556 research outputs found

    The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey

    Get PDF
    Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Mitigating Anomalous Electricity Consumption in Smart Cities Using an AI-Based Stacked-Generalization Technique

    Get PDF
    Energy management and efficient asset utilization play an important role in the economic development of a country. The electricity produced at the power station faces two types of losses from the generation point to the end user. These losses are technical losses (TL) and non-technical losses (NTL). TLs occurs due to the use of inefficient equipment. While NTLs occur due to the anomalous consumption of electricity by the customers, which happens in many ways; energy theft being one of them. Energy theft majorly happens to cut down on the electricity bills. These losses in the smart grid (SG) are the main issue in maintaining grid stability and cause revenue loss to the utility. The automatic metering infrastructure (AMI) system has reduced grid instability but it has opened up new ways for NTLs in the form of different cyber-physical theft attacks (CPTA). Machine learning (ML) techniques can be used to detect and minimize CPTA. However, they have certain limitations and cannot capture the energy consumption patterns (ECPs) of all the users, which decreases the performance of ML techniques in detecting malicious users. In this paper, we propose a novel ML-based stacked generalization method for the cyber-physical theft issue in the smart grid. The original data obtained from the grid is preprocessed to improve model training and processing. This includes NaN-imputation, normalization, outliers\u27 capping, support vector machine-synthetic minority oversampling technique (SVM-SMOTE) balancing, and principal component analysis (PCA) based data reduction techniques. The pre-processed dataset is provided to the ML models light gradient boosting (LGB), extra trees (ET), extreme gradient boosting (XGBoost), and random forest (RF), to accurately capture all consumers\u27 overall ECP. The predictions from these base models are fed to a meta-classifier multi-layer perceptron (MLP). The MLP combines the learning capability of all the base models and gives an improved final prediction. The proposed structure is implemented and verified on the publicly available real-time large dataset of the State Grid Corporation of China (SGCC). The proposed model outperformed the individual base classifiers and the existing research in terms of CPTA detection with false positive rate (FPR), false negative rate (FNR), F1-score, and accuracy values of 0.72%, 2.05%, 97.6%, and 97.69%, respectively

    Anomaly Detection of Smart Meter Data

    Get PDF
    Presently, households and buildings use almost one-third of total energy consumption among all the power consumption sources. This trend is continuing to rise as more and more buildings install smart meter sensors and connect to the Smart Grid. Smart Grid uses sensors and ICT technologies to achieve an uninterrupted power supply and minimize power wastage. Abnormalities in sensors and faults lead to power wastage. Along with that studying the consumption pattern of a building can lead to a substantial reduction in power wastage which can save millions of dollars. According to studies, 20\% of energy consumed by buildings are wasted due to the above factors. In this work, we propose an anomaly detection approach for detecting anomalies in the power consumption of smart meter data from an open dataset of 10 houses from Ausgrid Corporation Australia. Since the power consumption may be affected by various factors such as weather conditions during the year, it was necessary to search for a way to discover the anomalies, considering seasonal periods such as weather seasons, day/night and holidays. Consequently, the first part of this thesis is to identify the outliers and obtain data with labels (normal or anomalous). We use Facebook prophet algorithm along with power consumption domain knowledge to detect anomalies for two years of half-hour sampled data. After generating the dataset with anomaly labels, we proposed a method to classify future power consumptions as anomalous or normal. We use four different approaches using machine learning for classifying anomalies. We also measure the run-time of different classification algorithms. We are able to achieve a G-mean score of 97 per cent

    Data Challenges and Data Analytics Solutions for Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    An Effective LSTM-DDPM Scheme for Energy Theft Detection and Forecasting in Smart Grid

    Full text link
    Energy theft detection (ETD) and energy consumption forecasting (ECF) are two interconnected challenges in smart grid systems. Addressing these issues collectively is crucial for ensuring system security. This paper addresses the interconnected challenges of ETD and ECF in smart grid systems. The proposed solution combines long short-term memory (LSTM) and a denoising diffusion probabilistic model (DDPM) to generate input reconstruction and forecasting. By leveraging the reconstruction and forecasting errors, the system identifies instances of energy theft, with the methods based on reconstruction error and forecasting error complementing each other in detecting different types of attacks. Through extensive experiments on real-world and synthetic datasets, the proposed scheme outperforms baseline methods in ETD and ECF problems. The ensemble method significantly enhances ETD performance, accurately detecting energy theft attacks that baseline methods fail to detect. The research offers a comprehensive and effective solution for addressing ETD and ECF challenges, demonstrating promising results and improved security in smart grid systems

    A Novel Approach for Detecting Anomalous Energy Consumption Based on Micro-Moments and Deep Neural Networks

    Get PDF
    Nowadays, analyzing, detecting, and visualizing abnormal power consumption behavior of householders are among the principal challenges in identifying ways to reduce power consumption. This paper introduces a new solution to detect energy consumption anomalies based on extracting micro-moment features using a rule-based model. The latter is used to draw out load characteristics using daily intent-driven moments of user consumption actions. Besides micro-moment features extraction, we also experiment with a deep neural network architecture for efficient abnormality detection and classification. In the following, a novel anomaly visualization technique is introduced that is based on a scatter representation of the micro-moment classes, and hence providing consumers an easy solution to understand their abnormal behavior. Moreover, in order to validate the proposed system, a new energy consumption dataset at appliance level is also designed through a measurement campaign carried out at Qatar University Energy Lab, namely, Qatar University dataset. Experimental results on simulated and real datasets collected at two regions, which have extremely different climate conditions, confirm that the proposed deep micro-moment architecture outperforms other machine learning algorithms and can effectively detect anomalous patterns. For example, 99.58% accuracy and 97.85% F1 score have been achieved under Qatar University dataset. These promising results establish the efficacy of the proposed deep micro-moment solution for detecting abnormal energy consumption, promoting energy efficiency behaviors, and reducing wasted energy. 2020, The Author(s).Open Access funding provided by the Qatar National Library. This paper was made possible by National Priorities Research Program (NPRP) grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu
    • …
    corecore