1,180 research outputs found

    Time frequency analysis in terahertz pulsed imaging

    Get PDF
    Recent advances in laser and electro-optical technologies have made the previously under-utilized terahertz frequency band of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain. In this chapter the technique of terahertz pulsed imaging is introduced in some detail. The need for special computer vision methods, which arises from the use of pulses of radiation and the acquisition of a time series at each pixel, is described. The nature of the data is a challenge since we are interested not only in the frequency composition of the pulses, but also how these differ for different parts of the pulse. Conventional and short-time Fourier transforms and wavelets were used in preliminary experiments on the analysis of terahertz pulsed imaging data. Measurements of refractive index and absorption coefficient were compared, wavelet compression assessed and image classification by multidimensional clustering techniques demonstrated. It is shown that the timefrequency methods perform as well as conventional analysis for determining material properties. Wavelet compression gave results that were robust through compressions that used only 20% of the wavelet coefficients. It is concluded that the time-frequency methods hold great promise for optimizing the extraction of the spectroscopic information contained in each terahertz pulse, for the analysis of more complex signals comprising multiple pulses or from recently introduced acquisition techniques

    Optical properties of tissue measured using terahertz pulsed imaging.

    Get PDF
    The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on the optical properties of human tissue at terahertz frequencies. A catalogue of these properties has been established to estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image contrast and reflection at boundaries. A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was used. Local ethical committee approval was obtained. Transmission measurements were made through tissue slices of thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle. The mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of frequency, were calculated. The measurements were used in simple models of the transmission, reflection and propagation of terahertz radiation in potential medical applications. Refractive indices ranged from 1.5 ± 0.5 for adipose tissue to 3.06 ± 0.09 for tooth enamel. Significant differences (P<0.05) were found between the broadband refractive indices of a number of tissues. Terahertz radiation is strongly absorbed in tissue so reflection imaging, which has lower penetration requirements than transmission, shows promise for dental or dermatological applications

    Photo-Acoustic Analysis of Dental Materials and Tissue

    Get PDF
    The goal of the presented study is the investigation of the feasibility of using optically generated acoustic waves for analysis of dental material below laser-ablation threshold. The temperature rise of dental material and tissue has been modeled analytically and numerically, and measured experimentally. Following interactions with nano- and femto-second laser radiation the temperature rises at a rate of typically 1 ±C per J=cm2, along with the generation of an acoustical wave. The results from the models agree with the experiment. The acoustic measurements show differences in the acoustic signal strength and the frequency spectrum when the canal in the porcelain phantom is empty or filled with intralipid solution. The photo-acoustic technique is found to be suitable for detection of liquids under a layer of dental porcelain material, consequently it can be the basis for building an imaging tool for dental diagnostic applications. By generating sound waves in the pulp, one would be able to evaluate it\u27s state and the overall health of the tooth. This is of vital importance for diagnosing initial-stage inflammation

    The Impact of Tooth Brushing on Teeth affected by Molar Incisor Hypomineralisation (MIH)

    Get PDF
    Background: Molar Incisor Hypomineralisation (MIH) can affect one or more first permanent molars (FPM), with or without the permanent incisors, prevalence ranges from 3-40%. Severity varies, and can be associated with hypersensitivity, post-eruptive breakdown (PEB) and aesthetic concerns. Different toothpastes have been suggested to enhance remineralization and reduce sensitivity, including fluoride or Novamin containing toothpastes. Aim: To compare tooth surface loss (TSL) from toothbrushing using different toothpastes in MIH affected and sound FPMs using Optical Coherence Tomography (OCT). Methods: Extracted human FPMs (N=27) Sound or with MIH were collected under ethical approval. Samples were classified using EAPD index 2014, in which type 21 indicates a white/cream opacity and type 22 yellow/brown opacity. Erosion using 1% citric acid was applied, followed by abrasion with an electric toothbrush and (i) saliva, (ii) Sensodyne® complete protection (inc Novamin), & (iii) Sensodyne® children pronamel (inc fluoride) for 100 cycles. A small needle was attached as a reference for calculation of TSL. OCT images were taken every 20 cycles, and the amount of TSL was calculated. Results: TSL was higher in children pronamel group than complete protection and saliva for MIH (type 22) and control samples, with the highest TSL 100µm and a mean of 85µm. The lowest TSL was 7µm in control group brushed with saliva. In MIH sample (type 21), the highest TSL was with Complete protection (85µm). However, the average mean of TSL for type 21 lesions with both complete protection and children pronamel groups was 45µm. Conclusion: Children Pronamel toothpaste resulted in more TSL, whereas complete protection resulted in less TSL in MIH type 22. This suggests Novamin may be beneficial in severely affected MIH teeth, but larger sample sizes are needed before a conclusion can be reached

    Optical Coherence Tomography in Dentistry

    Get PDF

    Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing

    Get PDF
    Introduction: Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. Material and method: The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. Results: For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. Conclusions: The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design

    X-ray dark-field tomography reveals tooth cracks

    Get PDF
    Abstract Cracked tooth syndrome (CTS) is a common clinical finding for teeth, it affects about 5% of all adults each year. The finding of CTS is favored by several risk factors such as restorations, bruxism, occlusion habits, and age. Treatment options range, depending on the severity, from no treatment at all to tooth extraction. Early diagnosis of CTS is crucial for optimal treatment and symptom reduction. There is no standard procedure for an evidence-based diagnosis up to date. The diagnosis is a challenge by the fact that the symptoms, including pain and sensitivity to temperature stimuli, cannot be clearly linked to the disease. Commonly used visual inspection does not provide in-depth information and is limited by the resolution of human eyes. This can be overcome by magnifying optics or contrast enhancers, but the diagnosis will still strongly rely on the practicians experience. Other methods are symptom reproduction with percussions, thermal pulp tests or bite tests. Dental X-ray radiography, as well as computed tomography, rarely detect cracks as they are limited in resolution. Here, we investigate X-ray dark-field tomography (XDT) for the detection of tooth microcracks. XDT simultaneously detects X-ray small-angle scattering (SAXS) in addition to the attenuation, whereas it is most sensitive to the micrometer regime. Since SAXS originates from gradients in electron density, the signal is sensitive to the sample morphology. Microcracks create manifold interfaces which lead to a strong signal. Therefore, it is possible to detect structural changes originating from subpixel-sized structures without directly resolving them. Together with complementary attenuation information, which visualizes comparatively large cracks, cracks are detected on all length-scales for a whole tooth in a non-destructive way. Hence, this proof-of principle study on three ex-vivo teeth shows the potential of X-ray scattering for evidence-based detection of cracked teeth
    corecore