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Abstract

Energy management and efficient asset utilization play an important role in the economic
development of a country. The electricity produced at the power station faces two types
of losses from the generation point to the end user. These losses are technical losses (TL)
and non-technical losses (NTL). TLs occurs due to the use of inefficient equipment. While
NTLs occur due to the anomalous consumption of electricity by the customers, which
happens in many ways; energy theft being one of them. Energy theft majorly happens to
cut down on the electricity bills. These losses in the smart grid (SG) are the main issue
in maintaining grid stability and cause revenue loss to the utility. The automatic metering
infrastructure (AMI) system has reduced grid instability but it has opened up new ways
for NTLs in the form of different cyber-physical theft attacks (CPTA). Machine learning
(ML) techniques can be used to detect and minimize CPTA. However, they have certain
limitations and cannot capture the energy consumption patterns (ECPs) of all the users,
which decreases the performance of ML techniques in detecting malicious users. In this
paper, we propose a novel ML-based stacked generalization method for the cyber-physical
theft issue in the smart grid. The original data obtained from the grid is preprocessed
to improve model training and processing. This includes NaN-imputation, normaliza-
tion, outliers’ capping, support vector machine-synthetic minority oversampling technique
(SVM-SMOTE) balancing, and principal component analysis (PCA) based data reduction
techniques. The pre-processed dataset is provided to the ML models light gradient boost-
ing (LGB), extra trees (ET), extreme gradient boosting (XGBoost), and random forest
(RF), to accurately capture all consumers’ overall ECP. The predictions from these base
models are fed to a meta-classifier multi-layer perceptron (MLP). The MLP combines the
learning capability of all the base models and gives an improved final prediction. The pro-
posed structure is implemented and verified on the publicly available real-time large dataset
of the State Grid Corporation of China (SGCC). The proposed model outperformed the
individual base classifiers and the existing research in terms of CPTA detection with false
positive rate (FPR), false negative rate (FNR), F1-score, and accuracy values of 0.72%,
2.05%, 97.6%, and 97.69%, respectively.

1 INTRODUCTION

The successful integration of renewable energy sources into the
electricity network transformed the power grid from a central-
ized and dull energy system to a decentralized and intelligent
system. This distributed power system makes the grid more
efficient due to efficient infrastructure utilization. The recent

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2023 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

technological development and new strategies followed by the
utilities make the grids more flexible for energy resource accu-
mulation. Therefore, more intermittent energy resources can
be used for electricity generation and are added to the power
system without disturbing the grid stability. According to US
Energy Information Administration (EIA), an increase in elec-
tricity generation from renewable sources is more than 20%
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2 ALI ET AL.

[1]. In addition to the need for improvement in the amount of
electricity generation by adding more resources to the electric
grid, power management and efficient energy resource utiliza-
tion also play a useful role in the socioeconomic development
of a country. It is because of the high cost of electricity produc-
tion and limited availability of energy resources. To cut down
on the electricity bills and have uninterrupted flow of electricity,
the consumers are directed towards anomalous electricity con-
sumption. There are many ways of consuming electricity in an
anomalous manner; electricity theft is being one of them. To
deal with such electricity consumption, efficient power man-
agement and cost reduction are considered. Power management
and cost reduction are possible in two ways.

1. Generate and transmit electricity from those resources that
have minimum expense per unit.

2. Rated revenue pay-back of consumed electricity to utility in
the form of the electricity billing system.

The reduction in unit per cost of electricity can be addressed by
moving towards low-cost, low-emission renewable sources with
more energy-efficient devices. While the revenue pay-back sys-
tem of utility faces issues due to electric power loss (EPL). The
difference between the energy generated at the generation end
and the energy delivered to the consumers is known as electric-
ity loss. The electricity losses are classified into two categories
[2].

1. Technical losses or system losses (TLs)
2. Non-technical losses (NTLs)

TLs are the total EPL in the power system, from the network
injection point to the consumption point. These occur due to
energy dissipation in transmission lines, distribution lines, and
transformer cores. This problem can be solved by using good
quality and highly efficient equipment instead of old electrical
infrastructure, but this process requires a huge economic invest-
ment and it is time consuming. NTL may be due to some kind of
abnormality or changes induced by electricity consumers (EC)
in the electricity network like installation errors, billing errors,
faulty meters, or meter by-passing. This creates system distur-
bance and low power load management for utility companies.
In addition, NTLs or electricity theft (ET) not only cause sig-
nificant economic loss but also affect the normal operations
of the power system by creating power fluctuations and dis-
turbing grid stability [3]. According to Northeast Group, the
NTL-based worldwide revenue losses were about $96 billion in
2017 [4]. While in 2014, these losses were about $58.7 billion in
the world with India facing 16.2 billion USD, Brazil facing 10.5
billion USD, Pakistan facing 0.89 billion USD, and Russia facing
5.1 billion USD loss [5, 6], which shows a high increase in loss
during the last few years.

The recent technological development, advanced metering
infrastructure (AMI) system, and especially smart grids make
electricity management, monitoring, and NTL reduction pos-
sible. The SG is an intelligent electricity system that permits a
two-way flow of electricity and information by using an intelli-

gent monitoring system. It integrates the AMI system to control
and monitor the energy usage of consumers and utility in the
electricity network [7, 8]. This system works in real-time by
first collecting the user’s electricity consumption (EC) informa-
tion and then transferring it to the utility using communication
channels for billing, grid security, loss reduction, and other
purposes. The collection of EC in real-time makes the SG
capable to detect the losses in electricity networks. The two
main types of information required about energy loss are given
below.

1. “How to locate the theft source?”
2. “How much electricity is stolen?”

The NTL-based losses are mainly experienced by the illegal EC
by the users, which also disturbs the system operation, incurs
additional losses, damages the system components, and affects
the grid security and stability. Many countries have characterized
electricity theft as a special kind of crime [9]. To reduce NTLs,
utility companies must follow the necessary steps to identify
the theft and abnormal behavior of energy usage. However,
the conventional methods require a large number of techni-
cians to perform the on-the-spot checkup of the consumption
meters. The manual energy consumption reading process lacks
organized time and labor schedules. Due to this, an insignifi-
cant amount of energy theft is detected, which results in a less
revenue pay-back [10].

The recent rapid improvements in ML methods show
increased interest in the ideas of models analyzing the load
information, and meter tampering as early as possible. The
ML theft detection techniques work to detect the deviation of
energy statistical patterns from normal behavior. In modern
research, the use of ML techniques provides a new solution for
utility companies for detecting anomalous EC. These modern
techniques make it possible to automate and improve detection
accuracy by accurately identifying malicious patterns [11]. Thus,
an ML classifier with high accuracy is needed to help the existing
techniques in dealing with large theft detection tasks. To over-
come the electricity theft issue, many data-driven methods have
been used in recent years. These methods are divided into three
categories, namely state-based, game theory-based and artificial
intelligence (AI)-based [12].

1. State-based methods use specific kinds of devices or designs
for metering and theft detection purposes. For example, a
special ammeter checks the electricity difference between the
local and remote ends for fraud detection purposes. State-
based estimation works only at the substation level and not
at the end-user level. This type of installation for electric-
ity theft detection (ETD) requires extra monitoring devices,
which are difficult to install in the existing distribution
systems.

2. Game-theory-based methods use the comparative behav-
ior of pricing competition and product releases like games
between anomalous users and electric companies. The main
goal of these methods is to find an equilibrium state for
the game. This type of model is easy to install but it is
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ALI ET AL. 3

FIGURE 1 Proposed model’s flowchart.

hard to find specific mathematical modeling for it, which
relates the actual behavior of the end user with the utility
company.

3. AI is adopted in almost all worldwide fields including busi-
ness, security, sales, banking, and many more. The expansion
and advancements of smart sensors in SG generate a massive
amount of data [13]. This data requires a scalable technique
for efficient utilization. The recent advancements in ML and
DL in anomaly detection pave a way for energy security in
SG [14]. These ML-based models can be used to address the
NTL issue in the SG. In the present AMI system, the AI
techniques can be used to draw and compare the load profile
and the energy consumption pattern of end-users to classify
legal and illegal electricity users.

This research aims to present an accurate theft and normal
users’ classification model using the state grid corporation of
China (SGCC) dataset. In this work, we will use some pre-
processing steps such as data cleaning and data normalization
as shown in Figure 1.

In the preprocessing step, the data is checked for missing
values which are NaNs. If the NaN exists, then it is imputed
using mean imputation techniques and then the data is nor-
malized. In the following step, the features are reduced which
aims to remove the irrelevant features, as th may lacks sufficient
information [15]. Thus, the data becomes more useful and it
also helps to reduce the time complexity issue and also helps
to better express the given data [16]. These steps are followed
by data balancing, which aims to overcome the imbalance class

issue and improve classification performance using state-of-the-
art class balancing techniques. Afterwards, a Stacked (takes the
output of ML based models and uses it as an input to the
meta-model for output prediction) machine and deep learning
(DL) generalization technique is used for improved classifica-
tion accuracy. Finally, the output results are evaluated, if the
desired performance are obtained then the process is stopped.

1.1 Contributions

It has been observed from the literature that most of the present
research works use different intelligent ML methods to detect
the NTLs’ behavior in the time-series data of SGs. However,
the current research still has less accuracy and a research gap
in NTLs’ behavior detection. The current theft detection issues
are tackled in the form of the following contributions.

1. The data obtained from the smart meter has data of both
normal and theft users where the number of abnormal users
is less than the normal electricity users. Many research works
use classification models on the data obtained from the
smart meters without considering the issue of class imbal-
ance. The class imbalance biases the ML model towards the
majority class and the model classifies theft as a normal user.
This class’s imbalanced data needs a proper balancing tech-
nique to overcome the bianess issue. The SVM-SMOTE
class balancing technique help in better addressing the class
imbalance issue.

2. The second problem addressed in this study is high dimen-
sionality in the time-series dataset. The high dimensionality
causes time complexity issues and reduces output classifica-
tion performance. This issue is reduced through a proper
feature-reduction technique. The PCA feature reduction
technique has been used in this paper for dimensionality
reduction purposes.

3. Third, many researchers emphasize output results compared
with the original labels of the testing set and do not focus
on the detection level of abnormal electricity users. The
results’ comparison in the form of accuracy is not a proper
metric. It may result in a set of theft users inspected as
normal users, which should be reduced. In the confusion
matrix, when the abnormal consumers are predicted as nor-
mal consumers, it is considered as a false negative. This false
negative issue is addressed in this research to reduce revenue
loss.

4. In ML techniques, some normal users are predicted as mali-
cious, which increases the on-spot inspection cost. The
fourth contribution in this paper addresses the issue in the
form of a maximum reduction in false positive rate.

1.2 Layout of paper

The paper is divided into eight sections. Section 1 shows
the introduction, Section 2 is for related work, Section 3
presents the proposed model’s description and the classification
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4 ALI ET AL.

TABLE 1 List of abbreviations and acronyms.

Abbreviations Full form

AMI Advanced metering infrastructure

CPTA Cyber-physical theft attack

PCA Principal component analysis

SVM Support vector machine

LGB Light gradient boosting

ET Extremely randomized tree

XGBoost Extreme gradient boosting

MLP Multi-layer perceptron

RF Random forest

TNR True negative rate

FNR False negative rate

EPL Electric power loss

NTL Non-technical loss

TL Technical loss

SG Smart grid

ECP Energy consumption pattern

TPR True positive rate

FPR False positive rate

AUC Area under the curve

NaN Not a number

Symbols Description

𝜎 Standard deviation

Z Z score

𝜇 Mean value

W Weight matrix

xm,n Daily energy consumption

N Number of features

𝜆 Eigen values

c Number of classes

b Bias

x_i Input data-point

p_i Probability of outcome of a class

parameters are explained in Section 4. Section 5 explains the
simulation setup for the implementation. In Sections 6 and 7,
the result discussion and conclusion are provided, respectively.
The future work is discussed in Section 8. Most importantly,
the list of abbreviations and acronyms, used by the author, is
given in Table 1.

2 LITERATURE REVIEW

This section discusses the existing work done to reduce the
NTLs in the SG while considering four main categories of
NTL detection methods, including hardware-based, state-based,
game theory-based, and AI-based techniques [17]. The method-

ological structure begins by first having an overview of the
classical approach and then moving towards recent artificial
intelligence (AI) based techniques. The AI-based ETD steps
are then studied, in recent research, focusing on pre-processing,
balancing, feature engineering, algorithm modeling, and how
these techniques help in the ETD process. NTL has been the
major issue in achieving grid stability and causing revenue losses
to the utility for more than two decades. Researchers have
addressed the issue of NTL reduction in power systems using
state-of-the-art techniques available at that time. For example,
Pasdar et al. [18] proposed a smart metering system with a high-
speed signal to detect malicious activity in the network. The
system uses power line communication (PLC) to communicate
the customers’ energy meter with the utility. In this method,
a lossless high-frequency signal, with known line impedances,
is transceived through PLC. The software at the utility com-
pares the signals of end users and detects the theft location.
A similar case with little modifications in electricity consump-
tion observability is proposed in [19]. The proposed method
work using smart energy meters with a specialized display sys-
tem for both utility and end user. Using the display system,
the end users can analyze their own consumption while at
the same time utility also monitor and check the consumption
behavior. In this way, the power quality and grid stability are
maintained. A smart meter with a single chip-based checkup
system is implemented in [20] for ETD purposes. The chip
uses the standard measurement as the base and then predicts
the malicious behavior by comparing it with real-time con-
sumption. The same hardware-based detection methods are
proposed in [21–24] with wireless, especially GSM-based mon-
itoring systems. A sensor network with a cloud-based module
monitor, circuit breaker, and real-time electricity pulse observer
are used to compare and monitor the input and output elec-
tricity to the energy meter. The network then uses some form
of switch, or buzzer to power off the line and inform the
utility about illegal activity. A similar hardware model is pre-
sented in [25] based on state-based estimation. The model uses
PLC and supervisory control and data acquisition (SCADA)
to check the state of connected devices. The PLC is used for
communication purposes while SCADA uses internet protocol
(IP) services and distributed network protocol 3 (DNP3) for
exact device identification and system interoperability, respec-
tively. The acquired data through the state controller module
(SCM) is then compared with the standard data produced by
the load system (LS) to identify malicious attacks between two
connected grids/substations. The above mentioned techniques
used specialized sensors, hardware, and online monitoring unit.
Besides, the techniques may have hardware failure issues, and
can only measure and detect physical theft attacks with no capa-
bility of cyberattack detection. Therefore, the authors in [26]
proposed a measurement-based approach for NTL reduction.
The paper follows the use of an energy monitoring unit on
the secondary side of the distribution transformer. The unit
takes total electricity consumption measurement and sends the
information to the utility of the particular group. The measure-
ment is compared by applying a statistical approach to identity
theft among the given group of consumers. Based on the

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12785 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ALI ET AL. 5

findings of the above hardware-based approaches, the tech-
niques help in NTL reduction. But the system may suffer from a
high cost of investment in hardware and unreliability problems.
Moving towards its advanced version like AMI, the authors in
[27] suggested a multi-source information fusion (MSIF) tech-
nique using AMI data for more accurate detection purposes.
The data collected from electricity consumers can’t be easily
classified as malignant or benign based on a single alert. There-
fore, a combination of alerts from several malicious users is
presented for accurate results. The authors also show the pros
and cons of using supervised and unsupervised techniques for
output performance. The basic function of the system is that
data collected from the AMI system have information about the
appliance consumption of that particular customer and also the
meter reading. So if a particular device is observed ON and the
meter shows zero consumption, then that user is a theft. How-
ever, the complete information about customer consumption
also causes privacy issues. Further research and advancement
to the hardware-based NTL detection technique in the form of
AMI, data-driven based techniques including a game theory, and
heuristic algorithm-based techniques are applied, such as in [28,
29], to increase the detection accuracy. The main purpose of
the techniques is to model a game between electric utility and
electricity user. The system is designed to find an equilibrium
between the two and a threshold value is assigned. A probabilis-
tic technique is then applied to classify obtained data as honest
or ET users. The game theory and heuristic algorithm take suf-
ficient time to deal with big data due to their stochastic nature.
These techniques are inaccurate, biased, and can’t reach an opti-
mal value on a large dataset. The load flow method based on
the AMI dataset is implemented in [30]. The authors addressed
the ETD issue in the SG using the real-time electricity con-
sumption pattern (ECP) of consumers. The main problem with
power flow analysis techniques, namely Gauss Siedal, Newton
Raphson, and Fast Decoupled methods, is that they have low
convergence rates, large memory requirements, and time com-
plexity issues in reaching an optimal point. The proposed system
addressed this issue by using modified linear regression to cap-
ture the electricity theft and normal patterns. This resulted in
an increase in the speed of power flow model simulation and
its adoption in large power systems. Due to the new technolog-
ical development in SG, especially AMI systems with real-time
monitoring, a large-scale ECP is collected in the form of big
data. The newly emerging field of data science (DS) techniques
has almost replaced the traditional NTL detection techniques
because of the low cost, easy implementation, and high ETD
rate. The big data obtained from the utility can be given to
DS techniques for easy and efficient analysis. The DS-based
machine learning (ML) and deep learning (DL) algorithms have
the capability of NTL detection and revenue loss reduction. For
example, the authors in [31] proposed a hybrid ML model. Deci-
sion tree (DT) and support vector machine (SVM) are used such
that extra features are extracted from the original dataset and
then fed to the SVM with given features. SVM is used for the
final prediction. In addition, data pre-processing is done with
missing data imputation and normalization steps. The exper-
iment is done on a dataset collected from various homes in

the USA. A non-linear radial basis function (RBF) kernel is
selected for SVM to improve the output results. The final accu-
racy and false positive rate (FPR) obtained were 92.5% and
5.12%, respectively. A similar ensemble approach is also used
by Cvitic et al. for classification purposes in smart homes [32].
Zhongzong and He in [33] implemented an extreme gradient
boosting (XGB) classifier for ETD. The method considers the
Irish (Ireland) dataset without using proper data pre-processing,
and data balancing techniques. The data reduction is done in the
way that six artificial theft attacks were generated from the orig-
inal dataset and then the model training/testing is performed
with that data. The final output obtained is compared with
SVM-based classification. The results showed that XGB out-
performs SVM in terms of precision, recall, and FPR. A novel
idea of gradient boosting classifier (GBC) based theft detec-
tion method is proposed in [34]. The research mainly focuses
on feature engineering and hyper-parameter tuning steps for
improvement in detection rate and FPR, and reduction in pro-
cessing time. The feature extraction is done using a combination
of synthetic feature generation and weighted feature impor-
tance (WFI) techniques. The final results showed that GBC
outperforms, categorical boosting (CB), light gradient boost-
ing (LGB), and XGB, in terms of FPR and execution time. The
authors in [8] proposed a supervised ML technique for all kinds
of anomaly detection in SG. For this purpose, Endesa (Spain)
dataset is considered which is collected from almost 57000 field
inspections of different consumers. The feature extraction is
done using ECP, distance, density, and electrical magnitude-
based measurement. The Endesa dataset also has important
information on geographical, seasonal, and smart meter prop-
erties. The final XGB model shows better results with an AUC
of 91%. Prem et al. [35] worked on cyber-physical attack detec-
tion using an isolation forest classifier (IFC). The isolation forest
is used to detect the change in the pattern of the consumers.
The main purpose of theft is to decrease the meter reading
from actual values, which changes the energy consumption pat-
tern (ECP) of that particular user. Data reduction is done using
PCA. The IFC is trained at varying load and voltage gener-
ation in order to capture the exact picture from all possible
ECP of consumers. The hyper-parameter tuning is done and
the model is tested for different grid/bus systems. The results
obtained show 98.7% recall in terms of anomaly detection with
the IEEE 3-bus system. Leloko et al. [5] tried to differenti-
ate theft consumers from honest consumers using the SGCC
dataset. The overall method used data pre-processing, data bal-
ancing, and feature reduction. Hyperparameter tuning is done
using a Bayesian optimizer. The model was individually imple-
mented on both time domain features and frequency domain
features for accurate training. Feature selection from both the
time and frequency domains proves useful. The final deep neu-
ral network implemented showed outstanding performance of
97% and 91.8% with an area under the curve (AUC) and accu-
racy, respectively. In [36], Paria et al. presented a solution for
ETD purposes while focusing on the ECP of consumers. The
ECP of theft and honest users are not the same, in fact, the
theft pattern has more fluctuations. Therefore, the area with
a high probability of malicious activities, in terms of electricity
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6 ALI ET AL.

consumption, are installed with distribution transformer meters
(DTM). Using this transformer meter, both types of consumers
are identified. 5000 real consumers’ data is analyzed in this
work. The data preprocessing, balancing, and feature reduc-
tion are all overcome by generating six synthetic attacks. SVM
algorithm with the combination of noting different types of
ECP is obtained using DTM. The final experimental result
showed a 93% detection rate and 11% FPR. Similar to the above
ECP-based NTL detection, an optimized convolutional neu-
ral network and gated recurrent unit (CNN-GRU) method is
studied in [37]. Real-time data of 10,000 consumers is analyzed
for ETD purposes. The data preprocessing is done to impute
missing values. Synthetic minority over-sampling (SMOTE) is
used for class balancing. A manta ray foraging optimization
(MRFO) is combined with CNN-GRU for result improve-
ment. The final model implemented showed a 91.1% accuracy
which was greater than SVM, logistic regression, and CNN-
GRU. The same data-driven approach is applied in [38] for
NTL reduction in the SG. The authors worked on real-time
data of 2,271 consumers collected from the Honduras distri-
bution system. The smoothing spline function (SSF) is used for
outlier handling. For feature reduction purposes, a new discrete
wavelet packet transform is implemented. The class imbalance
issue is addressed using the random under-sampling (RUS)
technique. In the last step, an ML-based RUS with Adaboost
technique is applied for classification purposes. Adaboost per-
formed better with an accuracy of 94.35% when compared
with Linear-SVM, Non-Linear SVM, and artificial neural net-
work (ANN). Using new incoming ML and pre-processing
techniques makes the ETD process simple and efficient. Pamir
et al. in [39] followed the same direction and proposed a
hybrid ensemble model for electricity theft detection. The
researchers worked on data pre-processing using KNNOR for
data balancing. The feature reduction is done using the recur-
sive feature elimination technique. For classification purposes,
a bi-directional long short term memory (Bi-LSTM) classifier
with three layers is used as the base model followed by a
LogitBoost classifier. This proposed stacking approach results
in improved detection performance when verified on a real-
world ’SGCC’ dataset. The output value obtained for precision,
F1-score, and accuracy show 96.32%, 94.33%, and 89.45%,
respectively.

3 DESCRIPTION OF PROPOSED
MODEL

In our proposed model, an ensemble AI technique is imple-
mented for ETD in SG. The data is obtained from a utility
company. The original data is prepared for model training using
preprocessing and feature engineering steps. The entire dataset
is split into training and testing sets. The training set is fed to
base ML classifiers for training and prediction purposes. In the
final step, the prediction from ML classifiers is used as features
of a DL model for better classification results. The complete
system, as shown in Figure 2, is divided into the following four
steps.

1. The original data collected from the SG need to be prepro-
cessed before feeding it into ML algorithm. It is because
the original data have some missing values and outliers, and
has a large variance. This may be due to hardware issues,
noise in the communication medium, and users’ different
EC behavior. The missing values in the dataset decrease
the model’s performance. Therefore, they are replaced with
mean values. To address the issue of outliers’ handling,
a Z-score capping technique is used in step-1. The large
variation in the dataset reduces the model training capa-
bility. Therefore, the data is normalized using Min-Max
scaling.

2. Step-2 addresses the issue of high dimensionality of the
SGCC dataset. The large number of features cause time
complexity issue and also reduce the model’s performance
having irrelavant features. This causes problems in ML
model’s data generalization. In our model the dataset is
reduced using principal component analysis (PCA). This
helps to increase storage efficiency and improve the model’s
performance by removing irrelevant features, and reduce
storage cost and time complexity.

3. Step-3 shows the training data into the four ML mod-
els. These base models predict the output individually.
These level-0 ML models include LGB, XGB, RF, and ET
classifiers.

4. A multilayer perceptron (MLP) is used as a level-1 classifier
in step 4, which obtains the output of level-0 models and pre-
dict the final output in the form of theft or normal electricity
consumer.

3.1 Dataset’s information

The dataset used in this study is obtained from the real-time
EC of Fujian city consumers connected to SGCC. This SGCC
dataset, available as an MS Excel file, has a total of 42,372 con-
sumers. There are mainly two types of consumers in this dataset,
which are labeled as 0 and 1. Label-0 indicates a normal user
while label-1 indicates a theft consumer. The consumers and
their corresponding daily consumption are arranged as rows
and columns in a table, which show the records and features
of the dataset, respectively. Details of the dataset are organized
in Table 2.

3.2 Pre-processing

In ETD, we provide the users’ ECP to the model and then use
that for future cyber-physical theft attack (CPTA) predictions.

While the EC data obtained from the utility is un-scaled,
imbalanced, and has missing values and outliers. Moreover, the
information obtained from the original dataset, as shown in
Table 2, cannot be used for accurate training of the model.
Therefore, the data must be prepared using some ML tech-
niques. The data also needs a proper or near to exact pattern
for accurate detection. So, after the data is preprocessed, the
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ALI ET AL. 7

FIGURE 2 Proposed ETD stacked generalization model.
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8 ALI ET AL.

TABLE 2 SGCC original dataset’s information.

Source of Data Utility (SGCC)

Consumption duration 01/ 01/ 2014 to 31/ 10/ 2016

Consumers’ category Residential

Type of data Daily real time consumption

Total number of consumers 42,372

Normal consumers 38,757

Theft consumers 3,615

Features 1,034

Records 42,372

FIGURE 3 Electricity consumption pattern of two random consumers
from SGCC dataset.

consumption patterns of the theft and normal users can be
efficiently drawn. As shown in Figure 3, from a sample of
the SGCC dataset, a normal user has a much smooth elec-
tricity usage pattern than a theft consumer that has large
variations in the usage pattern. So the final pre-processed data
can be used for model training and user behavior predic-
tion. The pre-processing steps used in the proposed model are
discussed below.

3.2.1 Missing data imputation

The dataset obtained from the utility has a large number of
missing values, denoted as not a number (NaN), which are dif-
ferent from each other. These NaN values may exist due to
systematic, environmental, or random errors. The missing val-
ues cannot be neglected during preprocessing as they decrease
the model’s performance. Also, replacing them with zero will
result in a loss of information. Many data science techniques are
available for missing values imputation such as replacing NaN
with mean, median, or mode. The median and mode cause a
repetition of values in ECP, which again leads to performance
performance deterioration. The imputation method given in

FIGURE 4 FIGURE 4 Total contributions of outliers towards
predictions.

[40] is used where NaN is imputed with a value, as given in the
following equation. It has 3 main imputation conditions.

f (x ) =

⎧⎪⎪⎨⎪⎪⎩

x(m,n)−1
+ x(m,n)+1

2
, if xm,n = NaN , x(m,n)±1 ≠ NaN

0, if x(m,n)±1 = NaN

xm,n Otherwise

In this equation, xm,n = the daily EC, xm,n−1
= the previous

value, xm,n+1
= the next value to NaN.

3.2.2 Handling outliers

In the ECP, we found some values to be too large or too small as
compared to the normal values. These unexpected values (Out-
liers) deceive the model, which incurs a large execution time.
Generally, the values below 10 percent and above 90 percent are
treated as outliers.

As shown in Figure 4, the outliers in the dataset are less in
number and show very little contribution towards model train-
ing. A novel z-score capping-based outliers’ handling method
[41], shown in algorithm-1, is applied to make the data more
useful. The z-score outliers capping (ZSOC) technique works
by first finding the z-score using Equation (1).

Z − score = Z = xi −
𝜇

𝜎2
, (1)

where 𝜎=

√∑N
n=1

(xn−𝜇)2

n−1
Z= standard score, xi = random

value of outliers, 𝜇 = the mean value,
sigma = standard deviation of row i. After calculating the

Z-score, properly assign the lower and upper limits to the indi-
vidual feature. The data point which is less than the lower limit
or greater than the upper limit is replaced by the correspond-
ing limit. The main advantage of using the capping technique is
that it places the outlier at its respective extreme value instead
of completely removing the entire row. This helps to retain the
useful information in contrast to the present research [42, 43]
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ALGORITHM 1 ZSOC working in cyber-physical electricity theft
detection.

Input: Data X

Output: Data Y Start

1: Initialization: For i = 2,3,4,… N:

2: Original Dataset (X) is Selected

3: Find Z-score, Z:

4: for t ← 1 to TFind:

5: lower_limit = 𝜇 − 3 ∗ 𝜎

6: the upper_limit= 𝜇 + 3𝜎Upper limit imputationIf Z > upper_limit

7: Replace the Z with upper_limit Impute Lower limitIf Z < lower_limit

8: Replace the Z with upper_limitUpper limit imputationIf Z >

upper_limit

9: Replace the Z with upper_limitImpute Lower limitIf Z < lower_limit

10: Replace the Z with upper_limitWhen no condition is satisfiedImpute:
X_i= Z

11: Return (Zm,n )

12: End

FIGURE 5 FIGURE 5. Dotsshow the presence of outliers.

where the outliers are entirely removed. Algorithm-1 presents
the complete process.

3.2.3 Unit based normalization

The Z-method was used to handle the outliers; however, the
dataset still has large variations in the ECP of users, shown in
Figure 5, for a sample taken from the SGCC dataset. These large
variations degrade the output performance, as the ML and DL
models are sensitive to the variation and quality of the dataset.

Min-max normalization from [31] is applied for scaling
the data to the range [0, 1]. Min-max normalization has the
mathematical form, shown in Equation (2).

f (xi, j ) =
((xi, j ) − min(X ))

(max(X ) − min(X ))
. (2)

Here min(X) and max(X) show the minimum and maximum EC
of feature j in the data.

3.3 Feature engineering

The data pre-processed in previous steps is fully prepared to
be fed to the ML and DL models. But the ML and DL mod-
els face time complexity issues on a big and high-dimensional
dataset. The feature engineering step is performed to reduce
the size of the original dataset and also retain useful informa-
tion. In the proposed system, PCA is used for feature reduction
purpose. The PCA is used for reducing higher dimensional data
into lower dimensions. This is obtained by forming linear rela-
tions among the features using mean and variance. The reduced
features being obtained are called components that are inde-
pendent of each other. This is due to the fact that PCA finds
variance among the features and forms new components from
the correlated features. The features which are more correlated
are stored as individual components.

Similarly, the feature with the highest variance has more infor-
mation and is stored as the first component. The feature with
the second highest variance is taken as the second component,
and so on. The overall PCA-based dimensionality reduction
process [42] is given in Algorithm 2.

As the repeated and more related features are summed up
as an individual component, it also reduces the over-fitting
issue in the model. An additional arithmetic leveraging tech-
nique is also applied which results in improved performance
in the proposed model. A set of 300 important features is
extracted from the overall 1,034 features in the SGCC dataset.
This helped in reducing the execution time. The main disad-
vantage of using PCA is that it cannot capture the minimum
co-variance of the two classes and interpret the output features
into such a uniform linear shape that it again leads to a small
increase in simulation time. This issue is been tackled using an
arithmetic leveraging technique, which also enhances the ECP
separation.

3.4 Data balancing

After missing value imputation, outlier removal, normaliza-
tion, and feature engineering, the next step is to check for the
class imbalance. In the SGCC dataset, the number of normal
and abnormal users is not equally proportional. In the SGCC
dataset, out of the total number of 42,372 users, the number
of honest and illegitimate users are 38,757 and 3,615, respec-
tively, as given in Table 2. The majority class (Normal=0) has
more consumers than the minority class (Theft=1), as shown in
Figure 6.

Due to this skewed behavior of the dataset, the machine
learning model also shows a biased behavior towards the
majority class and classifies the theft user (TU) as a normal con-
sumer. To overcome the imbalance class issue, SVM-SMOTE
is applied, which results in improved performance. The imbal-
anced dataset is shown in Figure 6 and the balanced data is given
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10 ALI ET AL.

ALGORITHM 2 Dimensionality reduction steps in principal component
analysis.

Input: Data X

Output: Data Z

1: Initialization: Original Dataset, Y is Selected:

2: Chose Point of Interest

3: Find the Mean:

4: Mean = 𝜇 =
x+xn−1

n

5: Whilen ≠ 0 do where n = 2,3,4,… Nxn=values from dataset

6: x=point of interest

7: Find the Variance:

8: Id 𝜇 is Calculated Using𝜎2 =

∑N
n=1 (xn−𝜇)2

n
xn =Each value in

the datasetn = Number of values in the dataset𝜇 = Mean of all the
values

9: Find the Eigen Values (𝜆):

10: Determinant = Determinant [A − 𝜆 ∗ I ] A=Data Matrix, 𝜆 =Eigen
Value, I=Identity Matrix

11: If 𝜆 is Determined

12: Compute the Eigen vector from Eigen Values:AX = 𝜆 ∗ X A=
N-dimensional dataX= N-Variables in dataset

13: If Eigen Vectors are Determined

14: Sort Vector in Descending order w.r.t lambda Values:
𝜆n, 𝜆n−1, 𝜆n−2, 𝜆n−3, … 𝜆n−i , … 𝜆2, 𝜆1

15: If done

16: Find the new Matrix W’ from Eigen Vectors

17: Find Z from Y and W:

18: Z = W ∗ Y

19: End

in Figure 7. Figure 7 shows a equal number of samples for mali-
cious and normal users, after applying SVM-SMOTE technique.
This helps to improve the ML model training by reducing the
bias for majority class.

Figure 8 shows a visualization of how SVM-SMOTE works.
The minority or theft class samples are less in number compared
to normal users. So, SVM-SMOTE takes the available dataset
and draw hyperplane between the two classes. The minority
class samples are then considered and new samples are gener-
ated using K-nearest neighbor (KNN) algorithm. This makes
equal the normal and theft class samples.

Different techniques are used in the present research such as
RUS, random oversampling (ROS), and SMOTE. RUS reduces
the records in the majority class to balance the dataset. But
due to the reduction in the records, some important informa-
tion is also lost, which decreases the model’s performance. In
contrast to RUS, ROS repeats random samples of the minority
class and makes it equal to the majority class. Due to the rep-
etition in the dataset, the over-fitting issue arises. To overcome
the issues of RUS and ROS, SMOTE is used, which balances
the dataset by generating synthetic data of the minority class.
SMOTE also leads to oversampling of noise that causes high

FIGURE 6 FIGURE 6. Imbalanced SGCC dataset.

FIGURE 7 SVM-SMOTE based balanced dataset (SGCC).

record dataset and causes time complexity and mis-classification
issues. For proper data balancing and to overcome the issues
in the above-used techniques, we propose a support vector
machine minority oversampling technique (SVM-SMOTE) for
better classification performance. SVM-SMOTE is a modified
form of SMOTE, which is used for minority class oversampling.
In this method, a hyperplane is drawn between the minor-
ity class and majority class, and synthetic data is generated on
the minority side to obtain a balanced dataset. Also the new
samples are generated closer to the boundary region because
misclassification occurs due to samples closest to the boundary.
So a clear boundary is obtained between the ECP of nor-
mal and malicious users, new synthetic samples are created
and it becomes easy for model learning and future prediction.
The SVM-SMOTE technique is used, shown in Figure 8, for
balancing the SGCC dataset.
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ALI ET AL. 11

FIGURE 8 SVM-SMOTE system diagram.

3.5 Model selection

In ML and DL, the time series and high dimensional datasets
have enormous ECP and a single algorithm cannot learn and
predict the accurate behavior. Four different ML models are
considered in this work as weak learners to capture the ECP
of all the customers for better generalization. These learners are
LGB, RF, XGB, and ET. The details of the structure and process
of all level-0 learners are provided as follows.

3.5.1 Base learner-1

Light gradient boosting (LGB) released by Microsoft in 2017
[44]. LGB is a modified form of gradient boosting tree algo-
rithm with leaf-wise splitting for higher accuracy. Due to
the leaf-wise splitting structure, LGB is useful for complex
modeling like time series classification, regression, ranking etc.

3.5.2 Base learner-2

Random forest (RF) is an ensemble ML algorithm, which is
used for classification and regression. The algorithm is simple
in structure with many DTs. RF is the best tool used for multi-
variable datasets. It is a widely used algorithm as it can produce
good results without hyper-parameter optimization. The basic
mechanism of this model is that it uses the bootstrapping phe-
nomenon. Where the original dataset is randomly divided into
subsets with replacements [45]. These bootstraps are then used
for DT where each tree makes a prediction. Based on these pre-
dictions, a voting mechanism is implemented. This gives rise

to the final prediction of the RF model. RF can handle large
datasets, reduce the variance and over-fitting, and show a higher
accuracy as compared to the DT classifier. The Gini index is
a statistical term used to predict the outcome probability of a
random forest. Mathematically, Gini index can be found using
Equation (3) [46].

Gini_index = 1 −
c∑

i=1

(pi )
2 (3)

Here, c = Number of classes
pi = Relative frequency of the given class outcome

3.5.3 Base learner-3

XGB or regularized gradient boosting is a sequential tree-based
algorithm that focuses on computational speed and model per-
formance. This algorithm basically works on the Taylor series
function to find the loss function [47]. The model combines the
weak learners sequentially to improve their learning. A new reg-
ularization term is included to prune the extra leaf and avoid
overfitting. The algorithm can be used for both regression and
classification tasks and has been designed to work with large and
complicated datasets.

3.5.4 Base learner-4

Extra tree classifier (ETC), also named extremely randomized
tree, is a DT-based bagging technique. It uses training data and
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12 ALI ET AL.

creates a large number of random un-pruned trees. In the final
step, ETC reduces the model training by collecting a random
DT for the best split [48]. Due to the random pruning phe-
nomenon and in the absence of an optimum splitting step, ETC
has a very short execution time and is this applied in this model.

3.5.5 Stacking model

The main purpose of building a stacking ML model is to obtain
better classification results, specifically theft detection in SG.

The model produces more accurate results than the individ-
ual classifier. The stacked generalization combines the learning
ability of multiple algorithms for achieving optimum accuracy
in terms of classification [49]. The proposed system combines
the strength of all four level-0 classifiers for a reduction in vari-
ance, bias, overfitting, and execution time. The model deals with
big data, and makes accurate predictions. In the stacking model,
the training dataset is fed to the base learners with k-fold cross-
validation. The level-0 classifiers learn to make predictions on
the out-of-fold dataset. In the next step, the predictions from
all the base learners are used as features of the level-1 classi-
fier or meta-classifier. The meta-classifier learns the predictions
of level-0 learners and predicts the output class. The complete
stacking process is shown in Algorithm-3.

3.6 MLP mathematical modeling

An MLP is a useful tool for non-linear data classification. It has
three main layers, input layer, hidden layer and output layer, and
each of these layers serves a specific purpose in the network’s
overall architecture.

1. An input layer the number of input layers depends on input
features its function is to receive the input data and pass it
on to the next layer in the network. The number of nodes in
the input layer is equal to the number of features in the input
data. For example, in our case, the number of features used
is 300, so 300 input layers are used.

2. The hidden layers are used for weight updation. The hidden
layer is the layer between the input and output layers. Each
node in the hidden layer takes information from nodes in
the layer below and creates an output that is sent to the layer
above. The number of nodes in each of the hidden layers of
a neural network might vary.

3. The neural network’s last layer, known as the output layer, is
responsible for producing the final output prediction based
on the input data. The type of problem being solved deter-
mines how many nodes are present in the output layer. In
our binary classification issue, for instance, the output layer
would contain two nodes: one representing the likelihood of
belonging to the honest class and the other representing the
probability of belonging to the theft class.

The input layers provide a scaled signal to the hidden layers. The
weights are real numbers multiplied by the input signals. The

ALGORITHM 3 Proposed stacking generalization technique for theft
detection.

Input: Data X

Output: Data Z

1: Original Data=X=
∑

X N
(i, j ,k,l ,m,n,o=1)

2: Select the Original Dataset

3: Split the data:

4: Training set=X=
∑

X 1N
(i, j ,k,l ,m=1)

5: Testing set=Y=
∑

Y 1N
(n ,o=1)

6: Level-0 classifier (C1):If n ≠ 0 andfor t ← 1 to T= X

7: Learn base classifier C1 on X1=
∑

X 1N
(i, j ,k,l=1)

8: Predict C1 on Validation set V1=
∑

Y 1N
(m=1)

9: 0utput prediction=P1

10: Level-0 classifier (C2): C1 is Calculated

11: Learn base classifier C2 on X2=
∑

X 2N
(i, j ,k,m=1)

12: Predict C2 on the Validation set V2=
∑

Y 2N
(l=1)

13: Output prediction=P2

14: Find C3, If C2 is Determined FindC3,

15: IfC1, C2 is Determined

16: Level-0 classifier (C3):

17: Similarly, learn the base classifiers C4

18: Make predictions P4

19: After All Level-0 are Predicted

20: Meta classifier (M1)

21: Learn Meta Classifier M1 on X=[P1, P2, P3, P4]

22: Predict M1 on Y

23: End

hidden layers give the weighted sum of the given information
[50].

yo =

n∑
i=1

wixi + b. (4)

The above-obtained information is still in linear form. The acti-
vation function given below is used to obtain information about
non-linear data.

f (x ) =
1

1 + e−x . (5)

Then the information obtained from hidden layers is found
using the equation given below.

yo = f (x )(
n∑

i=1

wixi + b), (6)

where yo is the output, wi is the weight value, xi is input data, b
is the bias factor and f(x) is the activation function. The num-
ber of neurons determines the hidden layers in the network.
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ALI ET AL. 13

If the number of neurons is kept very then small it will lead
to model under-fitting while a large number of neurons lead to
an over-fitting issue in the model prediction. A default sigmoid
activation function is used in the network for non-linear data
modeling. The limit of sigmoid activation is between 0 to one,
with 0 for negative values and 1 for positive values. The overall
equation used for MLP is given below.

yo = f [WOmn(
n∑

i=1

WIi j xi + b1) + b2], (7)

where WIi j is the weight of input layer, WOmn is the weight of
output layer, b1 is the input bias factor and b2 is the bias in
output layer.

4 PERFORMANCE METRICS

For classification problems, various performance parameters
are used to evaluate the final output and performance of the
model like confusion matrix, F1-score, Area Under the Curve,
Precision, Recall, Receiver Operating Curve, and Accuracy.
These parameters are helpful in checking the overall perfor-
mance of a model. The parameters are explained with respective
mathematical forms in the following paragraphs [51].

4.1 Confusion matrix

In ML, a confusion matrix is used to measure classification per-
formance. It is an N * N matrix. Here N is the number of classes
in a given dataset. The matrix has 2 dimensions with actual class
and predicted class. In our SGCC data set, we have binary (2)
class classifications normal (0) and malicious (1). So the confu-
sion matrix is 2*2 matrix [46]. And has the following 4-types of
outputs.

(a) True Positive (TP) = True positive is the actual posi-
tive class (1) value which is predicted positive (1) by the
classifier.

(b) True Negative (TN) = True negative is negative class (0)
data points which is predicted as negative (0) by the model.

(c) False Positive (FP) = False positive is the negative class (0)
values and the model classify it as positive class (1).

(d) False Negative (FN) = And false negative shows the posi-
tive class (1) values which is predicted as negative class (0)
by the ML model.

4.2 Accuracy

In ML accuracy is used to measure the overall performance of
a model on a given dataset. It is used to measure how much
data is classified correctly. Considering the confusion it is the
number of correctly classified data points divided by all the data
points predicted by a given ML model. Mathematically, accuracy

is calculated using Equation (8) [52].

Accuracy =
TP ∗ TN

TP ∗ TN ∗ FP ∗ FN
. (8)

After data scaling, there are still some outliers in the dataset,
which disturb the model’s performance and learning time. The
Z-score-based capping technique is used in this paper to prop-
erly address the outliers. The main advantage of using the
capping technique is that it places the outliers at their respec-
tive extreme value instead of completely removing the entire
row.

4.3 Precision

Precision is the portion of positive data points that are cor-
rectly classified. It is the positive class values, from all the
predicted values, that the model classified as positive. Pre-
cision is sometimes referred to as specificity. The following
mathematical formula, given in Equation (9), used to find the
precision [50].

Precision(P ) =
TP

TP ∗ FP
. (9)

4.4 Recall

The recall represents the number of positively classified data
points. It is the portion of actual positive values that the model
classifies as positive and negative [46]. The recall is also called
sensitivity and has the following formula (10):

Recall (R) =
TP

TP ∗ FN
. (10)

4.5 F1-score

In the classification cases, the main aim is to obtain the
best value for precision and recall. F1-score is the mea-
sure used to find the best classification values in terms
of precision and recall [50]. Mathematically, it is the har-
monic mean of precision and recall, and is given in
Equation (11).

F 1 − score = 2 ∗
Precision ∗ Recall
Precision + Recall

. (11)

4.6 Area under the curve

AUC is the total area covered by the ROC curve or
the total points lying under the ROC curve. The thresh-
old with maximum ROC is called the AUC value of that
model [46].
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14 ALI ET AL.

FIGURE 9 Proposed model performance on SGCC dataset.

4.7 Receiver operating characteristics

The ROC curve shows the TP predicted values at different
thresholds w.r.t FP points. ROC is important to measure when
dealing with imbalanced datasets. More specifically, it is the
graph of true positive rate (TPR) w.r.t false positive rate (FPR)
[52, 53]. Equation (12) is used to find the TPR:

TPR =
TP

TP + FN
. (12)

While to find the FPR, Equation (13) is used:

FPR =
FP

FP + TN
. (13)

5 SIMULATION SETUP

In this section, we set the prepared and reduced dataset into
training and testing subsets. The processed data obtained from
the above three steps are split into 80:20 for model training and
testing. The final result is shown in the next section.

6 RESULTS’ DISCUSSION AND
EVALUATION

The results obtained are evaluated in the form of impor-
tant performance metrics required for classification purposes.
The experimental results obtained after the model simulations
are discussed as follows. Accuracy is a general classifica-
tion term that may not be a good metric for classification.
Therefore, a combination of different performance metrics
is used for good classification. Figure 9 shows the training
and testing accuracy, F1-score, and AUC of the proposed
model.

FIGURE 10 Proposed model confusion matrix on SGCC dataset.

The training accuracy is 0.9967 or 99.67% which shows that
our model well trained and have good learning capacity. The
model showed 0.9725 or 97.25% accuracy that proves that
the proposed model is useful to be used for prediction pur-
poses. The AUC and F1-score, which are other performance
parameters, also confirm the model testing performance.

The confusion matrix obtained in Figure 10 shows the final
prediction of the proposed model in terms of TP, TN, FP, and
FN. As seen from the figure that the proposed model has a high
detection rate for normal and theft class prediction. The values
of FP and FN represent wrongly classified users. A reduction in
these parameters is obtained, with the misclassification of FP
and FN to 0.54% and 1.69%, respectively. This achieves our
proposed objective in terms of very low FPR and FNR. The
output performance of different models on pre-processed data
is given in Table 3.

The precision and recall values are usually calculated in a
single relationship. This combined precision-recall curve (PRC)
is obtained for different threshold values. The high precision
shows a low FP value and a high recall represents a lower value
of FN. The PRC curve, shown in Figure 11, obtained using the
proposed model shows both precision and recall have a high
value of 97.1%.

In ML accuracy shows how much of the data points are cor-
rectly classified out of the total predicted points. This clarifies
how many of the users are predicted malicious and how many
are predicted as normal using the ML model. Figure 12 shows
a bar chart with accuracy values of all base models and the pro-
posed model. The proposed model achieved a high accuracy of
97.6% as compared to level-0 models. The values are given in
Table 4.

The ROC plots the TPR and the FPR at different thresholds.
The high value of ROC shows the positive class prediction abil-
ity. Figure 13 shows the ROC value of the proposed model to
be 96.7%.
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TABLE 3 TABLE 3. Output performance of different models on pre-processed data.

Model + Applied technique (s) Accuracy in % FPR in % FNR in % Time (s)

PCA + SMOTE 95.95 1.31 2.73 1320

PCA + SVM-SMOTE 96.33 1.09 2.57 1540

Z-score-capping + PCA + SVM-SMOTE 96.27 1.12 2.61 1220

Z-score-capping + PCA(features=200) + arithmetic-leveraging +SVM-SMOTE 97.3 0.60 2.04 1850

Z-score-capping + PCA(features=400) + arithmetic-leveraging +SVM-SMOTE 97.29 0.62 2.09 2520

Z-score-capping + PCA(features=300) + arithmetic-leveraging + SVM-SMOTE 97.69 0.60 1.82 2070

TABLE 4 Models’ performance on different data splitting.

Train/test size = 80:20 Train/test size = 75:25 Train/Test Size = 70: 30
Data splitting

model Tr. Acc Tes. Acc AUC F1-score Tr. Acc Tes. Acc AUC F1-score Tr. Acc Tes. Acc AUC F1-score

LGBM 0.9478 0.9329 0.9330 0.9315 0.9487 0.9293 0.9292 0.9275 0.9480 0.9309 0.9308 0.9291

RF 0.9940 0.9493 0.9494 0.9488 0.9943 0.9487 0.9487 0.9483 0.9937 0.9444 0.9443 0.9436

XGBoost 0.8329 0.8239 0.8240 0.8168 0.8353 0.8240 0.8239 0.8197 0.8334 0.8304 0.8306 0.8242

ET 0.9992 0.8252 0.8252 0.8319 0.9984 0.8044 0.8046 0.8131 0.9993 0.8069 0.8070 0.8151

Proposed
model

99.78 0.9769 0.9769 0.9766 0.9974 0.9754 0.9753 0.9749 0.9982 0.9743 0.9743 0.9739

FIGURE 11 Precision-recall curve of the base models and proposed
model.

In ML, AUC is a two-dimensional curve with TP on the y-
axis and FP on the x-axis. The AUC aggregates the TP and FP
values on all given thresholds. A high value of AUC suggests a
higher prediction of a positive class, which is electricity theft in
our case.

Figure 14 presents the AUC, F1-score, and accuracy values of
all the level-0 models and the proposed model. The results given
in Table 5 also shows a higher performance of the proposed
model as compared to the base models.

FIGURE 12 Accuracy comparison of level-0 and the proposed model.

TABLE 5 F1-score, AUC, accuracy of the base models, and proposed
model.

Model F1-score AUC Accuracy

XGBoost 0.8168 0.8240 0.8239

ET 0.8319 0.8252 0.8252

LGBM 0.9315 0.9330 0.9329

RF 0.9488 0.9494 0.9493

Proposed model 0.9766 0.9769 0.9769
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FIGURE 13 Comparison of base models’ ROC with the proposed
model’s.

FIGURE 14 Comparison of AUC, F1-score and accuracy of base models
and the proposed model.

7 CONCLUSION

In this paper, an ML-based stacked generalization technique is
proposed to overcome the CPTA issue and cut down on the
anomalous consumption of electricity happening in the smart
cities. The overall system is divided into four modules with spe-
cific functions. The data obtained from the utility needs some
pre-processing before being used for model training. The first
module addresses these issues with novel techniques in order
to process the data without losing important information. The
NaN is imputed using the mean imputation method for mak-
ing a complete ECP. The data is normalized with the min-max
scaling technique to bring the data into a proper range. A z-
score capping technique is applied for efficient handling of the
outliers in the dataset. In the second module, a leveraging-PCA-

based technique is applied for important feature extraction
and data reduction purposes. We implement the SVM-SMOTE
technique for optimal balancing of the theft and normal
class data obtained from the PCA technique. The benchmark
classifiers are implemented in module 3 of the proposed model.
The dataset is split into 80:20 training and testing ratio after
balancing, and fed to the four base classifiers. These base
classifiers are trained and predicted on 80% (training set) of
the dataset, and the predictions are obtained for each classi-
fier. The final classification is performed in module 4, with
input from four different ML models and a meta-level DL
model. The prediction of level-0 classifiers is fed to the level-1
model to capture the ECP information from all the base clas-
sifiers. The final prediction obtained from the level-1 model
shows an enhanced performance in terms of classification. The
results obtained show that our proposed model outperformed
other benchmark ML models. The proposed model achieves
a high accuracy of 97.69%. In addition, a very low value of
FPR and FNR is obtained with 0.72%, 2.05%, respectively,
which show the reduction in inspection cost and energy theft.
The results obtained make the proposed model useful to be
used in industrial applications for theft detection and NTL
reduction purposes.

8 FUTURE WORK

The proposed system model used here works in offline mode.
In the future, the concern will be to transform the model into
the online mode with hyper-parameter tuning, using a heuristic
algorithm, in order to address the system execution time and
improve the detection accuracy in the smart grids.

AUTHOR CONTRIBUTIONS

Arshid Ali: Writing – original, conceptualization, methodol-
ogy, software. Laiq Khan: Supervision, writing – original,
validation, software. Nadeem Javaid: Supervision, writing –
review & editing, validation. Safdar Hussain Bouk: Visu-
alization, investigation. Abdulaziz Aldegheishem: Project
supervision, funding, validation. Nabil Alrajeh: Writing –
review & editing, software.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of
Researchers Supporting Project Number RSP2023R295, King
Saud University, Riyadh, Saudi Arabia.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interests.

DATA AVAILABILITY STATEMENT

Not applicable.

ORCID

Arshid Ali https://orcid.org/0000-0002-9657-1494
Nadeem Javaid https://orcid.org/0000-0003-3777-8249

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12785 by O

ld D
om

inion U
niversity, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

0.0 0.2 

1.0 
- Accuracy 

0.8 

QI 
u 
C 

§ 0.6 

.g 
QI 
0.. 
~ 
::, 
,8- 0.4 
::, 
0 

0.2 

0.0 
LGBM 

0.4 

ET 

XGB, ROCAUC=0.8344 

ET, ROCAUC=0.8326 

LGBM, ROCAUC=0.9298 7 
RF, ROCAUC=0.9466 

Proposed-Model, ROCAUC=0.9725 

0.6 0.8 1.0 

RF XGB Proposed-Model 
Implemented Classifiers 

https://orcid.org/0000-0002-9657-1494
https://orcid.org/0000-0002-9657-1494
https://orcid.org/0000-0003-3777-8249
https://orcid.org/0000-0003-3777-8249


ALI ET AL. 17

REFERENCES

1. U.S. Energy Information Administration (EIA). https://www.eia.gov/
tools/faqs/faq.php?id= 427t=3. Accessed December 2022.

2. Ullah, A., Javaid, N., Asif, M., Javed, M.U., Yahaya, A.S.: Alexnet, adaboost
and artificial bee colony based hybrid model for electricity theft detection
in smart grids. IEEE Access 10, 18681–18694 (2022)

3. Massaferro, P., Di Martino, J.M., Fernández, A.: Fraud detection on power
grids while transitioning to smart meters by leveraging multi-resolution
consumption data. IEEE Trans. Smart Grid 13(3), 2381–2389 (2022)

4. Shah, A.L., Mesbah, W., Al-Awami, A.T.: An algorithm for accu-
rate detection and correction of technical and nontechnical losses
using smart metering. IEEE Trans. Instrum. Meas. 69(11), 8809–8820
(2020)

5. Lepolesa, L.J., Achari, S., Cheng, L.: Electricity theft detection in smart
grids based on deep neural network. IEEE Access 10, 39638–39655
(2022)

6. Javaid, N.: A PLSTM, alexNet and ESNN based ensemble learning
model for detecting electricity theft in smart grids. IEEE Access 9,
162935–162950 (2021)

7. Saleem, M.U., Usman, M.R., Usman, M.A., Politis, C.: Design, deployment
and performance evaluation of an IoT based smart energy management
system for demand side management in smart grid. IEEE Access 10,
15261–15278 (2022)

8. Chamra, A., Harmanani, H.: A smart green house control and manage-
ment system using IoT. In: 17th International Conference on Information
Technology-New Generations (ITNG 2020), pp. 641–646. Springer
International Publishing, Cham (2020)

9. Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gómez-Expósito, A.:
Detection of non-technical losses using smart meter data and supervised
learning. IEEE Trans. Smart Grid 10(3), 2661–2670 (2018)

10. Mujeeb, S., Javaid, N., Ahmed, A., Gulfam, S.M., Qasim, U., Shafiq,
M., Choi, J.-G.: Electricity theft detection with automatic labeling and
enhanced RUSBoost classification using differential evolution and Jaya
algorithm. IEEE Access 9, 128521–128539 (2021)

11. Hamad, A.A., Abdulridha, M.M., Kadhim, N.M., Pushparaj, S., Meenakshi,
R., Ibrahim, A.M.: Learning methods of business intelligence and group
related diagnostics on patient management by using artificial dynamic
system. J. Nanomater. 2022, 1–8 (2022)

12. Yan, Z., Wen, H.: Electricity theft detection base on extreme gradient
boosting in AMI. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

13. Rani, S., Babbar, H., Srivastava, G., Gadekallu, T.R., Dhiman, G.: Security
framework for internet of things based software defined networks using
blockchain. IEEE Internet Things J. 10(7), 6074–6081 (2023)

14. Arif, A., Alghamdi, T.A., Ali Khan, Z., Javaid, N.: Towards efficient energy
utilization using big data analytics in smart cities for electricity theft
detection. Big Data Res. 27, 100285 (2022)

15. Li, D., Deng, L., Gupta, B.B., Wang, H., Choi, C.: A novel CNN based
security guaranteed image watermarking generation scenario for smart city
applications. Inf. Sci. 479, 432–447 (2019)

16. Al-Rahawe, B.A., Hamad, A.A., Al-Zuhairy, M.H., Khalaf, H.H., Abebaw,
S.: The commitment of Nineveh governorate residents to the precaution-
ary measures against global 2019 pandemic and dermatological affection
of precautions. Appl. Bionics Biomech. 2021, 1526931 (2021)

17. Yan, Z., Wen, H.: Performance analysis of electricity theft detection for
the smart grid: An overview. IEEE Trans. Instrum. Meas. 71, 1–28
(2021)

18. Pasdar, A., Mirzakuchaki, S.: A solution to remote detecting of illegal
electricity usage based on smart metering. In: 2007 2nd Interna-
tional Workshop on Soft Computing Applications, pp. 163–167. IEEE,
Piscataway (2007)

19. Ali, S.S., Maroof, M., Hanif, S.: Smart energy meters for energy conser-
vation and minimizing errors. In: 2010 Joint International Conference on
Power Electronics, Drives and Energy Systems and 2010 Power India, pp.
1–7. IEEE, Piscataway (2010)

20. Zheng, D., Wang, S.: Research on measuring equipment of single-phase
electricity-stealing with long-distance monitoring function. In: 2009 Asia-
Pacific Power and Energy Engineering Conference, pp. 1–4. IEEE,
Piscataway (2009)

21. Astronomo, J., Dayrit, M.D., Edjic, C., Regidor, E.R.T.: Development of
electricity theft detector with GSM module and alarm system. In: 2020
IEEE 12th International Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control, Environment, and
Management (HNICEM), pp. 1–5. IEEE, Piscataway (2020)

22. Somefun, T.E., Awosope, C.O.A., Chiagoro, A.: Smart prepaid energy
metering system to detect energy theft with facility for real time
monitoring. Int. J. Electr. Comput. Eng. 9(5), 4184 (2019)

23. Saritha, G., Sowmyashree, M.S., Thejaswini, S., Surekha, R.G.: Wireless
power theft monitoring and controlling unit for substation. IOSR J.
Electron. Commun. Eng. 9(1), 10–14 (2014)

24. Mir, S.H., Ashruf, S., Bhat, Y., Beigh, N.: Review on smart electric metering
system based on GSM/IOT. Asian J. Electr. Sci. 8(1), 1–6 (2019)

25. Fovino, I.N., Carcano, A., De Lacheze Murel, T., Trombetta, A., Masera,
M.: Modbus/DNP3 state-based intrusion detection system. In: 2010 24th
IEEE International Conference on Advanced Information Networking
and Applications, pp. 729–736. IEEE, Piscataway (2010)

26. Bandim, C.J., Alves, J.E.R., Pinto, A.V., Souza, F.C., Loureiro, M.R.B.,
Magalhaes, C.A., Galvez-Durand, F.: Identification of energy theft and
tampered meters using a central observer meter: a mathematical approach.
In: 2003 IEEE PES Transmission and Distribution Conference and Expo-
sition (IEEE Cat. No. 03CH37495), vol. 1, pp. 163–168. IEEE, Piscataway
(2003)

27. McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A
multi-sensor energy theft detection framework for advanced metering
infrastructures. IEEE J. Sel. Areas Commun. 31(7), 1319–1330 (2013)

28. Xia, X., Xiao, Y., Liang, W., Zheng, M.: GTHI: A heuristic algorithm to
detect malicious users in smart grids. IEEE Trans. Network Sci. Eng. 7(2),
805–816 (2018)

29. Cárdenas, A.A., Amin, S., Schwartz, G., Dong, R., Sastry, S.: A game the-
ory model for electricity theft detection and privacy-aware control in AMI
systems. In: 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 1830–1837. IEEE, Piscataway
(2012)

30. Gao, Y., Foggo, B., Yu, N.: A physically inspired data-driven model for
electricity theft detection with smart meter data. IEEE Trans. Ind. Inf.
15(9), 5076–5088 (2019)

31. Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Decision
tree and SVM-based data analytics for theft detection in smart grid. IEEE
Trans. Ind. Inf. 12(3), 1005–1016 (2016)
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