV du point de vue de la première personne (1PP). Ils ont été invités à performer, à regarder ou à imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatéral ou a arrêté de marcher avant que le participant ne s'arrête (rétroaction modifiée). Dans l'étude 2, les participants ont participé à un entrainement séquentiel de 4 jours pour contrôler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmé, ils ont imaginé un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmé, il leur a été demandé d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrôle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrôle continu). L'avatar s'est déplacé en réponse à deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrés qui utilisaient comme caractéristiques la densité spectrale de puissance (Power Spectral Density; PSD) des bandes de fréquences µ (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont été recalibrés après chaque session. Au cours de l’entrainement et pour certains des essais, une rétroaction modifiée positive a été présentée à la moitié des participants, où l'avatar s'est déplacé correctement quelle que soit la performance réelle du participant. Dans les deux études, l'expérience subjective des participants a été analysée à l'aide d'un questionnaire. Les résultats de l'étude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrélés à la différence de la puissance de la synchronisation liée à l’événement (Event-Related Synchronization; ERS) sur la bande de fréquence μ et sur le cortex moteur et prémoteur entre les essais de rétroaction modifiés et réguliers. L'étude 2 a montré que tous les participants étaient capables d’utiliser le BCI rythmé et auto-rythmé dans les deux modes. Pour le BCI rythmé, la performance hors ligne moyenne au jour 1 était de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amélioré la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne était de 85,9±8,4% pour le groupe de rétroaction modifié (77-97%) contre 75% pour le groupe de rétroaction non modifié. Pour le BCI auto-rythmé, la performance moyenne était de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont été améliorées par la rétroaction modifiée (p = 0,001). Enfin, les résultats de l'étude 3 montrent que pour la classification des initialisations des pas et de la marche, il a été possible de construire des modèles génériques à partir de données hors ligne spécifiques aux participants. Les résultats montrent la possibilité de concevoir une ICO ne nécessitant aucun entraînement spécifique au participant

    EVALUATION OF POSTURAL CAPABILITIES FROM HAPTIC INFORMATION IN TELEREHABILITATION

    Full text link
    Funkcionalno ravnotežje in pokončna drža sta za človeka izrednega pomena, saj sta pogoj za hojo in tako omogočata večjo mobilnost ter s tem višjo kakovost življenja. Osebe po možganski kapi imajo pogosto omejeno sposobnost vzdrževanja ravnotežja, zato je ta v procesu rehabilitacije deležna posebne obravnave. Pričujoče delo obravnava uporabo premičnih tal kot haptičnega vmesnika v sistemu za nevsiljiv zajem in oceno posturalnih zmožnosti med izvajanjem nalog z uporabo navidezne resničnosti v sistemu telerehabilitacije. V prvem delu preverimo tehnične zmogljivosti premičnih tal za ustvarjanje motenj v ravnotežju človeka. Določili smo parametre krmilnika, uporabljenega pri vodenju naprave, in izmerjene lastnosti, kot sta pasovna širina naprave ter hitrost premikanja vrhnje plošče. Na zdravih prostovoljcih so bili zajeti odzivi na premik tal v osmih smereh. Na podlagi izmerjenih odzivov smo izdelali normativ, ki smo ga primerjali z odzivi pri osebi po utrpeli možganski kapi. Razlike je možno karakterizirati in uporabiti pri ocenjevanju ravnotežnih sposobnosti. V drugem delu, da bi ocenili vpliv premičnih tal pri vadbi ravnotežja z navidezno resničnostjo, zajamemo posturalne odzive zdravih prostovoljcev, izpostavljenih kombinacijam prisotnosti haptične in vizualne povratne zanke. Opazujemo aktivacijo mišic pretežno spodnjih okončin z uporabo elektromiogramov in spremembe v kotih sklepov kolka, kolen ter gležnjev z uporabo triosnih pospeškometrov. Pokazali smo, da je odziv pri nalogi v navidezni resničnosti brez dinamike, medtem ko haptične plošče zahtevajo dinamičen odziv. Ko smo uporabili kombinacijo obeh, so osebe izbrale drugačno strategijo, saj prisotnost navideznega okolja omogoča predhodno pripravo. V tretjem delu je predstavljen razvit programski okvir, sestavljen iz storitev in orodij, za izvajanje telerehabilitacije. Omogoča izvajanje nalog in oddaljeno spremljanje ter vodenje procesa rehabilitacije in je sestavljen iz treh delov. Centralni strežnik s podatkovno bazo in spletnim strežnikom nudi storitve prek dveh različnih spletnih vmesnikov. Spletna stran, namenjena pacientu, omogoča prijavo v sistem, izbiro naloge iz zoženega izbora ter samo izvajanje naloge, ki je izvedena kot igra v navidezni resničnosti. Terapevt pa lahko pregleduje zgodovino izvedenih nalog, predpisuje naloge in spremlja izvajanje naloge v realnem času prek grafov posameznih parametrov ter s pogledom v navidezno okolje naloge. Z omenjenim programskim okvirjem je bil realiziran sistem za vadbo ravnotežja, v katerega smo prenesli že obstoječo nalogo. Delovanje sistema smo primerjali s konvencionalno vadbo ravnotežja in z vadbo, podprto z dinamično oporno stojko, in izkazal se je za primerljivega na podlagi predhodno ter naknadno izvedenih kliničnih testov pri treh sodelujočih skupinah pacientov v subakutni fazni možganske kapi. Obe študiji, analiza odzivov in uporaba telerehabilitacijskega sistema, sta lep primer, kako lahko izkoristimo prednosti, ki nam jih ponuja tehnologija. Uporaba odzivov, zajetih na oddaljeni lokaciji med opravljanjem naloge v navidezni resničnosti, lahko bistveno prispeva k uspešni telediagnostiki, kar lahko zmanjša stroške, v praksi pa to pomeni manj obiskov specializirane ustanove in manjše število potrebnega osebja.Functional balance and upright posture are of the utmost importance for human, since they are the condition for walking and also enable greater mobility and thus a higher quality of life. Persons who suffered a stroke often have limited ability to maintain a balance, thus the balance is given special treatment in the process of rehabilitation. The present work deals with the use of movable floor as a haptic interface in the system for non-obtrusive capture and assessment of postural abilities during the execution of tasks, using a virtual reality in the system of tele-rehabilitation. In the first part, we check the technical capabilities of haptic floor for creating disturbances in the balance of human. We have determined the parameters of a controller used in the management of device, and the measured properties, such as the bandwidth of the device, and the speed of movement of the top plate. In the healthy volunteers were included responses to displacement of ground in eight directions. On the basis of the measured responses we made the norm, which was compared to the responses in one subject after suffering a stroke. Differences can be characterized and used in estimating the postural abilities. In the second part, in order to assess the impact of movable floor in the exercise in balance with virtual reality, we capture postural responses of healthy volunteers exposed to combinations of the presence of haptic and visual feedback mesh. We observe muscle activation of predominantly lower extremities using electromiograms and changes in the angles of the joint of the hip, knees and ankles using triaxial accelerometers. We have shown that the response at the task in the virtual reality is of no apparent dynamics, while the haptic plates require dynamic response. When we used a combination of both, the persons chose a different strategy, because the presence of virtual environment allows pre-preparation. The third part presents the developed software framework, which consists of services and tools for the implementation of tele-rehabilitation. It allows execution of tasks and remote monitoring, and management of the rehabilitation process and consists of three parts. Central server with database and a web server that provides services through two different web interfaces. A web site, dedicated to patient, allows him to log into the system, to select tasks from the narrowed selection and the performance of a task itself, which is performed as a game in virtual reality. The therapist can review the history of performed tasks, prescribe tasks and monitor the implementation of task in real-time via graphs of individual parameters and with the view into the virtual environment of the task. With this programming framework the system for balance training was implemented, to which we ported an existing task. The operation of system was compared with conventional exercise of balance and with exercise, supported by a standing frame, and it has proven to be comparable according to previously and subsequently carried out clinical tests of the three cooperating groups of patients in the subacute phase of stroke. Both studies, analysis of the responses and the use of tele-rehabilitation system, are a fine example of how to take advantage of the benefits offered to us by technology. Using the responses, covered in a remote location while performing tasks in virtual reality, can contribute to a successful tele-diagnostics, which can reduce the number of required resourcesthis means less visits to specialized institutions and a smaller number of necessary staff

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being
    corecore