873 research outputs found

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Embodying functionally relevant action sounds in patients with spinal cord injury

    Get PDF
    Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema

    Construction and assessment of a computer graphics-based model for wheelchair propulsion

    Get PDF
    Upper limb overuse injuries are common in manual wheelchair using persons with spinal cord injury (SCI), especially those with tetraplegia. Biomechanical analyses involving kinetics, kinematics, and muscle mechanics provide an opportunity to identify modifiable risk factors associated with wheelchair propulsion and upper limb overuse injuries that may be used toward developing prevention and treatment interventions. However, these analyses are limited because they cannot estimate muscle forces in vivo. Patient-specific computer graphics-based models have enhanced biomechanical analyses by determining in vivo estimates of shoulder muscle and joint contact forces. Current models do not include deep shoulder muscles. Also, patient-specific models have not been generated for persons with tetraplegia, so the shoulder muscle contribution to propulsion in this population remains unknown. The goals of this project were to: (i) construct a dynamic, patient-specific model of the upper limb and trunk and (ii) use the model to determine the individual contributions of the shoulder complex muscles to wheelchair propulsion. OpenSim software was used to construct the model. The model has deep shoulder muscles not included in previous models: upper and middle trapezius, rhomboids major and serratus anterior. As a proof of concept, kinematic and kinetic data collected from a study participant with tetraplegia were incorporated with the model to generate dynamic simulations of wheelchair propulsion. These simulations included: inverse kinematics, inverse dynamics, and static optimization. Muscle contribution to propulsion was achieved by static optimization simulations. Muscles were further distinguished by their contribution to both the push and recovery phases of wheelchair propulsion. Results of the static optimization simulations determined that the serratus anterior was the greatest contributor to the push phase and the middle deltoid was the greatest contributor to the recovery phase. Cross correlation analyses revealed that 80% of the investigated muscles had moderate to strong relationships with the experimental electromyogram (EMG). Results from mean absolute error calculations revealed that, overall, the muscle activations determined by the model were within reasonable ranges of the experimental EMG. This was the first wheelchair propulsion study to compare estimated muscle forces with experimental fine-wire EMG collected from the participant investigated

    Doctor of Philosophy

    Get PDF
    dissertationRecording the neural activity of human subjects is indispensable for fundamental neuroscience research and clinical applications. Human studies range from examining the neural activity of large regions of the cortex using electroencephalography (EEG) or electrocorticography (ECoG) to single neurons or small populations of neurons using microelectrode arrays. In this dissertation, microscale recordings in the human cortex were analyzed during administration of propofol anesthesia and articulate movements such as speech, finger flexion, and arm reach. Recordings were performed on epilepsy patients who required long-term electrocorticographic monitoring and were implanted with penetrating or surface microelectrode arrays. We used penetrating microelectrode arrays to investigate the effects of propofol anesthesia on action potentials (APs) and local field potentials (LFPs). Increased propofol concentration correlated with decreased high-frequency power in LFP spectra and decreased AP firing rates, as well as the generation of large amplitude spike-like LFP activity; however, the temporal relationship between APs and LFPs remained relatively consistent at all levels of propofol anesthesia. The propofol-induced suppression of neocortical network activity allowed LFPs to be dominated by low-frequency spike-like activity, and correlated with sedation and unconsciousness. As the low-frequency spike-like activity increased, and the AP-LFP relationship became more predictable, firing rate encoding capacity was impaired. This suggests a mechanism for decreased information processing in the neocortex that accounts for propofol-induced unconsciousness. We also demonstrated that speech, finger, and arm movements can be decoded from LFPs recorded with dense grids of microelectrodes placed on the surface of human cerebral cortex for brain computer interface (BCI) applications using LFPs recorded over face-motor area, vocalized articulations of ten different words and silence were classified on a trial-by-trial basis with 82.4% accuracy. Using LFPs recorded over the hand area of motor cortex, three individual finger movements and rest were classified on a trial-by-trial basis with 62% accuracy. LFPs recorded over the arm area of motor cortex were used to continuously decode the arm trajectory with a maximum correlation coefficient of 0.82 in the x-direction and 0.76 in the y-direction. These findings demonstrate that LFPs recorded by micro-ECoG grids from the surface of the cerebral cortex contain sufficient information to provide rapid and intuitive control a BCI communication or motor prosthesis

    Robotics Applications in Neurology: A Review of Recent Advancements and Future Directions

    Full text link
    Robotic technology has the potential to revolutionize the field of neurology by providing new methods for diagnosis, treatment, and rehabilitation of neurological disorders. In recent years, there has been an increasing interest in the development of robotics applications for neurology, driven by advances in sensing, actuation, and control systems. This review paper provides a comprehensive overview of the recent advancements in robotics technology for neurology, with a focus on three main areas: diagnosis, treatment, and rehabilitation. In the area of diagnosis, robotics has been used for developing new imaging techniques and tools for more accurate and non-invasive mapping of brain structures and functions. For treatment, robotics has been used for developing minimally invasive surgical procedures, including stereotactic and endoscopic approaches, as well as for the delivery of therapeutic agents to specific targets in the brain. In rehabilitation, robotics has been used for developing assistive devices and platforms for motor and cognitive training of patients with neurological disorders. The paper also discusses the challenges and limitations of current robotics technology for neurology, including the need for more reliable and precise sensing and actuation systems, the development of better control algorithms, and the ethical implications of robotic interventions in the human brain. Finally, the paper outlines future directions and opportunities for robotics applications in neurology, including the integration of robotics with other emerging technologies, such as neuroprosthetics, artificial intelligence, and virtual reality. Overall, this review highlights the potential of robotics technology to transform the field of neurology and improve the lives of patients with neurological disorders

    The sintering temperature effect on the shrinkage behavior of cobalt chromium alloy

    Get PDF
    Problem Statement: Co-Cr based alloys which is well known for its high Young’s modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio�material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr) alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400oC. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material

    The sintering temperature effect on the shrinkage behavior of cobalt chromium alloy

    Get PDF
    Problem Statement: Co-Cr based alloys which is well known for its high Young’s modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio�material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr) alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400oC. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material

    State-of-Science Review: SR-E29: Brain-Computer Interfaces and Cognitive Neural Prostheses

    Full text link
    corecore